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Abstract 
Contemporary commercial databases are placing 
an increased emphasis on analytic capabilities. 
Data mining technology has become crucial in 
enabling the analysis of large volumes of data. 
Modern data mining techniques have been shown 
to have high accuracy and good generalization to 
novel data. However, achieving results of good 
quality often requires high levels of user 
expertise. Support Vector Machines (SVM) is a 
powerful state-of-the-art data mining algorithm 
that can address problems not amenable to 
traditional statistical analysis. Nevertheless, its 
adoption remains limited due to methodological 
complexities, scalability challenges, and scarcity 
of production quality SVM implementations. 
This paper describes Oracle’s implementation of 
SVM where the primary focus lies on ease of use 
and scalability while maintaining high 
performance accuracy. SVM is fully integrated 
within the Oracle database framework and thus 
can be easily leveraged in a variety of 
deployment scenarios. 

1. Introduction 
Data mining is an analytic technology of growing 
importance as large amounts of data are collected in 
government and industry databases. While databases 
traditionally excel at data retrieval, data mining poses new 
challenges. Successful applications of data mining 
technology usually require complex methodologies and 

‘hands-on’ involvement of data mining analysts. In 
addition, data mining is typically a computationally 
intensive activity that requires significant dedicated 
system resources. Support Vector Machines (SVM) [1] is 
a typical example of a data mining algorithm that can 
produce results of very good quality when used by an 
expert and given sufficient system resources. In fact, 
SVM has emerged as the algorithm of choice for 
modeling challenging high-dimensional data where other 
techniques under-perform. Example domains include text 
mining [2], image mining [3], bioinformatics [4], and 
information fusion [5]. In comparison studies, SVM 
performance has been shown to be superior to the 
performance of algorithms like decision trees, neural 
networks, and Bayesian approaches [2, 4, 5, 6]. 

The success of SVM is largely attributed to its strong 
theoretical foundations based on the Vapnik-
Chervonenkis (VC) theory [1]. The algorithm's 
regularization properties ensure good generalization to 
novel data. There are, however, certain limitations 
inherent in the standard SVM framework that decrease the 
algorithm’s practical usability: 

• out-of-the-box performance is often unsatisfactory 
– SVM parameter tuning and data preparation are 
usually required; 

• scalability with number of records is poor 
(quadratic); and 

• non-linear models can grow very large in size, 
making scoring impractically slow. 

This paper describes how these challenges have been 
addressed in Oracle’s SVM implementation. Most design 
solutions are focused on improved usability and making 
SVM accessible to database users with limited data 
mining expertise. The paper demonstrates that these goals 
can be achieved without compromising the integrity of the 
SVM framework. Here the focus is on new techniques 
augmenting the current best practices in order to achieve 
the scalability and usability expected in a production 
quality system. This paper is not a primer on how to 
implement a standard SVM. Excellent discussions on 
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standard SVM implementation approaches and data 
structure representations can be found in a number of 
sources [7, 8, 9, 10, 11].  

To our knowledge, Oracle's SVM is the only SVM 
production quality implementation available in a database 
product. As an alternative, one can consider stand-alone 
academic SVM implementations (e.g., LIBSVM [8], 
SVMLight [9], SVMTorch [10], HeroSVM [12]). 
However, such tools have limited appeal in the context of 
real-world applications. Oracle’s full integration of SVM 
into the database infrastructure offers a number of 
advantages, including: 

• data security and integrity during the entire 
mining process; 

• distributed processing and high system 
availability; 

• centralized view of the data and data 
transformation capabilities; and 

• flexible model deployment including scheduling 
of model builds and model deployments. 

The SVM feature is part of the Oracle Data Mining 
(ODM) product [13]. ODM is an option to the Oracle 
Database Enterprise Edition. ODM supports all major 
data mining activities: association, attribute importance, 
classification, clustering, feature extraction, and 
regression. ODM's capabilities can be accessed through 
Java or PL/SQL APIs or a graphical user interface (Oracle 
Data Miner). 

The ease of use and good scalability of the ODM 
SVM feature has been corroborated by independent 
evaluation studies conducted at the University of Rhode 
Island [14] and the University of Genoa [15]. ODM SVM 
has been also leveraged as part of production systems 
used by several government agencies to tackle 
challenging data mining problems. Independent software 
vendors such as SPSS and InforSense have integrated the 
ODM SVM feature into their data mining products (SPSS 
Clementine, InforSense KDE Oracle Edition). 

This paper is organized as follows. Section 2 
introduces key SVM concepts. Section 3 discusses our 
improvements to the quality of out-of-the-box SVM 
models, in particular parameter selection, and provides 
comparisons with previously published results. Section 4 
describes our solution to SVM’s scalability problems and 
relates it to alternative approaches in the field. Section 5 
discusses SVM’s functional integration with other Oracle 
database components. Section 6 presents the conclusions 
and directions for future work. 

