
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 1

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 2

Analyze this!
Analytical power in SQL, more
than you ever dreamt of
Andrew Witkowski
Architect

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 3

SQL Evolution

Analytical SQL in the Database

1998 2001 2002 2005 2007 2004 2009 2012
•  Introduction of

Window functions

•  Enhanced Window
functions (percentile,etc)

•  Rollup, grouping sets,
cube

•  Statistical functions
•  Sql model clause
•  Partition Outer Join
•  Data mining I

•  Data mining II
•  SQL Pivot
•  Recursive WITH
•  ListAgg, N_Th value window

•  Pattern matching
•  Top N clause
•  Lateral Views,APPLY
•  Identity Columns
•  Column Defaults
•  Data Mining III

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 4

SQL Pattern Matching

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 5

Pattern Recognition In Sequences of Rows
The Challenge

“Find people that flew from country X to country Y, stayed there 2 days,
then went to country Z, stayed there 30 days, contacted person A, and then

withdrew $10,000.00”

§  Currently pattern recognition in SQL is difficult
–  Use multiple self joins (not good for *)

§  T1.person = T2.person AND T1.country=‘X’ AND T2.country=‘Y’ & T2.time
BETWEEN T1.time and T1.time+2….

–  Use recursive query for * (WITH clause, CONNECT BY)
–  Use Window Functions (likely with multiple query blocks)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 6

Provide native SQL
language construct

Align with well-known
regular expression
declaration (PERL)

Apply expressions across
rows

Soon to be in ANSI SQL
Standard

Pattern Recognition In Sequences of Rows
Objective

EVENT TIME LOCATION

A 1 SFO

A 1 SFO

A 2 ATL

A 2 LAX

B 2 SFO

C 2 LAX

C 3 LAS

A 3 SFO

B 3 NYC

C 4 NYC

>
1

m
in

 A 2 ATL

A 2 LAX

B 2 SFO

C 2 LAX

“Find one or more event A followed by one B
followed by one or more C in a 1 minute interval”

A+ B C - perl

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 7

Pattern Recognition In Sequences of Rows

§ Recognize patterns in sequences of events using SQL
–  Sequence is a stream of rows
–  Event equals a row in a stream

§ New SQL construct MATCH_RECOGNIZE
§  Logically partition and order the data

–  ORDER BY mandatory (optional PARTITION BY)
–  Pattern defined using regular expression using variables
–  Regular expression is matched against a sequence of rows
–  Each pattern variable is defined using conditions on rows and aggregates

“SQL Pattern Matching” - Concept

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 8

Find double bottom (W)
patterns and report:

•  Beginning and ending
date of the pattern

•  Average Price Increase in
the second ascent

•  Modify the search to find
only patterns that lasted
less than a week

SQL Pattern Matching
Example: Find Double Bottom (W)

1 9 13 19 days

Stock price

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 9

Find double bottom (W)
patterns and report:

•  Beginning and ending
date of the pattern

•  Average Price Increase in
the second ascent

•  Modify the search to find
only patterns that lasted
less than a week

SQL Pattern Matching
Example: Find Double Bottom (W)

1 9 13 19 days

Stock price

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 10

Find double bottom (W)
patterns and report:

•  Beginning and ending
date of the pattern

•  Average Price Increase in
the second ascent

•  Modify the search to find
only patterns that lasted
less than a week

SQL Pattern Matching
Example: Find Double Bottom (W)

 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price))

days

Stock price

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 11

Find double bottom (W)
patterns and report:

•  Beginning and ending
date of the pattern

•  Average Price Increase in
the second ascent

•  Modify the search to find
only patterns that lasted
less than a week

SQL Pattern Matching
Example: Find Double Bottom (W)

 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price))

days

Stock price

X

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 12

Find double bottom (W)
patterns and report:

•  Beginning and ending
date of the pattern

•  Average Price Increase in
the second ascent

•  Modify the search to find
only patterns that lasted
less than a week

SQL Pattern Matching
Example: Find Double Bottom (W)

 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price))
 Y AS (price > PREV(price))

days

Stock price

X Y

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 13

Find double bottom (W)
patterns and report:

•  Beginning and ending
date of the pattern

•  Average Price Increase in
the second ascent

•  Modify the search to find
only patterns that lasted
less than a week

SQL Pattern Matching
Example: Find Double Bottom (W)

days

Stock price

SELECT first_x, last_z
FROM ticker MATCH_RECOGNIZE (
 PARTITION BY name ORDER BY time
 MEASURES FIRST(x.time) AS first_x
 LAST(z.time) AS last_z
 ONE ROW PER MATCH
 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price))
 Y AS (price > PREV(price))
 W AS (price < PREV(price))
 Z AS (price > PREV(price))

