

 ADF Mobile Code Corner

m03. How-to dynamically show-hide mobile UI

components

Abstract:

 A requirement in software development is to conditionally

enable/disable or show/hide UI components. Usually, to

accomplish this, you dynamically look-up a UI component

to change its visibility state. In ADF Mobile v 1.0 however

there is no such component look up and the requirement

thus needs to be implemented differently.

In this article I explain how to dynamically change the

component visibility and rendering state from Java.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
04-MAR-2013

ADF MOBILE CODE CORNER
How-to dynamically show-hide mobile UI
components

 2

Introduction
In ADF Mobile there are two visible states for user interface components, visible and rendered. If

you set a component's visible state to false, then the component still is rendered but hidden on a

page If you set the rendered property to false then a component is not added to a page or view at

all. Both however have a similar effect in that users can either see or don't see a UI component.

Components that are disabled always render on the screen but cannot be used for data input or

invoking an action.

In this article I show you how you can dynamically set a component's visible and disabled state

from Java. ADF Mobile v 1.0 does not provide a lookup facility to obtain a component handle to

directly manipulate the visible and disabled state so that we need to be a bit creative.

To unveil the solution upfront: The change in the UI (at least for the hide/unhide) functionality is

implemented using CSS on the inlineStyle property. The secret sauce however is the use of the

PropertyChangeSupport support added to the class that exposes the method to switch the UI

visibility state.

The screen shots for this sample, as well as the source code, are taken from a later ADF Code

Corner mobile sample How-to send Emails with Attachments". To download the sample code,

refer to this sample when it is out.

Use Case

The images below show a train-style menu for users to navigate between different areas in a long form to

compose and send a mail with attachment. Instead of navigating between different views in a task flow,

this sample uses show/hide switches to display the information to edit.

Oracle ADF Mobile Code Corner is a blog-style series of how-to documents targeting at Oracle
ADF Mobile that provide solutions to real world coding problems. ADF Mobile Code Corner
is an extended offering to ADF Code Corner

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF MOBILE CODE CORNER
How-to dynamically show-hide mobile UI
components

 3

Pressing the Addressing command button e.g. hides all input fields that are not related to defining the mail

addressing (to, cc and bcc)

Pressing the command button to compose the mail title and message body simply disables all other UI

components. Note that if there is a need to switch back to the addressing section, then this can be done

without losing data.

ADF MOBILE CODE CORNER
How-to dynamically show-hide mobile UI
components

 4

Another menu option navigates to the image area for users to take a picture with the on-device camera.

Similar to the solution explained in this article you can use the same approach to render/not render or

enable/disable component. To simplify the task of switching content areas, the related input text fields

can be grouped in panelFormLayout or panelGroupLayout components.

Implementation

At runtime, ADF mobile user interfaces developed with AMX (ADF Mobile XML) components render in

HTML and JavaScript, which means that what you see on your mobile display in fact is a web view. So if

the task is to show and hide components (without removing them from the generated HTML) then CSS

will do: display:none;

Note that if you want to ensure your mobile displays render fast, you should make sure that a minimum

of UI components are rendered in a view. Here, using CSS would be sub-optimal because the component

HTML is still rendered – just hidden. In cases where you need to switch between very long forms, using

bounded task flow navigation or changing the rendered property state is more efficient. For small forms, as

indicate in this sample, using CSS provides reasonably good performance – so let's continue with a look at

the amx markup of the UI.

<amx:commandButton id="cb5" text="Picture"

 action="#{viewScope.ComposeMailViewBean.showCaptureImage}" >

 <amx:commandButton id="cb4" text="Message"

 action="#{viewScope.ComposeMailViewBean.showMailBody}"/>

…

The command buttons in the header area of the view invoke a managed bean methods to indicate the area

that should be made visible.

ADF MOBILE CODE CORNER
How-to dynamically show-hide mobile UI
components

 5

The show/hide areas are defined by panelFormLayout tags as shown below.

<amx:panelFormLayout id="pfl1"

 inlineStyle="#{viewScope.ComposeMailViewBean.showAddressingHeader}">

 <amx:inputText value=" …"/>

 <amx:inputText value=" …"/>

 <amx:inputText value=" …"/>

</amx:panelFormLayout>

As shown, the inlineStyle property of the panelFormLayout component references the same managed

bean that is referenced by the command buttons. This way, in response to a button press action, the UI

components in a panel form are shown or hidden. All that is missing now is the information of how to

tell the UI components that they need to refresh. This information is part of the managed bean and uses

the PropertyChangeSupport for the setter/getter pair referenced in the inlineStyle property.

About PropertyChangeSupport

JavaBeans properties become bounded properties when they communicate value changes to interested

listeners. The PropertyChangeSupport class implements this change notification in a thread safe

manner. The event receiving part implements the PropertyChangeListener interface, which also is

implemented by ADF Mobile.