2. Support Vector Machines 
The SVM algorithm is capable of constructing models 
that are complex enough to solve difficult real world 
problems. At the same time, SVM models have a simple 
functional form and are amenable to theoretical analysis. 
SVM includes, as special cases, a large class of neural 
networks, radial basis functions, and polynomial 

classifiers. The output of an SVM binary classification 
model is given by: 
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where fi (also called margin) is the distance of each point 
(data record) to the decision hyperplane defined by setting 
fi = 0; b is the intercept; αj is the Lagrangian multiplier for 
the jth training data record xj; and yj is the corresponding 
target value (±1). Eq. 1 is a linear equation in the space of 
attributes ),( ijj K xx=θ . The kernel function, K, can be 
linear or non-linear. If K is a linear kernel, Eq. 1 reduces 
to a linear equation in the space of the original attributes 
x. If K is a non-linear kernel, Eq. 1 defines a linear 
equation on a new set of attributes. The number of new 
attributes in the kernel-induced space can be as many as 
the number of rows in the training data. This is one of the 
key aspects of SVM and accounts for both its simplicity 
and power. For the non-linear case, while there is a linear 
relationship in the new set of attributes θ, the relationship 
in the original input space is non-linear. 

The kernel functions, K, can be interpreted as pattern 
detectors or basis functions. Each kernel used in Eq. 1 is 
associated with a specific input record in the training data. 
In general, in an SVM model only a subset of αj are non-
zero. The input records with non-zero αj are called 
support vectors. Learning in SVM is the process of 
estimating the values of αj. This is accomplished by 
solving a quadratic optimization problem. The objective 
function is constructed in such a way that the trade-off 
between model complexity and accuracy in the training 
data is controlled in a principled fashion. Such balancing 
of model capacity versus accuracy, also known as 
regularization, is a key aspect of the SVM algorithm. This 
feature is responsible for SVM's good generalization on 
new data. 

The SVM formulation discussed so far addresses a 
binary target classification problem. In classification 
problems with more than two target classes, there are two 
common approaches: 1) one-versus-all where a separate 
binary SVM model is built for each class; and 2) one-
versus-one where a binary SVM model is built for each 
pair of classes. The second approach is considered more 
accurate, however, it involves building more SVM 
models. If there is a limited amount of data, one-versus-all 
is the preferred strategy. 

Standard binary supervised classification algorithms 
require the presence of both positive and negative 
examples of a target class. The negative examples are 
often referred to as counterexamples. In contrast, one-
class SVM is a classification algorithm that requires only 
the presence of examples of a single target class. The 
model learns to discriminate between the known members 
of the positive class and the unknown non-members.  

One-class SVM models [16] can be easily cast as 
outlier detectors – the typical examples in a distribution 
are separated from the atypical (outlier) examples. The 



distance from the separating plane (decision boundary) 
indicates how typical a given record is with respect to the 
distribution of the training data. Outliers can be ranked 
based on their margins. In addition to outlier detection, 
one-class SVM models can be used to discriminate the 
known class from the universe of unknown 
counterexamples. This is appropriate in domains where it 
is a challenge to provide a useful and representative set of 
counterexamples. The problem exists mostly in cases 
where the target of interest is easily identifiable but the 
counterexamples are either hard to specify, expensive to 
collect, or extremely heterogeneous. 

In addition to classification targets, SVM can also 
handle targets with a continuous range. The SVM model 
learns a linear regression function. In the linear kernel 
case, the linear function is defined in the original input 
space. In the non-linear kernel case, the linear function is 
defined in the transformed, kernel-induced space. The 
latter is equivalent to learning a non-linear function in the 
original input space. 

SVM regression uses an ε-insensitive loss function, 
that is, the loss function ignores values that are within a 
certain distance from the true value. The epsilon 
parameter (ε) in SVM regression represents the width of 
the insensitivity tube around the actual target value. 
Predictions falling within ε distance of the true target are 
not penalized as errors. 

The 10g release of ODM includes a suite of SVM 
algorithms: SVM-classification (binary and multi-class), 
SVM-regression, and one-class SVM. Both Gaussian and 
Linear kernels are supported across all three classes of 
models. 

3. SVM Ease of Use 
SVM is often daunting to people with limited data mining 
experience. Even though SVM models are generally 
easier to train than neural networks, there are many 
potential pitfalls that can lead to unsatisfactory results. 
The ‘tricks of the trade’ for building SVM models with 
good accuracy fall within two broad categories: 

• Data preparation; and 
• Model selection/parameter tuning. 

3.1   Data Preparation Issues and Solutions 

The SVM algorithm operates on numeric attributes and 
requires a one-to-one relationship between the object of 
study and its attributes. For example, a customer has a 
one-to-one relationship to its demographic data. In many 
cases, data are stored in multiple tables, one-to-many 
relationships are common, and data types other than real 
numbers are ubiquitous. To achieve the data 
representation required by SVM, the data have to undergo 
multiple non-trivial transformations. For example, a 
categorical column needs to be “exploded” into a set of 
new binary columns (one per category value). These early 

stage transformations are application specific and are 
usually accomplished in an ad-hoc manner. 

Using ODM significantly streamlines this processing 
stage. ODM SVM accepts a single data source. The 
source can be either a table or a view. It can include 
combinations of scalar columns (numeric or categorical) 
and nested table columns (collections of numeric or 
categorical values). The transformation of categorical data 
into binary attributes takes place internally without user 
intervention. The nested table columns provide several 
advantages: 1) they can be used to capture simple one-to-
many relationships; 2) they provide efficient 
representation for sparse data; and 3) they allow data of 
arbitrary dimensionality to be mined (circumventing the 
upper limit on number of columns in a database table). 