X Y W Z

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 14

Find double bottom (W)
patterns and report:

• Beginning and ending date of
the pattern

• Average Price Increase in the
second ascent

• Modify the search to find only
patterns that lasted less than a
week

SQL Pattern Matching
Example: Find Double Bottom (W)

1 9 13 19 days

Stock price

SELECT first_x, last_z
FROM ticker MATCH_RECOGNIZE (
 PARTITION BY name ORDER BY time
 MEASURES FIRST(x.time) AS first_x,
 LAST(z.time) AS last_z
 ONE ROW PER MATCH
 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price)),
 Y AS (price > PREV(price)),
 W AS (price < PREV(price)),
 Z AS (price > PREV(price)))

First_x Last_z

1 9

13 19

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 15

Find double bottom (W)
patterns and report:

•  Beginning and ending
date of the pattern

•  Average Price Increase in
the second ascent

•  Modify the search to find
only patterns that lasted
less than a week

SQL Pattern Matching
Example: Find Double Bottom (W)

1 9 13 19 days

Stock price

SELECT first_x, last_z
FROM ticker MATCH_RECOGNIZE (
 PARTITION BY name ORDER BY time
 MEASURES FIRST(x.time) AS first_x,
 LAST(z.time) AS last_z
 ONE ROW PER MATCH
 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price)),
 Y AS (price > PREV(price)),
 W AS (price < PREV(price)),
 Z AS (price > PREV(price) AND
 z.time - FIRST(x.time) <= 7))

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 16

Find double bottom (W)
patterns and report:

•  Beginning and ending
date of the pattern

•  Average Price Increase in
the second ascent

•  Modify the search to find
only patterns that lasted
less than a week

SQL Pattern Matching
Example: Find Double Bottom (W)

1 9 13 19 days

Stock price

SELECT first_x, last_z
FROM ticker MATCH_RECOGNIZE (
 PARTITION BY name ORDER BY time
 MEASURES FIRST(x.time) AS first_x,
 LAST(z.time) AS last_z
 ONE ROW PER MATCH
 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price)),
 Y AS (price > PREV(price)),
 W AS (price < PREV(price)),
 Z AS (price > PREV(price) AND
 z.time - FIRST(x.time) <= 7))

X Z

Can refer to previous variables

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 17

Find double bottom (W)
patterns and report:

• Beginning and ending date
of the pattern

• Average Price in the second
ascent

• Modify the search to find
only patterns that lasted less
than a week

SQL Pattern Matching
Example: Find Double Bottom (W)

1 9 13 19 days

Stock price

SELECT first_x, last_z
FROM ticker MATCH_RECOGNIZE (
 PARTITION BY name ORDER BY time
 MEASURES FIRST(x.time) AS first_x,
 LAST(z.time) AS last_z,
 AVG(z.price) AS avg_price
 ONE ROW PER MATCH
 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price)),
 Y AS (price > PREV(price)),
 W AS (price < PREV(price)),
 Z AS (price > PREV(price) AND
 z.time - FIRST(x.time) <= 7))

Average stock price: $52.00

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 18

SQL Pattern Matching

<table_expression> := <table_expression> MATCH_RECOGNIZE

 ([PARTITION BY <cols>]

 [ORDER BY <cols>]

 [MEASURES <cols>]

 [ONE ROW PER MATCH | ALL ROWS PER MATCH]

 [SKIP_TO_option]

 PATTERN (<row pattern>)

 [SUBSET <subset list>]

 DEFINE <definition list>

)

Syntax

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 19

SQL Pattern Matching

§ Matching within an ordered partition of data
–  MATCH_RECOGNIZE (PARTITION BY stock_name ORDER BY time MEASURES …

§ Use framework of Perl regular expessions (terms are conditions on rows)
–  PATTERN (X+ Y+ W+ Z+)

§ Define matching using boolean conditions on rows
–  DEFINE

 X AS (price > 15)
…

“Declarative” Pattern Matching

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 20

SQL Pattern Matching

§ Name and refer to previous variables (i.e., rows) in conditions
–  DEFINE X AS (price < PREV(price,1)),
Y AS (price > PREV(price,1)),
W AS (price < PREV(price,1)),
Z AS (price > PREV(price,1) AND Z.price > X.price)