To add PropertyChangeSupport to a bean in Oracle JDeveloper, right mouse click into the bean's

source code and choose Generate Accessors from the menus as shown in the image above.

Select the properties for which you want to generate setter/getter methods and check the Notify listeners

when property changes check box (shown in the image below) for JDeveloper to generate all the requires

property change notification code. This adds a change notification line onto each setter methods in which

listeners are informed about the new and the old value of a property. In addition, methods are added for

the mobile framework to register a change listener.

ADF MOBILE CODE CORNER
How-to dynamically show-hide mobile UI
components

 6

The bean code below contains generated property change support to notify the ADF Mobile framework

about changes to the different mail areas for the components to refresh:

import oracle.adfmf.java.beans.PropertyChangeListener;

import oracle.adfmf.java.beans.PropertyChangeSupport;

…

public class ComposeMailViewBean {

 //default settings for the individual show/hide areas

 private String showPhotoButton = "display:none;";

 private String showAddressingHeader = "";

 private String showMailBodyHeader = "display:none;";

 private String showCaptureHeader = "display:none;";

 //The secret sauce that makes it possible to dynamically show/hide

 //UI components in ADF mobile

 private transient PropertyChangeSupport propertyChangeSupport =

 new PropertyChangeSupport(this);

 public ComposeMailViewBean() {

 super();

 }

 /**

 * Method to display all fields that are required for editing the

 * mail to, cc and bcc options. Disables all the other edit options

 * @return null. The method is called from a command action and

 * thus needs to return a String

 */

ADF MOBILE CODE CORNER
How-to dynamically show-hide mobile UI
components

 7

 public String showAddressing() {

 setShowPhotoButton("display:none;");

 setShowAddressingHeader("");

 setShowMailBodyHeader("display:none;");

 setShowCaptureHeader("display:none;");

 return null;

 }

 /**

 * Method to display all fields that are required for editing the

 * mail title and message options. Disables all the other edit

 * options

 * @return null. The method is called from a command action and thus

 * needs to return a String

 */

 public String showMailBody() {

 setShowPhotoButton("display:none;");

 setShowAddressingHeader("display:none;");

 //display the mail body and header section

 setShowMailBodyHeader("");

 setShowCaptureHeader("display:none;");

 return null;

 }

 /**

 * Method to display all fields and button that are required for

 * capturing an image using the camera. Disables all the other edit

 * options

 * @return null. The method is called from a command action and

 * thus needs to return a String

 */

 public String showCaptureImage() {

 //show button to capture photo

 setShowPhotoButton("");

 setShowAddressingHeader("display:none;");

 setShowMailBodyHeader("display:none;");

 //show photo width and height settings

 setShowCaptureHeader("");

 return null;

 }

 …

 public void setShowAddressingHeader(String showAddressingHeader) {

 String oldShowAddressingHeader = this.showAddressingHeader;

 this.showAddressingHeader = showAddressingHeader;

 propertyChangeSupport.firePropertyChange("showAddressingHeader",

ADF MOBILE CODE CORNER
How-to dynamically show-hide mobile UI
components

 8

 oldShowAddressingHeader,

 showAddressingHeader);

 }

 /**

 * Method that returns CSS to display the addressing components.

 * This method is referenced from a panelFormLayout component's

 * inlineStyle property

 * @return

 */

 public String getShowAddressingHeader() {

 return showAddressingHeader;

 }

 …

 public void addPropertyChangeListener(PropertyChangeListener l) {

 propertyChangeSupport.addPropertyChangeListener(l);

 }

 public void removePropertyChangeListener(PropertyChangeListener l) {

 propertyChangeSupport.removePropertyChangeListener(l);

 }

 public void setPropertyChangeSupport(PropertyChangeSupport

 propertyChangeSupport) {

 PropertyChangeSupport oldPropertyChangeSupport =

 this.propertyChangeSupport;

 this.propertyChangeSupport = propertyChangeSupport;

 propertyChangeSupport.firePropertyChange("propertyChangeSupport",

 oldPropertyChangeSupport,

 propertyChangeSupport);

 }

 public PropertyChangeSupport getPropertyChangeSupport() {

 return propertyChangeSupport;

 }

}

Conclusion

In this article I explain how UI components in ADF Mobile can be partially refreshed using a JavaBean

property and the PropertyChangeSupport class to programmatically and thus dynamically set the

inlineStyle property, dispabled or rendered property. The complete source code and sample used in this

article become available in a later article "How-to send Emails with Attachments".

ADF MOBILE CODE CORNER
How-to dynamically show-hide mobile UI
components

 9

RELATED DOCOMENTATION

