
1

JavaMailTM API
Design Specification
Version 1.5

Oracle America, Inc.

500 Oracle Parkway

Redwood City, California 94065, U.S.A.

 Send feedback to javamail_ww@oracle.com

March 2013
Rev A

March 2013

Specification: JSR-919 JavaMail(TM) Specification ("Specification")

Version: 1.5

Status: Final Release

Specification Lead: Oracle America, Inc. ("Specification Lead")

Release: 31 May 2013

Copyright 2013 Oracle America, Inc.

All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Specification Lead hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the
right to sublicense), under Specification Lead’s applicable intellectual property rights to view, download, use and reproduce the Specification only for the
purpose of internal evaluation. This includes (i) developing applications intended to run on an implementation of the Specification, provided that such
applications do not themselves implement any portion(s) of the Specification, and (ii) discussing the Specification with any third party; and (iii) excerpting
brief portions of the Specification in oral or written communications which discuss the Specification provided that such excerpts do not in the aggregate
constitute a significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Specification Lead also grants you a perpetual, non-exclusive, non-transferable, worldwide,
fully paid-up, royalty free, limited license (without the right to sublicense) under any applicable copyrights or, subject to the provisions of subsection 4 below,
patent rights it may have covering the Specification to create and/or distribute an Independent Implementation of the Specification that: (a) fully implements
the Specification including all its required interfaces and functionality; (b) does not modify, subset, superset or otherwise extend the Licensor Name Space, or
include any public or protected packages, classes, Java interfaces, fields or methods within the Licensor Name Space other than those required/authorized by
the Specification or Specifications being implemented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements of the applicable
TCK Users Guide) for such Specification ("Compliant Implementation"). In addition, the foregoing license is expressly conditioned on your not acting outside
its scope. No license is granted hereunder for any other purpose (including, for example, modifying the Specification, other than to the extent of your fair use
rights, or distributing the Specification to third parties). Also, no right, title, or interest in or to any trademarks, service marks, or trade names of Specification
Lead or Specification Lead’s licensors is granted hereunder. Java, and Java-related logos, marks and names are trademarks or registered trademarks of Oracle
America, Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or any other particular "pass through" requirements in any
license You grant concerning the use of your Independent Implementation or products derived from it. However, except with respect to Independent
Implementations (and products derived from them) that satisfy limitations (a)-(c) from the previous paragraph, You may neither: (a) grant or otherwise pass
through to your licensees any licenses under Specification Lead’s applicable intellectual property rights; nor (b) authorize your licensees to make any claims
concerning their implementation’s compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that would be infringed by all technically feasible
implementations of the Specification, such license is conditioned upon your offering on fair, reasonable and non-discriminatory terms, to any party seeking it
from You, a perpetual, non-exclusive, non-transferable, worldwide license under Your patent rights which are or would be infringed by all technically feasible
implementations of the Specification to develop, distribute and use a Compliant Implementation.

b With respect to any patent claims owned by Specification Lead and covered by the license granted under subparagraph 2, whether or not their infringement
can be avoided in a technically feasible manner when implementing the Specification, such license shall terminate with respect to such claims if You initiate a
claim against Specification Lead that it has, in the course of performing its responsibilities as the Specification Lead, induced any other entity to infringe Your
patent rights.

c Also with respect to any patent claims owned by Specification Lead and covered by the license granted under subparagraph 2 above, where the
infringement of such claims can be avoided in a technically feasible manner when implementing the Specification such license, with respect to such claims,
shall terminate if You initiate a claim against Specification Lead that its making, having made, using, offering to sell, selling or importing a Compliant
Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation" shall mean an implementation of the Specification that neither derives from
any of Specification Lead’s source code or binary code materials nor, except with an appropriate and separate license from Specification Lead, includes any of
Specification Lead’s source code or binary code materials; "Licensor Name Space" shall mean the public class or interface declarations whose names begin
with "java", "javax", "com.<Specification Lead>" or their equivalents in any subsequent naming convention adopted by Oracle through the Java Community
Process, or any recognized successors or replacements thereof; and "Technology Compatibility Kit" or "TCK" shall mean the test suite and accompanying TCK

March 2013

User’s Guide provided by Specification Lead which corresponds to the Specification and that was available either (i) from Specification Lead’s 120 days
before the first release of Your Independent Implementation that allows its use for commercial purposes, or (ii) more recently than 120 days from such release
but against which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Specification Lead if you breach the Agreement or act outside the scope of the licenses
granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SPECIFICATION LEAD MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT
(INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION), OR THAT THE CONTENTS OF THE
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does not represent any commitment to release or implement any portion of the
Specification in any product. In addition, the Specification could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SPECIFICATION LEAD OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR
PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED IN ANY WAY TO
YOUR HAVING, IMPELEMENTING OR OTHERWISE USING USING THE SPECIFICATION, EVEN IF SPECIFICATION LEAD AND/OR ITS LICENSORS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Specification Lead and its licensors from any claims arising or resulting from: (i) your use of the Specification;
(ii) the use or distribution of your Java application, applet and/or implementation; and/or (iii) any claims that later versions or releases of any Specification
furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or subcontractor (at
any tier), then the Government’s rights in the Software and accompanying documentation shall be only as set forth in this license; this is in accordance with
48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Specification Lead with any comments or suggestions concerning the Specification ("Feedback"), you hereby: (i) agree that such Feedback is
provided on a non-proprietary and non-confidential basis, and (ii) grant Specification Lead a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable
license, with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N. Convention for the International Sale of
Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other countries. Licensee agrees to comply strictly
with all such laws and regulations and acknowledges that it has the responsibility to obtain such licenses to export, re-export or import as may be required
after delivery to Licensee.

This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all prior or contemporaneous oral or written communications,
proposals, conditions, representations and warranties and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other
communication between the parties relating to its subject matter during the term of this Agreement. No modification to this Agreement will be binding, unless
in writing and signed by an authorized representative of each party.

Rev. April, 2006

March 2013

 Contents iii

JavaMail™ API Design Specification March 2013

Contents

Chapter 1:
Introduction 1

Target Audience 1
Acknowledgments 1

Chapter 2:
Goals and Design Principles 3

Chapter 3:
Architectural Overview 5

JavaMail Layered Architecture 5
JavaMail Class Hierarchy 7
The JavaMail Framework 8
Major JavaMail API Components 10

The Message Class 10
Message Storage and Retrieval 10
Message Composition and Transport 11
The Session Class 11

The JavaMail Event Model 11
Using the JavaMail API 12

Chapter 4:
The Message Class 13

The Part Interface 16
Message Attributes 16
The ContentType Attribute 17

The Address Class 18
The BodyPart Class 18
The Multipart Class 19
The Flags Class 22
Message Creation And Transmission 23

Chapter 5:
The Mail Session 25

iv Contents

March 2013 JavaMail™ API Design Specification

The Provider Registry 26
Resource Files 26
Provider 28
Protocol Selection and Defaults 28
Example Scenarios 29

Managing Security 30
Store and Folder URLs 31

Chapter 6:
Message Storage And Retrieval 33

The Store Class 33
Store Events 34

The Folder Class 34
The FetchProfile Method 35
Folder Events 36
The Expunge Process 37

The Search Process 39

Chapter 7:
The JavaBeans Activation Framework 41

Accessing the Content 41
Example: Message Output 42

Operating on the Content 43
Example: Viewing a Message 43
Example: Showing Attachments 43

Adding Support for Content Types 44

Chapter 8:
Message Composition 45

Building a Message Object 45
Message Creation 45
Setting Message Attributes 46
Setting Message Content 47
 Building a MIME Multipart Message 48

Chapter 9:
Transport Protocols and Mechanisms 51

Obtaining the Transport Object 51
Transport Methods 51

Transport Events 52
ConnectionEvent 52

 Contents v

JavaMail™ API Design Specification March 2013

TransportEvent 53
Using The Transport Class 54

Chapter 10:
Internet Mail 55

The MimeMessage Class 56
The MimeBodyPart Class 57
The MimeMultipart Class 58
The MimeUtility Class 58

Content Encoding and Decoding 59
Header Encoding and Decoding 59

The ContentType Class 60

Appendix A:
Environment Properties 61

Appendix B:
Examples Using the JavaMail API 63

Example: Showing a Message 63
Example: Listing Folders 71
Example: Search a Folder for a Message 74
Example: Monitoring a Mailbox 79
Example: Sending a Message 80

Appendix C:
Message Security 83

Overview 83
Displaying an Encrypted/Signed Message 83
MultiPartEncrypted/Signed Classes 83
Reading the Contents 84
Verifying Signatures 84
Creating a Message 85

Appendix D:
Part and Multipart Class Diagram 87

Appendix E:
MimeMessage Object Hierarchy 89

Appendix F:
Features Added in JavaMail 1.1 91

The MessageContext Class and MessageAware Interface 91

vi Contents

March 2013 JavaMail™ API Design Specification

The getMessageID method 91
Additions to the InternetAddress Class 92
Additions to the MimeUtility Class 92
New SearchTerms 92

Additions to the Folder Class 93
New Service Class 93

Appendix G:
Features Added in JavaMail 1.2 95

Additions to the MimeMessage Class 95
Additions to the MimeMultipart Class 96
The getRawInputStream method 96
Additions to the InternetAddress Class 96
The MailDateFormat Class 97
Additions to Exceptions and Events 97

Additions to the Session Class 98
Additions to the MimeUtility Class 98
Additions for serializable javax.mail.search terms 98
Additions to the Store Class 99
New ContentDisposition Class 99
New performance improvements 100
Additions to the ParameterList class 100

Appendix H:
Features Added in JavaMail 1.3 101

Add setSender and getSender methods to MimeMessage (4405115) 101
Add setContentID method to MimeBodyPart (4377720) 102
Add mail.mime.charset property (4377731) 102
Add getDeletedMesageCount method to Folder (4388730) 102
Support parsing illegal Internet addresses (4650940) 103
Add mail.mime.address.strict property (4650940) 104
Add mail.mime.decodetext.strict property (4201203) 105
Add mail.mime.encodeeol.strict property (4650949) 105
Add isGroup and getGroup methods to InternetAddress (4650952) 105
Support per-session debug output stream (4517686) 106

Appendix I:
Features Added in JavaMail 1.4 107

Add MimePart.setText(text, charset, subtype) method (6300765) 107
Add mail.mime.encodefilename and decodefilename properties (6300768) 108

 Contents vii

JavaMail™ API Design Specification March 2013

Add Service.connect(user, password) (6300771) 108
Add mail.mime.multipart.ignoremissingendboundary System property
(4971381) 109
Add MimeMultipart.isComplete() method (6300811) 110
Add mail.mime.multipart.ignoremissingboundaryparameter property
(6300814) 110
Add MimeMultipart getPreamble and setPreamble methods (6300828) 111
Add MimeMessage.updateMessageID() protected method (6300831) 111
Add MimeMessage.createMimeMessage() protected method (6300833) 112
Make the part field of MimePartDataSource protected (6300834) 112
Folder.getSeparator should not require the folder to exist (6301381) 113
Add PreencodedMimeBodyPart class (6301386) 113
Add MimeBodyPart attachFile and saveFile methods (6301390) 114
Add MimeUtility fold and unfold methods (6302118) 115
Allow more control over headers in InternetHeaders object (6302832) 116
Allow applications to dynamically register new protocol providers (6302835) 116
Allow applications to dynamically register address type mappings (4377727) 117
ParameterList class should support non US-ASCII parameters (4107342) 117
Standard interface for Stores that support quotas (6304051) 118
Add ByteArrayDataSource class (4623517) 120
Add SharedByteArrayInputStream class (6304189) 122
Add SharedFileInputStream class (6304193) 123

Appendix J:
Features Added in JavaMail 1.5 129

Add FetchProfile.Item.SIZE (5682) 129
Fix protected fields in final classes in javax.mail.search (5683) 129
Add MimeMultipart(String subtype, BodyPart... bps) constructor (5684) 130
Exceptions should support exception chaining (5685) 130
ParameterList needs to support use by IMAP (5686) 133
ContentType and ContentDisposition toString should never return null (5687) 133
Add Transport.send(msg, username, password) method (5689) 134
8. Add MimeMessage.setFrom(String) method (5690) 135
Add Message.getSesssion() method (5691) 135
MimeBodyPart.attachFile should set the disposition to ATTACHMENT (5692) 136
Add MimeMessage.reply(replyToAll, setAnswered) method (5693) 137
Add additional “next” methods to HeaderTokenizer (5694) 137
Add @MailSessionDefinition and @MailSessionDefinitions for Java EE 7
(5743) 138
Make cachedContent field protected in MimeMessage and MimeBodyPart (5769) 140

viii Contents

March 2013 JavaMail™ API Design Specification

Make MimeMultipart fields protected to allow subclassing (5770) 141
Need simple way to override MIME type and encoding of attachment (5818) 143
Enable RFC 2231 support by default (5819) 145

1

JavaMail™ API Design Specification March 2013

Chapter 1:
Introduction

In the years since its first release, the JavaTM programming language has matured to
become a platform. The Java platform has added functionality, including distributed
computing with RMI and CORBA, and a component architecture (JavaBeansTM). Java
applications have also matured, and many need an addition to the Java platform: a
mail and messaging framework. The JavaMailTM API described in this specification
satisfies that need.

The JavaMail API provides a set of abstract classes defining objects that comprise a
mail system. The API defines classes like Message, Store and Transport. The API can
be extended and can be subclassed to provide new protocols and to add functionality
when necessary.

In addition, the API provides concrete subclasses of the abstract classes. These
subclasses, including MimeMessage and MimeBodyPart, implement widely used
Internet mail protocols and conform to specifications RFC822 and RFC2045. They are
ready to be used in application development.

Target Audience
The JavaMail API is designed to serve several audiences:

■ Client, server, or middleware developers interested in building mail and
messaging applications using the Java programming language.

■ Application developers who need to “mail-enable” their applications.

■ Service Providers who need to implement specific access and transfer protocols.
For example; a telecommunications company can use the JavaMail API to
implement a PAGER Transport protocol that sends mail messages to
alphanumeric pagers.

Acknowledgments
The authors of this specification are John Mani, Bill Shannon, Max Spivak, Kapono
Carter and Chris Cotton.

We would like to acknowledge the following people for their comments and feedback
on the initial drafts of this document:

2 Chapter 1: Introduction
Acknowledgments

March 2013 JavaMail™ API Design Specification

■ Terry Cline, John Russo, Bill Yeager and Monica Gaines: Sun Microsystems.

■ Arn Perkins and John Ragan: Novell, Inc.

■ Nick Shelness: Lotus Development Corporation.

■ Juerg von Kaenel: IBM Corporation.

■ Prasad Yendluri, Jamie Zawinski, Terry Weissman and Gena Cunanan: Netscape
Communications Corporation.

3

JavaMail™ API Design Specification March 2013

Chapter 2:
Goals and Design Principles

The JavaMail API is designed to make adding electronic mail capability to simple
applications easy, while also supporting the creation of sophisticated user interfaces.
It includes appropriate convenience classes which encapsulate common mail
functions and protocols. It fits with other packages for the Java platform in order to
facilitate its use with other Java APIs, and it uses familiar programming models.

The JavaMail API is therefore designed to satisfy the following development and
runtime requirements:

■ Simple, straightforward class design is easy for a developer to learn and
implement.

■ Use of familiar concepts and programming models support code development
that interfaces well with other Java APIs.

■ Uses familiar exception-handling and JDK 1.1 event-handling programming
models.

■ Uses features from the JavaBeans Activation Framework (JAF) to handle
access to data based on data-type and to facilitate the addition of data types
and commands on those data types. The JavaMail API provides convenience
functions to simplify these coding tasks.

■ Lightweight classes and interfaces make it easy to add basic mail-handling tasks
to any application.

■ Supports the development of robust mail-enabled applications, that can handle a
variety of complex mail message formats, data types, and access and transport
protocols.

The JavaMail API draws heavily from IMAP, MAPI, CMC, c-client and other
messaging system APIs: many of the concepts present in these other systems are also
present in the JavaMail API. It is simpler to use because it uses features of the Java
programming language not available to these other APIs, and because it uses the Java
programming language’s object model to shelter applications from implementation
complexity.

The JavaMail API design is driven by the needs of the applications it supports—but it
is also important to consider the needs of API implementors. It is critically important
to enable the implementation of messaging systems written using the Java
programming language that interoperate with existing messaging systems—especially

4 Chapter 2: Goals and Design Principles

March 2013 JavaMail™ API Design Specification

Internet mail. It is also important to anticipate the development of new messaging
systems. The JavaMail API conforms to current standards while not being so
constrained by current standards that it stifles future innovation.

The JavaMail API supports many different messaging system implementations—
different message stores, different message formats, and different message transports.
The JavaMail API provides a set of base classes and interfaces that define the API for
client applications. Many simple applications will only need to interact with the
messaging system through these base classes and interfaces.

JavaMail subclasses can expose additional messaging system features. For instance,
the MimeMessage subclass exposes and implements common characteristics of an
Internet mail message, as defined by RFC822 and MIME standards. Developers can
subclass JavaMail classes to provide the implementations of particular messaging
systems, such as IMAP4, POP3, and SMTP.

The base JavaMail classes include many convenience APIs that simplify use of the
API, but don’t add any functionality. The implementation subclasses are not required
to implement those convenience methods. The implementation subclasses must
implement only the core classes and methods that provide functionality required for
the implementation.

Alternately, a messaging system can choose to implement all of the JavaMail API
directly, allowing it to take advantage of performance optimizations, perhaps through
use of batched protocol requests. The IMAP4 protocol implementation takes
advantage of this approach.

The JavaMail API uses the Java programming language to good effect to strike a
balance between simplicity and sophistication. Simple tasks are easy, and
sophisticated functionality is possible.

5

JavaMail™ API Design Specification March 2013

Chapter 3:
Architectural Overview

This section describes the JavaMail architecture, defines major classes and interfaces
comprising that architecture, and lists major functions that the architecture
implements.

JavaMail provides elements that are used to construct an interface to a messaging
system, including system components and interfaces. While this specification does not
define any specific implementation, JavaMail does include several classes that
implement RFC822 and MIME Internet messaging standards. These classes are
delivered as part of the JavaMail class package.

