
Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

An Oracle White Paper

Oracle Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

Executive Overview... 1

Introduction ... 1

Overview ... 2

Methodology.. 2

Benchmarks .. 3

Results .. 4

Compatibility.. 7

Configuration ... 8

Behavior .. 9

Conclusion .. 14

Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

 1

Executive Overview

Oracle's Berkeley DB 11gR2 release includes an SQL API that is fully compatible with SQLite.

Berkeley DB SQL API enables you to take advantage of the powerful features of Berkeley DB's

enterprise grade transactional B-tree engine with the simplicity and ease of use of SQLite on

the front end. The combination of the two technologies provides you with tremendous flexibility,

in that, Berkeley DB SQL API can now be used to build applications across a broad spectrum

ranging from the embedded space all the way up to large-scale transaction processing.

This paper demonstrates the potential for better performance by switching from SQLite to

Berkeley DB’s SQL API. Targeted test programs highlight the different performance

characteristics between these functionally equivalent software libraries. This paper examines

those tests, and presents a comparative analysis between Berkeley DB and SQLite. This

paper also discusses the configuration and behavior differences between the two products that

you must be aware of when migrating existing applications from using SQLite to Berkeley DB

SQL API.

The results of the tests demonstrate that the Berkeley DB SQL API is not only very stable, but

that its performance is superior to SQLite in write-intensive applications, under concurrent load

and when stressed with heavy workloads.

Introduction

Berkeley DB’s SQL API is compatible with SQLite and can act as a drop-in replacement for

SQLite. For the purposes of this technical evaluation, the SQL API provided as part of the

Berkeley DB 11gR2 (11.1.5.0.26) release is compared with SQLite (3.6.23), benchmarking the

test programs on Linux and Solaris machines.

Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

2

Overview

Hardware and operating system always impact the performance of a given application. For the

purpose of this technical evaluation the focus is only on Linux and Solaris systems. Linux is used for

general behavior tests while Solaris is used for performance tests. Solaris has superior timing and

measurement tools, so the benchmarks were conducted using DTrace. The reasons for using DTrace

are: it is an unparalleled tool in its ability to measure almost every aspect of process and system

behavior and it makes taking such measurements (especially in multi-threaded environments) easy.

Therefore, part of the project is written for and conducted within a Solaris environment. Performance

characteristics are clearly different on Windows and the various embedded operating systems.

However, the point of this paper is to illustrate the differences between these two products and not

between operating systems.

Methodology

This section elaborates on the test methodology, tools, and platforms. You can download the test

code from: http://www.oracle.com/technetwork/database/berkeleydb/learnmore/index.html

Linux

The generic behavior tests are designed to run on Linux. The first set of tests are illustrative of basic

aspects of functionality. They are not comprehensive, but they do demonstrate the performance of the

two products. The individual executables are built using Qtest’s (Qt's library for testing1).

There are three main test files:

• testbasics.cpp — This contains simple, generic tests to open the database. It is basically a test of

the test suite itself to ensure everything is built/linked and working.

• testblocking.cpp — This test illustrates one thread being forced to wait on another thread due to a

page lock. For more information, see the Blocking section.

• testdeadlock.cpp — This test illustrates the response to database contention through response to

SQLITE_ERROR. For more information, see the Behavior section.

1 http://doc.trolltech.com/4.5/qtestlib-manual.html

Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

3

Solaris

The Solaris test code is contained within the “tests/solaris” directory. To run the tests you must install

some pre-requisite packages:

• GNU Compiler Collection (GCC)

• GNU Make

• Berkeley DB

• SQLite

• Ruby and Gnuplot (to plot the performance comparison graphs)

The Solaris tests use DTrace to gather timing information. For a non-root user, you must add the

requisite privileges to enable the user to run DTrace. For example, to enable permissions for a user

name “joe” as root, do the following:

Within the Solaris test’s project directory, you then run the “runtests.sh”, which compiles the source

and DTrace files. Run all the tests and capture the raw data for all the graphs. Results of the tests are

recorded in the “data.sql” file. To generate the performance plots, change to the “reporting” directory

and run “make” which uses Gnuplot to chart the data collected from running the tests. The results are

saved in the “tmp” directory.

