
SVM in Oracle Database 10g: Removing the Barriers to
Widespread Adoption of Support Vector Machines

Boriana L. Milenova

Data Mining Technologies
Oracle

boriana.milenova@oracle.com

Joseph S. Yarmus

Data Mining Technologies
Oracle

joseph.yarmus@oracle.com

Marcos M. Campos

Data Mining Technologies
Oracle

marcos.m.campos@oracle.com

Abstract
Contemporary commercial databases are placing
an increased emphasis on analytic capabilities.
Data mining technology has become crucial in
enabling the analysis of large volumes of data.
Modern data mining techniques have been shown
to have high accuracy and good generalization to
novel data. However, achieving results of good
quality often requires high levels of user
expertise. Support Vector Machines (SVM) is a
powerful state-of-the-art data mining algorithm
that can address problems not amenable to
traditional statistical analysis. Nevertheless, its
adoption remains limited due to methodological
complexities, scalability challenges, and scarcity
of production quality SVM implementations.
This paper describes Oracle’s implementation of
SVM where the primary focus lies on ease of use
and scalability while maintaining high
performance accuracy. SVM is fully integrated
within the Oracle database framework and thus
can be easily leveraged in a variety of
deployment scenarios.

1. Introduction
Data mining is an analytic technology of growing
importance as large amounts of data are collected in
government and industry databases. While databases
traditionally excel at data retrieval, data mining poses new
challenges. Successful applications of data mining
technology usually require complex methodologies and

‘hands-on’ involvement of data mining analysts. In
addition, data mining is typically a computationally
intensive activity that requires significant dedicated
system resources. Support Vector Machines (SVM) [1] is
a typical example of a data mining algorithm that can
produce results of very good quality when used by an
expert and given sufficient system resources. In fact,
SVM has emerged as the algorithm of choice for
modeling challenging high-dimensional data where other
techniques under-perform. Example domains include text
mining [2], image mining [3], bioinformatics [4], and
information fusion [5]. In comparison studies, SVM
performance has been shown to be superior to the
performance of algorithms like decision trees, neural
networks, and Bayesian approaches [2, 4, 5, 6].

The success of SVM is largely attributed to its strong
theoretical foundations based on the Vapnik-
Chervonenkis (VC) theory [1]. The algorithm's
regularization properties ensure good generalization to
novel data. There are, however, certain limitations
inherent in the standard SVM framework that decrease the
algorithm’s practical usability:

• out-of-the-box performance is often unsatisfactory
– SVM parameter tuning and data preparation are
usually required;

• scalability with number of records is poor
(quadratic); and

• non-linear models can grow very large in size,
making scoring impractically slow.

This paper describes how these challenges have been
addressed in Oracle’s SVM implementation. Most design
solutions are focused on improved usability and making
SVM accessible to database users with limited data
mining expertise. The paper demonstrates that these goals
can be achieved without compromising the integrity of the
SVM framework. Here the focus is on new techniques
augmenting the current best practices in order to achieve
the scalability and usability expected in a production
quality system. This paper is not a primer on how to
implement a standard SVM. Excellent discussions on

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

standard SVM implementation approaches and data
structure representations can be found in a number of
sources [7, 8, 9, 10, 11].

To our knowledge, Oracle's SVM is the only SVM
production quality implementation available in a database
product. As an alternative, one can consider stand-alone
academic SVM implementations (e.g., LIBSVM [8],
SVMLight [9], SVMTorch [10], HeroSVM [12]).
However, such tools have limited appeal in the context of
real-world applications. Oracle’s full integration of SVM
into the database infrastructure offers a number of
advantages, including:

• data security and integrity during the entire
mining process;

• distributed processing and high system
availability;

• centralized view of the data and data
transformation capabilities; and

• flexible model deployment including scheduling
of model builds and model deployments.

The SVM feature is part of the Oracle Data Mining
(ODM) product [13]. ODM is an option to the Oracle
Database Enterprise Edition. ODM supports all major
data mining activities: association, attribute importance,
classification, clustering, feature extraction, and
regression. ODM's capabilities can be accessed through
Java or PL/SQL APIs or a graphical user interface (Oracle
Data Miner).

The ease of use and good scalability of the ODM
SVM feature has been corroborated by independent
evaluation studies conducted at the University of Rhode
Island [14] and the University of Genoa [15]. ODM SVM
has been also leveraged as part of production systems
used by several government agencies to tackle
challenging data mining problems. Independent software
vendors such as SPSS and InforSense have integrated the
ODM SVM feature into their data mining products (SPSS
Clementine, InforSense KDE Oracle Edition).

This paper is organized as follows. Section 2
introduces key SVM concepts. Section 3 discusses our
improvements to the quality of out-of-the-box SVM
models, in particular parameter selection, and provides
comparisons with previously published results. Section 4
describes our solution to SVM’s scalability problems and
relates it to alternative approaches in the field. Section 5
discusses SVM’s functional integration with other Oracle
database components. Section 6 presents the conclusions
and directions for future work.

2. Support Vector Machines
The SVM algorithm is capable of constructing models
that are complex enough to solve difficult real world
problems. At the same time, SVM models have a simple
functional form and are amenable to theoretical analysis.
SVM includes, as special cases, a large class of neural
networks, radial basis functions, and polynomial

classifiers. The output of an SVM binary classification
model is given by:
 ∑ =

+=
m

j ijjji Kybf
1

),(xxα (1),

where fi (also called margin) is the distance of each point
(data record) to the decision hyperplane defined by setting
fi = 0; b is the intercept; αj is the Lagrangian multiplier for
the jth training data record xj; and yj is the corresponding
target value (±1). Eq. 1 is a linear equation in the space of
attributes),(ijj K xx=θ . The kernel function, K, can be
linear or non-linear. If K is a linear kernel, Eq. 1 reduces
to a linear equation in the space of the original attributes
x. If K is a non-linear kernel, Eq. 1 defines a linear
equation on a new set of attributes. The number of new
attributes in the kernel-induced space can be as many as
the number of rows in the training data. This is one of the
key aspects of SVM and accounts for both its simplicity
and power. For the non-linear case, while there is a linear
relationship in the new set of attributes θ, the relationship
in the original input space is non-linear.

