

Oracle Berkeley DB SQL API vs. SQLite API –
Integration, Benefits and Differences
O R A C L E W H I T E P A P E R | N O V E M B E R 2 0 1 6

1 | ENTER TITLE OF DOCUMENT HERE

Introduction

Oracle's Berkeley DB 12.1.6.2 release offers a perfect combination of technologies by including an

SQL API that is fully compatible with SQLite. It is a great example of open source and commercial

collaboration offering something for both camps. As a Berkeley DB developer, you now have a proven

embedded SQL engine and C API to make application development even easier. And as an SQLite

user, you have the option of a powerful, industry-supported storage engine that is built from the ground

up for high-concurrency, and which includes powerful features like built-in replication and hot backup.

The combination of the two technologies provides you with tremendous flexibility in that a single SQL

API can now be used across a broad spectrum of applications ranging from the embedded space all

the way up to large-scale transaction processing.

For the most part, if you have written code using SQLite, it should be easy to put Berkeley DB's SQL

API to use. However, as with all things, there are a few technical caveats you should be mindful of.

This paper explores the benefits and potential issues for those familiar with SQLite wanting to test

drive the new Oracle Berkeley DB.

The Oracle Berkeley Database Architecture

The first thing to consider is — what the Oracle Berkeley DB (BDB) SQL interface is and what it is not. If you have

worked with MySQL, you may be tempted to think of this new feature as an alternate backend storage module for

SQLite, like InnoDB is to MySQL. It is not. Oracle has created an alternate front end for BDB — an SQLite

compatible SQL API. So rather than SQLite having an alternate backend, BDB has an alternate front end. BDB is

the frame of reference here.

Oracle has taken the SQLite source code, extracted everything from its storage layer up and grafted it on BDB. You

could argue that this is simply semantics, however the combination of these two libraries presents some unique

features and capabilities. For the sake of illustration, it is as if Oracle took the SQLite source code and completely

replaced its pager and B-tree layers with BDB, as shown in Figure 1. “Oracle Berkeley DB Integration”.

2 | ORACLE BERKELEY DATABASE VS SQLITE

Figure 1 – Oracle Berkeley Database Integration

As a result, though you may be working with the same SQL API up top, you are no longer dealing with the same

database files down below. The representation of the database on disk is totally different. It is now an Oracle

Berkeley DB database. As soon as you create a new database — say for example “foods.db”, you have a totally

different database file that SQLite knows nothing about.

You are now dealing with an Oracle Berkeley DB database and so all the standard BDB utilities, such as

db_checkpoint, db_hotbackup, db_load, db_dump, and db_recover, can operate on it. While these utilities are for

the most part optional, one such utility you definitely need to know about is “dbsql”. This is the BDB equivalent of the

“sqlite” command line utility, which operates on Berkeley DB created SQL databases.

Oracle Berkeley DB Benefits

If you are currently using SQLite, why consider switching to BDB? There are many operational differences between

the two products that may impact your choice. One of the most important consideration is performance. There are

many use cases where BDB provides significant performance improvements over SQLite. Latency and throughput

are the most common measures in performance tests. Both of these measures are highly correlated with:

• Efficiency — the time taken for a single process to perform an operation.

• Concurrency — the number of concurrent operations possible per unit of time.

SQLite, by design, is engineered to be a “portable, efficient SQL storage engine that offers maximum convenience,

simplicity, in a small footprint”. Simple storage, rather than big-time concurrency, is the principal goal. The largest

such design trade-off impacting performance is SQLite's use of database-level locking, which permits concurrent

access to the database files during write operations, but there is a maximum of one writer who can be active at a

time. As a result, SQLite’s transaction rate stays more or less constant even when the number of concurrent

3 | ORACLE BERKELEY DATABASE VS SQLITE

connections (threads, processes, CPUs/cores) is increased. The performance of SQLite in concurrent write-

intensive applications is limited to one thread.