Even when the data are in the format required by the 
SVM algorithm, they may still not be suitable for training 
SVM models. Individual data attributes need to be 
normalized (placed on similar scale). Normalization 
prevents attributes with a large original scale from biasing 
the solution. Additionally, it makes computational 
overflows and underflows less likely. Furthermore, 
normalization brings the numerical attributes to the same 
scale [0, 1] as the exploded binary categorical columns. 
Outliers and long tailed distributions can adversely affect 
normalization by producing very compressed scales with 
low resolution. To prevent this, outlier removal and power 
transformations are often employed. ODM provides 
normalization and outlier removal capabilities in the 
dbms_data_mining_transform package. 

While SVM is uniquely equipped to successfully 
handle high-dimensional data, it is sometimes desirable 
(e.g., for model transparency, performance, or noise 
reduction) to reduce the number of features. ODM 
provides two feature selection mechanisms – 1) an MDL-
based (minimum description length) univariate attribute 
importance metric, and 2) a Non-Negative Matrix 
Factorization multivariate feature extraction method. 
Either of these techniques can be used for dimensionality 
reduction in data preparation for an SVM model build. 

3.2   Model Selection 

Model selection is the single most challenging and error 
prone step in the process of building SVM models. Also 
described as parameter tuning, model selection deals with 
choosing appropriate values for the regularization and 
kernel parameters. SVM models can be very sensitive to 
parameter choices – inappropriate values may lead to 
severe underfitting (e.g., for classification, the model 
always predicts the dominant class), severe overfitting 
(i.e., the model memorizes the training data), or slow 
convergence. 

In practice, parameter values are usually chosen using 
a grid search approach. A grid search defines a grid over 
the parameter space. Each grid point represents a possible 
combination of parameter values. The grid resolution 



determines the search space size. This can be 
computationally expensive as the search space may span 
several orders of magnitude for individual parameter 
values. Since SVM parameters interact, the complexity 
and computational cost of the search increases with the 
number of parameters. Often, the tuning process starts 
with a coarse grid search. Once a promising region is 
identified, a finer grid is applied. A number of speedups 
of the classic grid search approach have been proposed. In 
[17], an iterative refinement of the grid resolution and 
search boundaries was used. In [18], the search space was 
divided into a bad (underfitting/overfitting) region and a 
good region and a simplified line search was performed in 
the good region. In [19], the authors advocated a pattern 
search approach that iteratively searched a neighbourhood 
in a fixed pattern to discover an optimal operating point. 

In order to evaluate model quality, parameter-tuning 
methods require a measure that captures their 
generalization performance. The most reliable, albeit most 
computationally expensive, method is to use N-fold cross-
validation. The training data is divided into N partitions. 
A model is built on N-1 partitions and the remaining 
partition is held aside for evaluation. Cross-validation 
involves building N models for each parameter value 
combination. Once a good set of parameter values is 
found, a model is trained on the entire data. To speedup 
this process, the authors of [20] proposed that the coarse 
grid search be performed on a sample of the data; the 
entire data is considered only for the second stage of the 
search when a finer grid is used. 

For datasets of reasonable size, it is feasible to hold 
aside a portion of the data for evaluation purposes and 
thus build one model per parameter value set and avoid 
the N-fold cross-validation. 

While grid searches are usually effective, building and 
testing multiple SVM models can be an onerous and time-
consuming activity. There has been some theoretical work 
on estimating generalization performance without the use 
of held-aside data. In [21], several leave-one-out bounds 
on generalization performance for SVM classifiers were 
defined. Given a set of parameter values, such bounds can 
be used for model evaluation. That is, if used within a grid 
search, the model test on held-aside data can be avoided. 
More importantly, such bounds can be optimized directly 
to derive the optimal set of parameter values. The leave-
one-out bound is optimized using a gradient descent 
approach. A major bottleneck in the process is that each 
gradient step involves solving a separate SVM model. The 
leave-one-out bounds approach was also extended to 
SVM regression [22]. 

3.3   Oracle’s Solution to SVM Model Selection 

ODM tackles the model selection problem from a 
different perspective – emphasis is placed on usability and 
good out-of-the-box performance. Instead of investing 
time and system resources in finding an optimal set of 

parameters, ODM performs computationally inexpensive, 
data-driven, ‘on-the-fly’ estimates that place the algorithm 
parameters in reasonable operating ranges. The estimated 
values prevent severe model underfitting/overfitting, 
produce models with competitive accuracy, and support 
rapid convergence. These estimates also represent an 
excellent initial point for the parameter tuning 
methodologies outlined above. The following sections 
outline the parameter estimation techniques in the ODM 
SVM implementation. 

Complexity Factor Estimation 

SVM’s complexity factor C, also referred to as capacity 
or penalty, is a regularization parameter that trades off 
training set error for margin maximization. In other 
words, the complexity of the model is counterbalanced by 
model robustness in order to achieve good generalization 
on new data. 