The kernel functions, K, can be interpreted as pattern
detectors or basis functions. Each kernel used in Eq. 1 is
associated with a specific input record in the training data.
In general, in an SVM model only a subset of αj are non-
zero. The input records with non-zero αj are called
support vectors. Learning in SVM is the process of
estimating the values of αj. This is accomplished by
solving a quadratic optimization problem. The objective
function is constructed in such a way that the trade-off
between model complexity and accuracy in the training
data is controlled in a principled fashion. Such balancing
of model capacity versus accuracy, also known as
regularization, is a key aspect of the SVM algorithm. This
feature is responsible for SVM's good generalization on
new data.

The SVM formulation discussed so far addresses a
binary target classification problem. In classification
problems with more than two target classes, there are two
common approaches: 1) one-versus-all where a separate
binary SVM model is built for each class; and 2) one-
versus-one where a binary SVM model is built for each
pair of classes. The second approach is considered more
accurate, however, it involves building more SVM
models. If there is a limited amount of data, one-versus-all
is the preferred strategy.

Standard binary supervised classification algorithms
require the presence of both positive and negative
examples of a target class. The negative examples are
often referred to as counterexamples. In contrast, one-
class SVM is a classification algorithm that requires only
the presence of examples of a single target class. The
model learns to discriminate between the known members
of the positive class and the unknown non-members.

One-class SVM models [16] can be easily cast as
outlier detectors – the typical examples in a distribution
are separated from the atypical (outlier) examples. The

distance from the separating plane (decision boundary)
indicates how typical a given record is with respect to the
distribution of the training data. Outliers can be ranked
based on their margins. In addition to outlier detection,
one-class SVM models can be used to discriminate the
known class from the universe of unknown
counterexamples. This is appropriate in domains where it
is a challenge to provide a useful and representative set of
counterexamples. The problem exists mostly in cases
where the target of interest is easily identifiable but the
counterexamples are either hard to specify, expensive to
collect, or extremely heterogeneous.

In addition to classification targets, SVM can also
handle targets with a continuous range. The SVM model
learns a linear regression function. In the linear kernel
case, the linear function is defined in the original input
space. In the non-linear kernel case, the linear function is
defined in the transformed, kernel-induced space. The
latter is equivalent to learning a non-linear function in the
original input space.

SVM regression uses an ε-insensitive loss function,
that is, the loss function ignores values that are within a
certain distance from the true value. The epsilon
parameter (ε) in SVM regression represents the width of
the insensitivity tube around the actual target value.
Predictions falling within ε distance of the true target are
not penalized as errors.

The 10g release of ODM includes a suite of SVM
algorithms: SVM-classification (binary and multi-class),
SVM-regression, and one-class SVM. Both Gaussian and
Linear kernels are supported across all three classes of
models.

3. SVM Ease of Use
SVM is often daunting to people with limited data mining
experience. Even though SVM models are generally
easier to train than neural networks, there are many
potential pitfalls that can lead to unsatisfactory results.
The ‘tricks of the trade’ for building SVM models with
good accuracy fall within two broad categories:

• Data preparation; and
• Model selection/parameter tuning.

3.1 Data Preparation Issues and Solutions

The SVM algorithm operates on numeric attributes and
requires a one-to-one relationship between the object of
study and its attributes. For example, a customer has a
one-to-one relationship to its demographic data. In many
cases, data are stored in multiple tables, one-to-many
relationships are common, and data types other than real
numbers are ubiquitous. To achieve the data
representation required by SVM, the data have to undergo
multiple non-trivial transformations. For example, a
categorical column needs to be “exploded” into a set of
new binary columns (one per category value). These early

stage transformations are application specific and are
usually accomplished in an ad-hoc manner.

Using ODM significantly streamlines this processing
stage. ODM SVM accepts a single data source. The
source can be either a table or a view. It can include
combinations of scalar columns (numeric or categorical)
and nested table columns (collections of numeric or
categorical values). The transformation of categorical data
into binary attributes takes place internally without user
intervention. The nested table columns provide several
advantages: 1) they can be used to capture simple one-to-
many relationships; 2) they provide efficient
representation for sparse data; and 3) they allow data of
arbitrary dimensionality to be mined (circumventing the
upper limit on number of columns in a database table).

Even when the data are in the format required by the
SVM algorithm, they may still not be suitable for training
SVM models. Individual data attributes need to be
normalized (placed on similar scale). Normalization
prevents attributes with a large original scale from biasing
the solution. Additionally, it makes computational
overflows and underflows less likely. Furthermore,
normalization brings the numerical attributes to the same
scale [0, 1] as the exploded binary categorical columns.
Outliers and long tailed distributions can adversely affect
normalization by producing very compressed scales with
low resolution. To prevent this, outlier removal and power
transformations are often employed. ODM provides
normalization and outlier removal capabilities in the
dbms_data_mining_transform package.

While SVM is uniquely equipped to successfully
handle high-dimensional data, it is sometimes desirable
(e.g., for model transparency, performance, or noise
reduction) to reduce the number of features. ODM
provides two feature selection mechanisms – 1) an MDL-
based (minimum description length) univariate attribute
importance metric, and 2) a Non-Negative Matrix
Factorization multivariate feature extraction method.
Either of these techniques can be used for dimensionality
reduction in data preparation for an SVM model build.