JavaMail Layered Architecture
The JavaMail architectural components are layered as shown below:

■ The Abstract Layer declares classes, interfaces and abstract methods intended to
support mail handling functions that all mail systems support. API elements
comprising the Abstract Layer are intended to be subclassed and extended as
necessary in order to support standard data types, and to interface with message
access and message transport protocols as necessary.

■ The internet implementation layer implements part of the abstract layer using
internet standards - RFC822 and MIME.

■ JavaMail uses the JavaBeans Activation Framework (JAF) in order to encapsulate
message data, and to handle commands intended to interact with that data.
Interaction with message data should take place via JAF-aware JavaBeans, which
are not provided by the JavaMail API.

6 Chapter 3: Architectural Overview
JavaMail Layered Architecture

March 2013 JavaMail™ API Design Specification

JavaMail clients use the JavaMail API and Service Providers implement the JavaMail
API. The layered design architecture allows clients to use the same JavaMail API calls
to send, receive and store a variety of messages using different data-types from
different message stores and using different message transport protocols.

FIGURE 3-1

Mail-enabled Application

Java Bean - used to interact and
display message content

JavaMail
Abstract Class Layer

IMAP / POP3 / NNTP implementation Layer

Internet Mail
Implementation Class Layer

JavaMail
API

Chapter 3: Architectural Overview 7
JavaMail Class Hierarchy

JavaMail™ API Design Specification March 2013

JavaMail Class Hierarchy
The figure below shows major classes and interfaces comprising the JavaMail API. See
“Major JavaMail API Components” on page 10 for brief descriptions of all
components shown on this diagram.

FIGURE 3-2

Java Implementation Layer

MimeMessageMessage

Multipart
Container
Class

Bodypart

MimeMultipart
Container
Class

MimeBodyPart

Part

MimePart

Legend

Class
Container Class

Interface Implements
Extends

8 Chapter 3: Architectural Overview
The JavaMail Framework

March 2013 JavaMail™ API Design Specification

The JavaMail Framework
The JavaMail API is intended to perform the following functions, which comprise the
standard mail handling process for a typical client application:

■ Create a mail message consisting of a collection of header attributes and a block
of data of some known data type as specified in the Content-Type header field.
JavaMail uses the Part interface and the Message class to define a mail message.
It uses the JAF-defined DataHandler object to contain data placed in the
message.

■ Create a Session object, which authenticates the user, and controls access to the
message store and transport.

■ Send the message to its recipient list.

■ Retrieve a message from a message store.

■ Execute a high-level command on a retrieved message. High-level commands like
view and print are intended to be implemented via JAF-Aware JavaBeans.

Note – The JavaMail framework does not define mechanisms that support message
delivery, security, disconnected operation, directory services or filter functionality.

Chapter 3: Architectural Overview 9
The JavaMail Framework

JavaMail™ API Design Specification March 2013

This figure illustrates the JavaMail message-handling process.

FIGURE 3-3

FOLDERS

MESSAGE

FOLDERSTRANSPORT

Receive a
Message

Send a
Message

Submit a
Message

STORE

MESSAGE

Contains
Messages

Network
Infrastructure

10 Chapter 3: Architectural Overview
Major JavaMail API Components

March 2013 JavaMail™ API Design Specification

Major JavaMail API Components
This section reviews major components comprising the JavaMail architecture.

The Message Class
The Message class is an abstract class that defines a set of attributes and a content for
a mail message. Attributes of the Message class specify addressing information and
define the structure of the content, including the content type. The content is
represented as a DataHandler object that wraps around the actual data.

The Message class implements the Part interface. The Part interface defines
attributes that are required to define and format data content carried by a Message
object, and to interface successfully to a mail system. The Message class adds From,
To, Subject, Reply-To, and other attributes necessary for message routing via a
message transport system. When contained in a folder, a Message object has a set of
flags associated with it. JavaMail provides Message subclasses that support specific
messaging implementations.

The content of a message is a collection of bytes, or a reference to a collection of bytes,
encapsulated within a Message object. JavaMail has no knowledge of the data type or
format of the message content. A Message object interacts with its content through an
intermediate layer—the JavaBeans Activation Framework (JAF). This separation
allows a Message object to handle any arbitrary content and to transmit it using any
appropriate transmission protocol by using calls to the same API methods. The
message recipient usually knows the content data type and format and knows how to
handle that content.

The JavaMail API also supports multipart Message objects, where each Bodypart
defines its own set of attributes and content.

Message Storage and Retrieval
Messages are stored in Folder objects. A Folder object can contain subfolders as
well as messages, thus providing a tree-like folder hierarchy. The Folder class
declares methods that fetch, append, copy and delete messages. A Folder object can
also send events to components registered as event listeners.

The Store class defines a database that holds a folder hierarchy together with its
messages. The Store class also specifies the access protocol that accesses folders and
retrieves messages stored in folders. The Store class also provides methods to
establish a connection to the database, to fetch folders and to close a connection.
Service providers implementing Message Access protocols (IMAP4, POP3, etc.) start
off by subclassing the Store class. A user typically starts a session with the mail
system by connecting to a particular Store implementation.

Chapter 3: Architectural Overview 11
The JavaMail Event Model

JavaMail™ API Design Specification March 2013

Message Composition and Transport
A client creates a new message by instantiating an appropriate Message subclass. It
sets attributes like the recipient addresses and the subject, and inserts the content into
the Message object. Finally, it sends the Message by invoking the Transport.send
method.

The Transport class models the transport agent that routes a message to its
destination addresses. This class provides methods that send a message to a list of
recipients. Invoking the Transport.send method with a Message object identifies
the appropriate transport based on its destination addresses.

The Session Class
The Session class defines global and per-user mail-related properties that define the
interface between a mail-enabled client and the network. JavaMail system
components use the Session object to set and get specific properties. The Session
class also provides a default authenticated session object that desktop applications can
share. The Session class is a final concrete class. It cannot be subclassed.

The Session class also acts as a factory for Store and Transport objects that
implement specific access and transport protocols. By calling the appropriate factory
method on a Session object, the client can obtain Store and Transport objects
that support specific protocols.

The JavaMail Event Model
The JavaMail event model conforms to the JDK 1.1 event-model specification, as
described in the JavaBeans Specification. The JavaMail API follows the design
patterns defined in the JavaBeans Specification for naming events, event methods and
event listener registration.

All events are subclassed from the MailEvent class. Clients listen for specific events
by registering themselves as listeners for those events. Events notify listeners of state
changes as a session progresses. During a session, a JavaMail component generates a
specific event-type to notify objects registered as listeners for that event-type. The
JavaMail Store, Folder, and Transport classes are event sources. This
specification describes each specific event in the section that describes the class that
generates that event.

12 Chapter 3: Architectural Overview
Using the JavaMail API

March 2013 JavaMail™ API Design Specification

Using the JavaMail API
This section defines the syntax and lists the order in which a client application calls
some JavaMail methods in order to access and open a message located in a folder:

1. A JavaMail client typically begins a mail handling task by obtaining a JavaMail
Session object.

 Session session = Session.getInstance(props, authenticator);

2. The client uses the Session object’s getStore method to connect to the default
store. The getStore method returns a Store object subclass that supports the
access protocol defined in the user properties object, which will typically contain
per-user preferences.

 Store store = session.getStore();
 store.connect();

3. If the connection is successful, the client can list available folders in the Store, and
then fetch and view specific Message objects.

 // get the INBOX folder
 Folder inbox = store.getFolder("INBOX");

 // open the INBOX folder
 inbox.open(Folder.READ_WRITE);

 Message m = inbox.getMessage(1); // get Message # 1
 String subject = m.getSubject(); // get Subject
 Object content = m.getContent(); // get content
 ...
 ...

4. Finally, the client closes all open folders, and then closes the store.
 inbox.close(); // Close the INBOX
 store.close(); // Close the Store

See “Examples Using the JavaMail API” on page 63 for a more complete example.

13

JavaMail™ API Design Specification March 2013

Chapter 4:
The Message Class

The Message class defines a set of attributes and a content for a mail message.
Message attributes specify message addressing information and define the structure
of the content, including the content type. The content is represented by a
DataHandler object that wraps around the actual data. The Message class is an
abstract class that implements the Part interface.

Subclasses of the Message classes can implement several standard message formats.
For example, the JavaMail API provides the MimeMessage class, that extends the
Message class to implement the RFC822 and MIME standards. Implementations can
typically construct themselves from byte streams and generate byte streams for
transmission.

A Message subclass instantiates an object that holds message content, together with
attributes that specify addresses for the sender and recipients, structural information
about the message, and the content type of the message body. Messages placed into a
folder also have a set of flags that describe the state of the message within the folder.

14 Chapter 4: The Message Class

March 2013 JavaMail™ API Design Specification

The figure below illustrates the structure of the Message class.

FIGURE 4-1

The Message object has no direct knowledge of the nature or semantics of its content.
This separation of structure from content allows the message object to contain any
arbitrary content.

Message objects are either retrieved from a Folder object or constructed by
instantiating a new Message object of the appropriate subclass. Messages stored
within a Folder object are sequentially numbered, starting at one. An assigned
message number can change when the folder is expunged, since the expunge
operation removes deleted messages from the folder and also renumbers the
remaining messages.

Message Class

Header Attributes

Content Body

Attributes defined by the
Part interface, including
Content-Type.

Attributes added by the
Message Class.

Optional attributes added by
a Message Subclass,
such as MimeMessage.

 Part interface

 DataHandler
Class

 DataHandler Object

Contains data that conforms
to the Content-Type
attribute, together with meth-
ods that provide access to
that data.

JavaBean
queries the
DataHandler
object in order to
view and handle
content body.

Chapter 4: The Message Class 15

JavaMail™ API Design Specification March 2013

A Message object can contain multiple parts, where each part contains its own set of
attributes and content. The content of a multipart message is a Multipart object that
contains BodyPart objects representing each individual part. The Part interface
defines the structural and semantic similarity between the Message class and the
BodyPart class.

The figure below illustrates a Message instance hierarchy, where the message
contains attributes, a set of flags, and content. See “MimeMessage Object Hierarchy”
on page 89 for an illustration of the MimeMessage object hierarchy.

FIGURE 4-2

The Message class provides methods to perform the following tasks:

■ Get, set and create its attributes and content:

public String getSubject() throws MessagingException;

public void setSubject(String subject)
 throws MessagingException;

public String[] getHeader(String name)
 throws MessagingException;

MessageFlags Attributes

Legend

Contains

Implements

Part

Content

Interface

Class

References

16 Chapter 4: The Message Class
The Part Interface

March 2013 JavaMail™ API Design Specification

public void setHeader(String name, String value)
 throws MessagingException;

public Object getContent()
 throws MessagingException;

public void setContent(Object content, String type)
 throws MessagingException

■ Save changes to its containing folder.

 public void saveChanges()
 throws MessagingException;

This method also ensures that the Message header fields are updated to be
consistent with the changed message contents.

■ Generate a bytestream for the Message object.

public void writeTo(OutputStream os)
 throws IOException, MessagingException;

This byte stream can be used to save the message or send it to a Transport object.

The Part Interface
The Part interface defines a set of standard headers common to most mail systems,
specifies the data-type assigned to data comprising a content block, and defines set
and get methods for each of these members. It is the basic data component in the
JavaMail API and provides a common interface for both the Message and BodyPart
classes. See the JavaMail API (Javadoc) documentation for details.

Note – A Message object can not be contained directly in a Multipart object, but
must be embedded in a BodyPart first.

Message Attributes
The Message class adds its own set of standard attributes to those it inherits from the
Part interface. These attributes include the sender and recipient addresses, the
subject, flags, and sent and received dates. The Message class also supports non-
standard attributes in the form of headers. See the JavaMail API (Javadoc)
Documentation for the list of standard attributes defined in the Message class. Not all
messaging systems will support arbitrary headers, and the availability and meaning
of particular header names is specific to the messaging system implementation.

Chapter 4: The Message Class 17
The Part Interface

JavaMail™ API Design Specification March 2013

The ContentType Attribute
The contentType attribute specifies the data type of the content, following the
MIME typing specification (RFC 2045). A MIME type is composed of a primary type
that declares the general type of the content, and a subtype that specifies a specific
format for the content. A MIME type also includes an optional set of type-specific
parameters.

JavaMail API components can access content via these mechanisms:

The setDataHandler(DataHandler) method specifies content for a new Part
object, as a step toward the construction of a new message. The Part also provides
some convenience methods to set up most common content types.

Part provides the writeTo method that writes its byte stream in mail-safe form
suitable for transmission. This byte stream is typically an aggregation of the Part
attributes and the byte stream for its content.

As an input stream The Part interface declares the getInputStream method that
returns an input stream to the content. Note that Part
implementations must decode any mail-specific transfer encoding
before providing the input stream.

As a DataHandler object The Part interface declares the getDataHandler method that
returns a javax.activation.DataHandler object that wraps
around the content. The DataHandler object allows clients to
discover the operations available to perform on the content, and
to instantiate the appropriate component to perform those
operations. See “The JavaBeans Activation Framework” on
page 41 for details describing the data typing framework

As an object in the Java
programming language

The Part interface declares the getContent method that
returns the content as an object in the Java programming
language. The type of the returned object is dependent on the
content’s data type. If the content is of type multipart, the
getContent method returns a Multipart object, or a
Multipart subclass object. The getContent method returns an
input stream for unknown content-types. Note that the
getContent method uses the DataHandler internally to obtain
the native form.

18 Chapter 4: The Message Class
The Address Class

March 2013 JavaMail™ API Design Specification

The Address Class
The Address class represents email addresses. The Address class is an abstract class.
Subclasses provide implementation-specific semantics.

The BodyPart Class
The BodyPart class is an abstract class that implements the Part interface in order
to define the attribute and content body definitions that Part declares. It does not
declare attributes that set From, To, Subject, ReplyTo, or other address header
fields, as a Message object does.

A BodyPart object is intended to be inserted into a Multipart container, later
accessed via a multipart message.

Chapter 4: The Message Class 19
The Multipart Class

JavaMail™ API Design Specification March 2013

The Multipart Class
The Multipart class implements multipart messages. A multipart message is a
Message object where the content-type specifier has been set to multipart. The
Multipart class is a container class that contains objects of type Bodypart. A
Bodypart object is an instantiation of the Part interface—it contains either a new
Multipart container object, or a DataHandler object.

The figure below illustrates the structure and content of a multipart message:

FIGURE 4-3

Multipart Object

Header Attributes

Content Body

Attributes defined by the Part
interface only.

Attributes include a second
Content-Type attribute.

The content body itself can be
either a DataHandler object
containing data, or another
Multipart object.

Bodypart Object

A Multipart Message can hold
more than one BodyPart object.

Message

Header Attributes
Normal Message,
includes a Content-
Type attribute
set to ‘Multipart.’.

A multipart message is a simple
message object where the Con-
tent-Type is set to ‘multipart,‘
and the Content Body carries a
reference to a Multipart
object.

Content Body
Normal Message,
includes a Content
body of type
‘Multipart.’

A Multipart object is a con-
tainer of Bodypart objects,
where each Bodypart can con-
tain either a DataHandler
object, or another Multipart
object.

Bodypart Object

20 Chapter 4: The Message Class
The Multipart Class

March 2013 JavaMail™ API Design Specification

Note that Multipart objects can be nested to any reasonable depth within a
multipart message, in order to build an appropriate structure for data carried in
DataHandler objects. Therefore, it is important to check the ContentType header
for each BodyPart element stored within a Multipart container. The figure below
illustrates a typical nested Multipart message.

FIGURE 4-4

Typically, the client calls the getContentType method to get the content type of a
message. If getContentType returns a MIME-type whose primary type is multipart,
then the client calls getContent to get the Multipart container object.

The Multipart object supports several methods that get, create, and remove
individual BodyPart objects.

public int getCount() throws MessagingException;

public Body getBodyPart(int index)
 throws MessagingException;

Message
Object

Multipart Container
Object

Bodypart object
that carries a
DataHandler
object holding data.

Bodypart object
that holds a DataH-
andler object hold-
ing a Multipart
container object.

Other Optional
Multipart Objects

New bodyparts,
containing a
Datahandler
object.Other Body-

part objects.

Content body
references a
Multipart
container

Bodypart

Bodypart

Bodypart

Carries
addresses for
the entire tree.

Chapter 4: The Message Class 21
The Multipart Class

JavaMail™ API Design Specification March 2013

public void addBodyPart(BodyPart part)
 throws MessagingException;

public void removeBodyPart(BodyPart body)
 throws MessagingException;

public void removeBodyPart(int index)
 throws MessagingException;

The Multipart class implements the javax.beans.DataSource interface. It can
act as the DataSource object for javax.beans.DataHandler and
javax.beans.DataContentHandler objects. This allows message-aware content
handlers to handle multipart data sources more efficiently, since the data has already
been parsed into individual parts.

This diagram illustrates the structure of a multipart message, and shows calls from
the associated Message and Multipart objects, for a typical call sequence returning
a BodyPart containing text/plain content.

FIGURE 4-5

In this figure, the ContentType attribute of a Message object indicates that it holds
a multipart content. Use the getContent method to obtain the Multipart object.

Message

Multipart

BodyPart

0... n-1

getContent()

getBodyPart(index)

Legend

extends

contains

getContentType()
multipart/mixed

Text

getContent()

text/plain
getContentType()

22 Chapter 4: The Message Class
The Flags Class

March 2013 JavaMail™ API Design Specification

This code sample below shows the retrieval of a Multipart object. See “Examples
Using the JavaMail API” on page 63 for examples that traverse a multipart message
and examples that create new multipart messages.

Multipart mp = (Multipart)message.getContent();

int count = mp.getCount();
BodyPart body_part;

for (int i = 0; i < count; i++)
body_part = mp.getBodyPart(i);

The Flags Class
Flags objects carry flag settings that describe the state of a Message object within its
containing folder. The Message.getFlags method returns a Flags object that holds
all the flags currently set for that message.

The setFlags(Flags f, boolean set) method sets the specified flags for that
message. The add(Flags.Flag f) method on a Flags object sets the specified flag;
the contains(Flags.Flag f) method returns whether the specified flag is set.