In classification, our estimation approach for the 
complexity factor C is based on the argument that an 
SVM model should be given sufficient capacity to 
separate typical representatives of the target classes. We 
randomly select a small number of examples per class 
(e.g., 30 positive and 30 negative records). We compute 
the prediction (using Eq. 1) for each record under the 
assumption that all Lagrangian multipliers are bounded 
(equal to C): 
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where yj is the target label (±1) and K(xj, xi) is the kernel 
function. The summation is over all examples in the 
random sample. For this calculation, the focus is on the 
scale of the margins. Therefore, the bias is set to zero. 

A small number of records may be predicted 
incorrectly under this assumption (where fi has the 
opposite sign from the actual target label). Within the 
random sample, such records are more similar to the 
examples from the opposite class and therefore can be 
interpreted as noise. We exclude their fi values from 
further consideration. For each of the other records, we 
calculate the C value (C(i)) that would make the ith record 
a non-bounded support vector (i.e., setting 1±=if ): 
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The summation in the denominator is over all records in 
the sample (including the noisy ones). 

The resulting set of C values is sorted in descending 
order and the 90th percentile value is selected as the 
operating point. Thus the model is given sufficient 
capacity to achieve good, but not perfect, discrimination 
for the specific data, which is the intent of regularization. 

In regression, we follow a heuristic proposed by [23]: 
σ3=C where σ is the standard deviation of the target. 

This approach ensures that the approximating function has 
sufficient capacity to map target values within a 
reasonable range around the mean. Selecting a large C 



value is reasonable for regression, since regularization is 
more effectively controlled via a different parameter: 
epsilon. 

Epsilon Estimation 

The value of epsilon is supposed to reflect the intrinsic 
level of noise present in the regression target. In real-
world problems, however, the noise level is generally not 
known. Therefore, a good epsilon estimator includes a 
method to estimate the noise level [23]. 

In ODM SVM, we use the following estimation 
procedure: 

1. The initial value of epsilon is set to a small fraction 
of the mean of the target (µy): yµε *01.0= . 

2. We create a small training and a small held-aside 
validation set via random sampling of the available 
data.  

3. An SVM model is built on the training sample and 
residuals are measured on the held-aside dataset.  

4. Epsilon is updated on the basis of the mean 
absolute residual value (µr):  

           2/)( r
oldnew µεε +=  

Steps 3 and 4 are repeated several times (8 in the 
current implementation). The epsilon value that produced 
the lowest residuals on the held-aside data is used for 
building an SVM model on the full training data. Working 
with more data (e.g., the entire dataset) during the epsilon 
search phase is likely to produce a more accurate epsilon 
estimate. However, in our experience, samples produce 
results of good accuracy and achieve fast out-of-the-box 
performance. 

Standard Deviation Estimation 

Standard deviation is a kernel parameter for controlling 
the spread of the Gaussian function and thus the 
smoothness of the SVM solution. Since distances between 
records grow with increasing dimensionality, it is a 
common practice to scale the standard deviation 
accordingly. For example, a simple, but not very 
effective, approximation of the standard deviation is d , 
where d is the dimensionality of the input space. The 
ODM SVM standard deviation estimation uses a data-
driven approach to find a standard deviation value that is 
on the same scale as distances between typical data 
records. 

In SVM classification, our approach is to estimate the 
typical distance between the two target classes. We 
randomly draw pairs of positive and negative examples 
and measure the Euclidean distance between the elements 
of each pair. We rank the distances in descending order 
and pick the 90th percentile distance as the standard 
deviation. We exclude the last decile to allow for some 
overlap of the two target classes so as to produce a 
smooth solution. 

In SVM regression, the standard deviation estimate is 
also based on typical distances between randomly drawn 
data records. We draw pairs of random records and 
measure the Euclidean distances between them. We sort 
the values, exclude the smallest distances in the tail, and 
choose the 90th percentile distance as the standard 
deviation. The selected standard deviation value has 
sufficient resolution and an adequate degree of 
smoothness. 

3.4   Model Selection Results 

To illustrate the performance of our methodology, we 
compare our approach to a standard grid-search method. 
The results of an exhaustive grid search with fine 
granularity can be considered optimal - a ‘gold standard’. 
We chose LIBSVM for all comparison tests in this paper, 
since it is very well known, and has achieved wide 
adoption as a standalone SVM tool. 

We compared our classification parameter estimation 
approach to published results using the LIBSVM grid 
search tool [8]. Table 1 illustrates the performances of 
ODM SVM and LIBSVM on three benchmark 
classification datasets. Details about these datasets can be 
found in [20]. We report the following accuracy 
measurements: out-of-the-box ODM SVM, LIBSVM 
after grid-search and cross validation, and LIBSVM with 
default parameters. All of these tests were run on 
appropriately scaled (normalized) data. To emphasize the 
importance of data preparation in SVM, we also report 
LIBSVM’s accuracy on the raw datasets. 

Table 1. SVM classification accuracy (% correct) 

 ODM 
SVM 

LIBSVM 
grid+xval 

LIBSVM
default 

Raw
data 

Astroparticle 
Physics 

97 97 96 67 

Bio-
informatics 

84 85 79 57 

Vehicle 71 88 12 2

 
As expected, the combination of grid search and cross-

validation produced the best accuracy results overall. Our 
approach to parameter estimation closely matched the grid 
search results in two of the three cases. Even in the third 
case, the benefit of using a computationally inexpensive 
data-driven estimation method is significant – it 
represents a great improvement over using LIBSVM’s 
default parameters. It can also provide a very good 
starting point for model selection, if further system tuning 
is required. The main advantage of our on-the-fly 
estimation approach is that only a single model build 
takes place. The grid search and cross-validation 
methodology requires multiple SVM builds and, as a 
result, is significantly slower. 