Benchmarks

The goal for benchmarking code is to establish the relative performance of Berkeley DB’s SQL API

and SQLite in high-concurrency, write-intensive applications.

There are a number of variables to consider in setting up the test conditions:

• Cache Size — The cache size is a critical setting. For the test workload, the default is too small and

if you do not set sufficient cache size, the BDB library issues memory allocation errors ("Unable to

allocate memory for transaction detail").

• Page Size — The test uses the default page size for both libraries. BDB's default is 16K, while

SQLite's is 1K. Varying this setting in BDB can affect application performance2.

• Record Number — More records result in more pages and more pages result in better overall

concurrency. Hence, the example uses 10,000 records. Each record is approximately 400 bytes, so

2
http://download.oracle.com/docs/cd/E17076_01/html/programmer_reference/general_am_conf.html#a
m_conf_pagesize

bash $ usermod -K defaultpriv=basic,dtrace_proc,dtrace_user joe

Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

4

there are 40 records per page (16384/400) and therefore Berkeley DB uses about 250 pages to store

this data. There may be a maximum of 100 threads running at any one time, hence there is less than

a 50% chance that a given thread updates a locked page. Therefore, these conditions favor page-level

locking over database-level locking.

• Synchronous Setting — The test uses the default setting for SYNCHRONOUS pragma for the

following two reasons:

• This is what both database engines consider to be fully durable transactions at the time of

transaction commit.

• It is difficult to accurately compare the alternate settings between the two databases as each

setting does different things in each engine.

Therefore, the default setting is the most practical assumption.

The test program is executed over a series of runs with the number of threads ranging from 1 to 100. It

is important to note that the benchmarks reflect relative performance — how BDB performs relative

to SQLite under the same conditions. The test environment does not attempt to represent optimal

application coding options and so the results do not show optimal performance characteristics for any

specific application; nor is it a representative of typical hardware — in this case the OpenSolaris

instance is running within a virtual environment.

The test program consists of a multi-threaded application in which each thread performs a simple

transaction consisting of a random select and a random update. You can download the core code from:

http://www.oracle.com/technetwork/database/berkeleydb/learnmore/index.html

Results

The results are better than expected, clearly demonstrating a performance difference for concurrent

workloads between the two products. As shown in Figure 1. “Workload vs. Concurrent Connections”,

Oracle Berkeley DB levels at about 4000 transactions per-second (TPS) scaling well up to 100

connections, whereas SQLite remains constant at 500 TPS, about one-tenth the performance of BDB.

These numbers illustrate the fundamental differences between the different locking models used by the

two products. SQLite's database-level locking constrains the system to a maximum of one write

operation at a time even when using the write-ahead logging support in newer versions of SQLite (not

tested in this paper). Thus, with SQLite there is a fixed maximum number of TPS regardless of the

number of concurrent threads, available CPUs or cores for a given environment (operating system,

hardware, and so on).

With Berkeley DB’s page-level locking and data access pattern that minimize contention, it is

theoretically possible that all BDB connections can write at the same time (concurrently). However, in

this test case the hardware and the page level lock contention become the limiting factor. If you

consider that a single BDB writer measures a throughput of about 700 TPS, then the theoretical limit

would be 70,000 TPS with 100 non-conflicting concurrently executing threads. In these tests, on this

hardware, lock contention is not the real limiting factor. It is more likely that other factors like I/O

Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

5

rates, the number of available CPUs, cores, and threads per-core (for hyper-threaded CPUs) are

limiting BDB’s overall throughput to about 4000 TPS.

Additional experimentation is possible by reducing the durability requirements of both solutions. When

doing this, you can see dramatic changes in the performance characteristics of the test application. This

is accomplished by turning “off” the SYNCHRONOUS pragma. Reducing the durability constraints

reduces the processing overhead incurred by waiting on the I/O bus and disk latency. This can provide

some insight into how much locking overhead is to blame when hitting the maximum TPS.

Figure 1. Workload vs. Concurrent Connections

Based on these measurements, BDB is more CPU intensive than SQLite, as shown in Figure 2. “CPU

Utilization”. However, when you consider that a 50% increase in CPU load results in an almost 300%

increase in performance, it is a fair tradeoff.

