ADF Code Corner

84. Dynamically show or hide af:treeTable columns
dependent on the disclosed node

ORACLE’

CODE CORNER

s

twitter.com/adfcodecorner

Abstract:

The use case in this article is to reduce the number of
columns in a treeTable to only show data that belongs to
the disclosed treeTable node and its ancestor nodes. The
assumption made in the sample is that the treeTable only
discloses a single node at a time to simplify the detection
of which columns should be shown and which should be
hidden from the view. While theuse case covered is less
common, the implementation of it may be interesting for
many developers who need to dynamically work with the
tree or treeTable component.

Frank Nimphius, Oracle Corporation

twitter.com/fnimphiu

30-JUN-2011

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

Dynamically show or hide af:treeTable columns
DI G@IDIRNG@RNWIARE dcpendent on the disclosed node

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
corvection. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTIN forum
for Oracle | Developer: bttp:/ / forums.oracle.com/ forums/ fornm.jspa2forumID=83

Introduction

The image below shows the initially rendered treeTable component state, which is to only show
information of the Locations view. The full hierarchical structure, which is read from the Oracle
HR database schema, includes the Locations view, Departments view and Employees view. As
the discloses a Location node to show its dependent detail information ...

View v | & Detach = =1

Location Id | city |Postal Code
L= 1400 Southlake 26192

1700 Seattle 98199
EE}SDD Toronto M5V 217
L= 2000 Beijing 190518
= 2400 London
L= 2500 Oxford QX9 9ZB

... the treeTable columns that present the detail information are added to the view in a partial
refresh of the treeTable component.

http://forums.oracle.com/forums/forum.jspa?forumID=83

Dynamically show or hide af:treeTable columns
DI G@IDIRNG@RNWIARE dcpendent on the disclosed node

View v | i Detach = EE R
Location Id |city |Postal Code Department Id |Department Name
= 1400 Southlake 28192
%1700 Seattle 93199
i{} 10 Administration
= 30 Purchasing
= Q0 Executive
L= 100 Finance
= 110 Accounting
=3 120 Treasury
= 130 Corporate Tax
= 140 Control And Credit
= 160 Benefits
= 170 Manufacturing
= 180 Construction
= 190 Contracting
= 200 Operations
= 210 IT Support
I 220 NOC
= 230 IT Helpdesk
= 290 Government Sales
L= 250 Retail Sales
= 260 Recruiting
= 270 Payroll
[1800 Toronto M5V 2.7
[2000 Beijing 190518
= 2400 London
[= 2500 Oxford QX9 9ZB

Disclosing a detail node in the dependent Departments further expands the treeTable component

with additional columns for the Employees view.

view » | i Detach ER TR
Location Id |city |Postal Code Department Id |Department Name |Manager |Employee 1d |Last Name |mail |Phone
[= 1400 Southlake 26192
W 1700 Seattle 98199
= 10 Administration 200
v 30 Purchasing 114
% 100 114 Raphaely DRAPHEAL 515.127.4
114 115 Khoo AKHOO 515.127.4
114 116 Baida SBAIDA 515.127.4
114 117 Tobias STOBIAS 515.127.4
114 113 Himura GHIMURO 515.127.4
114 119 Colmenares KCOLMENA 515.127.4

S0 Executive
100 Finance

11n Arrraiinn

TNV

100
108

ns

This article explains how this solution works and also provides the sample as a download on ADF

Code Corner.

Note: To get more code sample for ADF bound ADF Faces tree and treeTable components, visit

ADF Code Corner at http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-

101235.html and search for "tree".

How-to implement this solution

The sample uses two managed beans

e The treeTableStateBean extends java.util.HashMap and is configured to exist in the

ADF Controller view scope so it survives client-server requests. The treeTableStateBean keeps

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

Dynamically show or hide af:treeTable columns
VDI O@IDISAGORWIANE decpendent on the disclosed node

track of the visibility of the treeTable columns for the duration that the page containing the
treeTable is shown.