3.2 Model Selection

Model selection is the single most challenging and error
prone step in the process of building SVM models. Also
described as parameter tuning, model selection deals with
choosing appropriate values for the regularization and
kernel parameters. SVM models can be very sensitive to
parameter choices – inappropriate values may lead to
severe underfitting (e.g., for classification, the model
always predicts the dominant class), severe overfitting
(i.e., the model memorizes the training data), or slow
convergence.

In practice, parameter values are usually chosen using
a grid search approach. A grid search defines a grid over
the parameter space. Each grid point represents a possible
combination of parameter values. The grid resolution

determines the search space size. This can be
computationally expensive as the search space may span
several orders of magnitude for individual parameter
values. Since SVM parameters interact, the complexity
and computational cost of the search increases with the
number of parameters. Often, the tuning process starts
with a coarse grid search. Once a promising region is
identified, a finer grid is applied. A number of speedups
of the classic grid search approach have been proposed. In
[17], an iterative refinement of the grid resolution and
search boundaries was used. In [18], the search space was
divided into a bad (underfitting/overfitting) region and a
good region and a simplified line search was performed in
the good region. In [19], the authors advocated a pattern
search approach that iteratively searched a neighbourhood
in a fixed pattern to discover an optimal operating point.

In order to evaluate model quality, parameter-tuning
methods require a measure that captures their
generalization performance. The most reliable, albeit most
computationally expensive, method is to use N-fold cross-
validation. The training data is divided into N partitions.
A model is built on N-1 partitions and the remaining
partition is held aside for evaluation. Cross-validation
involves building N models for each parameter value
combination. Once a good set of parameter values is
found, a model is trained on the entire data. To speedup
this process, the authors of [20] proposed that the coarse
grid search be performed on a sample of the data; the
entire data is considered only for the second stage of the
search when a finer grid is used.

For datasets of reasonable size, it is feasible to hold
aside a portion of the data for evaluation purposes and
thus build one model per parameter value set and avoid
the N-fold cross-validation.

While grid searches are usually effective, building and
testing multiple SVM models can be an onerous and time-
consuming activity. There has been some theoretical work
on estimating generalization performance without the use
of held-aside data. In [21], several leave-one-out bounds
on generalization performance for SVM classifiers were
defined. Given a set of parameter values, such bounds can
be used for model evaluation. That is, if used within a grid
search, the model test on held-aside data can be avoided.
More importantly, such bounds can be optimized directly
to derive the optimal set of parameter values. The leave-
one-out bound is optimized using a gradient descent
approach. A major bottleneck in the process is that each
gradient step involves solving a separate SVM model. The
leave-one-out bounds approach was also extended to
SVM regression [22].

3.3 Oracle’s Solution to SVM Model Selection

ODM tackles the model selection problem from a
different perspective – emphasis is placed on usability and
good out-of-the-box performance. Instead of investing
time and system resources in finding an optimal set of

parameters, ODM performs computationally inexpensive,
data-driven, ‘on-the-fly’ estimates that place the algorithm
parameters in reasonable operating ranges. The estimated
values prevent severe model underfitting/overfitting,
produce models with competitive accuracy, and support
rapid convergence. These estimates also represent an
excellent initial point for the parameter tuning
methodologies outlined above. The following sections
outline the parameter estimation techniques in the ODM
SVM implementation.

Complexity Factor Estimation

SVM’s complexity factor C, also referred to as capacity
or penalty, is a regularization parameter that trades off
training set error for margin maximization. In other
words, the complexity of the model is counterbalanced by
model robustness in order to achieve good generalization
on new data.

In classification, our estimation approach for the
complexity factor C is based on the argument that an
SVM model should be given sufficient capacity to
separate typical representatives of the target classes. We
randomly select a small number of examples per class
(e.g., 30 positive and 30 negative records). We compute
the prediction (using Eq. 1) for each record under the
assumption that all Lagrangian multipliers are bounded
(equal to C):

∑=
j ijji KCyf)(,xx ,

where yj is the target label (±1) and K(xj, xi) is the kernel
function. The summation is over all examples in the
random sample. For this calculation, the focus is on the
scale of the margins. Therefore, the bias is set to zero.

A small number of records may be predicted
incorrectly under this assumption (where fi has the
opposite sign from the actual target label). Within the
random sample, such records are more similar to the
examples from the opposite class and therefore can be
interpreted as noise. We exclude their fi values from
further consideration. For each of the other records, we
calculate the C value (C(i)) that would make the ith record
a non-bounded support vector (i.e., setting 1±=if):

∑=
j ijji

i KyfsignC)()(,
)(xx .

The summation in the denominator is over all records in
the sample (including the noisy ones).

The resulting set of C values is sorted in descending
order and the 90th percentile value is selected as the
operating point. Thus the model is given sufficient
capacity to achieve good, but not perfect, discrimination
for the specific data, which is the intent of regularization.

In regression, we follow a heuristic proposed by [23]:
σ3=C where σ is the standard deviation of the target.

This approach ensures that the approximating function has
sufficient capacity to map target values within a
reasonable range around the mean. Selecting a large C

value is reasonable for regression, since regularization is
more effectively controlled via a different parameter:
epsilon.

Epsilon Estimation

The value of epsilon is supposed to reflect the intrinsic
level of noise present in the regression target. In real-
world problems, however, the noise level is generally not
known. Therefore, a good epsilon estimator includes a
method to estimate the noise level [23].

