

 ADF Code Corner

80. HashMap strategy for dynamically setting the

sequential property in ADF Controller train models

Abstract:

ADF Controller bounded task flows can be configured to

generate a train model at runtime. The train model is then

referenced from an af:train or af:trainButtonBar

component added to the views in the bounded task flow to

navigate within multi step processes. Using the train, each

step becomes a train stop that can be configured to be

accessible sequentially or non.sequentially (which means

random) by the user. The configuration for the type of

sequential access is defined individually on the view and

task flow call activity. Expression language can be used to

dynamically set the train stop sequential property.

This article explains a strategy that uses a HashMap as a

managed bean to allow declarative configuration at design

time and dynamic changes at runtime using Java and EL.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
30-APR-2010

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
HashMap strategy for dynamically setting the sequential
property in ADF Controller train models

 2

Introduction
View activities and task flow call activities can be configured to become train stops in a train

model that is referenced from af:train or af:trainButtonBar components in the pages.

By default, train stops are sequential, which means that stops are enabled based on their position

relative to the current stop. Only visited stops and the one immediately following the current stop

are enabled. Through configuration, individual stops can be changed to non-sequential access to

allow users to skip train stops between the current and the non-sequential stop.

Using expression language (EL), it is possible to dynamically set the sequential property of a

stop, which allows you to dynamically determine whether stops must be visited or if users are

allowed to skip them. Note that the use case of users skipping a train stop is not the same as

developers configuring the skip or ignore properties on a property. The skip and ignore property

either suppress (diable) a train stop navigation or hode the stop alltogether. Dyanamically setting

the sequential property however makes navigation optional for the user, who still may decide to

continue with the sequence of stops.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
HashMap strategy for dynamically setting the sequential
property in ADF Controller train models

 3

This ADF Code corner article explains how to use configure a HashMap as a managed bean for

declarative and dynamic configuration of the train stop sequential.property. Using the same

approach you can create configurable metadata for other properties, for example to show train

stops as required upon rendering or defining the skip property,

About trains in Oracle ADF

Trains in Oracle ADF Controller are navigation links within views of a bounded task flows that allow

users to see their current position in a multi step process and to navigate between views. Bounded task

flows can be configured to become train models by setting of a single property.

Within each bounded task flow, view activities and task flow call activities can be defined to become train

stops. The train stop behavior is configured through properties

 skip - to disable a stop so user navigation steps over it

 sequential – to define navigation to be sequential for a specific stop or not

 ignore – to hide a train stop upon task flow initialization (not later though)

 outcome – allows defining a control flow case that the train follows when the train stop is clicked.

This allows you to navigate e.g. to a method call activity first before accessing a view

Read more about trains:

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/taskflows_complex.htm#CJHFBFIE

Using a HashMap to configure the sequential property

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/taskflows_complex.htm#CJHFBFIE

ADF CODE CORNER
HashMap strategy for dynamically setting the sequential
property in ADF Controller train models

 4

When opening the task flow diagram for a bounded task flow, views that are marked as Train Stops are

connected by a dotted line. Though not shown in the image above, using a train for navigating bounded

task flows does not exclude the use of control flow cases for navigation. Control flow cases could be used

for programmatic navigation.

As shown in the image above, the Property Inspector provides you with a choice of configuration settings

that you can use to define the characteristic and behavior of a train stop.

However, instead of typing true or false into the Sequential property field, in this article, I explain how

to use a more dynamic configuration that becomes handy if you need to change the sequential behavior

based on a current condition.

Note: while the Skip and Sequential properties can be changed at task flow runtime, ignore can only be

changed upon task flow initialization, not later. So to hide a train stop at runtime, you would need to

restart the complete task flow, which for some use cases may be an option (e.g. on an airport, you provide

the information whether you check in luggage or not before actually starting the checking process. So the

luggage check-in stop will be hidden. If you then change your mind, you just re-start the check-in process.

The image below shows the changed configuration for the Sequential property. Note that the value now

is an EL string pointing to a managed bean in pageFlowScope.

The view activity Id is passed to the managed bean as an argument so the Boolean value true or false can

be determined based on this. But how can an argument be passed to a managed bean method? Well, this

is because the managed bean is an extension of HashMap.

ADF CODE CORNER
HashMap strategy for dynamically setting the sequential
property in ADF Controller train models

 5

Creating the managed bean

The most important methods of a HashMap – at least for this use case – are its get method and its put

method. The get method takes a single argument as a key to identify a stored value. The put method

allows to add a new object identified by a key argument or to replace an existing entry.