¢ The browseLocDeptEmpBean accesses the treeTableStateBean from a custom disclosure

listener to change the visible state of the columns according to the needs of the disclosed tree

node.
Mninaﬁnn x E]Run Manager * \[a x E] E‘éadfc—conﬁg.xml x
|. HideShowTreeTableColumns v| 'I
7 Projects B8 Y-E- General
Description @ Managed Beans
- Activities
=] {7 Application Sources Control Flows MName * Class * Scope *
E!@ adf.sample. view Managed Beans treeTableStateBean adf.sample.view.beans, TreeTableStateBean view
& @ beans d browseLocDeptEmpBean adf.sample.view.beans. BrowselocDeptEmpBean request
----- @ BrowselLocDeptEmpBean.java Metadata Resources
.88 TreeTableStateBean.java [=l Managed Properiies
-1l pageDefs
] E DataBindings.cpx Name * Class Value
- @ METAINE
=[] web Content
=0 weB-INF
adfc-config. xaml
faces-config.xml
..... [eal trimidad nnfin wml

The managed beans are configured in the adfc-config.xml file but need to be configured in another XML
configuration file if used within a bounded task flow.

The treeTable component is changed from its original layout (which is to have a single node defined in
the nodeStamp facet) created by ADF when dragging the Locations view collection as a trecTable to a

page. af : column and af:outputText components are added as children of the af: treeTable
component to display the node attributes in their own column.

=

I Recently Opened Files @a&lﬁlﬂ.‘l - Postal Code - Property Inspector * l

= = [
. = BrowselocDepEmp.jspx - Structure ® ‘5:1 r f B \n @7 ﬁ) @
+ Common
T af:panelstretchLayout Appearance
[Eﬂ fifacet - bottom style

E—}Eﬂ fifacet - center
E}EI af:panelCollection - pcl Behavior
- f:facet - menus
[fifacet - toolbar E Advanced

- fifacet - statusbar Binding: | | w
=-[22] afitreeTable - tt1

BH Ffacet desta ClientComponent: [<default> (False) v] g

ifacet - nodeStamp

B aficolumn - City AttributeChangeListener: | | 5
Persist: | ['] g
DontPersist: | ['] .

B af:column - Department Id
B af:column - Department Name @ Visible:

B af:column - Manager
. Bl afernlimn - Emnlassa T4

Customization

As shown in the image above, each af : column references the treeTableStateBean in its [isible
property. As mentioned, the treeTableStateBean extends HashMap and because of this exposes a getzer
method and a pu# method that you can access from EL using the ['key name'} argument. In the sample,
each column passes the argument of the attribute name it represents (for example "PostalCode", which is
an attribute of the Locations view in the ADF Business Component model of the sample.

To define default settings for the initial treeTable views, which in the case of this sample shows all
attributes that belong to the Locations view, you use a Map Entries configuration on the managed bean.

Dynamically show or hide af:treeTable columns
RIDINGOIDIDNGORWIBNE dependent on the disclosed node

Managed beans that extend HashMap use map entries to define key / value pairs of type String. The
Strutcure Window in Oracle JDeveloper helps you to configure this.

E adfc-configoxml - Structure =
4
-] ADF Task Flow

E}‘ managed-bean - treeTableStateBezz

-¢%] managed-bean-name Insert before managed-bean - treeTableStateBean [l
-[£] managed-bean-class Insert inside managed-bean - treeTableStateBean Managed Bean Name
t -4 managed-bean-scope Insert after managed-bean - treeTableStateBean » |[E] Managed Bean Class
Surround With... % Manalge.d fean Scope
Refactor , Description
Display Mame
“ Cut Cirkx & Icon
Copy CHrl-C 4% List Entries
ﬁ 2 Managed Property
x Delete Delete
Go to Source @ #comment ’
Find Usages... cisaiy | €8 #processing-instruction
Go to Properties Browse...
|

The Key entry is the name of an attribute in the underlying model (Locationld, or City). The value then is
set to true for attributes that should display initially and false for those that should not show. To reduce
the work developers have with setting these defaults, all keys that are not configured are assumed to have
a visibility of false, so that only those attributes need to be configured in the Map Entries that should
have a setting of true. For this, the managed bean overrides the get method of the HashMap it extends.

*= adfc-config.xml - Structure * =
4
- ADF Task Flow

- @ managed-bean - treeTableStateBean

managed-bean-name
= Insert inside map-entries (N] Key Class
Insert after map-entries A= Value Class
= e

Surround With...

549 ma| Refactor » | #comment g A
=B 49 #processing-ir Insert Map Entry u
o] db cut Ctrl-x
E}@E Copy Cirl-C Browse...

i Key = | %

=43 ma| 3¢ Delete Delete Value: | | w
Go to Source
.
=248

Find Usages... Chrl+Al-U
@ managed-b Go to Properties

The sample Map Entries (shown in the image below) has only three attributes defined to show all
attributes of the Location view.