Note that a folder is not guaranteed to support either standard system flags or
arbitrary user flags. The getPermanentFlags method in a folder returns a Flags
object that contains all the system flags supported by that Folder implementation.
The presence of the special USER flag indicates that the client can set arbitrary user-
definable flags on any message belonging to this folder.

ANSWERED Clients set this flag to indicate that this message has been answered.

DRAFT Indicates that this message is a draft.

FLAGGED No defined semantics. Clients can use this flag to mark a message in some
user-defined manner.

RECENT This message is newly arrived in this folder. This flag is set when the
message is first delivered into the folder and cleared when the containing
folder is closed. Clients cannot set this flag.

SEEN Marks a message that has been opened. A client sets this flag implicitly
when the message contents are retrieved.

DELETED Allows undoable message deletion. Setting this flag for a message marks
it deleted but does not physically remove the message from its folder.
The client calls the expunge method on a folder to remove all deleted
messages in that folder.

Chapter 4: The Message Class 23
Message Creation And Transmission

JavaMail™ API Design Specification March 2013

Message Creation And Transmission
The Message class is abstract, so an appropriate subclass must be instantiated to
create a new Message object. A client creates a message by instantiating an
appropriate Message subclass.

For example, the MimeMessage subclass handles Internet email messages. Typically,
the client application creates an email message by instantiating a MimeMessage
object, and passing required attribute values to that object. In an email message, the
client defines Subject, From, and To attributes. The client then passes message
content into the MimeMessage object by using a suitably configured DataHandler
object. See “Message Composition” on page 45 for details.

After the Message object is constructed, the client calls the Transport.send
method to route it to its specified recipients. See “Transport Protocols and
Mechanisms” on page 51 for a discussion of the transport process.

24 Chapter 4: The Message Class
Message Creation And Transmission

March 2013 JavaMail™ API Design Specification

25

JavaMail™ API Design Specification March 2013

Chapter 5:
The Mail Session

A mail Session object manages the configuration options and user authentication
information used to interact with messaging systems.

The JavaMail API supports simultaneous multiple sessions. Each session can access
multiple message stores and transports. Any desktop application that needs to access
the current primary message store can share the default session. Typically the mail-
enabled application establishes the default session, which initializes the
authentication information necessary to access the user’s Inbox folder. Other desktop
applications then use the default session when sending or accessing mail on behalf of
the user. When sharing the session object, all applications share authentication
information, properties, and the rest of the state of the object.

For example,

■ To create a Session using a static factory method:
Session session = Session.getInstance(props, authenticator);

■ To create the default shared session, or to access the default shared session:
Session defaultSession =

 Session.getDefaultInstance(props, authenticator);

The Properties object that initializes the Session contains default values and other
configuration information. It is expected that clients using the APIs set the values for
the listed properties, especially mail.host, mail.user, and mail.from, since the
defaults are unlikely to work in all cases. See “Environment Properties” on page 61 for
a list of properties used by the JavaMail APIs and their defaults.

Some messaging system implementations can use additional properties. Typically the
properties object contains user-defined customizations in addition to system-wide
defaults. Mail-enabled application logic determines the appropriate set of properties.
Lacking a specific requirement, the application can use the system properties object
retrieved from the System.getProperties method.

The Authenticator object controls security aspects for the Session object. The
messaging system uses it as a callback mechanism to interact with the user when a
password is required to login to a messaging system. It indirectly controls access to
the default session, as described below.

Clients using JavaMail can register PasswordAuthentication objects with the
Session object for use later in the session or for use by other users of the same
session. Because PasswordAuthentication objects contain passwords, access to

26 Chapter 5: The Mail Session
The Provider Registry

March 2013 JavaMail™ API Design Specification

this information must be carefully controlled. Applications that create Session
objects must restrict access to those objects appropriately. In addition, the Session
class shares some responsibility for controlling access to the default session object.

The first call to the getDefaultInstance method creates a new Session object
and associates it with the Authenticator object. Subsequent calls to the
getDefaultInstance method compare the Authenticator object passed in with
the Authenticator object saved in the default session. Access to the default session
is allowed if both objects have been loaded by the same class loader. Typically, this is
the case when both the default session creator and the program requesting default
session access are in the same "security domain." Also, if both objects are null, access
is allowed. Using null to gain access is discouraged, because this allows access to the
default session from any security domain.

A mail-enabled client uses the Session object to retrieve a Store or Transport
object in order to read or send mail. Typically, the client retrieves the default Store or
Transport object based on properties loaded for that session:

Store store = session.getStore();

The client can override the session defaults and access a Store or Transport object
that implements a particular protocol.

Store store = session.getStore("imap");

See “The Provider Registry” on page 26 for details.

Implementations of Store and Transport objects will be told the session to which
they have been assigned. They can then make the Session object available to other
objects contained within this Store or Transport objects using application-
dependent logic.

The Provider Registry
The Provider Registry allows providers to register their protocol implementations to
be used by JavaMail APIs. It provides a mechanism for discovering available protocol,
for registering new protocols, and for specifying default implementations.

Resource Files
The providers for JavaMail APIs are configured using the following files:

■ javamail.providers and javamail.default.providers
■ javamail.address.map and javamail.default.address.map

Each javamail.X resource file is searched in the following order:

1. java.home/lib/javamail.X

2. META-INF/javamail.X

3. META-INF/javamail.default.X

Chapter 5: The Mail Session 27
The Provider Registry

JavaMail™ API Design Specification March 2013

The first method allows the user to include their own version of the resource file by
placing it in the lib directory where the java.home property points. The second
method allows an application that uses the JavaMail APIs to include their own
resource files in their application’s or jar file’s META-INF directory. The
javamail.default.X default files are part of the JavaMail mail.jar file.

File location depends upon how the ClassLoader.getResource method is
implemented. Usually, the getResource method searches through CLASSPATH until
it finds the requested file and then stops. JDK 1.2 and newer allows all resources of a
given name to be loaded from all elements of the CLASSPATH. However, this only
affects method two, above; method one is loaded from a specific location (if allowed
by the SecurityManager) and method three uses a different name to ensure that the
default resource file is always loaded successfully.

The ordering of entries in the resource files matters. If multiple entries exist, the first
entries take precedence over the latter entries as the initial defaults. For example, the
first IMAP provider found will be set as the default IMAP implementation until
explicitly changed by the application.

The user- or system-supplied resource files augment, they do not override, the default
files included with the JavaMail APIs. This means that all entries in all files loaded
will be available.

javamail.providers and
javamail.default.providers
These resource files specify the stores and transports that are available on the system,
allowing an application to "discover" what store and transport implementations are
available. The protocol implementations are listed one per line. The file format defines
four attributes that describe a protocol implementation. Each attribute is an "="-
separated name-value pair with the name in lowercase. Each name-value pair is semi-
colon (";") separated.

TABLE 5-1 Protocol Attributes

Name Description

protocol Name assigned to protocol. For example, ’smtp’ for Transport.

type Valid entries are “store” and “transport”.

class Class name that implements this protocol.

vendor Optional string identifying the vendor.

version Optional string identifying the version.

28 Chapter 5: The Mail Session
The Provider Registry

March 2013 JavaMail™ API Design Specification

Here’s an example of META-INF/javamail.default.providers file contents:

protocol=imap; type=store; class=com.sun.mail.imap.IMAPStore; vendor=Sun;
protocol=smtp; type=transport; class=com.sun.mail.smtp.SMTPTransport;

javamail.address.map and
javamail.default.address.map
These resource files map transport address types to the transport protocol. The
javax.mail.Address.getType() method returns the address type. The
javamail.address.map file maps the transport type to the protocol. The file format
is a series of name-value pairs. Each key name should correspond to an address type
that is currently installed on the system; there should also be an entry for each
javax.mail.Address implementation that is present if it is to be used. For example,
javax.mail.internet.InternetAddress.getType() returns rfc822. Each
referenced protocol should be installed on the system. For the case of news, below, the
client should install a Transport provider supporting the nntp protocol.

Here are the typical contents of a javamail.address.map file.

rfc822=smtp
news=nntp

Provider
Provider is a class that describes a protocol implementation. The values come from
the javamail.providers and javamail.default.providers resource files.

Protocol Selection and Defaults
The constructor for the Session object initializes the appropriate variables from the
resource files. The order of the protocols in the resource files determines the initial
defaults for protocol implementations. The methods, getProviders(),
{getProvider()and setProvider() allow the client to discover the available
(installed) protocol implementations, and to set the protocols to be used by default.

At runtime, an application may set the default implementation for a particular
protocol. It can set the mail.protocol.class property when it creates the Session
object. This property specifies the class to use for a particular protocol. The
getProvider() method consults this property first.

The code can also call setProviders() passing in a Provider that was returned by
the discovery methods. A Provider object in not normally explicitly created; it is
usually retrieved using the getProviders() method.

Chapter 5: The Mail Session 29
The Provider Registry

JavaMail™ API Design Specification March 2013

In either case, the provider specified is one of the ones configured in the resource files.
An application may also instantiate a Provider object to configure a new
implementation.

Example Scenarios
Scenario 1: The client application invokes the default protocols:

class Application1 {
 init() {
 // application properties include the JavaMail
 // required properties: mail.store.protocol,
 // mail.transport.protocol, mail.host, mail.user
 Properties props = loadApplicationProps();
 Session session = Session.getInstance(props, null);

 // get the store implementation of the protocol
 // defined in mail.store.protocol; the implementation
 // returned will be defined by the order of entries in
 // javamail.providers & javamail.default.providers
 try {
 Store store = session.getStore();
 store.connect();
 } catch (MessagingException mex) {}
 ...
 }
}

Scenario 2: The client application presents available implementations to the user and
then sets the user’s choice as the default implementation:

class Application2 {
 init() {
 // application properties include the JavaMail
 // properties: mail.store.protocol,
 // mail.transport.protocol, mail.host, mail.user
 Properties props = loadApplicationProps();
 Session session = Session.getInstance(props, null);

 // find out which implementations are available
 Provider[] providers = session.getProviders();

 // ask the user which implementations to use
 // user’s response may include a number of choices,
 // i.e. imap & nntp store providers & smtp transport
 Provider[] userChosenProviders =
 askUserWhichProvidersToUse(providers);

 // set the defaults based on users response
 for (int i = 0; i < userChosenProviders.length; i++)
 session.setProvider(userChosenProviders[i]);
 // get the store implementation of the protocol

30 Chapter 5: The Mail Session
Managing Security

March 2013 JavaMail™ API Design Specification

 // defined in mail.store.protocol; the implementation
 // returned will be the one configured previously
 try {
 Store store = session.getStore();
 store.connect();
 } catch (MessagingException mex) {}
 ...
 }
}

Scenario 3: Application wants to specify an implementation for a given protocol:

class Application3 {
 init() {
 // application properties include the JavaMail
 // required properties: mail.store.protocol,
 // mail.transport.protocol, mail.host, mail.user
 Properties props = loadApplicationProps();

 // hard-code an implementation to use
 // "com.acme.SMTPTRANSPORT"

 props.put("mail.smtp.class", "com.acme.SMTPTRANSPORT");
 Session session = Session.getInstance(props, null);

 // get the smtp transport implementation; the
 // implementation returned will be com.acme.SMTPTRANSPORT
 // if it was correctly configured in the resource files.
 // If com.acme.SMTPTRANSPORT can’t be loaded, a
 // MessagingException is thrown.
 try {
 Transport transport = session.getTransport("smtp");
 } catch (MessagingException mex) {
 quit();
 }
 }
 ...
}

Managing Security
The Session class allows messaging system implementations to use the
Authenticator object that was registered when the session was created. The
Authenticator object is created by the application and allows interaction with the
user to obtain a user name and password. The user name and password is returned in
a PasswordAuthentication object. The messaging system implementation can ask
the session to associate a user name and password with a particular message store
using the setPasswordAuthentication method. This information is retrieved
using the getPasswordAuthentication method. This avoids the need to ask the

Chapter 5: The Mail Session 31
Store and Folder URLs

JavaMail™ API Design Specification March 2013

user for a password when reconnecting to a Store that has disconnected, or when a
second application sharing the same session needs to create its own connection to the
same Store.

Messaging system implementations can register PasswordAuthentication objects
with the Session object for use later in the session or for use by other users of the
same session. Because PasswordAuthentication objects contain passwords, access
to this information must be carefully controlled. Applications that create Session
objects must restrict access to those objects appropriately. In addition, the Session
class shares some responsibility for controlling access to the default Session object.

The first call to getDefaultInstance creates a new Session object and associates
the Authenticator object with the Session object. Later calls to
getDefaultInstance compare the Authenticator object passed in, to the
Authenticator object saved in the default session. If both objects have been loaded
by the same class loader, then getDefaultInstance will allow access to the default
session. Typically, this is the case when both the creator of the default session and the
code requesting access to the default session are in the same "security domain." Also,
if both objects are null, access is allowed. This last case is discouraged because setting
objects to null allows access to the default session from any security domain.

In the future, JDK security Permissions could control access to the default session.
Note that the Authenticator and PasswordAuthentication classes and their
use in JavaMail is similar to the classes with the same names provided in the
java.net package in the JDK. As new authentication mechanisms are added to the
system, new methods can be added to the Authenticator class to request the
needed information. The default implementations of these new methods will fail, but
new clients that understand these new authentication mechanisms can provide
implementations of these methods. New classes other than
PasswordAuthentication could be needed to contain the new authentication
information, and new methods could be needed in the Session class to store such
information. JavaMail design evolution will be patterned after the corresponding JDK
classes.

Store and Folder URLs
To simplify message folder naming and to minimize the need to manage Store and
Transport objects, folders can be named using URLNames. URLNames are similar
to URLs except they only include the parsing of the URL string. The Session class
provides methods to retrieve a Folder object given a URLName:

Folder f = session.getFolder(URLName);

or

Store s = session.getStore(URLName);

32 Chapter 5: The Mail Session
Store and Folder URLs

March 2013 JavaMail™ API Design Specification

33

JavaMail™ API Design Specification March 2013

Chapter 6:
Message Storage And Retrieval

This section describes JavaMail message storage facilities supported by the Store
and Folder classes.

Messages are contained in Folders. New messages are usually delivered to folders
by a transport protocol or a delivery agent. Clients retrieve messages from folders
using an access protocol.

The Store Class
The Store class defines a database that holds a Folder hierarchy and the messages
within. The Store also defines the access protocol used to access folders and retrieve
messages from folders. Store is an abstract class. Subclasses implement specific
message databases and access protocols.

Clients gain access to a Message Store by obtaining a Store object that implements
the database access protocol. Most message stores require the user to be authenticated
before they allow access. The connect method performs that authentication.

For many message stores, a host name, user name, and password are sufficient to
authenticate a user. The JavaMail API provides a connect method that takes this
information as input parameters. Store also provides a default connect method. In
either case, the client can obtain missing information from the Session object’s
properties, or by interacting with the user by accessing the Session’s
Authenticator object.

The default implementation of the connect method in the Store class uses these
techniques to retrieve all needed information and then calls the protocolConnect
method. The messaging system must provide an appropriate implementation of this
method. The messaging system can also choose to directly override the connect
method.

By default, Store queries the following properties for the user name and host name:

■ mail.user property, or user.name system property (if mail.user is not set)
■ mail.host

These global defaults can be overridden on a per-protocol basis by the properties:

■ mail.protocol.user
■ mail.protocol.host

34 Chapter 6: Message Storage And Retrieval
The Folder Class

March 2013 JavaMail™ API Design Specification

Note that passwords can not be specified using properties.

The Store presents a default namespace to clients. Store implementations can also
present other namespaces. The getDefaultFolder method on Store returns the
root folder for the default namespace.

Clients terminate a session by calling the close method on the Store object. Once a
Store is closed (either explicitly using the close method; or externally, if the Mail
server fails), all Messaging components belonging to that Store become invalid.
Typically, clients will try to recover from an unexpected termination by calling
connect to reconnect to the Store object, and then fetching new Folder objects and
new Message objects.

Store Events
Store sends the following events to interested listeners:

The Folder Class
The Folder class represents a folder containing messages. Folders can contain
subfolders as well as messages, thus providing a hierarchical structure. The getType
method returns whether a Folder can hold subfolders, messages, or both. Folder is
an abstract class. Subclasses implement protocol-specific Message Folders.

The getDefaultFolder method for the corresponding Store object returns the
root folder of a user’s default folder hierarchy. The list method for a Folder
returns all the subfolders under that folder. The getFolder(String name) method
for a Folder object returns the named subfolder. Note that this subfolder need not
exist physically in the store. The exists method in a folder indicates whether this
folder exists. A folder is created in the store by invoking its create method.

ConnectionEvent Generated when a connection is successfully made to the Store, or
when an existing connection is terminated or disconnected.

StoreEvent Communicates alerts and notification messages from the Store to
the end user. The getMessageType method returns the event type,
which can be one of: ALERT or NOTICE. The client must display ALERT
events in some fashion that calls the user’s attention to the message.

FolderEvent Communicates changes to any folder contained within the Store.
These changes include creation of a new Folder, deletion of an
existing Folder, and renaming of an existing Folder.

Chapter 6: Message Storage And Retrieval 35
The Folder Class

JavaMail™ API Design Specification March 2013

A closed Folder object allows certain operations, including deleting the folder,
renaming the folder, listing subfolders, creating subfolders and monitoring for new
messages. The open method opens a Folder object. All Folder methods except
open, delete, and renameTo are valid on an open Folder object. Note that the
open method is applicable only on Folder objects that can contain messages.

The messages within a Folder are sequentially numbered, from 1 through the total
number of messages. This ordering is referred to as the “mailbox order” and is usually
based on the arrival time of the messages in the folder. As each new message arrives
into a folder, it is assigned a sequence number that is one higher than the previous
number of messages in that folder. The getMessageNumber method on a Message
object returns its sequence number.

The sequence number assigned to a Message object is valid within a session, but only
as long as it retains its relative position within the Folder. Any change in message
ordering can change the Message object's sequence number. Currently this occurs
when the client calls expunge to remove deleted messages and renumber messages
remaining in the folder.