For SVM regression, we report in Table 2 the results 
on three popular benchmark datasets (details can be found 
in [24]). As in classification, our method shows a small 
loss of accuracy with respect to a grid search method. 
However, the ODM SVM methodology is still 
advantageous in terms of computational efficiency. 

Table 2. SVM regression accuracy (RMSE) 

 ODM SVM LIBSVM 
grid 

Boston housing 6.57 6.26 

Computer activity 0.35 0.33 

Pumadyn 0.02 0.02 

3.5.   Other Usability Features 

Other noteworthy usability features in ODM SVM include 
an automated kernel selection mechanism, one-class SVM 
enhancements, and unbalanced data treatment. 

Kernel Selection 

The SVM kernel is automatically selected according to 
the following rule: if the data source has high 
dimensionality (e.g., 100 dimensions), a linear kernel is 
used, otherwise a Gaussian kernel is used. This rule takes 
into account not only the number of columns in the 
original data source but also factors in categorical 
attribute cardinalities and information from any nested 
table columns. 

One-Class SVM 

One-class SVM models are a relatively new extension to 
the class of SVM models. To facilitate their adoption by a 
wider audience we incorporated several usability 
enhancements into ODM SVM. For models with linear 
kernels, our implementation automatically performs unit-
length normalization. That is, all data records are mapped 
to the unit sphere and have a norm equal to 1. While such 
a transformation is essential for the correct operation of 
the one-class linear model, it may not be obvious to users 
having little experience with SVM models. 

The other usability enhancement involves tuning the 
regularization parameter in one-class models. Typically, 
the outlier rate is controlled via a regularization 
parameter, η, which represents a lower bound on the 
number of support vectors and an upper bound on the 
number of outliers. In our experience, specifying the 
desired number of outliers via η can result in outlier rates 
that significantly diverge from the desired value. To 
rectify this, we introduced a user setting for outlier rate. 
The specified outlier rate is achieved as closely as 
possible by an internal search on the complexity factor 
parameter. The search is conducted on a small data 
sample. 

Unbalanced data 

Real world data often have unbalanced target 
distributions. That is, certain target values/ranges can be 
significantly under-represented. Often these rare targets 
are of particular interest to the user. SVM models trained 
on such data can be very successful in identifying the 
dominant targets, but may be unable to accurately predict 
the rare target values. ODM SVM addresses this potential 
problem for both classification and regression by 
automatically employing a stratified sampling mechanism 
with respect to the target values. Our stratified sampling 
strategy is discussed in more detail in Section 4.3. Its 
overall effect is that the unbalanced target problem is 
significantly mitigated. In the case of classification, the 
user also has the option of supplying a weight vector 
(often referred to in the SVM literature as costs) that 
biases the model towards predicting the rare target values. 
By giving higher weights to the rare targets, the model 
can better characterize the targets of interest. 

4. SVM Scalability 
SVM has a reputation of being a data mining algorithm 
that places high requirements on CPU and memory 
resources. Scalability can be problematic both for the 
model training and model scoring operations. The next 
two sections outline techniques developed within the 
SVM community to somewhat alleviate the scalability 
issues. We used these techniques as a starting point for 
most of our methodological approaches and design 
choices in the ODM SVM implementation (Section 4.3). 

4.1   SVM Build Scalability 

The training time for standard SVM models scales 
quadratically with the number of records. For applications 
where model build speed is important, this limits the 
algorithm applicability to small and medium size data 
(less than 100K training records). Since the introduction 
of SVM, scalability improvements have been, and remain, 
the focus of a large body of research. Some noteworthy 
results include: 

• Chunking and decomposition – the SVM model is 
built incrementally on subsets of the data 
(working sets), thus breaking up the optimization 
problem into small manageable subproblems and 
solving them iteratively [25]; 

• Working set selection – the working set is chosen 
such that the selected data records provide 
greatest improvement to the current state of the 
model, thus speeding up convergence;  

• Kernel caching – some parts of the kernel matrix 
are maintained in memory (subject to memory 
constraints), thus speeding up computation;  

• Shrinking – records with Lagrangian multipliers 
that appear to have converged can be temporarily 
excluded from optimization, thus shrinking the 



size of the training data and speeding up 
convergence;  

• Sparse data encoding – the algorithm can handle 
training data in a compressed format (zero values 
are not stated explicitly), thus reducing the 
number of computations;  

• Specialized linear model representation – SVM 
models with linear kernels can be represented in 
terms of attribute coefficients in the input space. 
This form is more efficient than the traditional 
representation (Eq. 1), since it shortcuts the kernel 
computation step, thus significantly reducing 
computational and memory requirements.  

These optimizations (or subsets of them) have been 
successfully leveraged in many SVM tools 
(implementation details can be found in LIBSVM [8], 
SVMLight [9], SVMTorch [10], HeroSVM [12]). These 
techniques have gained wide acceptance and are 
commonly leveraged in contemporary SVM 
implementations. ODM SVM also adopts variations of 
these optimizations (Section 4.3). 