§ New aggregates: FIRST, LAST
–  DEFINE X AS (price < PREV(price)),
Y AS (price > PREV(price)),
W AS (price < PREV(price)),
Z AS (price > PREV(price) AND Z.time < FIRST(X.time)+10)

“Declarative” Pattern Matching, cont.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 21

SQL Pattern Matching

§ Running aggregates in conditions on currently defined variables:
–  DEFINE X AS (price < PREV(price) AND AVG(num_of_shares) < 10),
Y AS (price > PREV(price) AND count(Y.price) < 10),
W AS (price < PREV(price)),
Z AS (price > PREV(price) AND Z.price > Y.price)

§ Final aggregates in conditions but only on previously defined variables
–  DEFINE X AS (price < PREV(price)),
Y AS (price > PREV(price)),
W AS (price < PREV(price) AND count(Y.price) > 10) ,
Z AS (price > PREV(price) AND Z.price > LAST(Y.price))

“Declarative” Pattern Matching, cont.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 22

SQL Pattern Matching

§ After match SKIP option :
–  SKIP PAST LAST ROW
–  SKIP TO NEXT ROW
–  SKIP TO <VARIABLE>
–  SKIP TO FIRST(<VARIABLE>)
–  SKIP TO LAST (<VARIABLE>)

§ What rows to return
–  ONE ROW PER MATCH
–  ALL ROWS PER MATCH
–  ALL ROWS PER MATCH WITH UNMATCHED ROWS

“Declarative” Pattern Matching, cont.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 23

SQL Pattern Matching

§ Concatenation: no operator
§ Quantifiers:

–  * 0 or more matches
–  + 1 or more matches
–  ? 0 or 1 match
–  {n} exactly n matches
–  {n,} n or more matches
–  {n, m} between n and m (inclusive) matches
–  {, m} between 0 an m (inclusive) matches
–  Reluctant quantifier – an additional ?

Building Regular Expressions

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 24

SQL Pattern Matching

§ Alternation: |
–  A | B

§ Grouping: ()
–  (A | B)+

§ Permutation: Permute() – alternate all permutations
–  PERMUTE (A B C) -> A B C | A C B | B A C | B C A | C A B | C B A

§  ^: indicates beginning of partition
§ $: indicates end of partition

Building Regular Expressions

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 25

SQL Pattern Matching

§ Greedy quantifiers: longer match preferred
§ Reluctant quantifiers: shorter match preferred
§ Alternation: left to right
§ Make local choices

–  Example: for pattern (A | B)*, AAA preferred over BBBBB

Preferment Rules – Follow Perl

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 26

SQL Pattern Matching

§ Can subset variable names
–  SELECT first_x, avg_xy
FROM ticker
MATCH_RECOGNIZE
(PARTITION BY name ORDER BY time ONE ROW PER MATCH
MEASURES FIRST(x.time)first_x, AVG(T.price) avg_xy
PATTERN (X+ Y+ W+ Z+) SUBSET T = (X, Y)
DEFINE X AS (price < PREV(price)),
 Y AS (price > PREV(price)),
 W AS (price < PREV(price)),
 Z AS (price > PREV(price) AND Z.price > T.price));

“Declarative” Pattern Matching

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 27

Detect ALL login events
after privileges have
been revokes for the
user.

Generate a row for first
improper login attempt
(event)

SQL Pattern Matching
ALL ROWS PER MATCH OPTION

SELECT name, rev_time, time, clas
FROM event_log
MATCH_RECOGNIZE (PARTITION BY name ORDER BY time
PATTERN (X Y* Z)
MEASURES x.time rev_time, classifier() clas
ALL ROWS PER MATCH
DEFINE X AS (event = ‘revoke’),
 Y AS (event NOT IN (‘login’, ‘grant’)),
 Z AS (event = ‘login’))

NAME EVENT TIME

John grant 9:00 AM

John revoke 1:00 PM

John fired 1:20 PM

John escorted 1:25 PM

John left 1:30 PM

John login 1:50 PM

NAME REV_TIME TIME CLAS

John 1:00 PM 1:00 PM X

John 1:00 PM 1:20 PM Y

John 1:00 PM 1:25 PM Y

John 1:00 PM 1:30 PM y

John 1:00 PM 1:50 PM Z

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 28

Detect each 3 or more
consecutive login attempt
(event) after privileges
have been revoked