 BDB is built from the ground for operational efficiency while scaling. A critical component of that is concurrency,

specifically large-scale write intensive concurrent transaction processing applications. Rather than using database-

level locking Berkeley DB uses fine-grained (page level) locking. That enables BDB to handle multiple simultaneous

operations working in a database at a given time (provided that they are working on separate pages). As a further

optimization to increase concurrency, BDB supports what is known as “multi-version concurrency control” or

“MVCC”. Without MVCC a read operation blocks a write operation on the same database page. With MVCC the

read operation maintains consistency by copying the page when the write requests the lock. In doing so, the write

operation does not have to wait on the read transaction to commit its changes. Such optimizations allow for greater

throughput and lower operational latency making Oracle Berkeley DB a much more concurrent solution for SQL

storage.

Because of this, if you have an application that uses many concurrent connections to modify a database and page

contention between the modifying threads is relatively low, then BDB can offer significant performance

improvements, processing more transactions per second than SQLite for multiple writers. That said, for applications

where data is rarely (or never) modified, SQLite and BDB have roughly the same locking overhead and so will

perform roughly the same.

A more common use case is to have applications with a variety of create, read, update, and delete operations

happening concurrently. In these cases, it is important to understand the potential for page contention to realize

BDB’s full performance advantage. The BDB database locking statistics (available via the dbsql “.stat” command or

the db_stat command line tool) for page contention is an important consideration. If the majority of writers are

working on the same pages at the same time then lock contention increases and throughput suffers. Essentially, if

you had a BDB database where all of the writers were contending for the exactly the same page(s), then its

performance is equivalent to SQLite because there is no advantage to page-level locking — everybody is accessing

the same data at the same time so access must be serialized. Normally, as the size of the database file increases,

so does the number of distinct pages within it and so the chance for page contention decreases. Therefore, the

maximum transactions per second (TPS) scales with the number of concurrent connections (threads and/or

processes).

As concurrency increases, the next most commonly encountered bottleneck is memory access and caching

efficiency become the next limiting factors.

The following simple test scenario illustrates these performance issues. To start with, the number of writers is varied

from 10 to 100 while observing the throughput of both SQLite and BDB. The transaction is made very simple

consisting of a random UPDATE of that record, as follows:

BEGIN IMMEDIATE;

UPDATE test SET x=random() where id=ABS(random(10000));

COMMIT;

The intent of this transaction is to measure lock contention and overhead, so the simpler the SQL the better. The

simplest UPDATE possible will do.

Furthermore, the test is designed such that each writer is theoretically working on a distinct page (and thus for BDB

there is little or no page contention). To do this, a dummy table named “test” is created and filled with 10,000

records, where each record is roughly the size of a single BDB database page. Because each record (or row)

4 | ORACLE BERKELEY DATABASE VS SQLITE

requires its own database page the odds of two writers randomly selecting or updating the same record (and thus

locking the same page) at the same time are very small (1 in 10,000).

The results of this test show that under these conditions, Oracle Berkeley DB consistently performs at a rate of

about 8 times (800% faster) that of SQLite for 20 concurrent connections and greater, as shown in Figure 2.

“Workload vs. Concurrent Connections”.

Figure 2 – Workload vs. Concurrent Connections

The reason is that this is the optimal case in Berkeley DB. All writers are modifying distinct pages in the database

because each row is on its own page – this essentially mimics row-level locking. While you see an eight-fold

performance advantage here, recognize that this is a theoretical limit because a best case scenario is created for

this test case. In real life, this is not always going to be the case, as oftentimes applications tend to operate on a

small subset of the data, forming “hot spots.” Due to these contentious hot spots performance starts to fall from the

optimal case to the degree to which writers contend for the same pages within them. If we assume that these hot

spots comprise 60-70% of the update operations, you may then expect something more along the lines of 2-3 times

the performance increase over SQLite on average for high-concurrency, write-intensive applications. Your mileage

will vary, depending on data layout and data access patterns causing contention within your application. However, it

is clear that BDB should provide better write scalability under concurrent load than SQLite in most cases. You

should benchmark your application.

