
Oracle White Paper—Partitioning with Oracle Database 11g Release 2

An Oracle White Paper
September 2009

Partitioning with
Oracle Database 11g Release 2

Oracle White Paper—Partitioning with Oracle Database 11g Release 2

Partitioning – Concepts.. 3

Introduction.. 3

Benefits of Partitioning .. 3

Partitioning – Modeling for your Business.. 7

Basic Partitioning Strategies.. 7

Partitioning Extensions... 8

Partition Advisor... 9

Partitioning Strategies and Extensions at a Glance....................... 10

Information Lifecycle Management with Partitioning.......................... 11

Conclusion... 11

Oracle White Paper—Partitioning with Oracle Database 11g Release 2

Partitioning – Concepts

Introduction

Oracle Partitioning, first introduced in Oracle 8.0 in 1997, is one of the most important and
successful functionalities of the Oracle database, improving the performance, manageability, and
availability for tens of thousands of applications. Oracle Database 11g Release 2 introduces the
9th generation of partitioning, enabling customers to model even more business scenarios and
making Partitioning easier to use, enabling Partitioning “for the masses”. Oracle Database 11g
Release 2 continues to enhance Oracle Partitioning, protecting our customers' investment in
partitioning for over a decade.

Benefits of Partitioning

Partitioning can provide tremendous benefits to a wide variety of applications by improving
manageability, performance, and availability. It is not unusual for partitioning to improve the
performance of certain queries or maintenance operations by an order of magnitude. Moreover,
partitioning can greatly reduce the total cost of data ownership, using a “tiered archiving”
approach of keeping older relevant information still online on low cost storage devices. Oracle
Partitioning enables an efficient and simple, yet very powerful approach when considering
Information Lifecycle Management for large environments.

Partitioning also enables database designers and administrators to tackle some of the toughest
problems posed by cutting-edge applications. Partitioning is a key tool for building multi-terabyte
systems or systems with extremely high availability requirements.

Basics of Partitioning

Partitioning allows a table, index or index-organized table to be subdivided into smaller pieces.
Each piece of the database object is called a partition. Each partition has its own name, and may
optionally have its own storage characteristics. From the perspective of a database administrator,
a partitioned object has multiple pieces that can be managed either collectively or individually.
This gives the administrator considerable flexibility in managing partitioned object. However,
from the perspective of the application, a partitioned table is identical to a non-partitioned table;
no modifications are necessary when accessing a partitioned table using SQL DML commands.

3

Oracle White Paper—Partitioning with Oracle Database 11g Release 2

Figure 1: Application and DBA perspective of a partitioned table

Database objects - tables, indexes, and index-organized tables - are partitioned using a
'partitioning key', a set of columns that determine in which partition a given row will reside. For
example the sales table shown in figure 1 is range-partitioned on sales date, using a monthly
partitioning strategy; the table appears to any application as a single, 'normal' table. However, the
DBA can manage and store each monthly partition individually, potentially using different
storage tiers, applying table compression to the older data, or store complete ranges of older data
in read only tablespaces.

Irrespective of the chosen index partitioning strategy, an index is either coupled or uncoupled
with the underlying partitioning strategy of the underlying table. The appropriate index
partitioning strategy is chosen based on the business requirements, making partitioning well
suited to support any kind of application. Oracle Database 11g differentiates between three types
of partitioned indexes.

• Local Indexes: A local index is an index on a partitioned table that is coupled with the
underlying partitioned table, 'inheriting' the partitioning strategy from the table. Consequently,
each partition of a local index corresponds to one - and only one - partition of the underlying
table. The coupling enables optimized partition maintenance; for example, when a table
partition is dropped, Oracle simply has to drop the corresponding index partition as well. No
costly index maintenance is required. Local indexes are most common in data warehousing
environments.

• Global Partitioned Indexes: A global partitioned index is an index on a partitioned or non-
partitioned table that is partitioned using a different partitioning-key or partitioning strategy
than the table. Global-partitioned indexes can be partitioned using range or hash partitioning
and are uncoupled from the underlying table. For example, a table could be range-partitioned
by month and have twelve partitions, while an index on that table could be range-partitioned
using a different partitioning key and have a different number of partitions. Global partitioned
indexes are more common for OLTP than for data warehousing environments.

• Global Non-Partitioned Indexes: A global non-partitioned index is essentially identical to an
index on a non-partitioned table. The index structure is not partitioned and uncoupled from
the underlying table. In data warehousing environments, the most common usage of global

4

Oracle White Paper—Partitioning with Oracle Database 11g Release 2

non-partitioned indexes is to enforce primary key constraints. OLTP environments on the
other hand mostly rely on global non-partitioned indexes.