Figure 2. CPU Utilization

Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

6

In addition, it was also observed that BDB spends less overall CPU time in system calls (Figure 3.

“System Calls”) as well as in transactions (Figure 4. “Transaction CPU Time”). Part of the reason for

this is SQLite's busy-wait model (which requires multiple operating system calls) versus BDB's

blocking model in dealing with lock contention. System calls require context switches between the

user-mode application code and the protected kernel-mode operating system. In this case, BDB is

actually performing more work, more efficiently and to greater effect than SQLite.

Figure 3. System Calls

Figure 4. Transaction CPU Time

Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

7

In SQLite, you have to busy-wait one way or the other, whether by handling SQLITE_BUSY or

working with a busy handler. Either way it still amounts to a spinlock3. Spinlocks can make the

situation worse by adding to overall resource consumption and they increase in number with

concurrency (Figure 5. “SQLite Busy Handler Calls”).

Figure 5. SQLite Busy Handler Calls

An SQLite application must wait, generally sleeping for some empirically determined amount of time,

in the hope that when it retries the operation, the database is no longer busy. This is a tradeoff, in that,

if the wait time is too long, performance is still suboptimal, but if it is too short then CPU cycles are

still being eaten by the spinlock. Thus, SQLite uses more overall CPU time in system calls as well as in

transactions due to spinlocks. All in all, the performance numbers sought for are there — BDB has

very good throughput under a heavy load with many write operations, and that is the main objective of

this test.

Compatibility

Berkeley DB’s SQL API is compatible with SQLite’s latest releases (version 3). Thus it enables BDB to

act as a drop-in replacement for SQLite. As demonstrated by the performance tests, even though your

code may be moved over from SQLite to Berkeley DB there are significant underlying implementation

differences including a few subtleties you should know about before running it. This section explains

some of the differences and issues involved.

3 . http://en.wikipedia.org/wiki/Spinlock

Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

8

Configuration

Both Berkeley DB and SQLite require more or less zero administration in deployment and require only

the most basic of RDBMS systems administration skills during development. Database products are

designed such that they always run well in a given configuration though they frequently run sub-

optimally without some degree of careful configuration. Here, the focus is on the few configuration

items to consider when using BDB. First and foremost is memory management. BDB allocates static

memory regions to manage internal resources by mapping files into memory. To avoid memory

allocation errors at runtime, sizing the memory regions properly when running many concurrent

transactions or very large transactions, is important. The configuration variables that require attention

in this case are the CACHE_SIZE pragma, which can be set from within the SQL environment, and

the BDB-specific set_tx_max parameter, which must be set in the DB_CONFIG file.

The DB_CONFIG File

For large workloads Berkeley DB requires more resources than are provided in the default

configuration. Configuring BDB-specific parameters can be done either using PRAGMA statements or

via the DB_CONFIG file. Ensure you configure the DB_CONFIG file after running recovery and

while the database is not in use. This provides the BDB storage layer with sufficient resources to

support a large-scale application’s database requirements. For the purposes of these tests, the following

values are set in the DB_CONFIG file:

SQLite does not have anything similar to the external BDB configuration file (DB_CONFIG) so this is

one administration difference worth studying before delving too deeply into BDB’s SQL API. For

more information on the DB_CONFIG parameters, see the Berkeley DB API Reference Guide that

can be accessed from:

http://www.oracle.com/technetwork/database/berkeleydb/documentation/index.html.

mutex_set_max 1000000

set_tx_max 500000

set_lg_regionmax 524288

set_lg_bsize 4194304

set_lg_max 20971520

set_lk_max_locks 10000

set_lk_max_lockers 10000

set_lk_max_objects 10000

Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

9

Cache Size

Caching in Berkeley DB is very similar to SQLite: it is a memory area used to cache recently read

pages, as well as modified (dirty) pages that are used in a transaction. As a transaction modifies data, it

fills the cache with the affected pages. When the transaction completes (commits), it writes the changes

to the dirty pages out to the log file and later, during a checkpoint, it writes the dirty pages back to the

database. If the cache is too small, it can fill up with dirty pages, which then have to be evicted out to

disk storage, which can be very slow. Therefore, having a cache that is sufficiently large to hold all

modified pages and the commonly read pages (working set) offers optimal performance.

