
Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 1

SQL - the best
development language
for Big Data?
 Exploring the Analytical Power of SQL in
Oracle Database 12c

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 2

Safe Harbor Statement

The following is intended to outline our general product direction. It
is intended for information purposes only, and may not be
incorporated into any contract.

It is not a commitment to deliver any material, code, or functionality,
and should not be relied upon in making purchasing decisions. The
development, release, and timing of any features or functionality
described for Oracle’s products remains at the sole discretion of
Oracle.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 3

Keith Laker
Senior Principal Product Manager

Andrew Witkowski
Architect

Sankar Subramanian
Senior Director of Development

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 4

Finding Patterns in Big Data
Typical use cases in today’s world of fast exploration of big data

Financial
Services

Money
Laundering

Fraud

Tracking
Stock
Market

Law
&

Order

Monitoring
Suspicious
Activities

Retail

Returns
Fraud Buying

Patterns

Session-
ization Telcos

Money
Laundering

SIM Card
Fraud

Call
Quality

Big
Data

Utilities

Network
Analysis

Fraud

Unusual
Usage

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 5

The On-Going Evolution of SQL

4 5

•  Introduction of
Window functions

•  Enhanced Window
functions (percentile,etc)

•  Rollup, grouping sets, cube

•  Statistical functions
•  SQL model clause
•  Partition Outer Join
•  Data mining I

•  Data mining II
•  SQL Pivot
•  Recursive WITH
•  ListAgg, Nth value window

•  Pattern matching
•  Top N clause
•  Identity Columns
•  Column Defaults
•  Data Mining III

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 6

Pattern Matching with SQL Analytics
Java vs. SQL: Stock Markets - Searching for ‘W’ Patterns in Trade Data

SELECT first_x, last_z
FROM ticker MATCH_RECOGNIZE (
 PARTITION BY name ORDER BY time
 MEASURES FIRST(x.time) AS first_x,
 LAST(z.time) AS last_z
 ONE ROW PER MATCH
 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price)),
 Y AS (price > PREV(price)),
 W AS (price < PREV(price)),
 Z AS (price > PREV(price) AND
 z.time - FIRST(x.time) <= 7))

12 Lines of SQL

SQL - 20x less code, 5x faster

250+ Lines of Java and PIG

package pigstuff;!
import java.io.IOException;!
import java.util.ArrayList;!
import java.util.Iterator;!
import org.apache.pig.EvalFunc;!
import org.apache.pig.PigException;!
import org.apache.pig.backend.executionengine.ExecException;!
import org.apache.pig.data.BagFactory;!
import org.apache.pig.data.DataBag;!
import org.apache.pig.data.DataType;!
import org.apache.pig.data.Tuple;!
import org.apache.pig.data.TupleFactory;!
import org.apache.pig.impl.logicalLayer.FrontendException;!
import org.apache.pig.impl.logicalLayer.schema.Schema;!
/**!
 *!
 * @author nbayliss!
 */!

 private class V0Line {!
 String state = null;!
 String[] attributes;!
 String prev = "”;!
 String next = ””;!
 public V0Line(String[] atts) {!
 attributes = atts;!
 }!
!
 public String[] getAttributes() {!
 return attributes;!
 }!
!
 public void setState(String state) {!
 this.state = state;!
 }!
!

public String setState(V0Line linePrev, V0Line lineNext) { !

 private boolean eq(String a, String b) {!

 private boolean gt(String a, String b) {!

public Tuple exec(Tuple input) throws IOException { !

 @Override!
 public Schema outputSchema(Schema input) { !
 Schema.FieldSchema linenumber = new
Schema.FieldSchema("linenumber", DataType.CHARARRAY);!
 Schema.FieldSchema pbykey = new
Schema.FieldSchema("pbykey", DataType.CHARARRAY);!
 Schema.FieldSchema count = new Schema.FieldSchema("count",
DataType.LONG);!
!
 Schema tupleSchema = new Schema();!
 tupleSchema.add(linenumber);!
 tupleSchema.add(pbykey);!
 tupleSchema.add(count);!
 return new Schema(tupleSchema);!
 }!
!
} !

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 7

Pattern Matching with SQL Analytics
11g vs. 12c: Call Quality Analysis - Looking for Dropped Calls

50% less code - easier to understand, test, deploy and manage

24+ lines of multi-select, sophisticated SQL

With Sessionized_Call_Details as!
(select Caller, Callee, Start_Time, End_Time,!
 Sum(case when Inter_Call_Intrvl < 60
then 0 else 1 end) !
 over(partition by Caller, Callee order
by Start_Time) Session_ID!
 from (select Caller, Callee, Start_Time,
End_Time,!
 (Start_Time - Lag(End_Time)
over(partition by Caller, Callee order by
Start_Time)) Inter_Call_Intrvl!
 from Call_Details)),!