Oracle Berkeley DB Differences

xx Berkeley DB’s SQL API is compatible with SQLite. Thus it enables it to act as a drop-in replacement for SQLite.

That is, you add a single header file (db.h in addition to your existing sqlite3.h) and instead of linking the SQLite

library you link against two Berkeley DB libraries: db-5 and db_sql-5. Recompile, re-link, and you are in business.

Your application that once used SQLite has been ported to use Berkeley DB.

That said, even though your code may be easily ported over to use BDB in place of SQLite, there are a few

subtleties you should know about before deploying it into production applications. Though the API is the same

across both systems, there are some significant operational differences. You need to realize that ultimately you are

not using SQLite anymore. The API compatibility just refers to a communication protocol. And what you are

communicating with is no longer the SQLite library, but the Berkeley DB library, which is totally different.

5 | ORACLE BERKELEY DATABASE VS SQLITE

As a result, you need to make a slight adjustment in your perspective, factor in the BDB part and be mindful of both

its similarities and differences. There are three areas that you need to have nodding acquaintance with:

• Configuration

• Contention handling

• Tuning

Configuration

As mentioned earlier, you are no longer working with the same database file(s) on disk. There are some significant

differences here with SQLite. When you work with SQLite, you have a single database file (for example, foods.db)

and during the course of open transactions a secondary journal file (for example, foods.db-journal). BDB uses a

single database file (though in a completely different binary format than SQLite) and it uses what is called an

“environment” directory. From the BDB SQL API documentation:

In order to manage its resources (data, shared cache, locks, and transaction logs), Berkeley DB generally uses a

directory that is called the Berkeley DB environment. As used with the BDB SQL interfaces, environments contain

log files and the information that it requires to implement a shared cache and fine-grained locking.

To keep things somewhat similar, BDB uses the name of the SQLite journal file for the name of the environment

directory. Thus, the BDB version of foods.db has an associated environment directory (not file) called foods.db-

journal. And unlike the SQLite journal, which is transient, the BDB environment is a permanent, integral part of the

database. Even when you back up your database, you should back up the associated environment – in fact it is best

if you use the db_hotbackup utility (or better yet, review the Database and log file archival section in the Berkeley DB

Programmer's Reference Guide). It is critical not only for configuration settings but also for database recovery. While

there is much that could be said about the environment, perhaps the two most important things to mention are the

log files and the optional database configuration file. The log files are simple — they hold a record of all committed

transactions. In the event of a catastrophic failure (for example, system crash), the log files allow you to bring the

database back to a consistent state. You can do this using the db_recover utility as follows:

$ db_recover –h <some-pathpto=foods.db-journal>

You can alternately run db_recover from within the environment directory without any arguments and it will do the

same thing (this assumes that the “foods.db” database file and “foods.db-journal” both exist in the same directory).

With each database, you have the option of creating a configuration file called DB_CONFIG in the environment

directory, in the example that would be a file named “foods.db-journal/DB_CONFIG”. You can then use this file to

tweak certain settings and tune the database. There are many possible settings, but you probably need only a

handful of them at most. The following settings works well for heavy loads:

6 | ORACLE BERKELEY DATABASE VS SQLITE

Don't set these, use SQLite PRAGMA's

set_flags DB_TXN_WRITE_NOSYNC

set_cachesize 0 2147483648 1

mutex_set_max 1000000

set_tx_max 500000

set_lg_regionmax 524288

set_lg_bsize 4194304

set_lg_max 20971520

set_lk_max_locks 10000

set_lk_max_lockers 10000

set_lk_max_objects 10000

The set_lg_xxx parameters relate to log file settings while the set_lk_xxx parameters relate to the locking

subsystem. The set_lg_bsize parameter helps with performance; it defines a memory region in which to hold log

data. The larger this is, the more a transaction can run without having to flush writeahead logging (WAL) data to

disk. In the earlier tests this technique is used to adjust the lock settings by increasing them by a factor of ten, and

the log buffer size by a factor of four.