For the use case of configuring the Sequential train-stop property, we need to override the get method

to return a Boolean type. When configuring the managed bean, all views and their sequential behavior are

defined as strings. For this to work, we need a location that safely translates strings back into their

boolean representation.

import java.util.HashMap;

public class TrainStopSequenceHelper extends HashMap {

 @SuppressWarnings("compatibility:-5522658446910108463")

 private static final long serialVersionUID = 7511234320471184490L;

 public TrainStopSequenceHelper() {

 super();

 }

 //returns sequenctial setting for view activity identified by the

 //key value. Returns true if activity is not recognized (which can be

 //due to misspelling or missing configuration in the bounded task

 //flow definition) or when the stop is configured for sequential

 //access.

 @Override

 public Object get(Object key) {

 if(super.get(key) ==null){

 return Boolean.TRUE;

 }

 try {

 return Boolean.valueOf((String)super.get(key));

 } catch (Exception e) {

 //if value cannot be converted into boolean then

 //return true to define a sequential stop.

 return true;

 }

 }

}

Configuring the managed bean

The managed bean is configured in the task flow configuration '.xml' file as shown below

ADF CODE CORNER
HashMap strategy for dynamically setting the sequential
property in ADF Controller train models

 6

While this looks like an ordinary managed bean configuration in a task flow, it is not. The task flow

overview dialog does not show map entries, which are specific configurations for HashMap beans to

"inject" default values.

<managed-bean id="__15">

 <managed-bean-name id="__13">

 taskFlowSequenceHelper

 </managed-bean-name>

 <managed-bean-class id="__11">

 adf.sample.view.bean.TrainStopSequenceHelper

 </managed-bean-class>

 <managed-bean-scope id="__14">

 pageFlow

 </managed-bean-scope>

 <map-entries>

 <map-entry id="__30">

 <key id="__31">Locations</key>

 <value id="__32">true</value>

 </map-entry>

 <map-entry id="__33">

 <key id="__34">Departments</key>

 <value id="__35">false</value>

 </map-entry>

 <map-entry id="__19">

 <key id="__18">Employees</key>

 <value id="__17">false</value>

 </map-entry>

 <map-entry id="__36">

 <key id="__37">Jobs</key>

 <value id="__38">false</value>

 </map-entry>

 </map-entries>

</managed-bean>

Shown in the image below, using the Oracle JDeveloper Structure Window, you can create the map

entries for the HashMap bean. The map entries are passed to the managed bean upon bean instantiation

and define the default configuration for the Sequential property of the view activities defined as train

stops.

ADF CODE CORNER
HashMap strategy for dynamically setting the sequential
property in ADF Controller train models

 7

At runtime, you can change the Sequential settings from Java by accessing the managed bean from a

Value Expression

FacesContext fctx = FacesContext.getCurrentInstance();

ELContext elctx = fctx.getELContext();

ExpressionFactory expressionFactory =

 fctx.getApplication().getExpressionFactory();

ValueExpression ve = null;

ve = expressionFactory.createValueExpression(

 elctx,

 "#{pageFlowScope.taskFlowSequenceHelper }",

 Object.class);

//get the rendered stop's viewActivity

TrainStopSequenceHelper sequenceHelper = null;

sequenceHelper = (TrainStopSequenceHelper) ve.getValue(elctx);

sequenceHelper.put("Employees","false");

Or you use the af:setPropertyListener on a command item like af:commandButton and set

the value declaratively

<af:commandButton text="Set Jobs Sequential" id="cb1">

 <af:setPropertyListener from="#{'true'}"

 to="#{pageFlowScope.taskFlowSequenceHelper['Jobs']}"

 type="action"/>

 </af:commandButton>

ADF CODE CORNER
HashMap strategy for dynamically setting the sequential
property in ADF Controller train models

 8

Note that in both cases, using Java or af:setPropertyListener, the train component needs to be

refreshed either through navigation to another view, or PPR.

Conclusion

Using extended HashMaps as managed beans greatly simplify the dynamic configuration of train stop

behavior. You can also use task flow input parameters to set values for the keys stored in the HashMap,

allowing you to override the default configuration done during development time.

Note: This article does not provide a sample to download

RELATED DOCOMENTATION

 ADF Faces train component tag

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_train.html

 ADF Faces train button bar component

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_trainButtonBar

.html

 Creating trains – product documentation

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/taskflows_complex.htm#CJ

HFBFIE

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_train.html
http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_trainButtonBar.html
http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_trainButtonBar.html
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/taskflows_complex.htm#CJHFBFIE
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/taskflows_complex.htm#CJHFBFIE