While these techniques alleviate some of the build 
scalability problems, their effectiveness is often 
unsatisfactory when applied to real world data. The 
situation is especially problematic for SVM models with 
non-linear kernels where computational and memory 
demands are higher. Large amounts of training data 
usually result in large SVM models (the number of 
support vectors increases linearly with the size of the 
data). While linear models can sidestep this issue by 
employing a coefficient representation, non-linear models 
require storage of the support vectors along with their 
Lagrangian multipliers. As a result, large non-linear SVM 
models have high disk and memory usage requirements. 
They are also very slow to score. This makes these 
models impractical for many types of applications. 

4.2   SVM Scoring Scalability 

In the context of real world applications, scoring poses 
even more stringent performance requirements than the 
build operation. Models are usually built offline and can 
therefore be scheduled, taking into account system loads. 
In contrast, scoring requires the processing of large 
quantities of data both offline and in real time. Real time 
operation necessitates fast computation and a small 
memory footprint. This effectively excludes large non-
linear SVM models as likely candidates for applications 
where fast response is required. 

Some recently developed methods have focused on 
decreasing SVM's model size. While these methods often 
improve build scalability, from an application point of 
view their main benefit lies in producing small models 
capable of fast and efficient scoring. Such reduced size 
models are also expected to have comparable accuracy to 
their full-scale counterparts. That is, gains in scoring 

performance should not be offset by significant loss of 
accuracy.  

A simple solution to the model size problem is to use 
only a fraction of the training data. Since random 
sampling often results in suboptimal models, to improve 
model quality, alternative sampling methods have been 
considered [26, 27, 28, 29]. Of particular interest are the 
active sampling methodologies [28, 29], where the goal is 
to identify data records that have the potential to 
maximally improve model quality. Many active sampling 
approaches follow a similar learning paradigm: 1) 
construct an initial model on a small random sample; 2) 
test the entire dataset against this model; 3) select 
additional data records by analyzing the predictions; 4) 
retrain the model on the new augmented training sample. 
The procedure iterates until a stopping criterion (usually 
related to limiting the model size) is met. These studies 
proposed selecting the records(s) nearest to the decision 
hyperplane because such records are expected to have the 
most significant effect in changing the decision 
hyperplane. A major criticism of the active sampling 
approaches is that finding the next ‘best’ candidate 
requires a full scan of the dataset. Ultimately, repeated 
scans of the data can dominate the execution time [29]. 
ODM SVM uses a variation of active sampling that 
avoids full scans. 

4.3   Oracle’s Solution to SVM Scalability 

Oracle’s ODM SVM implementation strives to meet 
performance requirements that are relevant within a 
typical database environment. Emphasis is placed on the 
efficient processing of large quantities of data, low 
memory requirements, and fast response time. Since the 
individual SVM features (classification, one-class, and 
regression) share a common code base, the performance 
optimizations described here apply to all three types of 
SVM models unless explicitly stated otherwise. 

Stratified Sampling 

When dealing with large collections of data, practitioners 
usually resort to sampling and building SVM models on 
subsets of the original dataset. Since random sampling is 
rarely adequate, specialized sampling strategies need to be 
employed. To remove this burden from the user, we 
include data selection mechanisms in our SVM 
implementation. These mechanisms are feature specific 
and were designed to achieve good scalability without 
compromising accuracy. 

An important data selection requirement for 
classification tasks is that all target values be adequately 
represented. We use a stratified sampling approach where 
sampling rates are biased towards rare target values. Even 
though the relevant data statistics (record count, target 
cardinality, and target value distribution) are unknown at 
the time of the data load, the algorithm performs a single 
pass through the data and loads into memory a subset of 



the data that is as balanced as possible across target 
values. The subset of records kept in memory consists of 
at most 500,000 records with a maximum of 50,000 per 
target value. If some target values cannot fill their 
allocated quotas, the quotas of other targets can be 
increased. 

Stratified target sampling is also advantageous in 
regression tasks. In many problems the target distribution 
is non-uniform. A random sampling approach could result 
in areas of low support being poorly represented; 
however, often, such areas are of particular interest. Our 
SVM regression implementation takes an initial sample of 
up to 500,000 data records, estimates the distribution 
density over 20 equi-width intervals, and then creates a 
sub-sample that is biased towards areas with low support. 
The objective of the biased sampling is to select an equal 
number of data records from each target interval. That is, 
each interval is initially given the same quota. However, if 
there are not enough data records to meet the quota for a 
given interval, the quotas of the other intervals are 
increased. 

Decomposition and Working Set Selection 

The core optimization module in our implementation uses 
a decomposition approach – the SVM model is built 
incrementally by optimizing small working sets towards a 
global solution. The model is trained until convergence on 
the current working set; then this working set is updated 
with new records and the model adapts to the new data. 
The process continues iteratively until the convergence 
conditions on the entire training data are met. Models 
with linear kernels use a fixed size working set. For 
models with non-linear kernels, the working set size is 
chosen such that the kernels associated with each working 
set record can be cached in the dedicated kernel cache 
memory. 