Another parameter that proved to be important in heavy use is set_tx_max, which according to the documentation is

defined as:

Set the maximum number of active transactions that are supported by the environment. This value bounds the size

of backing shared memory regions. Note that child transactions must be counted as active until their ultimate parent

commits or aborts.

When 75 to 100 concurrent connections are run at full throttle, this number has to be raised considerably from its

default. For most applications, the default values should suffice. But if you are putting the database under a heavy

load, it is worth the time to read through the DB_CONFIG file Reference and learn how to tune the database

appropriately.

Note: Some of these parameters only take effect by recreating the environment. To do this, you have to stop the

application and run db_recover.

Contention Handling

An important and complex topic in SQLite is its locking model and initiating transactions in the right ways when

dealing with multiple connections. This could be a separate article in itself, but here we will summarize the high level

behavior. In SQLite, when you have multiple connections (processes, threads, and so on) operating on the same

database, you need to pay attention to transaction semantics like BEGIN IMMEDIATE or BEGIN EXCLUSIVE

depending on what you are doing. If you do not, you can end up with deadlocks.

7 | ORACLE BERKELEY DATABASE VS SQLITE

In Oracle Berkeley DB, things are greatly simplified. All you need is just BEGIN in all cases. BDB automatically does

deadlock detection for you. If your connection runs into a deadlock, BDB returns SQLITE_LOCKED. And then you

just rerun your query. But with that simplicity, however, comes a tradeoff.

In many ways, BDB’s mode of operation is very close to SQLite’s “shared cache mode,” which deviates significantly

from the default transaction and locking semantics. But even then, it is still not an exact representation of SQLite's

behavior. The main difference is how BDB handles database contention. Whereas SQLite by design favors

asynchronous/non-blocking operations, Berkeley DB is just the opposite. What tends to be asynchronous and/or

non-blocking in one may not be in the other. When you run a query in SQLite, you know right away whether you can

run it or not; if the database is blocked, it returns “busy”, informing you to try the operation again. Consider the

following example:

sql = "update foods set name='JujyFruit' where name like 'Jujy%'";

sqlite3_prepare(db, sql, (int)strlen(sql), &stmt, &tail);

rc = sqlite3_step(stmt);

if(rc != SQLITE_DONE)

{

fprintf(stderr, "Error\n");

}

sqlite3_finalize(stmt);

In SQLite, the return code “rc” may be SQLITE_BUSY, but the sqlite3_step() call does not block, ever. If there is no

database-level lock serializing access, then it just works. If there is a lock, then you are told immediately and it is up

to you what to do from that point.

In BDB, on the other hand, you never get SQLITE_BUSY: you do not get it back nor does your busy handler ever

run (if you have registered one). There is no concept of busy in BDB (at least in its default mode of operation),

because “busy” in SQLite signifies that the database is locked. Therefore, the sqlite3_step() method always runs to

completion regardless, with the exception of a deadlock condition in which case you receive SQLITE_LOCKED.

In SQLite, even if the there is a lock in the way, the call still runs. The difference in BDB is that the call blocks. This is

both good and bad. It is good because the call executes and you need not worry about deadlocks as already pointed

out. It is bad because your thread is committed to waiting however long it takes for the lock(s) to clear and the query

to complete, whether you want to or not. It means that the option of doing something else is off the table: you are

committed until the query goes through. So if you have threads or operations that vary according to priority, it is not

possible to force the lesser to bow out. And it is possible for higher priority operations to have to wait for lesser

priority and longer operations to run before they complete. That said, there is a way to change this behavior on a

database at the database level using the DB_TXN_NOWAIT flag via the DB_CONFIG file with the following setting:

set_flags DB_TXN_NOWAIT 1

This causes the API calls not to block and return SQLITE_BUSY, replicating the exact behavior of SQLite.

Tuning

There is always a delicate balance between performance and durability. Applications can benefit greatly on either

side of the continuum by understanding all the options. That said there are two important cache related configuration

8 | ORACLE BERKELEY DATABASE VS SQLITE

variables that you should know about when using either SQLite or Oracle Berkeley DB. They are the cache size and

the synchronous setting.