Inter_Subcall_Intrvls as!
(select Caller, Callee, Start_Time,
End_Time,!
 Start_Time - Lag(End_Time)
over(partition by Caller, Callee,
Session_ID order by Start_Time)!
 Inter_Subcall_Intrvl,!
 Session_ID!
 from Sessionized_Call_Details)!

Select Caller, Callee,!
 Min(Start_Time) Start_Time,
Sum(End_Time - Start_Time)
Effective_Call_Duration,!
 Nvl(Sum(Inter_Subcall_Intrvl), 0)
Total_Interuption_Duration, (Count(*) -
1) No_Of_Restarts,!
 Session_ID!
from Inter_Subcall_Intrvls!
group by Caller, Callee, Session_ID;!
!
!

SELECT Caller, Callee, Start_Time, Effective_Call_Duration,

 (End_Time - Start_Time) - Effective_Call_Duration

 AS Total_Interruption_Duration,

 No_Of_Restarts, Session_ID

FROM call_details MATCH_RECOGNIZE

 (PARTITION BY Caller, Callee ORDER BY Start_Time

 MEASURES

 A.Start_Time AS Start_Time,

 B.End_Time AS End_Time,

 SUM(B.End_Time – A.Start_Time) as
Effective_Call_Duration,

 COUNT(B.*) as No_Of_Restarts,

 MATCH_NUMBER() as Session_ID

 PATTERN (A B*)

 DEFINE B as B.Start_Time - prev(B.end_Time) < 60);

14 lines of simple SQL

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 8

SQL Pattern Matching

Key Concepts

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 9

Pattern Recognition In Sequences of Rows

§ Recognize patterns in sequences of events using SQL
–  Sequence is a stream of rows
–  Event equals a row in a stream

§ New SQL construct MATCH_RECOGNIZE
–  Logically partition and order the data

§  ORDER BY mandatory (optional PARTITION BY)
–  Pattern defined using regular expression using variables
–  Regular expression is matched against a sequence of rows
–  Each pattern variable is defined using conditions on rows and aggregates

“SQL Pattern Matching” - Concept

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 10

Find a W-shape pattern
in a ticker stream:

•  Output the beginning
and ending date of the
pattern

•  Calculate average price
in the second ascent

•  Find only patterns that
lasted less than a week

SQL Pattern Matching in action
Example: Find a double bottom pattern (W-shape) in ticker stream

days

Stock price

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 11

SQL Pattern Matching in action
Example: Find W-Shape

SELECT . . .
FROM ticker MATCH_RECOGNIZE (
 . . .
)

days

Stock price

New syntax for
discovering patterns using
SQL:

 MATCH_RECOGNIZE ()

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 12

SQL Pattern Matching in action
Example: Find W-Shape

SELECT …
FROM ticker MATCH_RECOGNIZE (
 PARTITION BY name ORDER BY time

days

Stock price

Find a W-shape pattern
in a ticker stream:

•  Set the PARTITION BY
and ORDER BY clauses

We will continue to look at
the black stock only from
now on

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 13

SQL Pattern Matching in action
Example: Find W-Shape

days

Stock price

SELECT …
FROM ticker MATCH_RECOGNIZE (
 PARTITION BY name ORDER BY time

 PATTERN (X+ Y+ W+ Z+)

Find a W-shape pattern
in a ticker stream:

•  Define the pattern – the
“W-shape”

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 14

SQL Pattern Matching in action
Example: Find W-Shape

SELECT …
FROM ticker MATCH_RECOGNIZE (
 PARTITION BY name ORDER BY time

 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price)),

days

Stock price

X

Find a W-shape pattern
in a ticker stream:

•  Define the pattern – the
first down part of the “W-
shape”

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 15

SQL Pattern Matching in action
Example: Find W-Shape

SELECT …
FROM ticker MATCH_RECOGNIZE (
 PARTITION BY name ORDER BY time

 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price)),
 Y AS (price > PREV(price)),

days

Stock price

X Y

Find a W-shape pattern
in a ticker stream:

•  Define the pattern – the
first up part of “W-shape”

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 16

SQL Pattern Matching in action
Example: Find W-Shape

days

Stock price

SELECT …
FROM ticker MATCH_RECOGNIZE (
 PARTITION BY name ORDER BY time

 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price)),
 Y AS (price > PREV(price)),
 W AS (price < PREV(price)),
 Z AS (price > PREV(price)))