A client can reference a message stored within a Folder either by its sequence
number, or by the corresponding Message object itself. Since a sequence number can
change within a session, it is preferable to use Message objects rather than sequence
numbers as cached references to messages. Clients extending JavaMail are expected to
provide light-weight Message objects that get filled ’on-demand’, so that calling the
getMessages method on a Folder object is an inexpensive operation, both in terms
of CPU cycles and memory. For instance, an IMAP implementation could return
Message objects that contain only the corresponding IMAP UIDs.

The FetchProfile Method
The Message objects returned by a Folder object are expected to be light-weight
objects. Invoking getxxx methods on a Message cause the corresponding data items
to be loaded into the object on demand. Certain Store implementations support
batch fetching of data items for a range of Messages. Clients can use such
optimizations, for example, when filling the header-list window for a range of
messages. The FetchProfile method allows a client to list the items it will fetch in
a batch for a certain message range.

The following code illustrates the use of FetchProfile when fetching Messages
from a Folder. The client fills its header-list window with the Subject, From, and
X-mailer headers for all messages in the folder.

Message[] msgs = folder.getMessages();
FetchProfile fp = new FetchProfile();
fp.add(FetchProfile.Item.ENVELOPE);
fp.add("X-mailer");
folder.fetch(msgs, fp);
for (int i = 0; i < folder.getMessageCount(); i++) {

display(msgs[i].getFrom());

36 Chapter 6: Message Storage And Retrieval
The Folder Class

March 2013 JavaMail™ API Design Specification

display(msgs[i].getSubject());
display(msgs[i].getHeader("X-mailer"));

}

Folder Events
Folders generate events to notify listeners of any change in either the folder or in its
Messages list. The client can register listeners to a closed Folder, but generates a
notification event only after that folder is opened.

Folder supports the following events:

ConnectionEvent This event is generated when a Folder is opened or closed.

When a Folder closes (either because the client has called close or
from some external cause), all Messaging components belonging to
that Folder become invalid. Typically, clients will attempt to recover by
reopening that Folder, and then fetching Message objects.

FolderEvent This event is generated when the client creates, deletes or renames this
folder. Note that the Store object containing this folder can also
generate this event.

MessageCountEvent This event notifies listeners that the message count has changed. The
following actions can cause this change:

■ Addition of new Messages into the Folder, either by a
delivery agent or because of an append operation. The new
Message objects are included in the event.

■ Removal of existing messages from this Folder. Removed
messages are referred to as expunged messages. The
isExpunged method returns true for removed Messages
and the getMessageNumber method returns the original
sequence number assigned to that message. All other
Message methods throw a MessageRemovedException.
See “The Folder Class” on page 34 for a discussion of
removing deleted messages in shared folders. The
expunged Message objects are included in the event. An
expunged message is invalid and should be pruned from
the client's view as early as possible. See “The Expunge
Process” on page 37 for details on the expunge method.

Chapter 6: Message Storage And Retrieval 37
The Folder Class

JavaMail™ API Design Specification March 2013

The Expunge Process
Deleting messages from a Folder is a two-phase operation. Setting the DELETED flag
on messages marks them as deleted, but it does not remove them from the Folder. The
deleted messages are removed only when the client invokes the expunge method on
that Folder pbject. The Folder object then notifies listeners by firing an appropriate
MessageEvent. The MessageEvent object contains the expunged Message objects.
Note that the expunge method also returns the expunged Message objects. The
Folder object also renumbers the messages falling after the expunged messages in
the message list. Thus, when the expunge method returns, the sequence number of
those Message objects will change. Note, however, that the expunged messages still
retain their original sequence numbers.

Since expunging a folder can remove some messages from the folder and renumber
others, it is important that the client synchronize itself with the expunged folder as
early as possible. The next sections describe a set of recommendations for clients
wanting to expunge a Folder:

■ Expunge the folder; close it; and then reopen and refetch messages from that
Folder. This ensures that the client was notified of the updated folder state. In
fact, the client can just issue the close method with the expunge parameter set
to true to force an expunge of the Folder during the close operation, thus even
avoiding the explicit call to expunge.

■ The previous solution might prove to be too simple or too drastic in some
circumstances. This paragraph describes the scenario of a more complex client
expunging a single access folder; for example, a folder that allows only one read-
write connection at a time. The recommended steps for such a client after it issues
the expunge command on the folder are:

■ Update its message count, either by decrementing it by the number of
expunged messages, or by invoking the getMessageCount method on the
Folder.

■ If the client uses sequence numbers to reference messages, it must account for
the renumbering of Message objects subsequent to the expunged messages.
Thus if a folder has 5 messages as shown below, (sequence numbers are
within parenthesis), and if the client is notified that messages A and C are
removed, it should account for the renumbering of the remaining messages as
shown in the second figure.

38 Chapter 6: Message Storage And Retrieval
The Folder Class

March 2013 JavaMail™ API Design Specification

FIGURE 6-1

■ The client should prune expunged messages from its internal storage as early as
possible.

■ The expunge process becomes complex when dealing with a shared folder that
can be edited. Consider the case where two clients are operating on the same
folder. Each client possesses its own Folder object, but each Folder object actually
represents the same physical folder.

If one client expunges the shared folder, any deleted messages are physically removed
from the folder. The primary client can probably deal with this appropriately since it
initiated this process and is ready to handle the consequences. However, secondary
clients are not guaranteed to be in a state where they can handle an unexpected
Message removed event— especially if the client is heavily multithreaded or if it uses
sequence numbers.

To allow clients to handle such situations gracefully, the JavaMail API applies
following restrictions to Folder implementations:

■ A Folder can remove and renumber its Messages only when it is explicitly
expunged using the expunge method. When the folder is implicitly expunged, it
marks any expunged messages as expunged, but it still maintains access to those
Message objects. This means that the following state is maintained when the
Folder is implicitly expunged:

■ getMessages returns expunged Message objects together with valid
message objects. However; an expunged message can throw the
MessageExpungedException if direct access is attempted.

■ The messages in the Folder should not be renumbered.

■ The implicit expunge operation can not change the total Folder message
count.

A Folder can notify listeners of “implicit” expunges by generating appropriate
MessageEvents. However, the removed field in the event must be set to false to
indicate that the message is still in the folder. When this Folder is explicitly
expunged, then the Folder must remove all expunged messages, renumber it's
internal Message cache, and generate MessageEvents for all the expunged messages,
with each removed flag set to true.

A (1) B (2) C (3) D (4) E (5)

D (2) E (3)B (1)

Chapter 6: Message Storage And Retrieval 39
The Search Process

JavaMail™ API Design Specification March 2013

The recommended set of actions for a client under the above situation is as follows:

■ Multithreaded clients that expect to handle shared folders are advised not to use
sequence numbers.

■ If a client receives a MessageEvent indicating message removal, it should check
the removed flag. If the flag is false, this indicates that another client has removed
the message from this folder. This client might want to issue an expunge request
on the folder object to synchronize it with the physical folder (but note the
caveats in the previous section about using a shared folder). Alternatively, this
client might want to close the Folder object (without expunging) and reopen it
to synchronize with the physical folder (but note that all message objects would
need to be refreshed in this case). The client may also mark the expunged
messages in order to notify the end user.

■ If the removed flag was set to true, the client should follow earlier
recommendations on dealing with explicit expunges.

The Search Process
Search criteria are expressed as a tree of search-terms, forming a parse tree for the
search expression. The SearchTerm class represents search terms. This is an abstract
class with a single method:

public boolean match(Message msg);

Subclasses implement specific matching algorithms by implementing the match
method. Thus new search terms and algorithms can be easily introduced into the
search framework by writing the required code using the Java programming
language.

The search package provides a set of standard search terms that implement specific
match criteria on Message objects. For example, SubjectTerm pattern-matches the
given String with the subject header of the given message.

public final class SubjectTerm extends StringTerm {
 public SubjectTerm(String pattern);
 public boolean match(Message m);
}

40 Chapter 6: Message Storage And Retrieval
The Search Process

March 2013 JavaMail™ API Design Specification

The search package also provides a set of standard logical operator terms that can be
used to compose complex search terms. These include AndTerm, OrTerm and
NotTerm.

final class AndTerm extends SearchTerm {
 public AndTerm(SearchTerm t1, SearchTerm t2);
 public boolean match(Message msg) {
 // The AND operator
 for (int i=0; i < terms.length; i++)
 if (!terms[i].match(msg))
 return false;
 return true;
 }
}

The Folder class supports searches on messages through these search method
versions:

public Message[] search(SearchTerm term)
public Message[] search(SearchTerm term, Message[] msgs)

These methods return the Message objects matching the specified search term. The
default implementation applies the search term on each Message object in the
specified range. Other implementations may optimize this; for example, the IMAP
Folder implementation maps the search term into an IMAP SEARCH command that
the server executes.

41

JavaMail™ API Design Specification March 2013

Chapter 7:
The JavaBeans Activation Framework

JavaMail relies heavily on the JavaBeans Activation Framework (JAF) to determine
the MIME data type, to determine the commands available on that data, and to
provide a software component corresponding to a particular behavior. The JAF
specification is part of the "Glasgow" JavaBeans specification. More details can be
obtained from http://java.sun.com/beans/glasgow/jaf.html

This section explains how the JavaMail and JAF APIs work together to manage
message content. It describes how clients using JavaMail can access and operate on
the content of Messages and BodyParts. This discussion assumes you are familiar
with the JAF specification posted at http://java.sun.com.

Accessing the Content
For a client using JavaMail, arbitrary data is introduced to the system in the form of
mail messages. The javax.mail.Part interface allows the client to access the
content. Part consists of a set of attributes and a "content". The Part interface is the
common base interface for Messages and BodyParts. A typical mail message has
one or more body parts, each of a particular MIME type.

Anything that deals with the content of a Part will use the Part’s DataHandler.
The content is available through the DataHandlers either as an InputStream or as
an object in the Java programming language. The Part also defines convenience
methods that call through to the DataHandler. For example: the Part.getContent
method is the same as calling Part.getDataHandler().getContent() and the
Part.getInputStream method is the same as
Part.getDataHandler().getInputStream().

The content returned (either via an InputStream or an object in the Java
programmin language) depends on the MIME type. For example: a Part that contains
textual content returns the following:

■ The Part.getContentType method returns text/plain

■ The Part.getInputStream method returns an InputStream containing the
bytes of the text

■ The Part.getContent method returns a java.lang.String object

42 Chapter 7: The JavaBeans Activation Framework
Accessing the Content

March 2013 JavaMail™ API Design Specification

Content is returned either as an input stream, or as an object in the Java programming
language.

■ When an InputStream is returned, any mail-specific encodings are decoded
before the stream is returned.

■ When an object in the Java programming language is returned using the
getContent method, the type of the returned object depends upon the content
itself. In the JavaMail API, any Part with a main content type set to
“multipart/” (any kind of multipart) should return a
javax.mail.Multipart object from the getContent method. A Part with a
content type of message/rfc822 returns a javax.mail.Message object from
the getContent method.

Example: Message Output
This example shows how you can traverse Parts and display the data contained in a
message.

public void printParts(Part p) {
Object o = p.getContent();
if (o instanceof String) {

System.out.println("This is a String");
System.out.println((String)o);

} else if (o instanceof Multipart) {
System.out.println("This is a Multipart");
Multipart mp = (Multipart)o;
int count = mp.getCount();
for (int i = 0; i < count; i++) {

printParts(mp.getBodyPart(i));
}

} else if (o instanceof InputStream) {
 System.out.println("This is just an input stream");
 InputStream is = (InputStream)o;
 int c;
 while ((c = is.read()) != -1)

System.out.write(c);
}

}

Chapter 7: The JavaBeans Activation Framework 43
Operating on the Content

JavaMail™ API Design Specification March 2013

Operating on the Content
The DataHandler allows clients to discover the operations available on the content
of a Message, and to instantiate the appropriate JavaBeans to perform those
operations. The most common operations on Message content are view, edit and print.

Example: Viewing a Message

Consider a Message “Viewer” Bean that presents a user interface that displays a mail
message. This example shows how a viewer bean can be used to display the content
of a message (that usually is text/plain, text/html, or multipart/mixed).

Note – Perform error checking to ensure that a valid Component was created.

// message passed in as parameter
void setMessage(Message msg) {

DataHandler dh = msg.getDataHandler();
CommandInfo cinfo = dh.getCommand("view");
Component comp = (Component) dh.getBean(cinfo);
this.setMainViewer(comp);

}

Example: Showing Attachments

In this example, the user has selected an attachment and wishes to display it in a
separate dialog. The client locates the correct viewer object as follows.

// Retrieve the BodyPart from the current attachment
BodyPart bp = getSelectedAttachment();

DataHandler dh = bp.getDataHandler();
CommandInfo cinfo = dh.getCommand("view");
Component comp = (Component) dh.getBean(cinfo);

// Add viewer to dialog Panel
MyDialog myDialog = new MyDialog();
myDialog.add(comp);

// display dialog on screen
myDialog.show();

See “Setting Message Content” on page 47 for examples that construct a message for a
send operation.

44 Chapter 7: The JavaBeans Activation Framework
Adding Support for Content Types

March 2013 JavaMail™ API Design Specification

Adding Support for Content Types
Support for commands acting on message data is an implementation task left to the
client. JavaMail and JAF APIs intend for this support to be provided by a JAF-Aware
JavaBean. Almost all data will require edit and view support.

Currently, the JavaMail API does not provide viewer JavaBeans. The JAF does provide
two very simple JAF-aware viewer beans: A Text Viewer and Image Viewer. These
beans handle data where content-type has been set to text/plain or image/gif.

Developers writing a JavaMail client need to write additional viewers that support
some of the basic content types-- specifically message/rfc822, multipart/mixed,
and text/plain. These are the usual content-types encountered when displaying a
Message, and they provide the look and feel of the application.

Content developers providing additional data types should refer to the JAF
specification, that discusses how to create DataContentHandlers and Beans that
operate on those contents.

45

JavaMail™ API Design Specification March 2013

Chapter 8:
Message Composition

This section describes the process used to instantiate a message object, add content to
that message, and send it to its intended list of recipients.

The JavaMail API allows a client program to create a message of arbitrary complexity.
Messages are instantiated from the Message subclass. The client program can
manipulate any message as if it had been retrieved from a Store.

Building a Message Object
To create a message, a client program instantiates a Message object, sets appropriate
attributes, and then inserts the content.

■ The attributes specify the message address and other values necessary to send,
route, receive, decode and store the message. Attributes also specify the message
structure and data content type.

■ Message content is carried in a DataHandler object, that carries either data or a
Multipart object. A DataHandler carries the content body and provides
methods the client uses to handle the content. A Multipart object is a container
that contains one or more Bodypart objects, each of which can in turn contain
DataHandler objects.

Message Creation
javax.mail.Message is an abstract class that implements the Part interface.
Therefore, to create a message object, select a message subclass that implements the
appropriate message type.

For example, to create a Mime message, a JavaMail client instantiates an empty
javax.mail.internet.MimeMessage object passing the current Session object
to it:

Message msg = new MimeMessage(session);

46 Chapter 8: Message Composition
Setting Message Attributes

March 2013 JavaMail™ API Design Specification

Setting Message Attributes
The Message class provides a set of methods that specify standard attributes
common to all messages. The MimeMessage class provides additional methods that
set MIME-specific attributes. The client program can also set non-standard attributes
(custom headers) as name-value pairs.

The methods for setting standard attributes are listed below:

public class Message {
public void setFrom(Address addr);
public void setFrom(); // retrieves from system
public void setRecipients(RecipientType type, Address[] addrs);
public void setReplyTo(Address[] addrs);
public void setSentDate(Date date);
public void setSubject(String subject);
...

}

The Part interface specifies the following method, that sets custom headers:

public void setHeader(String name, String value)

The setRecipients method takes a RecipientType as its first parameter, which
specifies which recipient field to use. Currently, Message.RecipientType.TO,
Message.RecipientType.CC, and Message.RecipientType.BCC are defined.
Additional RecipientTypes may be defined as necessary.

The Message class provides two versions of the of the setFrom method:

■ setFrom(Address addr) specifies the sender explicitly from an Address
object parameter.

■ setFrom() retrieves the sender’s username from the local system.

The code sample below sets attributes for the MimeMessage just created. First, it
instantiates Address objects to be used as To and From addresses. Then, it calls set
methods, which equate those addresses to appropriate message attributes:

toAddrs[] = new InternetAddress[1];
toAddrs[0] = new InternetAddress("luke@rebellion.gov");
Address fromAddr =
 new InternetAddress("han.solo@smuggler.com");

msg.setFrom(fromAddr);
msg.setRecipients(Message.RecipientType.TO, toAddrs);
msg.setSubject("Takeoff time.");
msg.setSentDate(new Date());

Chapter 8: Message Composition 47
Setting Message Content

JavaMail™ API Design Specification March 2013

Setting Message Content
The Message object carries content data within a DataHandler object. To add
content to a Message, a client creates content, instantiates a DataHandler object,
places content into that DataHandler object, and places that object into a Message
object that has had its attributes defined.

The JavaMail API provides two techniques that set message content. The first
technique uses the setDataHandler method. The second technique uses the
setContent method.

Typically, clients add content to a DataHandler object by calling
setDataHandler(DataHandler) on a Message object. The DataHandler is an
object that encapsulates data. The data is passed to the DataHandler's constructor as
either a DataSource (a stream connected to the data) or as an object in the Java
programming language. The InputStream object creates the DataSource. See “The
JavaBeans Activation Framework” on page 41 for additional information.

public class DataHandler {
DataHandler(DataSource dataSource);
DataHandler(Object data, String mimeType);

}

The code sample below shows how to place text content into an InternetMessage.
First, create the text as a string object. Then, pass the string into a DataHandler
object, together with its MIME type. Finally, add the DataHandler object to the
message object:

// create brief message text
String content = "Leave at 300.";

// instantiate the DataHandler object

DataHandler data = new DataHandler(content, "text/plain");

// Use setDataHandler() to insert data into the
// new Message object

 msg.setDataHandler(data);

Alternately, setContent implements a simpler technique that takes the data object
and its MIME type. setContent creates the DataHandler object automatically:

// create the message text
String content = "Leave at 300.";

// call setContent to pass content and content type
// together into the message object

msg.setContent(content, "text/plain");

48 Chapter 8: Message Composition
Building a MIME Multipart Message

March 2013 JavaMail™ API Design Specification

When the client calls Transport.send()to send this message, the recipient will
receive the message below, using either technique:

Date: Wed, 23 Apr 1997 22:38:07 -0700 (PDT)
From: han.solo@smuggler.com
Subject: Takeoff time
To: luke@rebellion.gov

Leave at 300.