In ODM SVM, we use the following estimation
procedure:

1. The initial value of epsilon is set to a small fraction
of the mean of the target (µy): yµε *01.0= .

2. We create a small training and a small held-aside
validation set via random sampling of the available
data.

3. An SVM model is built on the training sample and
residuals are measured on the held-aside dataset.

4. Epsilon is updated on the basis of the mean
absolute residual value (µr):

 2/)(r
oldnew µεε +=

Steps 3 and 4 are repeated several times (8 in the
current implementation). The epsilon value that produced
the lowest residuals on the held-aside data is used for
building an SVM model on the full training data. Working
with more data (e.g., the entire dataset) during the epsilon
search phase is likely to produce a more accurate epsilon
estimate. However, in our experience, samples produce
results of good accuracy and achieve fast out-of-the-box
performance.

Standard Deviation Estimation

Standard deviation is a kernel parameter for controlling
the spread of the Gaussian function and thus the
smoothness of the SVM solution. Since distances between
records grow with increasing dimensionality, it is a
common practice to scale the standard deviation
accordingly. For example, a simple, but not very
effective, approximation of the standard deviation is d ,
where d is the dimensionality of the input space. The
ODM SVM standard deviation estimation uses a data-
driven approach to find a standard deviation value that is
on the same scale as distances between typical data
records.

In SVM classification, our approach is to estimate the
typical distance between the two target classes. We
randomly draw pairs of positive and negative examples
and measure the Euclidean distance between the elements
of each pair. We rank the distances in descending order
and pick the 90th percentile distance as the standard
deviation. We exclude the last decile to allow for some
overlap of the two target classes so as to produce a
smooth solution.

In SVM regression, the standard deviation estimate is
also based on typical distances between randomly drawn
data records. We draw pairs of random records and
measure the Euclidean distances between them. We sort
the values, exclude the smallest distances in the tail, and
choose the 90th percentile distance as the standard
deviation. The selected standard deviation value has
sufficient resolution and an adequate degree of
smoothness.

3.4 Model Selection Results

To illustrate the performance of our methodology, we
compare our approach to a standard grid-search method.
The results of an exhaustive grid search with fine
granularity can be considered optimal - a ‘gold standard’.
We chose LIBSVM for all comparison tests in this paper,
since it is very well known, and has achieved wide
adoption as a standalone SVM tool.

We compared our classification parameter estimation
approach to published results using the LIBSVM grid
search tool [8]. Table 1 illustrates the performances of
ODM SVM and LIBSVM on three benchmark
classification datasets. Details about these datasets can be
found in [20]. We report the following accuracy
measurements: out-of-the-box ODM SVM, LIBSVM
after grid-search and cross validation, and LIBSVM with
default parameters. All of these tests were run on
appropriately scaled (normalized) data. To emphasize the
importance of data preparation in SVM, we also report
LIBSVM’s accuracy on the raw datasets.

Table 1. SVM classification accuracy (% correct)

 ODM
SVM

LIBSVM
grid+xval

LIBSVM
default

Raw
data

Astroparticle
Physics

97 97 96 67

Bio-
informatics

84 85 79 57

Vehicle 71 88 12 2

As expected, the combination of grid search and cross-

validation produced the best accuracy results overall. Our
approach to parameter estimation closely matched the grid
search results in two of the three cases. Even in the third
case, the benefit of using a computationally inexpensive
data-driven estimation method is significant – it
represents a great improvement over using LIBSVM’s
default parameters. It can also provide a very good
starting point for model selection, if further system tuning
is required. The main advantage of our on-the-fly
estimation approach is that only a single model build
takes place. The grid search and cross-validation
methodology requires multiple SVM builds and, as a
result, is significantly slower.

For SVM regression, we report in Table 2 the results
on three popular benchmark datasets (details can be found
in [24]). As in classification, our method shows a small
loss of accuracy with respect to a grid search method.
However, the ODM SVM methodology is still
advantageous in terms of computational efficiency.

Table 2. SVM regression accuracy (RMSE)

 ODM SVM LIBSVM
grid

Boston housing 6.57 6.26

Computer activity 0.35 0.33

Pumadyn 0.02 0.02

3.5. Other Usability Features

Other noteworthy usability features in ODM SVM include
an automated kernel selection mechanism, one-class SVM
enhancements, and unbalanced data treatment.

Kernel Selection

The SVM kernel is automatically selected according to
the following rule: if the data source has high
dimensionality (e.g., 100 dimensions), a linear kernel is
used, otherwise a Gaussian kernel is used. This rule takes
into account not only the number of columns in the
original data source but also factors in categorical
attribute cardinalities and information from any nested
table columns.

One-Class SVM

One-class SVM models are a relatively new extension to
the class of SVM models. To facilitate their adoption by a
wider audience we incorporated several usability
enhancements into ODM SVM. For models with linear
kernels, our implementation automatically performs unit-
length normalization. That is, all data records are mapped
to the unit sphere and have a norm equal to 1. While such
a transformation is essential for the correct operation of
the one-class linear model, it may not be obvious to users
having little experience with SVM models.

The other usability enhancement involves tuning the
regularization parameter in one-class models. Typically,
the outlier rate is controlled via a regularization
parameter, η, which represents a lower bound on the
number of support vectors and an upper bound on the
number of outliers. In our experience, specifying the
desired number of outliers via η can result in outlier rates
that significantly diverge from the desired value. To
rectify this, we introduced a user setting for outlier rate.
The specified outlier rate is achieved as closely as
possible by an internal search on the complexity factor
parameter. The search is conducted on a small data
sample.

Unbalanced data

Real world data often have unbalanced target
distributions. That is, certain target values/ranges can be
significantly under-represented. Often these rare targets
are of particular interest to the user. SVM models trained
on such data can be very successful in identifying the
dominant targets, but may be unable to accurately predict
the rare target values. ODM SVM addresses this potential
problem for both classification and regression by
automatically employing a stratified sampling mechanism
with respect to the target values. Our stratified sampling
strategy is discussed in more detail in Section 4.3. Its
overall effect is that the unbalanced target problem is
significantly mitigated. In the case of classification, the
user also has the option of supplying a weight vector
(often referred to in the SVM literature as costs) that
biases the model towards predicting the rare target values.
By giving higher weights to the rare targets, the model
can better characterize the targets of interest.