Login attempts all have to
occur within 1 minute

SQL Pattern Matching
ONE ROW PER MATCH OPTION

SELECT name, rev_time, first_log
FROM event_log
MATCH_RECOGNIZE (PARTITION BY name ORDER BY time
PATTERN (X Y* Z Z W+)
MEASURES FIRST(x.time) first_log ONE ROW PER MATCH
DEFINE X AS (event = ‘revoke’),
 Y AS (event NOT IN (‘login’, ‘grant’)),
 Z AS (event = ‘login’),
 W AS (event = ‘login’ AND
 W.time - FIRST(z.time) <= 60))

NAME EVENT TIME

John grant 9:00 AM

John revoke 1:00 PM

John fired 1:20 PM

John left 1:25 PM

John login 1:30 PM

John login 1:31 PM

John login 1:32 PM

NAME REV_TIME FIRST_LOG

John 1:00 PM 1:30 PM

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 29

SQL Pattern Matching

Sample use cases

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 30

SQL Pattern Matching

§ Define a session as a sequence of one or more events with the same
partition key where the inter-timestamp gap is less than a specified
threshold

§ Example “user log analysis”
–  Partition key: User ID, Inter-timestamp gap: 10 (seconds)
–  Detect the sessions
–  Assign a within-partition (per user) surrogate Session_ID to each session
–  Annotate each input tuple with its Session_ID

Example Sessionization for user log

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 31

SQL Pattern Matching
Example Sessionization for user log: ALL ROWS PER MATCH

SELECT time, user_id, session_id
FROM Events MATCH_RECOGNIZE
 (PARTITION BY User_ID ORDER BY time
 MEASURES match_number() as session_id
 ALL ROWS PER MATCH
 PATTERN (b s*)
 DEFINE
 s as (s.time - prev(s.time) <= 10)
);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 32

SQL Pattern Matching
Example Sessionization for user log

TIME USER ID
1 Mary
2 Sam
11 Mary
12 Sam
22 Sam
23 Mary
32 Sam
34 Mary
43 Sam
44 Mary
47 Sam
48 Sam
53 Mary
59 Sam
60 Sam
63 Mary
68 Sam

TIME USER ID
1 Mary
11 Mary

23 Mary

34 Mary
44 Mary
53 Mary
63 Mary

2 Sam
12 Sam
22 Sam
32 Sam

43 Sam
47 Sam
48 Sam
59 Sam
60 Sam
68 Sam

Identify
sessions

TIME USER ID SESSION
1 Mary 1
11 Mary 1

23 Mary 2

34 Mary 3
44 Mary 3
53 Mary 3
63 Mary 3

2 Sam 1
12 Sam 1
22 Sam 1
32 Sam 1

43 Sam 2
47 Sam 2
48 Sam 2
59 Sam 3
60 Sam 3
68 Sam 3

Number
Sessions
per user

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 33

SQL Pattern Matching

§ Primitive sessionization only a foundation for analysis
–  Mandatory to logically identify related events and group them

§ Aggregation for the first data insight
–  How many “events” happened within an individual session?
–  What was the total duration of an individual session?

Example Sessionization – Aggregation of sessionized data

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 34

SQL Pattern Matching
Example Sessionization – Aggregation: ONE ROW PER MATCH
 SELECT user_id, session_id, start_time, no_of_events, duration
FROM Events MATCH_RECOGNIZE

 (PARTITION BY User_ID ORDER BY time ONE ROW PER MATCH
 MEASURES match_number() session_id,
 count(*) as no_of_events,
 first(time) start_time,
 last(time) - first(time) duration
 PATTERN (b s*)
 DEFINE
 s as (s.time - prev(time) <= 10)
)
ORDER BY user_id, session_id;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 35

SQL Pattern Matching
Example Sessionization – Aggregation of sessionized data

TIME USER ID SESSION
1 Mary 1
11 Mary 1

23 Mary 2

34 Mary 3
44 Mary 3
53 Mary 3
63 Mary 3

2 Sam 1
12 Sam 1
22 Sam 1
32 Sam 1

43 Sam 2
47 Sam 2
48 Sam 2
59 Sam 3
60 Sam 3
68 Sam 3

TIME SESSION_ID START_TIME
NUM
EVENTS

DURATION

Mary 1 1 2 10

Mary 2 23 1 0

Mary 3 34 4 29

Sam 1 2 4 30

Sam 2 43 3 5

Sam 3 59 3 9

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 36

SQL Pattern Matching

CREATE VIEW Sessionized_Events as

SELECT Time_Stamp, User_ID,

 Sum(Session_Increment) over (partition by User_ID order by Time_Stampasc) Session_ID