Oracle additionally provides a comprehensive set of SQL commands for managing partitioning
tables. These include commands for adding new partitions, dropping, splitting, moving, merging,
truncating, and optionally compressing partitions.

Partitioning for Manageability

Oracle Partitioning allows tables and indexes to be partitioned into smaller, more manageable
units, providing database administrators with the ability to pursue a "divide and conquer"
approach to data management.

With partitioning, maintenance operations can be focused on particular portions of tables. For
example, a database administrator could compress a single partition containing say the data for
the year 2006 of a table, rather than compressing the entire table. For maintenance operations
across an entire database object, it is possible to perform these operations on a per-partition
basis, thus dividing the maintenance process into more manageable chunks.

A typical usage of partitioning for manageability is to support a 'rolling window' load process in a
data warehouse. Suppose that a DBA loads new data into a table on daily basis. That table could
be range-partitioned so that each partition contains one day of data. The load process is simply
the addition of a new partition. Adding a single partition is much more efficient than modifying
the entire table, since the DBA does not need to modify any other partitions.

Another advantage of using partitioning is when it is time to remove data, an entire partition can
be dropped which is very efficient and fast, compared to deleting each row individually.

Partitioning for Performance

By limiting the amount of data to be examined or operated on, partitioning provides a number of
performance benefits. These features include:

• Partitioning Pruning: Partitioning pruning (a.k.a. Partition elimination) is the simplest and
also the most substantial means to improve performance using partitioning. Partition pruning
can often improve query performance by several orders of magnitude. For example, suppose
an application contains an ORDERS table containing an historical record of orders, and that
this table has been partitioned by day. A query requesting orders for a single week would only
access seven partitions of the ORDERS table. If the table had 2 years of historical data, this
query would access seven partitions instead of 730 partitions. This query could potentially
execute 100x faster simply because of partition pruning. Partition pruning works with all of
Oracle's other performance features. Oracle will utilize partition pruning in conjunction with
any indexing technique, join technique, or parallel access method.

5

Oracle White Paper—Partitioning with Oracle Database 11g Release 2

• Partition-wise Joins: Partitioning can also improve the performance of multi-table joins, by
using a technique known as partition-wise joins. Partition-wise joins can be applied when two
tables are being joined together, and at least one of these tables is partitioned on the join key.
Partition-wise joins break a large join into smaller joins of 'identical' data sets for the joined
tables. 'Identical' here is defined as covering exactly the same set of partitioning key values on
both sides of the join, thus ensuring that only a join of these 'identical' data sets will produce a
result and that other data sets do not have to be considered. Oracle is using either the fact of
already (physical) equi-partitioned tables for the join or is transparently redistributing (=
“repartitioning”) one table at runtime to create equi-partitioned data sets matching the
partitioning of the other table, completing the overall join in less time. This offers significant
performance benefits both for serial and parallel execution.

Partitioning for Availability

Partitioned database objects provide partition independence. This characteristic of partition
independence can be an important part of a high-availability strategy. For example, if one
partition of a partitioned table is unavailable, all of the other partitions of the table remain online
and available. The application can continue to execute queries and transactions against this
partitioned table, and these database operations will run successfully if they do not need to access
the unavailable partition.

The database administrator can specify that each partition be stored in a separate tablespace; this
would allow the administrator to do backup and recovery operations on each individual partition,
independent of the other partitions in the table. Therefore in the event of a disaster, the database
could be recovered with just the partitions comprising of the active data, and then the inactive
data in the other partitions could be recovered at a convenient time. Thus decreasing the system
down-time.

Moreover, partitioning can reduce scheduled downtime. The performance gains provided by
partitioning may enable database administrators to complete maintenance operations on large
database objects in relatively small batch windows.

6

Oracle White Paper—Partitioning with Oracle Database 11g Release 2

Partitioning – Modeling for your Business

Oracle Database 11g Release 2 provides the most comprehensive set of partitioning strategies,
allowing a customer to optimally align the data subdivision with the actual business requirements.
All available partitioning strategies rely on fundamental data distribution methods that can be
used for either single (one-level) or composite partitioned tables. Furthermore, Oracle provides a
variety of partitioning extensions, increasing the flexibility for the partitioning key selection,
providing automated partition creation as-needed, and advising on partitioning strategies for
non-partitioned objects.

Basic Partitioning Strategies

Oracle Partitioning offers three fundamental data distribution methods that control how the data
is actually going to placed into the various individual partitions, namely:

• Range: The data is distributed based on a range of values of the partitioning key (for a date
column as the partitioning key, the 'January-2007' partition contains rows with the partitioning-
key values between '01-JAN-2007' and '31-JAN-2007'). The data distribution is a continuum
without any holes and the lower boundary of a range is automatically defined by the upper
boundary of the preceding range.