The iterative nature of the optimization process makes 
the method prone to oscillations – the model can overfit 
individual working sets thus slowing down convergence 
towards the global solution. To avoid oscillations, we 
smoothly transition between working sets. A significant 
portion (up to 50%) of the working set is retained during 
working set updates. Retention preference is given to non-
bounded support vectors since their Lagrangian 
multipliers are most likely to need further adjustment. To 
achieve rapid model improvement, we select the new 
members of the working set from amongst data records 
that perform worse than average under the current model 
(i.e., have worse than average violation of the model 
convergence constraints). Traditionally, working set 
selection methods evaluate all training data records, rank 
them and select the top candidates as working set 
members. In our implementation, we choose not to incur 
the cost of sorting the candidate data records. Instead, 
during the evaluation stage we compute an average 
violation. We perform a scan of the candidate data 

records. If the violation is larger than average, the data 
record is included in the working set. If this scan does not 
produce a sufficient number of records to fill up the 
working set, a second scan is initiated where every record 
that does not meet the convergence conditions (i.e., it has 
non-zero violation) is included in the working set. Both 
scans start at a random point in the list of candidate 
records and can wrap around if needed. The scans 
terminate when the working set is filled up. This approach 
has been found to be advantageous over sorting, not only 
in terms of computational efficiency, but also in 
smoothing the solution from one working set to the next. 
Selecting the maximum violators tends to produce large 
model changes and oscillations in the solution. On the 
other hand, the random element in our working set 
selection contributes to smoother transitions and faster 
convergence. 

Active Learning 

In classification, additional convergence speedup and 
model size reduction can be achieved via active learning. 
Under active learning, the algorithm creates an initial 
model on a small sample, scores the remaining training 
data, adds to its working set the data record that is closest 
to the current decision boundary, and then locally refines 
the decision hyperplane. The incremental model updates 
continue until the model converges on the training data or 
the maximum allowed number of support vectors is 
reached. To avoid the cost of scanning the entire dataset, 
the new data records are selected from a smaller pool of 
records (up to 10,000). This pool is derived from the 
target-stratified data sample obtained during the data load 
(see above). The candidate support vectors in the pool are 
balanced with respect to their target values. In a binary 
classification task, each target class provides half of the 
pool. If not enough examples are available for either of 
the target classes, the remainder of the pool is filled up 
with records from the other class. In multi-class 
classification tasks, we employ a one-versus-all strategy 
(i.e., a binary model is built for each target class and 
records associated with other target values are treated as 
counterexamples). The active learning pool is equally 
divided between examples of the current positive target 
and counterexamples – the latter being selected via 
stratified sampling across the other target values. Even 
though active learning takes place by default, it can be 
turned off to help assess its benefits over the standard 
approach. 

Linear Model Optimizations 

The ODM SVM implementation has a separate code path 
for linear models. A number of linear kernel specific 
optimizations have been instrumented. Models with linear 
kernels can be considered a special case of SVM models, 
whose decision hyperplanes can be defined in terms of 
input attribute coefficients alone. This has an important 



computational advantage that we exploit. It circumvents 
the explicit usage of a kernel matrix during the training 
optimization phase. Thus, we allocate kernel cache 
memory only for models with non-linear kernels. The 
compact representation for linear models also allows 
efficient model storage and fast scoring with low memory 
requirements. An added benefit is the easy interpretability 
of the resulting SVM model. 

Shrinking is another enhancement that has a 
significant performance impact for ODM SVM linear 
models. If a training record meets the convergence 
conditions and its Lagrangian multiplier is at the lower 
limit (not a support vector) or upper limit (bounded 
support vector) for several successive iterations, this 
training record can be temporarily excluded from the 
training data, thus reducing the number of records that 
need to be evaluated at every iteration. Once the model 
converges on the remainder of the training data, the 
‘shrunk’ records are re-activated and learning continues 
until convergence conditions are met. 

Having a separate code path for linear models in ODM 
SVM introduces complexity in the implementation. 
However, the performance benefits more than outweigh 
the associated development costs. Linear SVM models 
have become the data mining algorithm of choice for a 
number of high-dimensional domains (e.g., text mining, 
bioinformatics, hyperspectral imagery) where 
computational efficiency is essential. 

Other Optimizations 

Other optimizations include scalable memory 
management and sparse data representation. By default, 
the ODM SVM build operation has a small memory 
footprint. Active learning requires that only a small 
number of training examples (10,000) be maintained in 
memory. The dedicated kernel cache memory for non-
linear models is set by default to 40MB and can be 
adjusted by the user depending on system resources. Two 
of the most expensive operations during model build – 
sorting of the training data and persisting the model into 
index-organized tables for faster access – have constraints 
on the physical memory available to the process. They 
spill to disk when physical memory constraints are 
exceeded. These operations are supported by database 
primitives and the amount of memory available to the 
process is controlled by the pga_aggregate_target 
database parameter. This allows graceful performance 
degradation for large datasets and reliable execution 
without system failures even with limited memory 
resources. 

Sparse data encoding is also supported (Section 4.1). 
This allows SVM to be used in domains such as text 
mining and market basket analysis. The Oracle Text 
database functionality currently leverages the SVM 
implementation described here for document 
classification. 