In these tests, given the dataset size and page size the CACHE_SIZE pragma should be set to at least

40,000 pages to avoid runtime page allocation errors. This is due to the highly concurrent nature of the

test, as well as the row size and number of pages loaded in memory. Large or highly concurrent

applications need to be aware of this configuration variable that must be addressed.

Behavior

There are two important migration issues that come to light when transitioning to Berkeley DB from

SQLite:

• Deadlock Resolution

• Blocking Queries

BDB operates exclusively in a transaction model that is similar to shared cache mode in SQLite. This

mode deviates significantly from the SQLite's default mode at both the API and SQL levels.

Furthermore, the majority of programs that use SQLite are not prepared to deal with the semantics of

shared cache mode.

SQLite's default transaction model facilitates writing programs that do not result in deadlock — they

simply busy wait for the locked database. This may not be optimal, but it is conceptually easy to

understand and to program too. For this technique to work, programs have to follow a very specific

sequence of operations based on what they are doing (reading/writing) to avoid deadlocks. This

technique hinges on SQLite's BEGIN TRANSACTION semantics. Without these semantics, deadlock

detection in SQLite is impossible.

However this is not the case when using Berkeley DB’s SQL API. In BDB's shared cache mode,

SQLite's BEGIN TRANSACTION semantics do not work. All forms of BEGIN TRANSACTION

are effectively reduced to the standard BEGIN, allowing all connections to plow right ahead. However,

BDB does not fall into deadlocks like SQLite. Therefore, the approach to recognize and deal with

contention is completely different and hinges on handling SQLITE_ERROR cautiously. If a program

does not handle SQLITE_ERROR properly, then it results in a deadlock scenario which is

undetectable to both BDB and the program.

Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

10

Transaction Model

SQLite's concurrency model is different from most other databases. Some common patterns you use

with other databases may not work like you expect in SQLite. To write good code, you must

understand the transaction model, the locking model, cursors, and how they all relate to each other.

SQLite uses database-level locking, which is implemented using file locking on the database file. It

keeps three different file locks to implement six lock states. To accommodate its locking model from

the SQL level, SQLite has unique transaction semantics:

There can be multiple read operations but only one write operation. The latter two are used as a kind

of contract. If you can get them to complete (not get back SQLITE_BUSY), then you are guaranteed

to be able to start modifying and eventually write to the database. Here modifying means, changing

data by modifying pages in the page cache, which are not yet committed to disk (this would be writing

pages which is done only in EXCLUSIVE).

There is a specific protocol you need to follow in SQLite to avoid deadlocks when writing applications

that modify the contents of a database. Typically, it is best to start with the best transaction that

supports the job at hand (reading or writing). If all you plan on doing is reading, then a simple BEGIN

will do (which can be omitted whereby you run in autocommit mode). If you plan on modifying the

database (INSERT, UPDATE, or DELETE), then start with BEGIN IMMEDIATE. By doing this,

you hint that your application is about to enter a read-modify-write cycle and so SQLite waits for the

correct locks in a deterministic way. By doing this, you know your application will not deadlock.

For example, here is a deadlock scenario when using SQLite. Say you have two concurrent programs X

and Y connected to the same database, and neither knows anything about the other. X gets a READ

lock. Y gets a RESERVED lock (READ and RESERVED can coexist — at this point you have

potentially multiple read operations but just one modifier). X decides it wants to perform an UPDATE

operation. So X tries, but is unsuccessful because Y has the only available RESERVED lock. Y decides

it wants to commit its changes to disk and tries a COMMIT, which attempts to get an EXCLUSIVE

lock. Y's attempt fails because it cannot get an EXCLUSIVE lock while there are any read locks on the

database. Both X and Y just keep retrying in an endless loop until their operation succeeds — X's

UPDATE and Y’s COMMIT. They are now deadlocked. X has a READ lock and will never get the

RESERVED lock because Y has it. Y has a RESERVED lock but will never get an EXCLUSIVE lock

because it is blocked by X's READ lock.