• List: The data distribution is defined by a list of values of the partitioning key (for a region
column as the partitioning key, the 'North America' partition may contain values 'Canada',
'USA', and 'Mexico'). A special 'DEFAULT' partition can be defined to catch all values for a
partition key that are not explicitly defined by any of the lists.

• Hash: A hash algorithm is applied to the partitioning key to determine the partition for a given
row. Unlike the other two data distribution methods, hash does not provide any logical
mapping between the data and any partition.

Using the above-mentioned data distribution methods, a table can be partitioned either as single
or composite partitioned table:

• Single (one-level) Partitioning: A table is defined by specifying one of the data distribution
methodologies, using one or more columns as the partitioning key. For example consider a
table with a number column as the partitioning key and two partitions
'less_than_five_hundred' and 'less_than_thousand', the 'less_than_thousand' partition
contains rows where the following condition is true: 500 <= Partitioning key <1000.

• You can specify Range, List, and Hash partitioned tables.

• Composite Partitioning: Combinations of two data distribution methods are used to define a
composite partitioned table. First, the table is partitioned by data distribution method one and
then each partition is further subdivided into subpartitions using a second data distribution

7

Oracle White Paper—Partitioning with Oracle Database 11g Release 2

method. All sub-partitions for a given partition together represent a logical subset of the data.
For example, a range-hash composite partitioned table is first range-partitioned, and then each
individual range-partition is further sub-partitioned using the hash partitioning technique.

• Available composite partitioning techniques are range-hash, range-list, range-range, list-range,
list-list, list-hash, and – new in Oracle Database 11g Release 2 – hash-hash.

• Index-organized tables (IOTs) can be partitioned using range, hash, and list partitioning.
Composite partitioning is not supported for IOTs.

Partitioning Extensions

In addition to the basic partitioning strategies, Oracle provides partitioning extensions. The
extensions in Oracle Database 11g mainly focus on two objectives:

(a) Enhance the manageability of a partitioned table significantly.

(b) Extend the flexibility in defining a partitioning key.

The extensions are namely:

Interval Partitioning: A new partitioning strategy in Oracle Database 11g, Interval partitioning
extends the capabilities of the range method to define equi-partitioned ranges using an interval
definition. Rather than specifying individual ranges explicitly, Oracle will create any partition
automatically as-needed whenever data for a partition is inserted for the very first time. Interval
partitioning greatly improves the manageability of a partitioned table. For example, an interval
partitioned table could be defined so that Oracle creates a new partition for every month in a
calendar year; a partition is then automatically created for 'September 2007' as soon as the first
record for this month is inserted into the database.

The available techniques for an interval partitioned table are Interval, Interval-List, Interval-
Hash, and Interval-Range.

REF Partitioning: Oracle Database 11g allows to partition a table by leveraging an existing
parent-child relationship. The partitioning strategy of the parent table is inherited to its child
table without the necessity to store the parent's partitioning key columns in the child table.
Without REF Partitioning you have to duplicate all partitioning key columns from the parent
table to the child table if you want to take advantage from the same partitioning strategy; REF
Partitioning on the other hand allows you to naturally partition tables according to the logical
data model without requiring to store the partitioning key columns, thus reducing the manual
overhead for denormalization and saving space. REF Partitioning also transparently inherits all
partition maintenance operations that change the logical shape of a table from the parent table to
the child table. Furthermore, REF Partitioning automatically enables partition-wise joins for the
equi-partitions of the parent and child table, improving the performance for this operation. For
example, a parent table ORDERS is Range partitioned on the ORDER_DATE column; its child
table ORDER ITEMS does not contain the ORDER_DATE column but can be partitioned by

8

Oracle White Paper—Partitioning with Oracle Database 11g Release 2

reference to the ORDERS table. If the ORDERS table is partitioned by month, all order items
for orders in 'Jan-2009' will then be stored in a single partition in the ORDER ITEMS table,
equi-partitioned to the parent table ORDERS. If a partition 'Feb-2009' is added to the ORDERS
table Oracle will transparently add the equivalent partition to the ORDER ITEMS table.

All basic partitioning strategies are available for REF Partitioning.

Virtual column-based Partitioning: In previous versions of Oracle, a table could only be
partitioned if the partitioning key physically existed in the table. Virtual columns, a new
functionality in Oracle Database 11g, removes that restriction and allows the partitioning key to
be defined by an expression, using one or more existing columns of a table, and storing the
expression as metadata only.

Partitioning has been enhanced to allow a partitioning strategy being defined on virtual columns,
thus enabling a more comprehensive match of the business requirements. It is not uncommon to
see columns being overloaded with information; for example a 10 digit account ID can include
an account branch information as the leading three digits. With the extension of virtual column-
based Partitioning, the ACCOUNTS table containing a column ACCOUNT_ID can be extended
with a virtual (derived) column ACCOUNT_BRANCH that is derived from the first three digits
of the ACCOUNT_ID column which becomes the partitioning key for this table.