4. SVM Scalability
SVM has a reputation of being a data mining algorithm
that places high requirements on CPU and memory
resources. Scalability can be problematic both for the
model training and model scoring operations. The next
two sections outline techniques developed within the
SVM community to somewhat alleviate the scalability
issues. We used these techniques as a starting point for
most of our methodological approaches and design
choices in the ODM SVM implementation (Section 4.3).

4.1 SVM Build Scalability

The training time for standard SVM models scales
quadratically with the number of records. For applications
where model build speed is important, this limits the
algorithm applicability to small and medium size data
(less than 100K training records). Since the introduction
of SVM, scalability improvements have been, and remain,
the focus of a large body of research. Some noteworthy
results include:

• Chunking and decomposition – the SVM model is
built incrementally on subsets of the data
(working sets), thus breaking up the optimization
problem into small manageable subproblems and
solving them iteratively [25];

• Working set selection – the working set is chosen
such that the selected data records provide
greatest improvement to the current state of the
model, thus speeding up convergence;

• Kernel caching – some parts of the kernel matrix
are maintained in memory (subject to memory
constraints), thus speeding up computation;

• Shrinking – records with Lagrangian multipliers
that appear to have converged can be temporarily
excluded from optimization, thus shrinking the

size of the training data and speeding up
convergence;

• Sparse data encoding – the algorithm can handle
training data in a compressed format (zero values
are not stated explicitly), thus reducing the
number of computations;

• Specialized linear model representation – SVM
models with linear kernels can be represented in
terms of attribute coefficients in the input space.
This form is more efficient than the traditional
representation (Eq. 1), since it shortcuts the kernel
computation step, thus significantly reducing
computational and memory requirements.

These optimizations (or subsets of them) have been
successfully leveraged in many SVM tools
(implementation details can be found in LIBSVM [8],
SVMLight [9], SVMTorch [10], HeroSVM [12]). These
techniques have gained wide acceptance and are
commonly leveraged in contemporary SVM
implementations. ODM SVM also adopts variations of
these optimizations (Section 4.3).

While these techniques alleviate some of the build
scalability problems, their effectiveness is often
unsatisfactory when applied to real world data. The
situation is especially problematic for SVM models with
non-linear kernels where computational and memory
demands are higher. Large amounts of training data
usually result in large SVM models (the number of
support vectors increases linearly with the size of the
data). While linear models can sidestep this issue by
employing a coefficient representation, non-linear models
require storage of the support vectors along with their
Lagrangian multipliers. As a result, large non-linear SVM
models have high disk and memory usage requirements.
They are also very slow to score. This makes these
models impractical for many types of applications.

4.2 SVM Scoring Scalability

In the context of real world applications, scoring poses
even more stringent performance requirements than the
build operation. Models are usually built offline and can
therefore be scheduled, taking into account system loads.
In contrast, scoring requires the processing of large
quantities of data both offline and in real time. Real time
operation necessitates fast computation and a small
memory footprint. This effectively excludes large non-
linear SVM models as likely candidates for applications
where fast response is required.

Some recently developed methods have focused on
decreasing SVM's model size. While these methods often
improve build scalability, from an application point of
view their main benefit lies in producing small models
capable of fast and efficient scoring. Such reduced size
models are also expected to have comparable accuracy to
their full-scale counterparts. That is, gains in scoring

performance should not be offset by significant loss of
accuracy.

A simple solution to the model size problem is to use
only a fraction of the training data. Since random
sampling often results in suboptimal models, to improve
model quality, alternative sampling methods have been
considered [26, 27, 28, 29]. Of particular interest are the
active sampling methodologies [28, 29], where the goal is
to identify data records that have the potential to
maximally improve model quality. Many active sampling
approaches follow a similar learning paradigm: 1)
construct an initial model on a small random sample; 2)
test the entire dataset against this model; 3) select
additional data records by analyzing the predictions; 4)
retrain the model on the new augmented training sample.
The procedure iterates until a stopping criterion (usually
related to limiting the model size) is met. These studies
proposed selecting the records(s) nearest to the decision
hyperplane because such records are expected to have the
most significant effect in changing the decision
hyperplane. A major criticism of the active sampling
approaches is that finding the next ‘best’ candidate
requires a full scan of the dataset. Ultimately, repeated
scans of the data can dominate the execution time [29].
ODM SVM uses a variation of active sampling that
avoids full scans.

4.3 Oracle’s Solution to SVM Scalability

Oracle’s ODM SVM implementation strives to meet
performance requirements that are relevant within a
typical database environment. Emphasis is placed on the
efficient processing of large quantities of data, low
memory requirements, and fast response time. Since the
individual SVM features (classification, one-class, and
regression) share a common code base, the performance
optimizations described here apply to all three types of
SVM models unless explicitly stated otherwise.

Stratified Sampling

When dealing with large collections of data, practitioners
usually resort to sampling and building SVM models on
subsets of the original dataset. Since random sampling is
rarely adequate, specialized sampling strategies need to be
employed. To remove this burden from the user, we
include data selection mechanisms in our SVM
implementation. These mechanisms are feature specific
and were designed to achieve good scalability without
compromising accuracy.

An important data selection requirement for
classification tasks is that all target values be adequately
represented. We use a stratified sampling approach where
sampling rates are biased towards rare target values. Even
though the relevant data statistics (record count, target
cardinality, and target value distribution) are unknown at
the time of the data load, the algorithm performs a single
pass through the data and loads into memory a subset of

the data that is as balanced as possible across target
values. The subset of records kept in memory consists of
at most 500,000 records with a maximum of 50,000 per
target value. If some target values cannot fill their
allocated quotas, the quotas of other targets can be
increased.

