

SQL - the best development language for Big Data?

Exploring the Analytical Power of SQL in Oracle Database 12c

HARDWARE AND SOFTWARE ENGINEERED TO WORK TOGETHER

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract.

It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle.

Keith Laker Senior Principal Product Manager

Andrew Witkowski Architect

Sankar Subramanian Senior Director of Development

HARDWARE AND SOFTWARE ENGINEERED TO WORK TOGETHER

Finding Patterns in Big Data

Typical use cases in today's world of fast exploration of big data

The On-Going Evolution of SQL

Pattern Matching with SQL Analytics

Java vs. SQL: Stock Markets - Searching for 'W' Patterns in Trade Data

private class VOLine {	
<pre>public String setState(VOLine linePrev, VOLine lineNext) { private boolean eq(String a, String b) { private boolean gt(String a, String b) { public Tuple exec(Tuple input) throws IOException {</pre>	<pre>SELECT first_x, last_z FROM ticker MATCH_RECOGNIZE (PARTITION BY name ORDER BY time MEASURES FIRST(x.time) AS first_x, LAST(z.time) AS last_z ONE ROW PER MATCH PATTERN (X+ Y+ W+ Z+) DEFINE X AS (price < PREV(price)), Y AS (price > PREV(price)), W AS (price < PREV(price)), Z AS (price > PREV(price) AND z.time - FIRST(x.time) <</pre>

250+ Lines of Java and PIG

12 Lines of SQL

- FIRST(x.time) ≤ 7))

ORACLE

SQL - 20x less code, 5x faster

Pattern Matching with SQL Analytics

11g vs. 12c: Call Quality Analysis - Looking for Dropped Calls

DATABASE 12

ORACLE

```
With Sessionized_Call_Details as
(select Caller, Callee, Start_Time, End_Time,
Inter_Subcall_Intrvls as
(select Caller, Callee, Start_Time,
Select Caller, Callee,
Min(Start_Time) Start_Time,
Sum(End_Time - Start_Time)
Effective_Call_Duration,
Nvl(Sum(Inter_Subcall_Intrvl), 0)
Total_Interuption_Duration, (Count(*) -
1) No_Of_Restarts,
Session_ID
from Inter_Subcall_Intrvls
group by Caller, Callee, Session_ID;
```

24+ lines of multi-select, sophisticated SQL

14 lines of simple SQL

50% less code - easier to understand, test, deploy and manage

SQL Pattern Matching

Key Concepts

Pattern Recognition In Sequences of Rows

"SQL Pattern Matching" - Concept

- Recognize patterns in sequences of events using SQL
 - Sequence is a stream of rows
 - Event equals a row in a stream
- New SQL construct MATCH_RECOGNIZE
 - Logically partition and order the data
 - ORDER BY mandatory (optional PARTITION BY)
 - Pattern defined using regular expression using variables
 - Regular expression is matched against a sequence of rows
 - Each pattern variable is defined using conditions on rows and aggregates

Example: Find a double bottom pattern (W-shape) in ticker stream

Find a W-shape pattern in a ticker stream:

- Output the beginning and ending date of the pattern
- Calculate average price
 in the second ascent
- Find only patterns that lasted less than a week

Example: Find W-Shape

New syntax for discovering patterns using SQL:

MATCH_RECOGNIZE()

Stock price		
		days
ROM ticker MATCH_RECOGNIZ	Έ (

Example: Find W-Shape

Find a W-shape pattern in a ticker stream:

 Set the PARTITION BY and ORDER BY clauses

We will continue to look at the black stock only from now on

Example: Find W-Shape

Find a W-shape pattern in a ticker stream:

 Define the pattern – the "W-shape"

Example: Find W-Shape

Find a W-shape pattern in a ticker stream:

 Define the pattern – the first down part of the "Wshape"

Example: Find W-Shape

Find a W-shape pattern in a ticker stream:

 Define the pattern – the second down (w) and the second up(z) of the "Wshape"

Example: Find W-Shape

Find a W-shape pattern in a ticker stream:

- Define the measures to output once a pattern is matched:
 - FIRST: beginning date
 - LAST: ending date

Example: Sessionization for user log

- Define a session as a sequence of one or more events with the same partition key where the inter-timestamp gap is less than a specified threshold
- Example "user log analysis"
 - Partition key: User ID, Inter-timestamp gap: 10 (seconds)
 - Detect the sessions
 - Assign a within-partition (per user) surrogate Session_ID to each session
 - Annotate each input tuple with its Session_ID

Example Sessionization for user log

TIME	USER ID	
1	Mary	
2	Sam	
11	Mary	
12	Sam	
22	Sam	Identify
23	Mary	identity
32	Sam	sessions
34	Mary	
43	Sam	
44	Mary	
47	Sam	
48	Sam	
53	Mary	
59	Sam	
60	Sam	
63	Mary	
68	Sam	
	TIME 1 2 11 12 23 32 34 43 44 47 48 53 59 60 63 68	TIME USER ID 1 Mary 2 Sam 11 Mary 12 Sam 12 Sam 23 Mary 32 Sam 34 Mary 43 Sam 44 Mary 45 Sam 53 Mary 59 Sam 60 Sam 63 Mary