 Building a MIME Multipart Message
Follow these steps to create a MIME Multipart Message:

1. Instantiate a new MimeMultipart object, or a subclass.

2. Create MimeBodyParts for the specific message parts. Use the setContent
method or the setDataHandler method to create the content for each
Bodypart, as described in the previous section.

Note – The default subtype for a MimeMultipart object is mixed. It can be set to other
subtypes as required. MimeMultipart subclasses might already have their subtype
set appropriately.

Chapter 8: Message Composition 49
Building a MIME Multipart Message

JavaMail™ API Design Specification March 2013

3. Insert the Multipart object into the Message object by calling
setContent(Multipart) within a newly-constructed Message object.

The example below creates a Multipart object and then adds two message parts
to it. The first message part is a text string, “Spaceport Map,” and the second
contains a document of type “application/postscript.” Finally, this multipart
object is added to a MimeMessage object of the type described above.

// Instantiate a Multipart object
MimeMultipart mp = new MimeMultipart();

// create the first bodypart object
MimeBodyPart b1 = new MimeBodyPart();

// create textual content
// and add it to the bodypart object
b1.setContent("Spaceport Map","text/plain");
mp.addBodyPart(b1);

// Multipart messages usually have more than
// one body part. Create a second body part
// object, add new text to it, and place it
// into the multipart message as well. This
// second object holds postscript data.

MimeBodyPart b2 = new MimeBodyPart(); b2.setContent(map,"application/
postscript");
mp.addBodyPart(b2);

// Create a new message object as described above,
// and set its attributes. Add the multipart
// object to this message and call saveChanges()
// to write other message headers automatically.

Message msg = new MimeMessage(session);

// Set message attrubutes as in a singlepart
// message.

msg.setContent(mp); // add Multipart
msg.saveChanges(); // save changes

After all message parts are created and inserted, call the saveChanges method to
ensure that the client writes appropriate message headers. This is identical to the
process followed with a single part message. Note that the JavaMail API calls the
saveChanges method implicitly during the send process, so invoking it is
unnecessary and expensive if the message is to be sent immediately.

50 Chapter 8: Message Composition
Building a MIME Multipart Message

March 2013 JavaMail™ API Design Specification

51

JavaMail™ API Design Specification March 2013

Chapter 9:
Transport Protocols and Mechanisms

The Transport abstract class defines the message submission and transport protocol.
Subclasses of the Transport class implement SMTP and other transport protocols.

Obtaining the Transport Object
The Transport object is seldom explicitly created. The getTransport method
obtains a Transport object from the Session factory. The JavaMail API provides
three versions of the getTransport method:

public class Session {
public Transport getTransport(Address address);
public Transport getTransport(String protocol);
public Transport getTransport();

}

■ getTransport(Address address) returns the implementation of the
transport class based on the address type. A user-extensible map defines which
transport type to use for a particular address. For example, if the address is an
InternetAddress, and InternetAddress is mapped to a protocol that
supports SMTP then SMTPTransport can be returned.

■ The client can also call getTransport(“smtp”) to request SMTP, or another
transport implementation protocol.

■ getTransport() returns the transport specified in the
mail.transport.protocol property.

See “The Mail Session” on page 25 for details.

Transport Methods
The Transport class provides the connect and protocolConnect methods,
which operate similarly to those on the Store class. See “The Store Class” on page 33
for details.

A Transport object generates a ConnectionEvent to notify its listeners of a
successful or a failed connection. A Transport object can throw an IOException if
the connection fails.

52 Chapter 9: Transport Protocols and Mechanisms
Transport Events

March 2013 JavaMail™ API Design Specification

Transport implementations should ensure that the message specified is of a known
type. If the type is known, then the Transport object sends the message to its
specified destinations. If the type is not known, then the Transport object can
attempt to reformat the Message object into a suitable version using gatewaying
techniques, or it can throw a MessagingException, indicating failure. For example,
the SMTP transport implementation recognizes MimeMessages. It invokes the
writeTo method on a MimeMessage object to generate a RFC822 format byte stream
that is sent to the SMTP host.

The message is sent using the Transport.send static method or the sendMessage
instance method. The Transport.send method is a convenience method that
instantiates the transports necessary to send the message, depending on the
recipients' addresses, and then passes the message to each transport's sendMessage
method. Alternatively, the client can get the transport that implements a particular
protocol itself and send the message using the sendMessage method. This adds the
benefit of being able to register as event listeners on the individual transports.

Note that the Address[] argument passed to the send and sendMessage methods
do not need to match the addresses provided in the message headers. Although these
arguments usually will match, the end-user determines where the messages are
actually sent. This is useful for implementing the Bcc: header, and other similar
functions.

Transport Events
Clients can register as listeners for events generated by transport implementations.
(Note that the abstract Transport class doesn't fire any events, only particular
protocol implementations generate events). There are two events generated:
ConnectionEvent and TransportEvent.

ConnectionEvent
If the transport connects successfully, it will fire the ConnectionEvent with the type
set to OPENED. If the connection times out or is closed, ConnectionEvent with type
CLOSED is generated.

Chapter 9: Transport Protocols and Mechanisms 53
Transport Events

JavaMail™ API Design Specification March 2013

TransportEvent
The sendMessage method generates a TransportEvent to its listeners. That event
contains information about the method’s success or failure. There are three types of
TransportEvent: MESSAGE_DELIVERED, MESSAGE_NOT_DELIVERED,
MESSAGE_PARTIALLY_DELIVERED. The event contains three arrays of addresses:
validSent[], validUnsent[], and invalid[] that list the valid and invalid
addresses for this message and protocol.

Transport Event Description

MESSAGE_DELIVERED When the message has been successfully sent to all
recipients by this transport. validSent[] contains all the
addresses. validUnsent[] and invalid[] are null.

MESSAGE_NOT_DELIVERED When ValidSent[] is null, the message was not
successfully sent to any recipients. validUnsent[] may
have addresses that are valid. invalidSent[] may
contain invalid addresses.

MESSAGE_PARTIALLY_DELIVERED Message was successfully sent to some recipients but not
to all. ValidSent[] holds addresses of recipients to
whom the message was sent. validUnsent[] holds valid
addresses but the message wasn't sent to them.
invalid[] holds invalid addresses.

54 Chapter 9: Transport Protocols and Mechanisms
Using The Transport Class

March 2013 JavaMail™ API Design Specification

Using The Transport Class
The code segment below sends a MimeMessage using a Transport class
implementing the SMTP protocol. The client creates two InternetAddress objects
that specify the recipients and retrieves a Transport object from the default
Session that supports sending messages to Internet addresses. Then the Session
object uses a Transport object to send the message.

// Get a session
Session session = Session.getInstance(props, null);

// Create an empty MimeMessage and its part
Message msg = new MimeMessage(session);
... add headers and message parts as before

// create two destination addresses
Address[] addrs = {new InternetAddress("mickey@disney.com"),
 new InternetAddress("goofy@disney.com")};

// get a transport that can handle sending message to
// InternetAddresses. This will probably map to a transport
// that supports SMTP.
Transport trans = session.getTransport(addrs[0]);

// add ourselves as ConnectionEvent and TransportEvent listeners
trans.addConnectionListener(this);
trans.addTransportListener(this);

// connect method determines what host to use from the
// session properties
trans.connect();

// send the message to the addresses we specified above
trans.sendMessage(msg, addrs);

55

JavaMail™ API Design Specification March 2013

Chapter 10:
Internet Mail

The JavaMail specification does not define any implementation. However, the API
does include a set of classes that implement Internet Mail standards. Although not
part of the specification, these classes can be considered part of the JavaMail package.
They show how to adapt an existing messaging architecture to the JavaMail
framework.

These classes implement the Internet Mail Standards defined by the RFCs listed
below:

■ RFC822 (Standard for the Format of Internet Text Messages)

■ RFC2045, RFC2046, RFC2047 (MIME)

RFC822 describes the structure of messages exchanged across the Internet. Messages
are viewed as having a header and contents. The header is composed of a set of
standard and optional header fields. The header is separated from the content by a
blank line. The RFC specifies the syntax for all header fields and the semantics of the
standard header fields. It does not however, impose any structure on the message
contents.

The MIME RFCs 2045, 2046 and 2047 define message content structure by defining
structured body parts, a typing mechanism for identifying different media types, and
a set of encoding schemes to encode data into mail-safe characters.

The Internet Mail package allows clients to create, use and send messages conforming
to the standards listed above. It gives service providers a set of base classes and
utilities they can use to implement Stores and Transports that use the Internet mail
protocols. See “MimeMessage Object Hierarchy” on page 89 for a Mime class and
interface hierarchy diagram.

The JavaMail MimePart interface models an entity as defined in RFC2045, Section 2.4.
MimePart extends the JavaMail Part interface to add MIME-specific methods and
semantics. The MimeMessage and MimeBodyPart classes implement the MimePart
interface. The following figure shows the class hierarchy of these classes.

56 Chapter 10: Internet Mail
The MimeMessage Class

March 2013 JavaMail™ API Design Specification

FIGURE 10-1

The MimeMessage Class
The MimeMessage class extends Message and implements MimePart. This class
implements an email message that conforms to the RFC822 and MIME standards.

The MimeMessage class provides a default constructor that creates an empty
MimeMessage object. The client can fill in the message later by invoking the parse
method on an RFC822 input stream. Note that the parse method is protected, so that
only this class and its subclasses can use this method. Service providers implementing
’light-weight’ Message objects that are filled in on demand can generate the
appropriate byte stream and invoke the parse method when a component is
requested from a message. Service providers that can provide a separate byte stream
for the message body (distinct from the message header) can override the
getContentStream method.

The client can also use the default constructor to create new MimeMessage objects for
sending. The client sets appropriate attributes and headers, inserts content into the
message object, and finally calls the send method for that MimeMessage object.

MimePartMessage

MimeMessage

MimePartBodyPart

MimeBodyPart

Legend

Extends

Implements

Chapter 10: Internet Mail 57
The MimeBodyPart Class

JavaMail™ API Design Specification March 2013

This code sample creates a new MimeMessage object for sending. See “Message
Composition” on page 45 and “Transport Protocols and Mechanisms” on page 51 for
details.

MimeMessage m = new MimeMessage(session);
// Set FROM:
m.setFrom(new InternetAddress("jmk@Sun.COM"));
// Set TO:
InternetAddress a[] = new InternetAddress[1];
a[0] = new InternetAddress("javamail@Sun.COM");
m.setRecipients(Message.RecipientType.TO, a);
// Set content
m.setContent(data, "text/plain");
// Send message
Transport.send(m);

The MimeMessage class also provides a constructor that uses an input stream to
instantiate itself. The constructor internally invokes the parse method to fill in the
message. The InputStream object is left positioned at the end of the message body.

InputStream in = getMailSource(); // a stream of mail messages
MimeMessage m = null;
for (; ;) {
 try {

m = new MimeMessage(session,in);
 } catch (MessagingException ex) {

// reached end of message stream
break;

 }
}

MimeMessage implements the writeTo method by writing an RFC822-formatted
byte stream of its headers and body. This is accomplished in two steps: First, the
MimeMessage object writes out its headers; then it delegates the rest to the
DataHandler object representing the content.

The MimeBodyPart Class
The MimeBodyPart class extends BodyPart and implements the MimePart
interface. This class represents a Part inside a Multipart. MimeBodyPart
implements a Body Part as defined by RFC2045, Section 2.5.

The getBodyPart(int index) returns the MimeBodyPart object at the given
index. MimeMultipart also allows the client to fetch MimeBodyPart objects based
on their Content-IDs.

The addBodyPart method adds a new MimeBodyPart object to a MimeMultipart
as a step towards constructing a new multipart MimeMessage.

58 Chapter 10: Internet Mail
The MimeMultipart Class

March 2013 JavaMail™ API Design Specification

The MimeMultipart Class
The MimeMultipart class extends Multipart and models a MIME multipart
content within a message or a body part.

A MimeMultipart is obtained from a MimePart containing a ContentType
attribute set to multipart, by invoking that part's getContent method.

The client creates a new MimeMultipart object by invoking its default constructor.
To create a new multipart MimeMessage, create a MimeMultipart object (or its
subclass); use set methods to fill in the appropriate MimeBodyParts; and finally, use
setContent(Multipart) to insert it into the MimeMessage.

MimeMultipart also provides a constructor that takes an input stream positioned at
the beginning of a MIME multipart stream. This class parses the input stream and
creates the child body parts.

The getSubType method returns the multipart message MIME subtype. The subtype
defines the relationship among the individual body parts of a multipart message.
More semantically complex multipart subtypes are implemented as subclasses of
MimeMultipart, providing additional methods that expose specific functionality.

Note that a multipart content object is treated like any other content. When parsing a
MIME Multipart stream, the JavaMail implementation uses the JAF framework to
locate a suitable DataContentHandler for the specific subtype and uses that handler to
create the appropriate Multipart instance. Similarly, when generating the output
stream for a Multipart object, the appropriate DataContentHandler is used to
generate the stream.

The MimeUtility Class
MimeUtility is a utility class that provides MIME-related functions. All methods in
this class are static methods. These methods currently perform the functions listed
below:

Chapter 10: Internet Mail 59
The MimeUtility Class

JavaMail™ API Design Specification March 2013

Content Encoding and Decoding
Data sent over RFC 821/822-based mail systems are restricted to 7-bit US-ASCII bytes.
Therefore, any non-US-ASCII content needs to be encoded into the 7-bit US-ASCII
(mail-safe) format. MIME (RFC 2045) specifies the “base64” and “quoted-printable”
encoding schemes to perform this encoding. The following methods support content
encoding:

■ The getEncoding method takes a DataSource object and returns the Content-
Transfer-Encoding that should be applied to the data in that DataSource object
to make it mail-safe.

■ The encode method wraps an encoder around the given output stream based on
the specified Content-Transfer-Encoding. The decode method decodes the given
input stream, based on the specified Content-Transfer-Encoding.

Header Encoding and Decoding
RFC 822 restricts the data in message headers to 7bit US-ASCII characters. MIME
(RFC 2047) specifies a mechanism to encode non 7bit US-ASCII characters so that they
are suitable for inclusion in message headers. This section describes the methods that
enable this functionality.

The header-related methods (getHeader, setHeader) in Part and Message operate on
Strings. String objects contain (16 bit) Unicode characters.

Since RFC 822 prohibits non US-ASCII characters in headers, clients invoking the
setHeader() methods must ensure that the header values are appropriately
encoded if they contain non US-ASCII characters.

The encoding process (based on RFC 2047) consists of two steps:

1. Convert the Unicode String into an array of bytes in another charset. This step is
required because Unicode is not yet a widely used charset. Therefore, a client
must convert the Unicode characters into a charset that is more palatable to the
recipient.

2. Apply a suitable encoding format that ensures that the bytes obtained in the
previous step are mail-safe.

The encodeText method combines the two steps listed above to create an encoded
header. Note that as RFC 2047 specifies, only “unstructured” headers and user-
defined extension headers can be encoded. It is prudent coding practice to run such
header values through the encoder to be safe. Also note that the encodeText method
encodes header values only if they contain non US-ASCII characters.

The reverse of this process (decoding) needs to be performed when handling header
values obtained from a MimeMessage or MimeBodyPart using the getHeader set of
methods, since those headers might be encoded as per RFC 2047. The decodeText
method takes a header value, applies RFC 2047 decoding standards, and returns the

60 Chapter 10: Internet Mail
The ContentType Class

March 2013 JavaMail™ API Design Specification

decoded value as a Unicode String. Note that this method should be invoked only on
“unstructured” or user-defined headers. Also note that decodeText attempts
decoding only if the header value was encoded in RFC 2047 style. It is advised that
you always run header values through the decoder to be safe.

The ContentType Class
The ContentType class is a utility class that parses and generates MIME content-
type headers.

To parse a MIME content-Type value, create a ContentType object and invoke the
toString method.

The ContentType class also provides methods that match Content-Type values.

The following code fragment illustrates the use of this class to extract a MIME
parameter.

String type = part.getContentType();
ContentType cType = new ContentType(type);

if (cType.match("application/x-foobar"))
iString color = cType.getParameter("color");

This code sample uses this class to construct a MIME Content-Type value:
ContentType cType = new ContentType();
cType.setPrimaryType("application");
cType.setSubType("x-foobar");
cType.setParameter("color", "red");

String contentType = cType.toString();

61

JavaMail™ API Design Specification March 2013

Appendix A:
Environment Properties

This section lists some of the environment properties that are used by the JavaMail
APIs. The JavaMail javadocs contain additional information on properties supported
by JavaMail.

Note that Applets can not determine some defaults listed in this Appendix. When
writing an applet, you must specify the properties you require.

Property Description Default Value

mail.store.protocol Specifies the default Message Access
Protocol. The Session.getStore()
method returns a Store object that
implements this protocol. The client can
override this property and explicitly
specify the protocol with the
Session.getStore(String
protocol) method.

The first appropriate
protocol in the config
files

mail.transport.protocol Specifies the default Transport Protocol.
The Session.getTransport() method
returns a Transport object that
implements this protocol. The client can
override this property and explicitly
specify the protocol by using
Session.getTransport(String
protocol) method.

The first appropriate
protocol in the config
files

mail.host Specifies the default Mail server. The
Store and Transport object’s connect
methods use this property, if the protocol-
specific host property is absent, to locate
the target host.

The local machine

mail.user Specifies the username to provide when
connecting to a Mail server. The Store
and Transport object’s connect
methods use this property, if the protocol-
specific username property is absent, to
obtain the username.

user.name

62 Appendix A: Environment Properties

March 2013 JavaMail™ API Design Specification

mail.protocol.host Specifies the protocol-specific default Mail
server. This overrides the mail.host
property.

mail.host

mail.protocol.user Specifies the protocol-specific default
username for connecting to the Mail
server. This overrides the mail.user
property.

mail.user

mail.from Specifies the return address of the current
user. Used by the
InternetAddress.getLocalAddress
method to specify the current user’s email
address.

username@host

mail.debug Specifies the initial debug mode. Setting
this property to true will turn on debug
mode, while setting it to false turns
debug mode off.