Stratified target sampling is also advantageous in
regression tasks. In many problems the target distribution
is non-uniform. A random sampling approach could result
in areas of low support being poorly represented;
however, often, such areas are of particular interest. Our
SVM regression implementation takes an initial sample of
up to 500,000 data records, estimates the distribution
density over 20 equi-width intervals, and then creates a
sub-sample that is biased towards areas with low support.
The objective of the biased sampling is to select an equal
number of data records from each target interval. That is,
each interval is initially given the same quota. However, if
there are not enough data records to meet the quota for a
given interval, the quotas of the other intervals are
increased.

Decomposition and Working Set Selection

The core optimization module in our implementation uses
a decomposition approach – the SVM model is built
incrementally by optimizing small working sets towards a
global solution. The model is trained until convergence on
the current working set; then this working set is updated
with new records and the model adapts to the new data.
The process continues iteratively until the convergence
conditions on the entire training data are met. Models
with linear kernels use a fixed size working set. For
models with non-linear kernels, the working set size is
chosen such that the kernels associated with each working
set record can be cached in the dedicated kernel cache
memory.

The iterative nature of the optimization process makes
the method prone to oscillations – the model can overfit
individual working sets thus slowing down convergence
towards the global solution. To avoid oscillations, we
smoothly transition between working sets. A significant
portion (up to 50%) of the working set is retained during
working set updates. Retention preference is given to non-
bounded support vectors since their Lagrangian
multipliers are most likely to need further adjustment. To
achieve rapid model improvement, we select the new
members of the working set from amongst data records
that perform worse than average under the current model
(i.e., have worse than average violation of the model
convergence constraints). Traditionally, working set
selection methods evaluate all training data records, rank
them and select the top candidates as working set
members. In our implementation, we choose not to incur
the cost of sorting the candidate data records. Instead,
during the evaluation stage we compute an average
violation. We perform a scan of the candidate data

records. If the violation is larger than average, the data
record is included in the working set. If this scan does not
produce a sufficient number of records to fill up the
working set, a second scan is initiated where every record
that does not meet the convergence conditions (i.e., it has
non-zero violation) is included in the working set. Both
scans start at a random point in the list of candidate
records and can wrap around if needed. The scans
terminate when the working set is filled up. This approach
has been found to be advantageous over sorting, not only
in terms of computational efficiency, but also in
smoothing the solution from one working set to the next.
Selecting the maximum violators tends to produce large
model changes and oscillations in the solution. On the
other hand, the random element in our working set
selection contributes to smoother transitions and faster
convergence.

Active Learning

In classification, additional convergence speedup and
model size reduction can be achieved via active learning.
Under active learning, the algorithm creates an initial
model on a small sample, scores the remaining training
data, adds to its working set the data record that is closest
to the current decision boundary, and then locally refines
the decision hyperplane. The incremental model updates
continue until the model converges on the training data or
the maximum allowed number of support vectors is
reached. To avoid the cost of scanning the entire dataset,
the new data records are selected from a smaller pool of
records (up to 10,000). This pool is derived from the
target-stratified data sample obtained during the data load
(see above). The candidate support vectors in the pool are
balanced with respect to their target values. In a binary
classification task, each target class provides half of the
pool. If not enough examples are available for either of
the target classes, the remainder of the pool is filled up
with records from the other class. In multi-class
classification tasks, we employ a one-versus-all strategy
(i.e., a binary model is built for each target class and
records associated with other target values are treated as
counterexamples). The active learning pool is equally
divided between examples of the current positive target
and counterexamples – the latter being selected via
stratified sampling across the other target values. Even
though active learning takes place by default, it can be
turned off to help assess its benefits over the standard
approach.

Linear Model Optimizations

The ODM SVM implementation has a separate code path
for linear models. A number of linear kernel specific
optimizations have been instrumented. Models with linear
kernels can be considered a special case of SVM models,
whose decision hyperplanes can be defined in terms of
input attribute coefficients alone. This has an important

computational advantage that we exploit. It circumvents
the explicit usage of a kernel matrix during the training
optimization phase. Thus, we allocate kernel cache
memory only for models with non-linear kernels. The
compact representation for linear models also allows
efficient model storage and fast scoring with low memory
requirements. An added benefit is the easy interpretability
of the resulting SVM model.

Shrinking is another enhancement that has a
significant performance impact for ODM SVM linear
models. If a training record meets the convergence
conditions and its Lagrangian multiplier is at the lower
limit (not a support vector) or upper limit (bounded
support vector) for several successive iterations, this
training record can be temporarily excluded from the
training data, thus reducing the number of records that
need to be evaluated at every iteration. Once the model
converges on the remainder of the training data, the
‘shrunk’ records are re-activated and learning continues
until convergence conditions are met.

Having a separate code path for linear models in ODM
SVM introduces complexity in the implementation.
However, the performance benefits more than outweigh
the associated development costs. Linear SVM models
have become the data mining algorithm of choice for a
number of high-dimensional domains (e.g., text mining,
bioinformatics, hyperspectral imagery) where
computational efficiency is essential.

Other Optimizations

Other optimizations include scalable memory
management and sparse data representation. By default,
the ODM SVM build operation has a small memory
footprint. Active learning requires that only a small
number of training examples (10,000) be maintained in
memory. The dedicated kernel cache memory for non-
linear models is set by default to 40MB and can be
adjusted by the user depending on system resources. Two
of the most expensive operations during model build –
sorting of the training data and persisting the model into
index-organized tables for faster access – have constraints
on the physical memory available to the process. They
spill to disk when physical memory constraints are
exceeded. These operations are supported by database
primitives and the amount of memory available to the
process is controlled by the pga_aggregate_target
database parameter. This allows graceful performance
degradation for large datasets and reliable execution
without system failures even with limited memory
resources.