FROM (SELECT Time_Stamp, User_ID,

 CASE WHEN (Time_Stamp – Lag(Time_Stamp) over (partition by User_ID order by Time_Stampasc)) < 10

 THEN 0 ELSE 1 END Session_Increment

 FROM Events);

Example Sessionization – using window functions

SELECT User_ID,

 Min(Time_Stamp) Start_Time,

 Count(*) No_Of_Events,

 (Max(Time_Stamp) -Min(Time_Stamp)) Duration

FROM Sessionized_Events

GROUP BY User_ID, Session_ID

ORDER BY User_ID, Start_Time;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 37

SQL Pattern Matching

§ Scenario:
–  The same call can be interrupted (or dropped).
–  Caller will call callee within a few seconds of interruption. Still a session
–  Need to know how often we have interrupted calls & effective call duration

§ The to-be-sessionized phenomena are characterized by
–  Start_Time, End_Time
–  Caller_ID, Callee_ID

Example Call Detail Records Analysis

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 38

SQL Pattern Matching
Example Call Detail Records Analysis using SQL Pattern Matching

SELECT Caller, Callee, Start_Time, Effective_Call_Duration,
 (End_Time - Start_Time) - Effective_Call_Duration

 AS Total_Interruption_Duration,
 No_Of_Restarts, Session_ID

FROM call_details MATCH_RECOGNIZE
 (PARTITION BY Caller, Callee ORDER BY Start_Time

 MEASURES
 A.Start_Time AS Start_Time,

 B.End_Time AS End_Time,
 SUM(B.End_Time – A.Start_Time) as Effective_Call_Duration,

 COUNT(B.*) as No_Of_Restarts,
 MATCH_NUMBER() as Session_ID

 PATTERN (A B*)
 DEFINE B as B.Start_Time - prev(B.end_Time) < 60) ;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 39

SQL Pattern Matching
Example Call Detail Records Analysis prior to Oracle Database 12c
 With Sessionized_Call_Details as
(select Caller, Callee, Start_Time, End_Time,

 Sum(case when Inter_Call_Intrvl < 60 then 0 else 1 end)

 over(partition by Caller, Callee order by Start_Time) Session_ID

 from (select Caller, Callee, Start_Time, End_Time,

 (Start_Time - Lag(End_Time) over(partition by Caller, Callee order by Start_Time)) Inter_Call_Intrvl

 from Call_Details)),

Inter_Subcall_Intrvls as

(select Caller, Callee, Start_Time, End_Time,

 Start_Time - Lag(End_Time) over(partition by Caller, Callee, Session_ID order by Start_Time)

 Inter_Subcall_Intrvl,

 Session_ID

 from Sessionized_Call_Details)

Select Caller, Callee,

 Min(Start_Time) Start_Time, Sum(End_Time - Start_Time) Effective_Call_Duration,

 Nvl(Sum(Inter_Subcall_Intrvl), 0) Total_Interuption_Duration, (Count(*) - 1) No_Of_Restarts,

 Session_ID

from Inter_Subcall_Intrvls

group by Caller, Callee, Session_ID;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 40

§ Detect suspicious money transfer pattern for an account
–  Three or more small amount (<2K) money transfers within 30 days
–  Subsequent large transfer (>=1M) within 10 days of last small transfer.

§ Report account, date of first small transfer, date of last large transfer

SQL Pattern Matching
Example Suspicious Money Transfers

TIME USER ID EVENT AMOUNT

1/1/2012 John Deposit 1,000,000
1/2/2012 John Transfer 1,000
1/5/2012 John Withdrawal 2,000
1/10/2012 John Transfer 1,500
1/20/2012 John Transfer 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer 1,000,000
2/2/20212 John Deposit 500,000

Three small transfers within 30 days

Large transfer within 10 days of last small transfer

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 41

SQL Pattern Matching
Example Suspicious Money Transfers
 SELECT userid, first_t, last_t, amount
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE
(PARTITION BY userid ORDER BY time
 MEASURES FIRST(x.time) first_t, y.time last_t, y.amount amount
 PATTERN (x{3,} Y)
 DEFINE X as (event='transfer' AND amount < 2000),
 Y as (event='transfer' AND amount >= 1000000 AND
 last(X.time) - first(X.time) < 30 AND
 Y.time - last(X.time) < 10))

Followed by a large transfer Within 10 days of last small

Within 30 days of each other Three or more transfers of small amount

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 42

§  Detect suspicious money transfer pattern between accounts
–  Three or more small amount (<2K) money transfers within 30 days

§  Transfers to different accounts (total sum of small transfers (20K))
–  Subsequent large transfer (>=1M) within 10 days of last small transfer.