Dynamically show or hide af:treeTable columns
DI G@IDIRNG@RNWIARE dcpendent on the disclosed node

Eadfc—conﬁg.xml - Structure % =
)
=[5! ADF Task Flow
- @ managed-bean - treeTableStateBean
managed-bean-name
=] managed-bean-dass
4% managed-bean-scope
€% map-entries
€% map-entry

=& map-entry
E}@ key
o e PostalCode

[+ @ managed-bean - browselocDeptEmpBean

The next step is to create a RowDisclosureListener for the trecTable in its own managed bean. The
managed bean handling the disclosed listener does not need to be in view scope as there is no need for it

to keep track of any state because this is what the treeTableStateBean is for.

B Tree Table - tt1 - Property x|
o PE 2@ (88 $4)@
[=] Behavior A
InitiallyExpanded: [<default> (false) '] A
e EditingMade: [<defauit> (edital) |~
I Data Controls B8 | o Rowselection: [single '] ~
|» Recently Opened Files) [
ColumnSelection: [<default> (none) '] -
EBrowseLod}epEmp.jspx - Structure * ColumnStretching: | ['] ~
r DisableColumnReordering: [<default> (false) '] 2
B3 af:panelStretchLayout ContextMenuSelect: [<default> (true) '] =
£ fifacet - bottom ContentDelivery: [<default> (whenAvailable) '] v
- fifacet - center
= af:panelCollection - pc1 Immediate: [<default> (false) '] kel
F fifacet - menus Fetchsize: 25 |~
HH f:facet - toolbar o
Ea £facet - statusbar PartialTriggers: | | e
RefreshCondition: | |~
- fifacet - nodeStamp o RangeSize: |25 | —
- E aficolumn - City
@ B aficolumn - Postal Code RenderHint: [<dEfBU|t> (immediate) V] ~
- E aficolumn - Department I RowsByDepth: | | w
G- B aficolumn - Department N e
- E aficolumn - Manager [StEners
G- B aficolumn - Employee Id o SelectionListener: |#{bindings.aIILocationsWithDepartments.treeModeI.makeCur. " | w~
- E aficolumn - First Name FocusListener:
- H aficolumn - Last Name .
R Chi Listener:
w-H aficolumn - Mail HHEER IR
- E aficolumn - Phone o RowDisdosurelistener:
- H aficolumn - Hire Date adva i
@~ H aficolumn - Job Id
w-E aficolumn - Salary Customization
- ffacet - nathStamn ~

With only two configurations, the whole use case is implemented. The row disclosure listener notifies a
method in the browseLocDeptEmpBean about the disclosed node. The method then determines the
attributes that belong to the disclosed node level and adds an entry in the treeTableStateBean to change

Dynamically show or hide af:treeTable columns
VBING@IDAGORNIANE dependent on the disclosed node

the visible state from false to true. Upon a partial refresh of the treeTable (which is through a PPR on the
parent container) the columns re-read their visible state from the HashMap and display their content.

Note: Because the treeTable requires the partial refresh to be performed on the parent component (or the
parent's patent component) to re-render accurately, you should also be able to use the Rendered property,
which then has a smaller footprint in the downloaded page as no hidden markup would be generated.
However, for this sample we tried and tested the 17sible property only.

TreeTableStateBean Managed Bean Code

There are two managed beans used in this sample. The simple bean is to hold the treeTable display state
for the columns. It extends java.utilHashMap and overrides the get method to translate string values
into Boolean values and to set the default visible state to false.

import java.util.HashMap;

public class TreeTableStateBean extends HashMap{
private static final long serialVersionUID = 0L;

public TreeTableStateBean () {
super () ;
}
/*k*k
* The HashMap returns TRUE / FALSE for the keys passed in. The bean
* is used as a managed bean and referenced from the TreeTable column
* display property. It allows to dynamically show/hide a tree table
* columns based on the node selection.
* @param key
* @return true / false
*/
@Override
public Boolean get (Object key) {
if (super.get (key)==null) {
//set the default visible state to false for all unregistered
//attributes
return Boolean.FALSE;
}
else(
try {
String colStateString = (String) super.get (key);
Boolean colState = Boolean.parseBoolean(colStateString);
return colState;
} catch (Exception e) {
//cannot parse value String, thus return false
return Boolean.FALSE;

Dynamically show or hide af:treeTable columns
VBING@IDAGORNIANE dependent on the disclosed node

BrowseLocDeptEmpBean Managed Bean Code

This managed bean handles the disclosure state switching and contains a lot of interesting ADF coding,. It
accesses the TreeTableStateBean to read and write the treeTable column visible states.