Sparse data encoding is also supported (Section 4.1).
This allows SVM to be used in domains such as text
mining and market basket analysis. The Oracle Text
database functionality currently leverages the SVM
implementation described here for document
classification.

4.3 Scalability Experiments

To illustrate the behavior of Oracle's ODM SVM
implementation on large datasets, we use a publicly
available dataset for a network intrusion detection task
[30]. In the experiments, a binary SVM model is used for
classifying an activity pattern as normal or as an attack.
The number of entries in the training dataset is 494,020.
There are 41 attributes. After exploding the categorical
values into binary attributes, the number of dimensions
increases to 118. Figure 1 shows the scalability of the
algorithm with increasing number of records for models
with linear and Gaussian kernels. The smaller datasets
were created via random sampling of the original data.
For comparison, results from the LIBSVM tool are also
included. LIBSVM was used with default parameters and
no grid search was performed. Tests were run on a
machine with the following hardware and software
specifications: single 3GHz i86 processor, 2GB RAM
memory, and Red Hat enterprise Linux OS 3.0.

Figure 1. SVM build scalability

Oracle's ODM SVM implementation has better
scalability than LIBSVM. While LIBSVM employs a
number of optimizations, Oracle's ODM SVM has the
advantages of active learning, sampling, and specialized
linear model optimizations. On this particular dataset, the
models built using either tool have equivalent
discriminatory power. Since this is a binary model,
performance is measured using the area under the
Receiver Operating Characteristic (AUC). We compare
the models built on the full training data (rightmost points
in both subplots). Generalization performance is measured
on an independent test set. Both linear models have AUC
= 0.97. For models with Gausssian kernels, LIBSVM has
AUC = 0.97 and ODM SVM has AUC = 0.98.

It should be also noted that in Figure 1 ODM's
Gaussian kernel SVM models have comparable or even
better execution times than the corresponding linear
kernel models. This result is due to active learning where
a small non-linear model size is enforced. Linear models
do not have this constraint and the build effectively
converges on a larger body of data.

A more important concern in the context of real world
applications is that SVM models can be slow to score.
Figure 2 illustrates the scoring performance when
comparing SVM models built in ODM and LIBSVM on
the full training data. All tested models have linear
scalability. In the linear model case, the significant
performance advantage of ODM SVM is due largely to
the specialized linear model representation. For Gaussian
models, the large difference is due mostly to differences
in model sizes (132 support vectors in ODM SVM versus
9,168 in LIBSVM). The small number of support vectors
in ODM SVM is achieved through active learning.

Figure 2. SVM scoring scalability

The scoring times in Figure 2 include persisting the
results to disk. Oracle's PREDICTION SQL operator
allows the seamless integration of the scoring operation in
larger queries. Predictions can be piped out directly into
the processing stream instead of being stored in a table.
Table 3 breaks down the linear model timings into model
scoring and result persistence.

Table 3. ODM SVM scoring time breakdown

 500K 1M 2M 4M

SVM scoring (sec) 18 37 71 150

Result persistence (sec) 2 4 11 22

5. SVM Integration
The tight integration of Oracle's data mining functionality
within the RDBMS framework allows database users to
take full advantage of the available database
infrastructure. For example, a database offers great
flexibility in terms of data manipulation. Inputs from
different sources can be easily combined through joins.
Without replicating data, database views can capture
different slices of the data. Such views can be used
directly for model generation or scoring. Database
security is enhanced by eliminating the necessity of data
export outside the database.

Using an SVM model representation that is native to
the database greatly simplifies model distribution. Models
are not only stored in the database but are executed in it as
well. Oracle's scheduling infrastructure can be used to
instrument automated model builds and deployments to
multiple database instances.

Having scoring exposed through an SQL operator
interface allows embedding of the SVM prediction
functionality within DML statements, sub-queries, and
functional indexes. The PREDICTION operator also
enables hierarchical and cooperative scoring – multiple
SVM models can be applied either serially or in parallel.
The following SQL code snippet illustrates sequential (or
‘pipelined’) scoring:

SELECT id, PREDICTION(
 svm_model_1
 USING *)
FROM user_data
WHERE PREDICTION_PROBABILITY(
 svm_model_2,
 'target_val'
 USING *) > 0.5
In this example svm_model_1 is used to further

analyze all records for which svm_model_2 has assigned
a probability greater of equal 0.5 of belonging to the
'target_val' category. If this were an intrusion
detection problem, svm_model_2 could be used for
detecting anomalous behavior in the network and
svm_model_1 would then assign the anomalous case to a
category for further investigation.

6. Conclusion
The addition of SVM to Oracle’s analytic capabilities

creates opportunities for tacking challenging problem
domains such as text mining and bioinformatics. While
the SVM algorithm is uniquely equipped to handle these
types of data, creating an SVM tool with an acceptable
level of usability and adequate performance is a non-
trivial task. This paper discusses our design decisions,
provides relevant implementation details, and reports
accuracy and scalability results obtained using ODM
SVM. We also briefly outline the key advantages of a
tight integration between SVM and the database platform.
We plan to further enhance our methodologies to achieve
higher ease of use, support more data types, and improve
our automatic data preparation.

References
[1] V. N. Vapnik. The Nature of Statistical Learning

Theory. Springer Verlag, New York, NY, 1995.

[2] T. Joachims. Text Categorization with Support
Vector Machines: Learning with Many Relevant
Features. In Proc. European Conference on Machine
Learning, 1998, pp. 137-142.