Note that the Session.setDebug
method also controls the debug mode.

false

Property Description Default Value

63

JavaMail™ API Design Specification March 2013

Appendix B:
Examples Using the JavaMail API

Following are some example programs that illustrate the use of the JavaMail APIs.
These examples are also included in the JavaMail implementation.

Example: Showing a Message
import java.util.*;
import java.io.*;
import javax.mail.*;
import javax.mail.event.*;
import javax.mail.internet.*;
import javax.activation.*;

/*
 * Demo app that exercises the Message interfaces.
 * Show information about and contents of messages.
 *
 * @author John Mani
 * @author Bill Shannon
 */

public class msgshow {

 static String protocol;
 static String host = null;
 static String user = null;
 static String password = null;
 static String mbox = null;
 static String url = null;
 static int port = -1;
 static boolean verbose = false;
 static boolean debug = false;
 static boolean showStructure = false;
 static boolean showMessage = false;
 static boolean showAlert = false;
 static boolean saveAttachments = false;
 static int attnum = 1;

 public static void main(String argv[]) {
 int msgnum = -1;
 int optind;
 InputStream msgStream = System.in;

64 Appendix B: Examples Using the JavaMail API
Example: Showing a Message

March 2013 JavaMail™ API Design Specification

 for (optind = 0; optind < argv.length; optind++) {
 if (argv[optind].equals("-T")) {
 protocol = argv[++optind];
 } else if (argv[optind].equals("-H")) {
 host = argv[++optind];
 } else if (argv[optind].equals("-U")) {
 user = argv[++optind];
 } else if (argv[optind].equals("-P")) {
 password = argv[++optind];
 } else if (argv[optind].equals("-v")) {
 verbose = true;
 } else if (argv[optind].equals("-D")) {
 debug = true;
 } else if (argv[optind].equals("-f")) {
 mbox = argv[++optind];
 } else if (argv[optind].equals("-L")) {
 url = argv[++optind];
 } else if (argv[optind].equals("-p")) {
 port = Integer.parseInt(argv[++optind]);
 } else if (argv[optind].equals("-s")) {
 showStructure = true;
 } else if (argv[optind].equals("-S")) {
 saveAttachments = true;
 } else if (argv[optind].equals("-m")) {
 showMessage = true;
 } else if (argv[optind].equals("-a")) {
 showAlert = true;
 } else if (argv[optind].equals("--")) {
 optind++;
 break;
 } else if (argv[optind].startsWith("-")) {
 System.out.println(
"Usage: msgshow [-L url] [-T protocol] [-H host] [-p port] [-U user]");
 System.out.println(
"\t[-P password] [-f mailbox] [msgnum] [-v] [-D] [-s] [-S] [-a]");
 System.out.println(
"or msgshow -m [-v] [-D] [-s] [-S] [-f msg-file]");
 System.exit(1);
 } else {
 break;
 }
 }

 try {
 if (optind < argv.length)
 msgnum = Integer.parseInt(argv[optind]);

 // Get a Properties object
 Properties props = System.getProperties();

 // Get a Session object
 Session session = Session.getInstance(props, null);
 session.setDebug(debug);

Appendix B: Examples Using the JavaMail API 65
Example: Showing a Message

JavaMail™ API Design Specification March 2013

 if (showMessage) {
 MimeMessage msg;
 if (mbox != null)
 msg = new MimeMessage(session,
 new BufferedInputStream(new FileInputStream(mbox)));
 else
 msg = new MimeMessage(session, msgStream);
 dumpPart(msg);
 System.exit(0);
 }

 // Get a Store object
 Store store = null;
 if (url != null) {
 URLName urln = new URLName(url);
 store = session.getStore(urln);
 if (showAlert) {
 store.addStoreListener(new StoreListener() {
 public void notification(StoreEvent e) {
 String s;
 if (e.getMessageType() == StoreEvent.ALERT)
 s = "ALERT: ";
 else
 s = "NOTICE: ";
 System.out.println(s + e.getMessage());
 }
 });
 }
 store.connect();
 } else {
 if (protocol != null)
 store = session.getStore(protocol);
 else
 store = session.getStore();

 // Connect
 if (host != null || user != null || password != null)
 store.connect(host, port, user, password);
 else
 store.connect();
 }

 // Open the Folder

 Folder folder = store.getDefaultFolder();
 if (folder == null) {
 System.out.println("No default folder");
 System.exit(1);
 }

 if (mbox == null)

66 Appendix B: Examples Using the JavaMail API
Example: Showing a Message

March 2013 JavaMail™ API Design Specification

 mbox = "INBOX";
 folder = folder.getFolder(mbox);
 if (folder == null) {
 System.out.println("Invalid folder");
 System.exit(1);
 }

 // try to open read/write and if that fails try read-only
 try {
 folder.open(Folder.READ_WRITE);
 } catch (MessagingException ex) {
 folder.open(Folder.READ_ONLY);
 }
 int totalMessages = folder.getMessageCount();

 if (totalMessages == 0) {
 System.out.println("Empty folder");
 folder.close(false);
 store.close();
 System.exit(1);
 }

 if (verbose) {
 int newMessages = folder.getNewMessageCount();
 System.out.println("Total messages = " + totalMessages);
 System.out.println("New messages = " + newMessages);
 System.out.println("-------------------------------");
 }

 if (msgnum == -1) {
 // Attributes & Flags for all messages ..
 Message[] msgs = folder.getMessages();

 // Use a suitable FetchProfile
 FetchProfile fp = new FetchProfile();
 fp.add(FetchProfile.Item.ENVELOPE);
 fp.add(FetchProfile.Item.FLAGS);
 fp.add("X-Mailer");
 folder.fetch(msgs, fp);

 for (int i = 0; i < msgs.length; i++) {
 System.out.println("--------------------------");
 System.out.println("MESSAGE #" + (i + 1) + ":");
 dumpEnvelope(msgs[i]);
 // dumpPart(msgs[i]);
 }
 } else {
 System.out.println("Getting message number: " + msgnum);
 Message m = null;

 try {
 m = folder.getMessage(msgnum);
 dumpPart(m);

Appendix B: Examples Using the JavaMail API 67
Example: Showing a Message

JavaMail™ API Design Specification March 2013

 } catch (IndexOutOfBoundsException iex) {
 System.out.println("Message number out of range");
 }
 }

 folder.close(false);
 store.close();
 } catch (Exception ex) {
 System.out.println("Oops, got exception! " + ex.getMessage());
 ex.printStackTrace();
 System.exit(1);
 }
 System.exit(0);
 }

 public static void dumpPart(Part p) throws Exception {
 if (p instanceof Message)
 dumpEnvelope((Message)p);

 /** Dump input stream ..

 InputStream is = p.getInputStream();
 // If "is" is not already buffered, wrap a BufferedInputStream
 // around it.
 if (!(is instanceof BufferedInputStream))
 is = new BufferedInputStream(is);
 int c;
 while ((c = is.read()) != -1)
 System.out.write(c);

 **/

 String ct = p.getContentType();
 try {
 pr("CONTENT-TYPE: " + (new ContentType(ct)).toString());
 } catch (ParseException pex) {
 pr("BAD CONTENT-TYPE: " + ct);
 }
 String filename = p.getFileName();
 if (filename != null)
 pr("FILENAME: " + filename);

 /*
 * Using isMimeType to determine the content type avoids
 * fetching the actual content data until we need it.
 */
 if (p.isMimeType("text/plain")) {
 pr("This is plain text");
 pr("---------------------------");
 if (!showStructure && !saveAttachments)
 System.out.println((String)p.getContent());
 } else if (p.isMimeType("multipart/*")) {
 pr("This is a Multipart");

68 Appendix B: Examples Using the JavaMail API
Example: Showing a Message

March 2013 JavaMail™ API Design Specification

 pr("---------------------------");
 Multipart mp = (Multipart)p.getContent();
 level++;
 int count = mp.getCount();
 for (int i = 0; i < count; i++)
 dumpPart(mp.getBodyPart(i));
 level--;
 } else if (p.isMimeType("message/rfc822")) {
 pr("This is a Nested Message");
 pr("---------------------------");
 level++;
 dumpPart((Part)p.getContent());
 level--;
 } else {
 if (!showStructure && !saveAttachments) {
 /*
 * If we actually want to see the data, and it's not a
 * MIME type we know, fetch it and check its Java type.
 */
 Object o = p.getContent();
 if (o instanceof String) {
 pr("This is a string");
 pr("---------------------------");
 System.out.println((String)o);
 } else if (o instanceof InputStream) {
 pr("This is just an input stream");
 pr("---------------------------");
 InputStream is = (InputStream)o;
 int c;
 while ((c = is.read()) != -1)
 System.out.write(c);
 } else {
 pr("This is an unknown type");
 pr("---------------------------");
 pr(o.toString());
 }
 } else {
 // just a separator
 pr("---------------------------");
 }
 }

 /*
 * If we're saving attachments, write out anything that
 * looks like an attachment into an appropriately named
 * file. Don't overwrite existing files to prevent
 * mistakes.
 */
 if (saveAttachments && level != 0 && !p.isMimeType("multipart/*")){
 String disp = p.getDisposition();
 // many mailers don't include a Content-Disposition
 if (disp == null || disp.equalsIgnoreCase(Part.ATTACHMENT)) {
 if (filename == null)

Appendix B: Examples Using the JavaMail API 69
Example: Showing a Message

JavaMail™ API Design Specification March 2013

 filename = "Attachment" + attnum++;
 pr("Saving attachment to file " + filename);
 try {
 File f = new File(filename);
 if (f.exists())
 // XXX - could try a series of names
 throw new IOException("file exists");
 ((MimeBodyPart)p).saveFile(f);
 } catch (IOException ex) {
 pr("Failed to save attachment: " + ex);
 }
 pr("---------------------------");
 }
 }
 }

 public static void dumpEnvelope(Message m) throws Exception {
 pr("This is the message envelope");
 pr("---------------------------");
 Address[] a;
 // FROM
 if ((a = m.getFrom()) != null) {
 for (int j = 0; j < a.length; j++)
 pr("FROM: " + a[j].toString());
 }

 // TO
 if ((a = m.getRecipients(Message.RecipientType.TO)) != null) {
 for (int j = 0; j < a.length; j++) {
 pr("TO: " + a[j].toString());
 InternetAddress ia = (InternetAddress)a[j];
 if (ia.isGroup()) {
 InternetAddress[] aa = ia.getGroup(false);
 for (int k = 0; k < aa.length; k++)
 pr(" GROUP: " + aa[k].toString());
 }
 }
 }

 // SUBJECT
 pr("SUBJECT: " + m.getSubject());

 // DATE
 Date d = m.getSentDate();
 pr("SendDate: " +
 (d != null ? d.toString() : "UNKNOWN"));

 // FLAGS
 Flags flags = m.getFlags();
 StringBuffer sb = new StringBuffer();
 Flags.Flag[] sf = flags.getSystemFlags(); // get the system flags

 boolean first = true;

70 Appendix B: Examples Using the JavaMail API
Example: Showing a Message

March 2013 JavaMail™ API Design Specification

 for (int i = 0; i < sf.length; i++) {
 String s;
 Flags.Flag f = sf[i];
 if (f == Flags.Flag.ANSWERED)
 s = "\\Answered";
 else if (f == Flags.Flag.DELETED)
 s = "\\Deleted";
 else if (f == Flags.Flag.DRAFT)
 s = "\\Draft";
 else if (f == Flags.Flag.FLAGGED)
 s = "\\Flagged";
 else if (f == Flags.Flag.RECENT)
 s = "\\Recent";
 else if (f == Flags.Flag.SEEN)
 s = "\\Seen";
 else
 continue; // skip it
 if (first)
 first = false;
 else
 sb.append(' ');
 sb.append(s);
 }

 String[] uf = flags.getUserFlags(); // get the user flag strings
 for (int i = 0; i < uf.length; i++) {
 if (first)
 first = false;
 else
 sb.append(' ');
 sb.append(uf[i]);
 }
 pr("FLAGS: " + sb.toString());

 // X-MAILER
 String[] hdrs = m.getHeader("X-Mailer");
 if (hdrs != null)
 pr("X-Mailer: " + hdrs[0]);
 else
 pr("X-Mailer NOT available");
 }

 static String indentStr = " ";
 static int level = 0;

 /**
 * Print a, possibly indented, string.
 */
 public static void pr(String s) {
 if (showStructure)
 System.out.print(indentStr.substring(0, level * 2));
 System.out.println(s);
 }

Appendix B: Examples Using the JavaMail API 71
Example: Listing Folders

JavaMail™ API Design Specification March 2013

}

Example: Listing Folders
import java.util.Properties;
import javax.mail.*;

import com.sun.mail.imap.*;

/**
 * Demo app that exercises the Message interfaces.
 * List information about folders.
 *
 * @author John Mani
 * @author Bill Shannon
 */

public class folderlist {
 static String protocol = null;
 static String host = null;
 static String user = null;
 static String password = null;
 static String url = null;
 static String root = null;
 static String pattern = "%";
 static boolean recursive = false;
 static boolean verbose = false;
 static boolean debug = false;

 public static void main(String argv[]) throws Exception {
 int optind;
 for (optind = 0; optind < argv.length; optind++) {
 if (argv[optind].equals("-T")) {
 protocol = argv[++optind];
 } else if (argv[optind].equals("-H")) {
 host = argv[++optind];
 } else if (argv[optind].equals("-U")) {
 user = argv[++optind];
 } else if (argv[optind].equals("-P")) {
 password = argv[++optind];
 } else if (argv[optind].equals("-L")) {
 url = argv[++optind];
 } else if (argv[optind].equals("-R")) {
 root = argv[++optind];
 } else if (argv[optind].equals("-r")) {
 recursive = true;
 } else if (argv[optind].equals("-v")) {
 verbose = true;
 } else if (argv[optind].equals("-D")) {
 debug = true;

72 Appendix B: Examples Using the JavaMail API
Example: Listing Folders

March 2013 JavaMail™ API Design Specification

 } else if (argv[optind].equals("--")) {
 optind++;
 break;
 } else if (argv[optind].startsWith("-")) {
 System.out.println(
"Usage: folderlist [-T protocol] [-H host] [-U user] [-P password] [-L
url]");
 System.out.println(
"\t[-R root] [-r] [-v] [-D] [pattern]");
 System.exit(1);
 } else {
 break;
 }
 }
 if (optind < argv.length)
 pattern = argv[optind];

 // Get a Properties object
 Properties props = System.getProperties();

 // Get a Session object
 Session session = Session.getInstance(props, null);
 session.setDebug(debug);

 // Get a Store object
 Store store = null;
 Folder rf = null;
 if (url != null) {
 URLName urln = new URLName(url);
 store = session.getStore(urln);
 store.connect();
 } else {
 if (protocol != null)
 store = session.getStore(protocol);
 else
 store = session.getStore();

 // Connect
 if (host != null || user != null || password != null)
 store.connect(host, user, password);
 else
 store.connect();
 }

 // List namespace
 if (root != null)
 rf = store.getFolder(root);
 else
 rf = store.getDefaultFolder();

 dumpFolder(rf, false, "");
 if ((rf.getType() & Folder.HOLDS_FOLDERS) != 0) {
 Folder[] f = rf.list(pattern);

Appendix B: Examples Using the JavaMail API 73
Example: Listing Folders

JavaMail™ API Design Specification March 2013

 for (int i = 0; i < f.length; i++)
 dumpFolder(f[i], recursive, " ");
 }

 store.close();
 }

 static void dumpFolder(Folder folder, boolean recurse, String tab)
 throws Exception {
 System.out.println(tab + "Name: " + folder.getName());
 System.out.println(tab + "Full Name: " + folder.getFullName());
 System.out.println(tab + "URL: " + folder.getURLName());

 if (verbose) {
 if (!folder.isSubscribed())
 System.out.println(tab + "Not Subscribed");

 if ((folder.getType() & Folder.HOLDS_MESSAGES) != 0) {
 if (folder.hasNewMessages())
 System.out.println(tab + "Has New Messages");
 System.out.println(tab + "Total Messages: " +
 folder.getMessageCount());
 System.out.println(tab + "New Messages: " +
 folder.getNewMessageCount());
 System.out.println(tab + "Unread Messages: " +
 folder.getUnreadMessageCount());
 }
 if ((folder.getType() & Folder.HOLDS_FOLDERS) != 0)
 System.out.println(tab + "Is Directory");

 /*
 * Demonstrate use of IMAP folder attributes
 * returned by the IMAP LIST response.
 */
 if (folder instanceof IMAPFolder) {
 IMAPFolder f = (IMAPFolder)folder;
 String[] attrs = f.getAttributes();
 if (attrs != null && attrs.length > 0) {
 System.out.println(tab + "IMAP Attributes:");
 for (int i = 0; i < attrs.length; i++)
 System.out.println(tab + " " + attrs[i]);
 }
 }
 }

 System.out.println();

 if ((folder.getType() & Folder.HOLDS_FOLDERS) != 0) {
 if (recurse) {
 Folder[] f = folder.list();
 for (int i = 0; i < f.length; i++)
 dumpFolder(f[i], recurse, tab + " ");
 }

74 Appendix B: Examples Using the JavaMail API
Example: Search a Folder for a Message

March 2013 JavaMail™ API Design Specification

 }
 }
}

Example: Search a Folder for a Message
import java.util.*;
import java.io.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.mail.search.*;
import javax.activation.*;

/*
 * Search the given folder for messages matching the given
 * criteria.
 *
 * @author John Mani
 */

public class search {

 static String protocol = "imap";
 static String host = null;
 static String user = null;
 static String password = null;
 static String mbox = "INBOX";
 static String url = null;
 static boolean debug = false;

 public static void main(String argv[]) {
 int optind;