import Jjava.util.HashMap;

import java.util.Iterator;

import Jjava.util.List;

import javax.el.ELContext;

import javax.el.ExpressionFactory;

import javax.el.ValueExpression;

import javax.faces.component.UIComponent;

import javax.faces.component.UIViewRoot;

import javax.faces.context.FacesContext;

import oracle.adf.view.rich.component.rich.data.RichTreeTable;
import oracle.adf.view.rich.context.AdfFacesContext;

import oracle.jbo.uicli.binding.JUCtrlHierBinding;
import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding;
import oracle.jbo.uicli.binding.JUCtrlHierTypeBinding;

import org.apache.myfaces.trinidad.event.RowDisclosureEvent;
import org.apache.myfaces.trinidad.model.CollectionModel;
import org.apache.myfaces.trinidad.model.RowKeySet;

public class BrowseLocDeptEmpBean {

//HashMap that holds the column names of each tree level in a string
//array. The Map key is the StructureDefName of the node, which is the
//class name and package name of the object representing the node

private HashMap nodeAttributes = null;
public BrowseLocDeptEmpBean () { }

//listen to the tree table disclosure event
public void onNodeDisclosure (RowDisclosureEvent rowDisclosureEvent) {

String nodeDefName = null;

JUCtrlHierNodeBinding disclosedNode = null;

//the typBinding is the ADF hierarchical tree binding node
//structure. We use this information to determine, which node's
//columns must be shown and which node's columns must be hidden
JUCtrlHierTypeBinding typeBinding[] = null;

//the handling of a node close event is different the disclosure of
//a node. If the event's addedSet is empty then we know a node is

Dynamically show or hide af:treeTable columns
VBING@IDAGORNIANE dependent on the disclosed node

//closed. If the addedSet has content, then a node has been discloed
boolean isCloseEvent = false;

//get access to the RichTreeTable instance. To keep this code
//generic, we use the event object as a starting point to the tree
//table component and the ADF hierarchical tree binding

RichTreeTable treeTable =
(RichTreeTable) rowDisclosureEvent.getSource () ;
CollectionModel model = (CollectionModel) treeTable.getValue ()
JUCtrlHierBinding treeBinding =
(JUCtrlHierBinding)model.getWrappedData () ;

//query a list of tree nodes and node attributes. Do this only once
//per managed bean instantiation (viewScope) as it is assumed that
//the tree structure does not change at runtime.

if (nodeAttributes == null) {
nodeAttributes = new HashMap () ;
typeBinding = treeBinding.getTypeBindings() ;
//get the attributes for each node level. Note that this also
//find node attribute that are not displayed in the tree table.
//However, the way this sample implements the show/hide function
//does not require to check for a node's attribute to be visible
//in the tree as there is no risk for a NPE
for (int i = 0; i < typeBinding.length; i++) {
String[] attributeNames = typeBinding[i].getAttrNames () ;
String nodeObjectTypeName = typeBinding[i].getStructureDefName () ;
nodeAttributes.put (nodeObjectTypeName, attributeNames) ;

}

//get the disclosed node
RowKeySet rowKeySet = rowDisclosureEvent.getAddedSet () ;
//did disclosure event open a new node ?

if (rowKeySet.iterator () .hasNext ()) {
isCloseEvent = false;

}

else(
isCloseEvent = true;

//get the previously disclosed set
rowKeySet = rowDisclosureEvent.getRemovedSet () ;

Iterator iterator = rowKeySet.iterator():;

Dynamically show or hide af:treeTable columns

VBING@IDAGORNIANE dependent on the disclosed node

if

(iterator.hasNext ()) {

List rowKey = (List)iterator.next();

disclosedNode = treeBinding.findNodeByKeyPath (rowKey) ;
//determine the node the user selected. We determine this by
//the Object that represents the node, which is the full
//package and class name of the View Object
JUCtrlHierTypeBRinding nodeType =

disclosedNode.getHierTypeBinding() ;

nodeDefName = nodeType.getStructureDefName () ;

//the logic in the following is as follows:

//1. We need to show all the columns of the children that belong
// to the disclosed node. If we disclose Locations, then we

// need to show the columns for Departments.