The solution is simple: follow a simple protocol. Never start a transaction that may result in modified

data with BEGIN. In our example, X should start with a BEGIN IMMEDIATE. By doing so, when it

fails (because Y has an RESERVED lock), it falls back to an UNLOCKED state (does not hold a

READ lock on the database) thus making it possible for any connection holding a RESERVED lock

to obtain an EXCLUSIVE lock and complete. Thus when using this protocol, a RESERVED

BEGIN --> Read lock

BEGIN IMMEDIATE --> "Modify" lock, called a RESERVED lock

BEGIN EXCLUSIVE --> Write lock

Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

11

connection can busy-wait safely because it assumes that all other potential write operations start with a

RESERVED lock and fall back into an unlocked state which does not interfere by introducing

inhibitory READ locks. So everybody can safely busy-wait without fear of causing deadlock provided

that they follow the proper BEGIN TRANSACTION semantics. Read operations always start with

BEGIN and write operations with BEGIN IMMEDIATE. This protocol thus provides connections

with means of getting out of each other’s way.

The point is that SQLite’s locking model provides ways to avoid deadlock, but you have to follow the

pattern. Both BEGIN IMMEDIATE and BEGIN EXCLUSIVE are contracts that guarantee the state

of the database wherein a write operation can assume that once it has either of these locks, it can

proceed in a specific way (brute force) according to this protocol, and complete its work without

encountering deadlock (assuming everyone else follows the proper protocol as well).

Contrast this with Berkeley DB’s locking model. While BDB allows finer grain locking, its lock model

changes these semantics, and so this protocol to avoid deadlock may in fact leave you in an unexpected

application state. In BDB, X and Y would continue to execute even when they both use BEGIN

IMMEDIATE. These two concurrent operations assume they must have been granted a RESERVED

lock and can therefore proceed confidently to busy-wait, as they would with SQLite, until they are

allowed to COMMIT. In fact, in BDB this is only true as long as they are not trying to modify the

same page, something they cannot possibly (and arguably should not) know a priori. At this point,

there are two new possible consistent, although unexpected, outcomes. Either or both operations

could result in a SQLITE_LOCK if the BDB deadlock manager detects a deadlock, or they could

block, wait for locks to be released and then complete their work. So, these unexpected behaviors

could result from using a standard SQLite design protocol to avoid deadlock.

To see this, open two instances of dbsql and do the following in parallel, instruction by instruction in

each session:

Session 1:

Session 2:

dbsql> create table a(x int);

dbsql> begin immediate;

dbsql> insert into a values (1);

dbsql> commit;

dbsql> create table b(x int);

dbsql> begin immediate;

dbsql> insert into b values (1);

dbsql> commit;

Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

12

Both sessions operate concurrently after successfully starting a reserved transaction at the same time.

Two read operations work simultaneously. This scenario works because they do not operate on the

same page.

Now try this in both:

The second session is blocked. In this case, the block resolves once the first session COMMITs. But

what would happen if the first session tries to update a page already locked by the second session — it

leads to a deadlock.

Here is the scenario:

Session 1:

Session 2:

Session 1 gets an error. But in the SQLite-based application code, this situation is entirely unaccounted

for, as only those sessions that are in the shared cache mode would ever think to handle

SQLITE_LOCKED. This scenario is the equivalent of a SQLITE_BUSY but without returning

SQLITE_BUSY. So, the code is not prepared to handle this.

dbsql> begin immediate;

dbsql> insert into a values (2);

dbsql> begin immediate;

dbsql> insert into a values (3);

dbsql> insert into b values (3);

Error: database table is locked

dbsql> begin immediate;

dbsql> insert into b values (3);

dbsql> insert into a values (3);

Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

13

Going further, consider the following scenario (which is illustrated in the “debian/testdeadlock” unit

test):

Session 1 locks a page on a. Session 2 locks the page on b. Session 2 then tries to update b and BDB

causes it to block because the page is locked by Session 1. Session 1 then tries to update a, but gets

SQLITE_ERROR (not SQLITE_LOCKED), which it is not prepared to handle. The only option

available now is to abort the transaction and start over.