 BDB has tied existing SQLite PRAGMAs to analogous BDB settings, allowing you to configure a number of

configuration parameters (normally set in the DB_CONFIG file) from within SQL. Two of the most important

parameters are the cache size and synchronous settings, which can be set using the CACHE_SIZE and

SYNCHRONOUS pragmas.

Caching in BDB is very similar to SQLite: it is a memory area used to cache recently read pages, as well as modified

(dirty) pages that are used in a transaction. As a transaction modifies data, it fills the cache with the affected pages.

When the transaction completes (commits), it writes the changes to the dirty pages out to the log file and later,

during a checkpoint, it writes the dirty pages back to the database. If the cache is too small, it can fill up with dirty

pages which then have to be evicted out to disk storage, which can be very slow. Therefore, having a cache that is

sufficiently large to hold all modified pages and the commonly read pages (working set) offers optimal performance.

Note: As you can set the cache size in both the DB_CONFIG file and the PRAGMA, it is important to realize

that the setting in DB_CONFIG is defined in bytes while the setting in the PRAGMA is defined in pages.

The synchronous setting flags control what happens to log records in the log buffer when a transaction commits.

The log buffers are the first place database changes are committed in modifying a database and the primary

bottleneck in that it involves disk I/O. There are two optional settings: DB_TXN_WRITE_NOSYNC and

DB_TXN_NOSYNC.

The default settings are the most conservative and provide full durability (same setting used in these tests,

DB_TXN_SYNC). Here, the log buffer is written to the log file and the log file is flushed with “fsync” or equivalent. If

the operating system, file system, and I/O channel provide the guarantee they are supposed to, then if there is a

power failure or if the hardware crashes after the commit, the log records are preserved. When you recover the

database (using db_recover), the committed transaction survives, and can be applied to the database bringing it

back to a consistent state.

With the DB_TXN_WRITE_NOSYNC flag, Berkeley DB writes the log buffer to the log file when a transaction

commits, but does not call “fsync”. The log records then sit in a file system buffer, which persists if the program

crashes but may not if the system crashes (as the OS may have cached part of the log files in memory during the

time of the crash).

With the DB_TXN_NOSYNC flag, the log buffer is only written to the log file when it becomes full. Therefore, if the

process crashes, any committed transactions that have not been flushed to the log file are rolled back when you

recover the database.

Regardless of this setting, if BDB writes a dirty page from cache to a database file, it always ensures that all log

records for that page are flushed to the log file (including the “fsync”). Therefore, write-ahead logging is maintained

so that recovery always brings the database to a consistent state. So while these flags control how big the window

of rolled back transactions can be, offering various performance characteristics, none of them permit corruption.

Conclusion

While this paper covers the major features and differences, this is at best just the tip of the iceberg of Oracle

Berkeley DB as a whole. There is a lot more under the hood that SQLite users can learn about. Oracle Berkeley DB

includes features like replication and hot backup. In the future, these features should start to become more

9 | ORACLE BERKELEY DATABASE VS SQLITE

integrated into the SQLite layer, perhaps through user-defined functions so that your application can more easily

take advantage of them. But the first iteration is about just getting the API complete and working.

All in all, the combination of SQLite and Oracle Berkeley DB is a powerful one. It allows you to have a much wider

range of applications using a single, open C API and SQL dialect. It is now possible to use this API for applications

that range from large-scale transaction processing to tiny embedded environments that run within smart cards. You

just pick the particular implementation that suits your needs.

You can download Oracle Berkeley DB at:

http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html

You can post your comments and questions at the Oracle Technology Network (OTN) forum for Oracle Berkeley DB

at: http://forums.oracle.com/forums/forum.jspa?forumID=271

For sales or support information, email to: berkeleydb-info_us@oracle.com

Find out about new product releases by sending an email to: bdb-join@oss.oracle.com

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=271
mailto:berkeleydb-info_us@oracle.com

2 | ORACLE BERKELEY DATABASE VS SQLITE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0116

Oracle Berkeley DB vs. SQLITE
November 2016
Author: MS/MB

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