X Y W Z

Find a W-shape pattern
in a ticker stream:

•  Define the pattern – the
second down (w) and the
second up(z) of the “W-
shape”

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 17

SQL Pattern Matching in action
Example: Find W-Shape

days

Stock price

SELECT …
FROM ticker MATCH_RECOGNIZE (
 PARTITION BY name ORDER BY time

MEASURES FIRST(x.time) AS first_x,
 LAST(z.time) AS last_z

 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price)),
 Y AS (price > PREV(price)),
 W AS (price < PREV(price)),
 Z AS (price > PREV(price)))

X Z

Find a W-shape pattern
in a ticker stream:

• Define the measures to
output once a pattern is
matched:

• FIRST: beginning date
• LAST: ending date

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 18

Find a W-shape pattern
in a ticker stream:

•  Output one row each
time we find a match to
our pattern

SQL Pattern Matching in action
Example: Find W-Shape

1 9 13 19 days

Stock price

SELECT first_x, last_z
FROM ticker MATCH_RECOGNIZE (
 PARTITION BY name ORDER BY time
 MEASURES FIRST(x.time) AS first_x,
 LAST(z.time) AS last_z
 ONE ROW PER MATCH
 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price)),
 Y AS (price > PREV(price)),
 W AS (price < PREV(price)),
 Z AS (price > PREV(price)))

First_x Last_z

1 9

13 19

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 19

Find a W-shape pattern
in a ticker stream:

•  Extend the pattern to find
W-shapes that lasted
less than a week

SQL Pattern Matching in action
Example: Find W-Shape lasts < 7 days

1 9 13 19 days

Stock price

SELECT first_x, last_z
FROM ticker MATCH_RECOGNIZE (
 PARTITION BY name ORDER BY time
 MEASURES FIRST(x.time) AS first_x,
 LAST(z.time) AS last_z
 ONE ROW PER MATCH
 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price)),
 Y AS (price > PREV(price)),
 W AS (price < PREV(price)),
 Z AS (price > PREV(price) AND
 z.time - FIRST(x.time) <= 7))

X Z

Can refer to previous variables

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 20

Find a W-shape pattern
in a ticker stream:

•  Calculate average price
in the second ascent

SQL Pattern Matching in action
Example: Find average price within W-Shape

1 9 13 19 days

Stock price

SELECT first_x, last_z, avg_price
FROM ticker MATCH_RECOGNIZE (
 PARTITION BY name ORDER BY time
 MEASURES FIRST(x.time) AS first_x,
 LAST(z.time) AS last_z,
 AVG(z.price) AS avg_price
 ONE ROW PER MATCH
 PATTERN (X+ Y+ W+ Z+)
 DEFINE X AS (price < PREV(price)),
 Y AS (price > PREV(price)),
 W AS (price < PREV(price)),
 Z AS (price > PREV(price) AND
 z.time - FIRST(x.time) <= 7))))

Average stock price: $52.00

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 21

SQL Pattern Matching in action

§ Define a session as a sequence of one or more events with the same
partition key where the inter-timestamp gap is less than a specified
threshold

§ Example “user log analysis”
–  Partition key: User ID, Inter-timestamp gap: 10 (seconds)
–  Detect the sessions
–  Assign a within-partition (per user) surrogate Session_ID to each session
–  Annotate each input tuple with its Session_ID

Example: Sessionization for user log

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 22

SQL Pattern Matching in action
Example Sessionization for user log
TIME USER ID
1 Mary
2 Sam
11 Mary
12 Sam
22 Sam
23 Mary
32 Sam
34 Mary
43 Sam
44 Mary
47 Sam
48 Sam
53 Mary
59 Sam
60 Sam
63 Mary
68 Sam

TIME USER ID
1 Mary
11 Mary

23 Mary

34 Mary
44 Mary
53 Mary
63 Mary

2 Sam
12 Sam
22 Sam
32 Sam

43 Sam
47 Sam
48 Sam

59 Sam
60 Sam
68 Sam

Identify
sessions

TIME USER ID SESSION
1 Mary 1
11 Mary 1

23 Mary 2

34 Mary 3
44 Mary 3
53 Mary 3
63 Mary 3

2 Sam 1
12 Sam 1
22 Sam 1
32 Sam 1

43 Sam 2
47 Sam 2
48 Sam 2

59 Sam 3
60 Sam 3
68 Sam 3

Number
Sessions
per user

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 23

SQL Pattern Matching in action
Example Sessionization for user log: MATCH_RECOGNIZE

. . .
FROM Events MATCH_RECOGNIZE
 (PARTITION BY user_ID ORDER BY time
 MEASURES match_number() as session_id
 ALL ROWS PER MATCH
 PATTERN (b s*)
 DEFINE
 s as (s.time - prev(s.time) <= 10)
);

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 24

SQL Pattern Matching in action

§ Primitive sessionization only a foundation for analysis
–  Mandatory to logically identify related events and group them

§ Aggregation for the first data insight
–  How many “events” happened within an individual session?
–  What was the total duration of an individual session?