[3] K.-S. Goh, E. Chang, and K.-T. Cheng. SVM Binary
Classifier Ensembles for Image Classification. In
Proc. Intl. Conf. Information Knowledge
Management, 2001, pp. 395-402.

[4] S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee,
C. Yeang, M. Angelo, C. Ladd, M. Reich, E.
Latulippe, J. Mesirov, T. Poggio, W. Gerald, M.
Loda, E. Lander, and T. Golub. Multi-Class Cancer
Diagnosis Using Tumor Gene Expression Signatures.
Proc. National Academy of Sciences U.S.A., 98(26),
2001, pp. 15149-15154.

[5] M. Pal and P. M. Mather. Assessment of the
Effectiveness of Support Vector Machines for
Hyperspectral Data. Future Generation Computer
Systems, 20(7), 2004, pp. 1215-1225.

[6] S. Mukkamala, G. Janowski, and A. Sung. Intrusion
Detection Using Neural Networks and Support
Vector Machines. In Proc. IEEE Intl. Joint Conf.
Neural Networks, 2002, pp. 1702-1707.

[7] B. Scholkopf and A. J. Smola. Learning with
Kernels. MIT Press, Cambridge, MA, 2002.

[8] C.-C. Chang and C.-J. Lin. LIBSVM: A Library for
Support Vector Machines. http://www.csie.ntu.edu.tw
/~cjlin/libsvm/.

[9] T. Joachims. Making Large-Scale SVM Learning
Practical. In B. Scholkopf, C. J. C. Burges, and A. J.
Smola (eds.), Advances in Kernel Methods – Support
Vector Learning. MIT Press, 1999, pp. 169-184.

[10] R. Collobert and S. Bengio. SVMTorch: Support
Vector Machines for Large-Scale Regression
Problems. Journal of Machine Learning Research, 1,
2001, pp. 143-160.

[11] J. C. Platt. Fast Training of Support Vector Machines
Using Sequential Minimal Optimization. In B.
Scholkopf, C. J. C. Burges, and A. J. Smola (eds.),
Advances in Kernel Methods – Support Vector
Learning. MIT Press, 1999, pp. 185-208.

[12] J. X. Dong, A. Krzyzak, and C. Y. Suen. A Fast SVM
Training Algorithm. In Proc. Intl. Workshop Pattern
Recognition with Support Vector Machines, 2002, pp.
53-67.

[13] Oracle Corporation. Oracle Data Mining Concepts,
10g Release 2. http://otn.oracle.com/, 2005.

[14] L. Hamel, A. Uvarov, and S. Stephens. Evaluating
the SVM Component in Oracle 10g Beta. Technical
Report TR04-299, Dept. of Computer Science and
Statistics, University of Rhode Island,
http://homepage.cs.uri.edu/faculty/hamel/pubs/oracle
-tr299.pdf, 2004.

[15] D. Anguita, S. Ridella, F. Rivieccio, A.M. Scapolla,
and D. Sterpi. A Comparison Between Oracle SVM
Implementation and cSVM. Technical Report, Dept.
of Biophysical and Electronic Engineering,
University of Genoa, http://www.smartlab.dibe.unige.
it/smartlab/publication/pdf/TR001.pdf, 2004.

[16] B. Scholkopf, J. C. Platt, J. Shawe-Taylor, and A. J.
Smola. Estimating the Support of a High-
Dimensional Distribution. Neural Computation,
13(7), 2001, pp. 1443-1471.

[17] C. Staelin. Parameter Selection for Support Vector
Machines. Technical Report HPL-2002-354, HP
Laboratories, Israel, 2002.

[18] S. S. Keerthi and C.-J. Lin. Asymptotic Behaviors of
Support Vector Machines with Gaussian Kernel.
Neural Computation, 15(7), 2003, pp. 1667-1689.

[19] M. Momma and K. P. Bennett. A Pattern Search
Method for Model Selection of Support Vector
Regression. Proceedings of SIAM Conference on
Data Mining, 2002.

[20] C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A Practical
Guide to Support Vector Classification. http://
www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

[21] O. Chapelle and V. Vapnik. Model Selection for
Support Vector Machines. Advances in Neural
Information Processing Systems, 1999, pp. 230-236.

[22] M.-W. Chang and C.-J. Lin. Leave-One-Out Bounds
for Support Vector Regression Model Selection. To
appear in Neural Computation, 2005.

[23] V. Cherkassky and Y. Ma. Practical Selection of
SVM Parameters and Noise Estimation for SVM
Regression. Neural Networks, 17(1), 2004, pp. 113-
126.

[24] Delve: Data for Evaluating Learning in Valid
Experiments. http://www.cs.toronto.edu/~delve/data/
datasets.html

[25] E. Osuna, R. Freund, and F. Girosi. An Improved
Training Algorithm for Support Vector Machines. In
Proc. IEEE Workshop on Neural Networks and
Signal Processing, 1997, pp. 276-285.

[26] Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced
Support Vector Machines. In Proc. SIAM Intl. Conf.
Data Mining, 2001.

[27] J. L. Balcazar, Y. Dai, and O. Watanabe. Provably
Fast Training Algorithms for Support Vector
Machines. In Proc. IEEE Intl. Conf. on Data Mining,
2001.

[28] S. Tong and D. Koller. Support Vector Machine
Active Learning with Applications to Text
Classification. Journal of Machine Learning
Research, 2, pp. 45-66.

[29] H. Yu, J. Yang, and J. Han. Classifying Large Data
Sets Using SVM with Hierarchical Clusters. In Proc.
Intl. Conf. Knowledge Discovery Data Mining, 2003,
pp. 306-315.

[30] KDD’99 competition dataset. http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html, 1999.