§  Report account, date of first small transfer, date last large transfer

SQL Pattern Matching
Example Suspicious Money Transfers - Refined

TIME USER ID EVENT TRANSFER_TO AMOUNT

1/1/2012 John Deposit - 1,000,000
1/2/2012 John Transfer Bob 1,000
1/5/2012 John Withdrawal - 2,000
1/10/2012 John Transfer Allen 1,500
1/20/2012 John Transfer Tim 1,200
1/25/2012 John Deposit 1,200,000
1/27/2012 John Transfer Tim 1,000,000
2/2/20212 John Deposit - 500,000

Three small transfers within 30 days
to different acct and total sum < 20K

Large transfer within 10 days of last small transfer

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 43

SQL Pattern Matching
Example Suspicious Money Transfers - Refined
 SELECT userid, first_t, last_t, amount
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE

(PARTITION BY userid ORDER BY time
 MEASURES FIRST(x.time) first_t, y.time last_t, y.amount amount

 PATTERN (z x{2,} y)
 DEFINE z as (event='transfer' and amount < 2000),

 x as (event='transfer' and amount < 2000 AND
 prev(x.transfer_to) <> x.transfer_to),
 y as (event='transfer' and amount >= 1000000 AND

 last(x.time) - first(x.time) < 30 AND
 y.time - last(x.time) < 10 AND

 SUM(x.amount) + z.amount < 20000)

)

Next two or more small
transfers to different accts

First small transfer

Sum of all small transfers
less then 20000

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 44

Native Top N Support

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 45

Natively identify top N in
SQL

Significantly simplifies
code development

ANSI SQL:2008

Native Support for TOP-N Queries
“Who are the top 5 money makers in my enterprise?”

SELECT empno, ename, deptno
FROM emp
ORDER BY sal, comm FETCH FIRST 5 ROWS;

SELECT empno, ename, deptno
FROM (SELECT empno, ename, deptno, sal, comm,
 row_number() OVER (ORDER BY sal,comm) rn
 FROM emp
)
WHERE rn <=5
ORDER BY sal, comm;

versus

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 46

Native Support for TOP-N Queries

§ ANSI 2008/2011 compliant with some additional extensions
§ Specify offset and number or percentage of rows to return
§ Provisions to return additional rows with the same sort key as the last

row (WITH TIES option)
§ Syntax:

OFFSET <offset> [ROW | ROWS]

FETCH [FIRST | NEXT]

 [<rowcount> | <percent> PERCENT] [ROW | ROWS]

 [ONLY | WITH TIES]

New offset and fetch_first clause

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 47

Native Support for TOP-N Queries

§  Find 5 percent of employees with the lowest salaries
SELECT employee_id, last_name, salary

FROM employees

ORDER BY salary

FETCH FIRST 5 percent ROWS ONLY;

Internal processing

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 48

Native Support for TOP-N Queries

§  Find 5 percent of employees with the lowest salaries
SELECT employee_id, last_name, salary

FROM employees

ORDER BY salary

FETCH FIRST 5 percent ROWS ONLY;

Internal processing, cont.

§  Internally the query is transformed into an equivalent query using window functions
SELECT employee_id, last_name, salary

FROM (SELECT employee_id, last_name, salary,

 row_number() over (order by salary) rn,

 count(*) over () total

 FROM employee)

WHERE rn <= CEIL(total * 5/100);

§  Additional Top-N Optimization:
–  SELECT list may include expensive PL/SQL function or costly expressions

–  Evaluation of SELECT list expression limited to rows in the final result set

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 49

SQL Evolution

Analytical SQL in the Database

1998 2001 2002 2005 2007 2004 2009 2012
•  Introduction of

Window functions

•  Enhanced Window
functions (percentile,etc)

•  Rollup, grouping sets,
cube

•  Statistical functions
•  Sql model clause
•  Partition Outer Join
•  Data mining I

•  Data mining II
•  SQL Pivot
•  Recursive WITH
•  ListAgg, N_Th value window

• Pattern matching
• Top N clause
•  Lateral Views,APPLY
•  Identity Columns
•  Column Defaults
•  Data Mining III

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 50

Graphic Section Divider

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 11 51