4.3   Scalability Experiments 

To illustrate the behavior of Oracle's ODM SVM 
implementation on large datasets, we use a publicly 
available dataset for a network intrusion detection task 
[30]. In the experiments, a binary SVM model is used for 
classifying an activity pattern as normal or as an attack. 
The number of entries in the training dataset is 494,020. 
There are 41 attributes. After exploding the categorical 
values into binary attributes, the number of dimensions 
increases to 118. Figure 1 shows the scalability of the 
algorithm with increasing number of records for models 
with linear and Gaussian kernels. The smaller datasets 
were created via random sampling of the original data. 
For comparison, results from the LIBSVM tool are also 
included. LIBSVM was used with default parameters and 
no grid search was performed. Tests were run on a 
machine with the following hardware and software 
specifications: single 3GHz i86 processor, 2GB RAM 
memory, and Red Hat enterprise Linux OS 3.0. 

 
Figure 1. SVM build scalability 

Oracle's ODM SVM implementation has better 
scalability than LIBSVM. While LIBSVM employs a 
number of optimizations, Oracle's ODM SVM has the 
advantages of active learning, sampling, and specialized 
linear model optimizations. On this particular dataset, the 
models built using either tool have equivalent 
discriminatory power. Since this is a binary model, 
performance is measured using the area under the 
Receiver Operating Characteristic (AUC). We compare 
the models built on the full training data (rightmost points 
in both subplots). Generalization performance is measured 
on an independent test set. Both linear models have AUC 
= 0.97. For models with Gausssian kernels, LIBSVM has 
AUC = 0.97 and ODM SVM has AUC = 0.98. 

It should be also noted that in Figure 1 ODM's 
Gaussian kernel SVM models have comparable or even 
better execution times than the corresponding linear 
kernel models. This result is due to active learning where 
a small non-linear model size is enforced. Linear models 
do not have this constraint and the build effectively 
converges on a larger body of data. 



A more important concern in the context of real world 
applications is that SVM models can be slow to score. 
Figure 2 illustrates the scoring performance when 
comparing SVM models built in ODM and LIBSVM on 
the full training data. All tested models have linear 
scalability. In the linear model case, the significant 
performance advantage of ODM SVM is due largely to 
the specialized linear model representation. For Gaussian 
models, the large difference is due mostly to differences 
in model sizes (132 support vectors in ODM SVM versus 
9,168 in LIBSVM). The small number of support vectors 
in ODM SVM is achieved through active learning. 
 

 
Figure 2. SVM scoring scalability 

The scoring times in Figure 2 include persisting the 
results to disk. Oracle's PREDICTION SQL operator 
allows the seamless integration of the scoring operation in 
larger queries. Predictions can be piped out directly into 
the processing stream instead of being stored in a table. 
Table 3 breaks down the linear model timings into model 
scoring and result persistence. 

Table 3. ODM SVM scoring time breakdown 

 500K 1M 2M 4M 

SVM scoring (sec) 18 37 71 150

Result persistence (sec) 2 4 11 22

5. SVM Integration 
The tight integration of Oracle's data mining functionality 
within the RDBMS framework allows database users to 
take full advantage of the available database 
infrastructure. For example, a database offers great 
flexibility in terms of data manipulation. Inputs from 
different sources can be easily combined through joins. 
Without replicating data, database views can capture 
different slices of the data. Such views can be used 
directly for model generation or scoring. Database 
security is enhanced by eliminating the necessity of data 
export outside the database. 

Using an SVM model representation that is native to 
the database greatly simplifies model distribution. Models 
are not only stored in the database but are executed in it as 
well. Oracle's scheduling infrastructure can be used to 
instrument automated model builds and deployments to 
multiple database instances. 

Having scoring exposed through an SQL operator 
interface allows embedding of the SVM prediction 
functionality within DML statements, sub-queries, and 
functional indexes. The PREDICTION operator also 
enables hierarchical and cooperative scoring – multiple 
SVM models can be applied either serially or in parallel. 
The following SQL code snippet illustrates sequential (or 
‘pipelined’) scoring: 

SELECT id, PREDICTION( 
                svm_model_1 
                USING *) 
FROM user_data  
WHERE PREDICTION_PROBABILITY( 
            svm_model_2, 
           'target_val' 
            USING *) > 0.5 
In this example svm_model_1 is used to further 

analyze all records for which svm_model_2 has assigned 
a probability greater of equal 0.5 of belonging to the 
'target_val' category. If this were an intrusion 
detection problem, svm_model_2 could be used for 
detecting anomalous behavior in the network and 
svm_model_1 would then assign the anomalous case to a 
category for further investigation. 

6. Conclusion 
The addition of SVM to Oracle’s analytic capabilities 

creates opportunities for tacking challenging problem 
domains such as text mining and bioinformatics. While 
the SVM algorithm is uniquely equipped to handle these 
types of data, creating an SVM tool with an acceptable 
level of usability and adequate performance is a non-
trivial task. This paper discusses our design decisions, 
provides relevant implementation details, and reports 
accuracy and scalability results obtained using ODM 
SVM. We also briefly outline the key advantages of a 
tight integration between SVM and the database platform. 
We plan to further enhance our methodologies to achieve 
higher ease of use, support more data types, and improve 
our automatic data preparation. 
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