// 2. So what we do is that we check for a match of the disclosed
// node's StructureDef name with a StructureNodeDefName

// found in the ADF HierarchicalTree. If we find a match then

// we know that the immediate child columns must be shown and

// all the other child nodes below must be hidden

// 3. We use "matchingNodeFound" and "directChildNodeHandled" to

// determine if the disclosed node was found and if the

// immediate child was handled (displayed its columns)

// 4. The code updates the managed bean that holds teh visible

// state of the tree table columns and then refresh the parent
// of the tree table

boolean matchingNodeFound = false;

boolean directChildNodeHandled = false;

for (int i = 0; i < typeBinding.length; i++) {
if (matchingNodeFound == true
&& directChildNodeHandled == false) {
String childNodeToShowHide =
typeBinding[i] .getStructureDefName () ;
//get node column attributes from binding layer
String[] columnAttributes =

(String[]) nodeAttributes.get (childNodeToShowHide) ;
for (int colIndex = 0; colIndex < columnAttributes.length;
colIndex++) {

//set a new visible state for the column
this.getTreeTableStateObject () .
put (columnAttributes[colIndex],

isCloseEvent == true ? "false" : "true");

Dynamically show or hide af:treeTable columns
VDI O@IDISAGORWIANE decpendent on the disclosed node

}
directChildNodeHandled = true;

}

else if (matchingNodeFound == true &&

directChildNodeHandled == true) {
String childNodeToShowHide =
typeBinding[i] .getStructureDefName () ;
//get node column attributes from binding layer
String[] columnAttributes =
(String[]) nodeAttributes.get (childNodeToShowHide) ;
for (int collIndex = 0; colIndex < columnAttributes.length;
colIndex++) {
this.getTreeTableStateObject () .
put (columnAttributes[colIndex], "false");

}

}

//ensure to first search for a matching tree node definition
if (nodeDefName.equalsIgnoreCase
(typeBinding[i] .getStructureDefName ())) {
//ensure close and disclose is applied to the child items
//of the disclosed node
matchingNodeFound = true;

}

//make sure only the selected row key set is disclosed and
//the rest is closed. This use case will become quite
//complex if we allow multiple disclosed nodes. So for this
//level, we have a parent node to find

if (isCloseEvent == false &&
disclosedNode.getParent () != null &&
!disclosedNode.getParent () .getKeyPath () .isEmpty ()) {
rowKeySet.add (disclosedNode.getParent () .getKeyPath());
}

if (isCloseEvent == false) {
treeTable.setDisclosedRowKeys (rowKeySet) ;

}
partiallyRefreshUIComponent ("pcl") ;

/*

RS R I S b I S b I S b I S I S SE R S S I S I S I S IR I S b I Sb b I Sb b S S S S 2 S b S db e Sb b S b I S 4

* PRIVATE METHODS

Dynamically show or hide af:treeTable columns
VBING@IDAGORNIANE dependent on the disclosed node

* ***/

private TreeTableStateBean getTreeTableStateObject () {
TreeTableStateBean stateBean = null;
FacesContext fctx = FacesContext.getCurrentInstance();
ELContext elctx = fctx.getELContext (),
ExpressionFactory elFactory =
fctx.getApplication () .getExpressionFactory () ;
ValueExpression ve = elFactory.createValueExpression (
elctx,
"#{viewScope.treeTableStateBean}",
Object.class);
stateBean = (TreeTableStateBean) ve.getValue(elctx);
return stateBean;

//refreshes component by passed on component id. Be aware of
//naming containers! Components in a naming container must have
//a prefix "<namingContainerId>:"
private void partiallyRefreshUIComponent (String uid) {
FacesContext fctx = FacesContext.getCurrentInstance();
UIViewRoot viewRoot = fctx.getViewRoot ()
UIComponent component = viewRoot.findComponent (uid) ;
partiallyRefreshUIComponent (component) ;

private void partiallyRefreshUIComponent (UIComponent component)
{
AdfFacesContext adfFacesContext =
AdfFacesContext.getCurrentInstance () ;
if (component != null) {
adfFacesContext.addPartialTarget (component) ;

}

Conclusion & Sample Download

The sample application for this article can be downloaded as sample #84 from the ADF Code Corner
website

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

You need to configure it to access the HR schema in a local Oracle XE, standard or enterprise database
installation. Run the JSPX to start testing.

Note that the LocationsView uses a Viewcriteria that only displays Locations having Departments. It is
easier to demonstrate a solution if there is data available for a hierarchy than without.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

Dynamically show or hide af:treeTable columns
DI G@IDIRNG@RNWIARE dcpendent on the disclosed node

Note: The use case implemented in the sample comes with a "little penalty", which is the partial refresh

request required to show / hide columns that are dependent on the disclosed node state.

RELATED DOCOMENTATION