Virtual column-based Partitioning is supported with all basic partitioning strategies. Virtual
columns can also be used with Interval Partitioning as well as the partitioning key for REF
partitioned tables.

Partition Advisor

Beginning with Oracle Database 11g release 2, the SQL Access Advisor has been enhanced to
generate partitioning recommendations, in addition to the ones it already provides for indexes,
materialized views and materialized view logs. Recommendations generated by the SQL Access
Advisor – either for Partitioning only or holistically - will show the anticipated performance gains
that will result if they are implemented. The generated script can either be implemented manually
or submitted onto a queue within Oracle Enterprise Manager.

With the extension of partitioning advice, customers not only can get recommendation
specifically for partitioning but also a more comprehensive holistic recommendation of SQL
Access Advisor, improving the collective performance of SQL statements overall.

The Partition Advisor, integrated into the SQL Access Advisor, is part of Oracle's Tuning Pack,
an extra licensable option. It can be used from within Enterprise Manager or via a command line
interface.

9

Oracle White Paper—Partitioning with Oracle Database 11g Release 2

Partitioning Strategies and Extensions at a Glance

The following table gives a conceptual overview of all available basic partitioning strategies in
Oracle Database 11g Release 2:

Partitioning Strategy Data Distribution Sample Business Case

Range Partitioning Based on consecutive ranges of
values.

Orders table range partitioned by
order_date

List Partitioning Based on unordered lists of
values.

Orders table list partitioned by
country

Hash Partitioning Based on a hash algorithm. Orders table hash partitioned by
customer_id

Composite Partitioning

• Range-Range

• Range-List

• Range-Hash

• List-List

• List-Range

• List-Hash

• Hash-Hash

Based on a combination of two of
the above-mentioned basic
techniques of Range, List, Hash,
and Interval Partitioning

Orders table is range partitioned
by order_date and sub-
partitioned by hash on
customer_id

Orders table is range partitioned
by order_date and sub-
partitioned by range on
shipment_date

In addition to the available partitioning strategies, Oracle Database 11g Release 2 provides the
following partitioning extensions:

Partitioning Extension Description Sample Business Case

Interval Partitioning

• Interval

• Interval-Range

• Interval-List

• Interval-Hash

An extension to Range Partition.
Defined by an interval, providing
equi-width ranges. With the
exception of the first partition all
partitions are automatically
created on-demand when
matching data arrives.

Orders table partitioned by
order_date with a predefined
daily interval, starting with
'01-Jan-2009'

REF Partitioning Partitioning for a child table is
inherited from the parent table
through a primary key – foreign
key relationship. The partitioning
keys are not stored in actual
columns in the child table.

(Parent) Orders table range
partitioned by order_date and
inherits the partitioning technique
to (child) order lines table.
Column order_date is only
present in the parent orders table

Virtual column based
Partitioning

Defined by one of the above-
mentioned partition techniques
and the partitioning key is based
on a virtual column. Virtual
columns are not stored on disk
and only exist as metadata.

Orders table has a virtual column
that derives the sales region
based on the first three digits of
the customer account number.
The orders table is then list
partitioned by sales region.

10

Oracle White Paper—Partitioning with Oracle Database 11g Release 2

Information Lifecycle Management with Partitioning

Today's challenge of storing vast quantities of data for the lowest possible cost can be optimally
addressed using Oracle Partitioning. The independence of individual partitions is the key enabler
for addressing the online portion of a “tiered archiving” strategy. Specifically in tables containing
historical data, the importance - and access pattern – of the data heavily relies on the age of the
data; Partitioning enables individual partitions (or groups of partitions) to be stored on different
storage tiers, providing different physical attributes and price points. For example an Orders
table containing 2 years worth of data could have only the most recent quarter being stored on an
expensive high-end storage tier and keep the rest of the table (almost 90% of the data) on an
inexpensive low cost storage tier.

Conclusion

Since its first introduction in Oracle 8.0 in 1997, Oracle has enhanced the functionality of
Partitioning with every release, by either adding new partitioning techniques, enhancing the
scalability, or extending the manageability and maintenance capabilities. Oracle Database 11g
Release 2 is no different by offering enhanced composite partitioning strategies as well as
enhanced Interval and REF Partitioning.

Partitioning is for everybody. Oracle Partitioning can greatly enhance the manageability,
performance, and availability of almost any database application. Since partitioning is transparent
to the application, it can be easily implemented for any kind of application because no costly and
time-consuming application changes are required.

Partitioning with Oracle Database 11g Release 2

September 2009

Author: Hermann Baer

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2009, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and

the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective

owners.

0109

11