 String subject = null;
 String from = null;
 boolean or = false;
 boolean today = false;

 for (optind = 0; optind < argv.length; optind++) {
 if (argv[optind].equals("-T")) {
 protocol = argv[++optind];
 } else if (argv[optind].equals("-H")) {
 host = argv[++optind];
 } else if (argv[optind].equals("-U")) {
 user = argv[++optind];
 } else if (argv[optind].equals("-P")) {
 password = argv[++optind];
 } else if (argv[optind].equals("-or")) {
 or = true;
 } else if (argv[optind].equals("-D")) {

Appendix B: Examples Using the JavaMail API 75
Example: Search a Folder for a Message

JavaMail™ API Design Specification March 2013

 debug = true;
 } else if (argv[optind].equals("-f")) {
 mbox = argv[++optind];
 } else if (argv[optind].equals("-L")) {
 url = argv[++optind];
 } else if (argv[optind].equals("-subject")) {
 subject = argv[++optind];
 } else if (argv[optind].equals("-from")) {
 from = argv[++optind];
 } else if (argv[optind].equals("-today")) {
 today = true;
 } else if (argv[optind].equals("--")) {
 optind++;
 break;
 } else if (argv[optind].startsWith("-")) {
 System.out.println(
 "Usage: search [-D] [-L url] [-T protocol] [-H host] " +
 "[-U user] [-P password] [-f mailbox] " +
 "[-subject subject] [-from from] [-or] [-today]");
 System.exit(1);
 } else {
 break;
 }
 }

 try {

 if ((subject == null) && (from == null) && !today) {
 System.out.println(

"Specify either -subject, -from or -today");
 System.exit(1);
 }

 // Get a Properties object
 Properties props = System.getProperties();

 // Get a Session object
 Session session = Session.getInstance(props, null);
 session.setDebug(debug);

 // Get a Store object
 Store store = null;
 if (url != null) {
 URLName urln = new URLName(url);
 store = session.getStore(urln);
 store.connect();
 } else {
 if (protocol != null)
 store = session.getStore(protocol);
 else
 store = session.getStore();

 // Connect

76 Appendix B: Examples Using the JavaMail API
Example: Search a Folder for a Message

March 2013 JavaMail™ API Design Specification

 if (host != null || user != null || password != null)
 store.connect(host, user, password);
 else
 store.connect();
 }

 // Open the Folder

 Folder folder = store.getDefaultFolder();
 if (folder == null) {
 System.out.println("Cant find default namespace");
 System.exit(1);
 }

 folder = folder.getFolder(mbox);
 if (folder == null) {
 System.out.println("Invalid folder");
 System.exit(1);
 }

 folder.open(Folder.READ_ONLY);
 SearchTerm term = null;

 if (subject != null)
 term = new SubjectTerm(subject);
 if (from != null) {
 FromStringTerm fromTerm = new FromStringTerm(from);
 if (term != null) {
 if (or)
 term = new OrTerm(term, fromTerm);
 else
 term = new AndTerm(term, fromTerm);
 }
 else
 term = fromTerm;
 }
 if (today) {
 ReceivedDateTerm dateTerm =
 new ReceivedDateTerm(ComparisonTerm.EQ, new Date());
 if (term != null) {
 if (or)
 term = new OrTerm(term, dateTerm);
 else
 term = new AndTerm(term, dateTerm);
 }
 else
 term = dateTerm;
 }

 Message[] msgs = folder.search(term);
 System.out.println("FOUND " + msgs.length + " MESSAGES");
 if (msgs.length == 0) // no match

Appendix B: Examples Using the JavaMail API 77
Example: Search a Folder for a Message

JavaMail™ API Design Specification March 2013

 System.exit(1);

 // Use a suitable FetchProfile
 FetchProfile fp = new FetchProfile();
 fp.add(FetchProfile.Item.ENVELOPE);
 folder.fetch(msgs, fp);

 for (int i = 0; i < msgs.length; i++) {
 System.out.println("--------------------------");
 System.out.println("MESSAGE #" + (i + 1) + ":");
 dumpPart(msgs[i]);
 }

 folder.close(false);
 store.close();
 } catch (Exception ex) {
 System.out.println("Oops, got exception! " + ex.getMessage());
 ex.printStackTrace();
 }

 System.exit(1);
 }

 public static void dumpPart(Part p) throws Exception {
 if (p instanceof Message) {
 Message m = (Message)p;
 Address[] a;
 // FROM
 if ((a = m.getFrom()) != null) {
 for (int j = 0; j < a.length; j++)
 System.out.println("FROM: " + a[j].toString());
 }

 // TO
 if ((a = m.getRecipients(Message.RecipientType.TO)) != null) {
 for (int j = 0; j < a.length; j++)
 System.out.println("TO: " + a[j].toString());
 }

 // SUBJECT
 System.out.println("SUBJECT: " + m.getSubject());

 // DATE
 Date d = m.getSentDate();
 System.out.println("SendDate: " +
 (d != null ? d.toLocaleString() : "UNKNOWN"));

 // FLAGS:
 Flags flags = m.getFlags();
 StringBuffer sb = new StringBuffer();
 Flags.Flag[] sf = flags.getSystemFlags(); // get the sys flags

 boolean first = true;

78 Appendix B: Examples Using the JavaMail API
Example: Search a Folder for a Message

March 2013 JavaMail™ API Design Specification

 for (int i = 0; i < sf.length; i++) {
 String s;
 Flags.Flag f = sf[i];
 if (f == Flags.Flag.ANSWERED)
 s = "\\Answered";
 else if (f == Flags.Flag.DELETED)
 s = "\\Deleted";
 else if (f == Flags.Flag.DRAFT)
 s = "\\Draft";
 else if (f == Flags.Flag.FLAGGED)
 s = "\\Flagged";
 else if (f == Flags.Flag.RECENT)
 s = "\\Recent";
 else if (f == Flags.Flag.SEEN)
 s = "\\Seen";
 else
 continue; // skip it
 if (first)
 first = false;
 else
 sb.append(' ');
 sb.append(s);
 }

 String[] uf = flags.getUserFlags(); // get the user flag strs
 for (int i = 0; i < uf.length; i++) {
 if (first)
 first = false;
 else
 sb.append(' ');
 sb.append(uf[i]);
 }
 System.out.println("FLAGS = " + sb.toString());
 }

 System.out.println("CONTENT-TYPE: " + p.getContentType());

 /* Dump input stream
 InputStream is = ((MimeMessage)m).getInputStream();
 int c;
 while ((c = is.read()) != -1)
 System.out.write(c);
 */

 Object o = p.getContent();
 if (o instanceof String) {
 System.out.println("This is a String");
 System.out.println((String)o);
 } else if (o instanceof Multipart) {
 System.out.println("This is a Multipart");
 Multipart mp = (Multipart)o;
 int count = mp.getCount();
 for (int i = 0; i < count; i++)

Appendix B: Examples Using the JavaMail API 79
Example: Monitoring a Mailbox

JavaMail™ API Design Specification March 2013

 dumpPart(mp.getBodyPart(i));
 } else if (o instanceof InputStream) {
 System.out.println("This is just an input stream");
 InputStream is = (InputStream)o;
 int c;
 while ((c = is.read()) != -1)
 System.out.write(c);
 }
 }
}

Example: Monitoring a Mailbox
import java.util.*;
import java.io.*;
import javax.mail.*;
import javax.mail.event.*;
import javax.activation.*;

/* Monitors given mailbox for new mail */

public class monitor {

 public static void main(String argv[]) {
 if (argv.length != 5) {
 System.out.println(
"Usage: monitor <host> <user> <password> <mbox> <freq>");
 System.exit(1);
 }
 System.out.println("\nTesting monitor\n");

 try {
 Properties props = System.getProperties();

 // Get a Session object
 Session session = Session.getInstance(props, null);
 // session.setDebug(true);

 // Get a Store object
 Store store = session.getStore("imap");

 // Connect
 store.connect(argv[0], argv[1], argv[2]);

 // Open a Folder
 Folder folder = store.getFolder(argv[3]);
 if (folder == null || !folder.exists()) {
 System.out.println("Invalid folder");
 System.exit(1);
 }

80 Appendix B: Examples Using the JavaMail API
Example: Sending a Message

March 2013 JavaMail™ API Design Specification

 folder.open(Folder.READ_WRITE);

 // Add messageCountListener to listen for new messages
 folder.addMessageCountListener(new MessageCountAdapter() {
 public void messagesAdded(MessageCountEvent ev) {
 Message[] msgs = ev.getMessages();
 System.out.println("Got " + msgs.length +

" new messages");

 // Just dump out the new messages
 for (int i = 0; i < msgs.length; i++) {
 try {
 DataHandler dh = msgs[i].getDataHandler();
 InputStream is = dh.getInputStream();
 int c;
 while ((c = is.read()) != -1)
 System.out.write(c);
 } catch (IOException ioex) {
 ioex.printStackTrace();
 } catch (MessagingException mex) {
 mex.printStackTrace();
 }
 }
 }
 });

 // Check mail once in "freq" MILLIseconds

 int freq = Integer.parseInt(argv[4]);

 for (; ;) {
 Thread.sleep(freq); // sleep for freq milliseconds

 // This is to force the IMAP server to send us
 // EXISTS notifications.
 folder.getMessageCount();
 }

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Example: Sending a Message
import java.util.*;
import java.io.*;
import javax.mail.*;

Appendix B: Examples Using the JavaMail API 81
Example: Sending a Message

JavaMail™ API Design Specification March 2013

import javax.mail.internet.*;
import javax.activation.*;

/**
 * msgmultisendsample creates a simple multipart/mixed message and sends
 * it. Both body parts are text/plain.
 * <p>
 * usage: <code>java msgmultisendsample <i>to from smtp true|false</i></
code>
 * where <i>to</i> and <i>from</i> are the destination and
 * origin email addresses, respectively, and <i>smtp</i>
 * is the hostname of the machine that has smtp server
 * running. The last parameter either turns on or turns off
 * debugging during sending.
 *
 * @author Max Spivak
 */
public class msgmultisendsample {
 static String msgText1 = "This is a message body.\nHere's line two.";
 static String msgText2 = "This is the text in the message attachment.";

 public static void main(String[] args) {
 if (args.length != 4) {
 System.out.println(
"usage: java msgmultisend <to> <from> <smtp> true|false");
 return;
 }

 String to = args[0];
 String from = args[1];
 String host = args[2];
 boolean debug = Boolean.valueOf(args[3]).booleanValue();

 // create some properties and get the default Session
 Properties props = new Properties();
 props.put("mail.smtp.host", host);

 Session session = Session.getInstance(props, null);
 session.setDebug(debug);

 try {
 // create a message
 MimeMessage msg = new MimeMessage(session);
 msg.setFrom(new InternetAddress(from));
 InternetAddress[] address = {new InternetAddress(to)};
 msg.setRecipients(Message.RecipientType.TO, address);
 msg.setSubject("JavaMail APIs Multipart Test");
 msg.setSentDate(new Date());

 // create and fill the first message part
 MimeBodyPart mbp1 = new MimeBodyPart();
 mbp1.setText(msgText1);

82 Appendix B: Examples Using the JavaMail API
Example: Sending a Message

March 2013 JavaMail™ API Design Specification

 // create and fill the second message part
 MimeBodyPart mbp2 = new MimeBodyPart();
 // Use setText(text, charset), to show it off !
 mbp2.setText(msgText2, "us-ascii");

 // create the Multipart and its parts to it
 Multipart mp = new MimeMultipart();
 mp.addBodyPart(mbp1);
 mp.addBodyPart(mbp2);

 // add the Multipart to the message
 msg.setContent(mp);

 // send the message
 Transport.send(msg);
 } catch (MessagingException mex) {
 mex.printStackTrace();
 Exception ex = null;
 if ((ex = mex.getNextException()) != null) {
 ex.printStackTrace();
 }
 }
 }
}

83

JavaMail™ API Design Specification March 2013

Appendix C:
Message Security

Overview
This is not a full specification of how Message Security will be integrated into the
JavaMail system. This is a description of implementation strategy. The purpose of this
section is to declare that it is possible to integrate message security, not to define how
it will be integrated. The final design for Message Security will change based on
feedback and finalization of the S/MIME IETF specification.

This section discusses encrypting/decrypting messages, and signing/verifying
signatures. It will not discuss how Security Restrictions on untrusted or signed
applets will work, nor will it discuss a general authentication model for Stores (For
example; a GSS API in the Java platform.)

Displaying an Encrypted/Signed Message
Displaying an encrypted or signed message is the same as displaying any other
message. The client uses the DataHandler for that encrypted message together with
the "view" command. This returns a bean that displays the data. There will be both a
multipart/signed and multipart/encrypted viewer bean (can be the same bean). The
beans will need to be aware of the MultiPartSigned/MultiPartEncrypted classes.

MultiPartEncrypted/Signed Classes
The JavaMail API will probably add two new content classes: MultiPartEncrypted
and MultiPartSigned. They subclass the MultiPart class and handle the MIME
types multipart/encrypted and multipart/signed. There are many possible
"protocols" that specify how a message has been encrypted and/or signed. The MPE/
MPS classes will find all the installed protocols. The ContentType’s protocol
parameter determines which protocol class to use. There needs to be a standard
registration of protocol objects or a way to search for valid packages and instantiate a
particular class. The MultiPart classes will hand off the control information, other
parameters, and the data to be manipulated (either the signed or encrypted block)
through some defined Protocol interface.

84 Appendix C: Message Security
Overview

March 2013 JavaMail™ API Design Specification

Reading the Contents
There will be times when an applet/application needs to retrieve the content of the
message without displaying it. The code sample below shows one possible technique
with a message containing encrypted content:

Message msg = // message gotten from some folder.
if (msg.isMimeType("multipart/encrypted")) {

Object o = msg.getContent();
if (o instanceof MultiPartEncrypted) {

MultiPartEncrypted mpe = (MultiPartEncrypted) o;
mpe.decrypt();
 // use the default keys/certs from the user.
 // We should alsobe able to determine
 // whether or not to interact with the user

// should then be able to use the multipart methods to
// get any contained blocks }
}

}

The getContent method returns a MultiPartEncrypted object. There will be
methods on this class to decrypt the content. The decryption could either determine
which keys needed to be used, use the defaults (maybe the current user’s keys) or
explicitly pass which keys/certificates to use.

Verifying Signatures
Applications/applets will need to verify the validity of a signature. The code sample
below shows how this might be done:

Message msg = // message gotten from some folder
if (msg.isMimeType("multipart/signed")) {

Object o = msg.getContent();
if (o instanceof MultiPartSigned) {

MultiPartSigned mps = (MultiPartSigned) o;
boolean validsig = mps.verifySignature();

// could already get the other blocks
// even if it wasn't a valid signature
}

}

If the signature is invalid, the application can still access the data. There will be
methods in MultiPartSigned that allow the setting of which keys or certificates to
use when verifying the signature.

Appendix C: Message Security 85
Overview

JavaMail™ API Design Specification March 2013

Creating a Message
There are two methods for creating an Encrypted/Signed message. Users will
probably see an editor bean for the content types multipart/signed and multipart/
encrypted. These beans would handle the UI components to allow the user to select
how they want to encrypt/sign the message. The beans could be integrated into an
application’s Message Composition window.

Encrypted/Signed
The non-GUI method of creating the messages involves using the
MultiPartEncrypted/Signed classes. The classes can be created and used as the
content for a message. The following code shows how might work:

MultiPartEncrypted mpe = new MultiPartEncrypted();
// Can setup parameters for how you want to encrypt the
// message; otherwise, it will use the user's preferences.
// Set the content you wish to encrypt (to encrypt multiple
// contents a multipart/mixed block should be used)
String ourContent = "Please encrypt me!";
mpe.setContent(ourContent);

MimeMessage m = new MimeMessage(session);
m.setContent(mpe);

The message will be encrypted when the message is sent. There will be other methods
that allow the setting of which encryption scheme shall be used, and the keys
involved.

Creating a Multipart Signed message is very similar to creating a Multipart Encrypted
message, except that a Multipart Signed object is created instead.

86 Appendix C: Message Security
Overview

March 2013 JavaMail™ API Design Specification

87

JavaMail™ API Design Specification March 2013

Appendix D:
Part and Multipart Class Diagram

This appendix illustrates relationships between Part interfaces and Message classes.

FIGURE D-1

88 Appendix D: Part and Multipart Class Diagram

March 2013 JavaMail™ API Design Specification

89

JavaMail™ API Design Specification March 2013

Appendix E:
MimeMessage Object Hierarchy

This appendix illustrates the object hierarchy.

FIGURE E-1

Message

Multipart

<Text>

<Image>

Multipart

"3"

<message subject>

"multipart/mixed"

<address of message sender>

BodyPart

BodyPart

BodyPart

"text/plain"

NestedMultipart Message
MimeMessage Object

Legend:

method() method call and
object returned

getFrom()

getSubject()

getContentType()

getContent()

getCount()

getBodyPart(0)

getBodyPart(1)

getBodyPart(2)

use the DataHandler
methods to access
the image

DataHandler

<message text>

"image/gif"

"multipart/mixed"

getContentType()

(String)getContent()

getContentType()

getDataHandler()

getContentType()

(Multipart)getContent()
Multipart

repeat with Multipart
as before......

90 Appendix E: MimeMessage Object Hierarchy

March 2013 JavaMail™ API Design Specification

91

JavaMail™ API Design Specification March 2013

Appendix F:
Features Added in JavaMail 1.1

This appendix summarizes the features added to JavaMail 1.1. For more information
about each item, refer to the appropriate Javadoc documentation.

The MessageContext Class and MessageAware Interface
In some cases it is desirable for the object representing the content of a BodyPart
object to know something about the context in which it is operating. For example, the
content-object might need to know what other data is contained in the same
Multipart object, who sent the message containing the data, and so forth. This
allows for more interesting content types that know more about the message
containing them and the mail system in general.

Some uses of the multipart/related object might require these capabilities. For
instance, the handler for a text/html body part contained in a multipart/
related object might need to know about the containing object in order to find the
related image data needed to display the HTML document. (Note that JavaMail
provides no direct support for multipart/related messages.)

To deal with these issues, the MessageContext class and MessageAware interface
have been added in JavaMail 1.1.