Example Sessionization – Aggregation of sessionized data

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 25

SQL Pattern Matching in action
Example Sessionization – Aggregation of sessionized data

TIME USER ID SESSION
1 Mary 1
11 Mary 1

23 Mary 2

34 Mary 3
44 Mary 3
53 Mary 3
63 Mary 3

2 Sam 1
12 Sam 1
22 Sam 1
32 Sam 1

43 Sam 2
47 Sam 2
48 Sam 2
59 Sam 3
60 Sam 3
68 Sam 3

TIME SESSION_ID START_TIME
NUM
EVENTS

DURATION

Mary 1 1 2 10

Mary 2 23 1 0

Mary 3 34 4 29

Sam 1 2 4 30

Sam 2 43 3 5

Sam 3 59 3 9

Aggregate sessions per user

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 26

SQL Pattern Matching
Example Sessionization – Aggregation: ONE ROW PER MATCH

. . .
FROM Events MATCH_RECOGNIZE
 (PARTITION BY user_ID ORDER BY time ONE ROW PER MATCH
 MEASURES match_number() session_id,
 count(*) as no_of_events,
 first(time) start_time,
 last(time) - first(time) duration
 PATTERN (b s*)
 DEFINE
 s as (s.time - prev(time) <= 10)
)
ORDER BY user_id, session_id;

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 27

Native Top N Support

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 28

Natively identify top N in
SQL

Significantly simplifies
code development

ANSI SQL:2008

Native Support for TOP-N Queries
“Who are the top 5 money makers in my enterprise?”

SELECT empno, ename, deptno
FROM emp
ORDER BY sal, comm FETCH FIRST 5 ROWS ONLY;

SELECT empno, ename, deptno
FROM (SELECT empno, ename, deptno, sal, comm,
 row_number() OVER (ORDER BY sal,comm) rn
 FROM emp
)
WHERE rn <=5
ORDER BY sal, comm;

versus

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 29

Native Support for TOP-N Queries

§ ANSI 2008/2011 compliant with some additional extensions
§ Specify offset and number or percentage of rows to return
§ Provisions to return additional rows with the same sort key as the last

row (WITH TIES option)
§ Syntax:

OFFSET <offset> [ROW | ROWS]

FETCH [FIRST | NEXT]

 [<rowcount> | <percent> PERCENT] [ROW | ROWS]

 [ONLY | WITH TIES]

New offset and fetch_first clause

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 30

Summary

§ ANSI compliant features with some additional extensions
§ Common syntax reduces learning curve
§ Comprehensive support for SQL based pattern matching

–  Supports a wide range of use cases
–  Simplifies application development
–  Simplifies existing SQL code

§ New TOP-N feature
–  Simplifies existing SQL code

New Database 12c SQL Analytics

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 31

SQL - the best development language for Big Data?

Yes, because SQL is….

SIMPLER FASTER RICHER

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 32

Graphic Section Divider

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 33

Other sessions…

Session Date Location
Pattern Matching Hands-on Lab Tues - 12:00pm Marriot Salon 3-4
Top Tips for Mastering Oracle Partitioning Tues - 3:45pm Moscone South 103
Oracle Optimizer Boot Camp Tues - 5:15pm Moscone South 102
In-Database MapReduce using SQL Wed - 10:15am Marriot Salon 7

Programming with Big Data Connectors Wed – 3:30pm Marriot Salon 7
Data Warehouse & Big Data – Customer panel Wed – 3:30pm Moscone South 300
Your Data is talking to you – Customer panel Wed – 5:00pm Moscone South 300

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 34

Where to get more information
§ SQL Analytics Home Page on OTN

–  http://www.oracle.com/technetwork/database/bi-
datawarehousing/sql-analytics-index-1984365.html

–  Oracle By Example – Pattern matching
–  Podcasts for pattern matching and SQL analytics
–  Data Sheet
–  Whitepapers

§  Patterns Everywhere - Find then fast!
§  Patterns Everywhere - Find then fast! (Apple iBook)

§ Data Warehouse and SQL Analytics blog
–  http://oracle-big-data.blogspot.co.uk/

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 35

THANK YOU FOR
JOINING US TODAY

ENJOY
OPENWORLD