TIME	USER ID
1	Mary
11	Mary
23	Mary
34	Mary
44	Mary
53	Mary
63	Mary
2	Sam
12	Sam
22	Sam
32	Sam
43	Sam
47	Sam
48	Sam
59	Sam
60	Sam
68	Sam

	TIME	USER ID	SESSION
	1	Mary	1
	11	Mary	1
Number	23	Mary	2
Indunioei			
Sessions	34	Mary	3
	44	Mary	3
per user	53	Mary	3
	63	Mary	3
	2	Sam	1
	12	Sam	1
	22	Sam	1
	32	Sam	1
	43	Sam	2
	47	Sam	2
	48	Sam	2
	59	Sam	3
	60	Sam	3
	68	Sam	3

Example Sessionization for user log: MATCH_RECOGNIZE

```
FROM Events MATCH RECOGNIZE
      (PARTITION BY user ID ORDER BY time
       MEASURES match number() as session id
       ALL ROWS PER MATCH
       PATTERN (b s*)
       DEFINE
              s as (s.time - prev(s.time) <= 10)</pre>
       );
```

Example Sessionization – Aggregation of sessionized data

- Primitive sessionization only a foundation for analysis
 - Mandatory to logically identify related events and group them
- Aggregation for the first data insight
 - How many "events" happened within an individual session?
 - What was the total duration of an individual session?

25 Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Example Sessionization – Aggregation of sessionized data

SQL Pattern Matching

Example Sessionization – Aggregation: ONE ROW PER MATCH

```
FROM Events MATCH RECOGNIZE
       ( PARTITION BY user ID ORDER BY time ONE ROW PER MATCH
         MEASURES match number() session id,
                 count(*) as no of events,
                 first(time) start time,
                 last(time) - first(time) duration
         PATTERN (b s*)
         DEFINE
                 s as (s.time - prev(time) <= 10)</pre>
ORDER BY user id, session id;
```

Native Top N Support

Native Support for TOP-N Queries

Natively identify top N in SQL

Significantly simplifies code development

ANSI SQL:2008

"Who are the top 5 money makers in my enterprise?"

```
SELECT empno, ename, deptno
FROM emp
ORDER BY sal, comm FETCH FIRST 5 ROWS ONLY;
```

versus

```
SELECT empno, ename, deptno
FROM (SELECT empno, ename, deptno, sal, comm,
            row_number() OVER (ORDER BY sal,comm) rn
        FROM emp
        )
WHERE rn <=5
ORDER BY sal, comm;</pre>
```

Native Support for TOP-N Queries

New offset and fetch_first clause

- ANSI 2008/2011 compliant with some additional extensions
- Specify offset and number or percentage of rows to return
- Provisions to return additional rows with the same sort key as the last row (WITH TIES option)
- Syntax:

```
OFFSET <offset> [ROW | ROWS]
FETCH [FIRST | NEXT]
[<rowcount> | <percent> PERCENT] [ROW | ROWS]
[ONLY | WITH TIES]
```

Summary

New Database 12c SQL Analytics

- ANSI compliant features with some additional extensions
- Common syntax reduces learning curve
- Comprehensive support for SQL based pattern matching
 - Supports a wide range of use cases
 - Simplifies application development
 - Simplifies existing SQL code
- New TOP-N feature
 - Simplifies existing SQL code

SQL - the best development language for Big Data?

Yes, because SQL is....

HARDWARE AND SOFTWARE ENGINEERED TO WORK TOGETHER

Other sessions...

Session	Date	Location
Pattern Matching Hands-on Lab	Tues - 12:00pm	Marriot Salon 3-4
Top Tips for Mastering Oracle Partitioning	Tues - 3:45pm	Moscone South 103
Oracle Optimizer Boot Camp	Tues - 5:15pm	Moscone South 102
In-Database MapReduce using SQL	Wed - 10:15am	Marriot Salon 7
Programming with Big Data Connectors	Wed – 3:30pm	Marriot Salon 7
Data Warehouse & Big Data – Customer panel	Wed - 3:30pm	Moscone South 300
Your Data is talking to you – Customer panel	Wed - 5:00pm	Moscone South 300

Where to get more information

- SQL Analytics Home Page on OTN
 - <u>http://www.oracle.com/technetwork/database/bi-</u> <u>datawarehousing/sql-analytics-index-1984365.html</u>
 - Oracle By Example Pattern matching
 - Podcasts for pattern matching and SQL analytics
 - Data Sheet
 - Whitepapers
 - Patterns Everywhere Find then fast!
 - Patterns Everywhere Find then fast! (Apple iBook)

ORACLE

- Data Warehouse and SQL Analytics blog
 - <u>http://oracle-big-data.blogspot.co.uk/</u>

SQL PATTERN MATCHING IN ORACLE DATABASE 12c

them fast!

Patterns everywhere – Find

ORACLE

THANK YOU FOR JOINING US TODAY

ENJOY OPENWORLD

HARDWARE AND SOFTWARE ENGINEERED TO WORK TOGETHER