There is no deadlock, but the whole approach has changed. In the normal SQLite mode, you deal with

contention by just trying the last SQL statement over. Now you have to deal with it by aborting the

transaction and starting from scratch. Theoretically, all programs should be capable of dealing with

SQLITE_ERROR. That is, handling SQLITE_ERROR (not SQLITE_BUSY or SQLITE_LOCKED)

is an absolute requirement. But the problem with this also is that SQLITE_ERROR is vague. It is

difficult to tell if the error is a result of contention or something more serious.

Even if Session 1 did receive and handle SQLITE_LOCKED, it still has to abort the transaction and

start from scratch. This is because all further attempts lead to a potential deadlock, in which Session 2

is permanently blocked and keeps Session 1 from ever completing. So in this situation, it is not clear as

to who has the right of way. The semantics change so that if you receive SQLITE_LOCKED or

SQLITE_ERROR, the only safe option you have is to abort the transaction and start over. This is

perhaps the unavoidable consequence of having page-level locking. But in any case, it is a significant

change from the default mode of operation that SQLite uses, and you must examine and test the

migrated code carefully.

Session 1 Session 2

dbsql> begin immediate; dbsql> begin immediate;

dbsql> select * from a; dbsql> update b set x=1;

dbsql> update b set x=1; dbsql> update a set x=1; (blocks)

Error: database table is locked

dbsql> commit;

tests/debian/test.db: previous transaction deadlock return not resolved

Error: SQL logic error or missing database

Oracle White Paper— Berkeley DB SQL API vs.
SQLite API – A Technical Evaluation

14

Blocking

Blocking is another issue as it is a deviation from the expected behavior in the SQLite C API. Berkeley

DB essentially has no support for SQLITE_BUSY and the associated busy handler callback because a

BDB database is not “busy”, meaning locked at the database level, ever. Thus, when the program

issues a query, it may potentially block until that query can complete. While the SQLite API is

uniformly asynchronous and has no method by which to block, the BDB version is just the opposite,

having no method by which to not block. And while BDB's deadlock detection does not cause

blocking (returning an error), page locks that are not detected as deadlocks induce blocking.

The problem is that a connection that does not need to perform a given SQL operation — should the

database be busy — is nonetheless fully committed the moment it issues a query. Furthermore, it is

then totally dependent on the connection that has the opposing lock and is not able to be released until

its transaction completes. This makes it possible for higher-priority threads to be held captive by lower

priority operations. This is illustrated in the “debian/testblocking” unit test.

Note that the BDB SQL API’s long-term goal is to provide the value of a more concurrent

transactional solution to SQLite programmers, with the absolute minimum required changes. This

means that as Berkeley DB’s SQL API matures it is possible that these issues will go away, thus

allowing any SQLite program to transition and know that both the explicit contracts in the ANSI C

API as well as the implicit contracts of best practices, design patterns, protocols, and so on, all work as

expected with some additional benefits. The goal is to be 100% compatible, and that goal extends

beyond the API into the behavioral aspects.

Conclusion

Overall, tests and subsequent analysis show that BDB SQL API is very stable and clearly BDB's

performance and concurrency is superior to SQLite in write-intensive applications and heavy

workloads, allowing it to get higher TPS throughput. Furthermore, Berkeley DB uses fewer system

calls and spends less time inside of transactions for these kinds of applications.

SQLite applications that opt to use the BDB SQL API should have no problems with the transition.

Although BDB SQL API is compatible with SQLite and can be treated as a drop-in replacement for

SQLite, you must be aware that it is not 100% identical with SQLite, due to some of the behavioral

and configuration differences described in this paper. As a developer of existing applications, you need

to be mindful of these migration issues to take advantage of BDB's features and benefits.

Berkeley DB SQL API vs.

SQLite API – A Technical Evaluation

November 2010

Author: Mike Owens

Contributing Authors: Greg Burd and David

Segleau

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2010, 2015 Oracle and/or its affiliates. All rights reserved.

This document is provided for information purposes only and the contents hereof are subject to change without notice. This

document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in

law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations are formed either directly or indirectly by this document. This

document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our

prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective

owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel

and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are

trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open

Company, Ltd. 0110