The MessageContext class provides the basic information about the context in
which a content object is operating. Given a MessageContext object, it is possible
to navigate through a message’s body structure. The MessageAware interface is an
optional interface, implemented by DataSources that have the capability of
providing a suitable MessageContext object. The MimePartDataSource
implements the MessageAware interface, making this capability available to all
MIME messages.

The getMessageID method
The getMessageID method has been added to the MimeMessage class. This method
returns the value of RFC822 Message-ID field.

92 Appendix F: Features Added in JavaMail 1.1
Additions to the InternetAddress Class

March 2013 JavaMail™ API Design Specification

Additions to the InternetAddress Class
The encodedPersonal protected field has been added to the
javax.mail.internet.InternetAddress class.

The toString(Address[], int) method has also been added to this class

Additions to the MimeUtility Class
Two static methods have been added to the javax.mail.internet.MimeUtility
class:

■ String mimeCharset(String charset)
■ String getDefaultJavaCharset()

The mimeCharset method returns the MIME name of the given JDKTM charset.

The getDefaultJavaCharset method returns the default JDK charset for the
platform’s locale.

New SearchTerms
The current address related search terms: AddressTerm, FromTerm and
RecipientTerm, are limited in that they operate on Address objects, not Strings.
These terms use the equals methd to compare the addresses, which is not useful for
the common case of substring comparisons.

Hence three new SearchTerms have been introduced:

■ AddressStringTerm
■ FromStringTerm
■ RecipientStringTerm

These terms operate on Address Strings, rather than Address objects.

These new terms correspond to the capabilities provided by the IMAP protocol. The
older terms were not supported by IMAP and thus resulted in client-side searches.

Appendix F: Features Added in JavaMail 1.1 93
Additions to the Folder Class

JavaMail™ API Design Specification March 2013

Additions to the Folder Class
Two methods have been added to the javax.mail.Folder class:

■ int getMode()
■ URLName getURLName()

The getMode method returns the mode in which the Folder object was opened.

The getURLName method returns the URLName value of the folder.

New Service Class
To emphasize the commonality in behavior between the Store and Transport
classes, and to simplify maintenance of these classes, a new superclass,
javax.mail.Service, has been introduced for the Store and Transport classes.

94 Appendix F: Features Added in JavaMail 1.1
New Service Class

March 2013 JavaMail™ API Design Specification

95

JavaMail™ API Design Specification March 2013

Appendix G:
Features Added in JavaMail 1.2

This appendix summarizes the features that were added in JavaMail 1.2. Refer to the
appropriate Javadoc documentation for additional information about each item,.

Additions to the MimeMessage Class
The following have been added to the MimeMessage class:

■ To simplify the creation of MimeMessage subclasses:

– The modified field and the parse(InputStream is) method that were
previously private are now protected.

– The createInternetHeaders(InputStream is) method has also been
added to this class.

■ When forwarding or saving a message retrieved from a Store, it is sometimes
desirable to be able to modify the message first. Since most Stores do not allow
their Message objects to be modified, the message must first be copied. To
simplify copying a MimeMessage, we introduce a copy constructor,
MimeMessage(MimeMessage source), that allows a new MimeMessage to be
created and initialized with a copy of another MimeMessage.

■ The following convenience methods were added to MimeMessage.

– setRecipients(Message.RecipientType type, String addresses)

– addRecipients(Message.RecipientType type, String addresses)

Note that these methods take a String for setting/adding a recipient (instead of
javax.mail.Address objects).

■ One of the most common errors encountered when constructing new messages is
forgetting to call the saveChanges() method before writing out the message or
calling the Transport.sendMessage() method. To solve this problem, a saved
flag was added to MimeMessage and the writeTo() method was changed
accordingly.

96 Appendix G: Features Added in JavaMail 1.2
Additions to the MimeMultipart Class

March 2013 JavaMail™ API Design Specification

Additions to the MimeMultipart Class
To simplify the creation of MimeMultipart subclasses, the following have been
added to the MimeMultipart class:

■ The parse(InputStream is) method that was previously private is now
protected.

■ The createInternetHeaders(InputStream is) and
createMimeBodyPart(InternetHeaders headers, byte[] content)
methods have been added to this class as protected methods.

The getRawInputStream method
In some cases, it is desirable to get the data for a body part before JavaMail attempts
to decode it. This is particularly important if the Content-Transfer-Encoding header is
incorrect. (For example, some mail software is known to use "7-bit" instead of the
MIME-defined "7-bit".) Access to this data is currently provided through the protected
getContentStream method. Since simply making this method public has the
potential to cause a source incompatibility for any subclasses that declare this method
as protected, we instead add a new public method, getRawInputStream(),that
calls this protected method to the MimeMessage and MimeBodyPart classes.

Additions to the InternetAddress Class
The following were added to the InternetAddress class:

■ To simplify copying of InternetAddress objects, the InternetAddress class
now implements the Cloneable interface and will provide a public clone()
method.

■ AddressStringTerm.match does not return the correct results in some
situations because it wants to do the match against the formatted address string
in Unicode, not the ASCII version that might include charset encoding
information. To do this, it attempts to format the address itself, but its logic does
not handle all the rules about formatting an address (such as, when to quote the
personal name) so it does this formatting differently than
InternetAddress.toString does. When the address contains only ASCII
characters, the formatting should be identical. This problem has been remedied
by adding a new method, toUnicodeString(), to the InternetAddress
class, which returns a properly formatted address (RFC 822 syntax) of Unicode
characters.

Appendix G: Features Added in JavaMail 1.2 97
The MailDateFormat Class

JavaMail™ API Design Specification March 2013

■ The InternetAddress class now implements the Serializable interface to
support saving javax.mail.search terms (described in “Additions for
serializable javax.mail.search terms”).

The MailDateFormat Class
The MailDateFormat class is now part of the javax.mail.internet package. It
was previously contained in the com.sun.mail.util package. This is a utility class
used in formatting and parsing dates in MIME headers. The methods it provides are:

■ StringBuffer format(Date date,
 StringBuffer dateStrBuf,
 FieldPosition fieldPosition)

■ Date parse(String text, ParsePosition pos)

Additions to Exceptions and Events
The following exceptions and events have been added in JavaMail 1.2:

■ Previously, if a client attempted to open a read-only folder in read-write mode, a
MessagingException was thrown. This exception type does not indicate that
the anomaly was caused by the lack of write-permissions. A new
ReadOnlyFolderException was added to indicate that the problem was
caused by a read-only folder.

■ When authentication with a server fails, the server often supplies some
information in its protocol message that indicates the reason for the failure. To
allow a service provider to return this information to the user, we now allow the
Service.protocolConnect() method to throw an
AuthenticationFailedException in this case. The exception may contain a
string message that includes the additional information from the server.

■ The FolderNotFoundException constructors were not consistent with other
exceptions defined in the API. Two new constructors were added to eliminate
these inconsistencies:

– FolderNotFoundException(Folder folder)

– FolderNotFoundException(Folder folder, String s)

■ If an error occurs when sending a message, the TransportEvent class saved the
message that caused the error, but provided no getMessage method for the
listener to retrieve the Message object. The getMessage() method was added to
TransportEvent class.

98 Appendix G: Features Added in JavaMail 1.2
Additions to the Session Class

March 2013 JavaMail™ API Design Specification

Additions to the Session Class
Two static convenience methods were added to the Session class for retrieving the
default Session or a new Session object, which do not require an Authenticator
parameter (assumed to be null):

■ Session Session.getDefaultInstance(Properties props)

■ Session Session.getInstance(Properties props)

Additions to the MimeUtility Class
The following were added to the MimeUtility class to provide additional support
for encoding:

■ The UUEncode encoder requires the filename to be inserted into the encoded
stream. The public access point to the encoder is through the
MimeUtility.encode() method, which does not have any parameter that can
provide the filename. Hence the uuencoded stream always has "encode.buf" as
filename. A new method, that allows the setting of the filename has been added:

encode(OutputStream os, String encoding, String filename)

■ The getEncoding() method which was previously added to improve the
performance of JavaMail was changed from package private to public.

Additions for serializable javax.mail.search terms
The javax.mail.search package allows you to programmatically construct a
search term. As a convenience, these terms can now be saved in persistent storage and
restored in a later session. The simplest way to store these expressions is to use
serialization.

Many of the search terms reference other objects that must also be serializable. The
most problematic such objects are of the class Message.RecipientType. This class
uses the java "type-safe enum" idiom, which involves a number of static final
instances of the class. Applications are allowed to test for equivalence with these
"constants" by using the "==" equality operator. Thus, it’s critical that only a single
instance of each constant exist in the Java virtual machine. To ensure that this
constraint is met when deserializing an object of this class, we must take advantage of
the J2SE 1.2 readReplace() method. Since this method is not available on JDK 1.1,
objects of this class, and thus search terms that reference them, can not be correctly
deserialized on JDK 1.1. This is a limitation of this new capability.

Appendix G: Features Added in JavaMail 1.2 99
Additions to the Store Class

JavaMail™ API Design Specification March 2013

To provide this support, the following classes and all their subclasses now implement
the Serializable interface:

■ javax.mail.search.SearchTerm

■ javax.mail.Address

■ javax.mail.Flags

■ javax.mail.Message.RecipientType

In addition, to allow comparison between search terms, the equals and hashCode
methods on SearchTerm (and all subclasses) now implement "value" equivalence
rather than identity equivalence.

Additions to the Store Class
The following methods have been added to javax.mail.Store to provide
namespace information:

■ Folder[] getPersonalNamespaces()

A personal namespace is a set of names that is considered within the personal
scope of the authenticated user. Typically, only the authenticated user has access
to mail folders in their personal namespace. If an INBOX exists for a user, it must
appear within the user’s personal namespace. In the typical case, there should be
only one personal namespace for each user in each Store.

■ Folder[] getUserNamespaces(String user)

The namespaces returned represent the personal namespaces for the user. To
access mail folders in the other user’s namespace, the currently authenticated
user must be explicitly granted access rights. For example, it is common for a
manager to grant to their secretary access rights to their mail folders.

■ Folder[] getSharedNamespaces()

 A shared namespace is a namespace that consists of mail folders that are
intended to be shared amongst users and do not exist within a user’s personal
namespace.

New ContentDisposition Class
The ContentDisposition class contained in javax.mail.internet package has
been changed from package private to public.

100 Appendix G: Features Added in JavaMail 1.2
New performance improvements

March 2013 JavaMail™ API Design Specification

New performance improvements
To allow us to improve the performance of the MimeMessage and MimeMultipart
classes when parsing data from an InputStream, we introduce a new
SharedInputStream interface that allows the data in the InputStream to be shared
instead of copied, and we use this new interface in key parts of the implementation.
The methods defined by the SharedInputStream interface are:

■ long getPosition()

■ InputStream newStream(long start, long end)

A new protected InputStream (which implements the SharedInputStream
interface) data member, contentStream, has been added to the MimeMessage and
MimeBodyPart classes.

Additions to the ParameterList class
The ParameterList.toString() method returns its results "unfolded". It would
be useful to have the results "folded" in certain situations. A new method,
ParameterList.toString(int used), will be added which will return "folded"
results. Folding is defined by RFC 822 as the process of splitting a header field into
multiple lines. "The general rule is that wherever there may be linear-white-space
(NOT simply LWSP-chars), a CRLF immediately followed by AT LEAST one LWSP-
char may instead be inserted." Unfolding is the process of returning to a single line
representation. "Unfolding is accomplished by regarding CRLF immediately followed
by a LWSP-char as equivalent to the LWSP-char."

101

JavaMail™ API Design Specification March 2013

Appendix H:
Features Added in JavaMail 1.3

This appendix summarizes the features that were added in JavaMail 1.3. Refer to the
appropriate Javadoc documentation for additional information about each item. The
numbers in parentheses are bug numbers; you can find more information about the
bug reports at:

 http://bugs.sun.com/bugdatabase/index.jsp

Add setSender and getSender methods to MimeMessage
(4405115)

These convenience methods support setting and reading the RFC 822 Sender header.

 /**
 * Returns the value of the RFC 822 "Sender" header field.
 * If the "Sender" header field is absent, <code>null</code>
 * is returned.<p>
 *
 * This implementation uses the <code>getHeader</code> method
 * to obtain the requisite header field.
 *
 * @return Address object
 * @exception MessagingException
 * @see #headers
 * @since JavaMail 1.3
 */
 public Address getSender() throws MessagingException

 /**
 * Set the RFC 822 "Sender" header field. Any existing values are
 * replaced with the given address. If address is <code>null</code>,
 * this header is removed.
 *
 * @param address the sender of this message
 * @exception IllegalWriteException if the underlying
 * implementation does not support modification
 * of existing values
 * @exception IllegalStateException if this message is
 * obtained from a READ_ONLY folder.
 * @exception MessagingException

102 Appendix H: Features Added in JavaMail 1.3
Add setContentID method to MimeBodyPart (4377720)

March 2013 JavaMail™ API Design Specification

 * @since JavaMail 1.3
 */
 public void setSender(Address address) throws MessagingException

Add setContentID method to MimeBodyPart (4377720)
This convenience method supports setting the Content-ID header.

 /**
 * Set the "Content-ID" header field of this body part.
 * If the <code>cid</code> parameter is null, any existing
 * "Content-ID" is removed.
 *
 * @exception IllegalWriteException if the underlying
 * implementation does not support modification
 * @exception IllegalStateException if this body part is
 * obtained from a READ_ONLY folder.
 * @exception MessagingException
 * @since JavaMail 1.3
 */
 public void setContentID(String cid) throws MessagingException

Add mail.mime.charset property (4377731)
The mail.mime.charset System property (NOTE: not Session property) names the
default charset to be used by JavaMail. If not set, the standard J2SE file.encoding
System property is used. This allows applications to specify a default character set for
sending messages that’s different than the character set used for files stored on the
system. This is common on Japanese systems.

Add getDeletedMesageCount method to Folder (4388730)
This convenience method returns a count of the number of deleted messages in a
folder.

 /**
 * Get the number of deleted messages in this Folder. <p>
 *
 * This method can be invoked on a closed folder. However, note
 * that for some folder implementations, getting the deleted message
 * count can be an expensive operation involving actually opening
 * the folder. In such cases, a provider can choose not to support
 * this functionality in the closed state, in which case this method
 * must return -1. <p>

Appendix H: Features Added in JavaMail 1.3 103
Support parsing illegal Internet addresses (4650940)

JavaMail™ API Design Specification March 2013

 *
 * Clients invoking this method on a closed folder must be aware
 * that this is a potentially expensive operation. Clients must
 * also be prepared to handle a return value of -1 in this case. <p>
 *
 * This implementation returns -1 if this folder is closed. Else
 * this implementation gets each Message in the folder using
 * <code>getMessage(int)</code> and checks whether its
 * <code>DELETED</code> flag is set. The total number of messages
 * that have this flag set is returned.
 *
 * @return number of deleted messages. -1 may be returned
 * by certain implementations if this method is
 * invoked on a closed folder.
 * @exception FolderNotFoundException if this folder does
 * not exist.
 * @exception MessagingException
 * @since JavaMail 1.3
 */
 public int getDeletedMessageCount() throws MessagingException

Support parsing illegal Internet addresses (4650940)
The parse method on the InternetAddress class takes a flag that tells whether or
not to strictly enforce the RFC822 syntax rules. Currently, when the flag is false most
rules are still checked while a few are not. To better support the range of invalid
addresses seen in real messages, and in combination with the following two changes,
the parseHeader method would enforce fewer syntax rules when the strict flag is false
and would enforce more rules when the strict flag is true. If the strict flag is false and
the parse is successful in separating out an email address or addresses, the syntax of
the addresses themselves would not be checked. (Introducing a new method
preserves compatibility with users of the existing parse method.)

 /**
 * Parse the given sequence of addresses into InternetAddress
 * objects. If <code>strict</code> is false, the full syntax rules for
 * individual addresses are not enforced. If <code>strict</code> is
 * true, many (but not all) of the RFC822 syntax rules are enforced.
 *
 * Non-strict parsing is typically used when parsing a list of
 * mail addresses entered by a human. Strict parsing is typically
 * used when parsing address headers in mail messages.
 *
 * @param addresslist comma separated address strings
 * @param strict enforce RFC822 syntax
 * @return array of InternetAddress objects
 * @exception AddressException if the parse failed
 * @since JavaMail 1.3

104 Appendix H: Features Added in JavaMail 1.3
Add mail.mime.address.strict property (4650940)

March 2013 JavaMail™ API Design Specification

 */
 public static InternetAddress[] parseHeader(String s, boolean strict)
 throws AddressException

To allow applications to check the syntax of addresses that might’ve been parsed with
the strict flag set to false, we add a validate method.

 /**
 * Validate that this address conforms to the syntax rules
 * of RFC 822. The current implementation checks many, not
 * all, syntax rules. Note that, even though the syntax of
 * the address may be correct, there’s no guarantee that a
 * mailbox of that name exists.
 *
 * @exception AddressException if the address
 * isn’t valid.
 * @since JavaMail 1.3
 */
 public void validate() throws AddressException

To control the strict flag when constructing a single InternetAddress object we add
a new constructor.

 /**
 * Parse the given string and create an InternetAddress.
 * If <code>strict</code> is false, the detailed syntax of the
 * address isn’t checked.
 *
 * @param address the address in RFC822 format
 * @param strict enforce RFC822 syntax
 * @exception AddressException if the parse failed
 * @since JavaMail 1.3
 */
 public InternetAddress(String address, boolean strict)
 throws AddressException

Add mail.mime.address.strict property (4650940)
The MimeMessage class will use the new parseHeader method introduced above to
parse headers in messages. The mail.mime.address.strict Session property will
control the strict flag passed to the parseHeader method. The default is true.

Appendix H: Features Added in JavaMail 1.3 105
Add mail.mime.decodetext.strict property (4201203)

JavaMail™ API Design Specification March 2013

Add mail.mime.decodetext.strict property (4201203)
RFC 2047 requires that encoded text start at the beginning of a whitespace separated
word. Some mailers, especially Japanese mailers, improperly encode text and
included encoded text in the middle of words. The
mail.mime.decodetext.strict System property (NOTE: not Session property)
controls whether JavaMail will attempt to decode such incorrectly encoded text. The
default is true.

Add mail.mime.encodeeol.strict property (4650949)
When choosing an encoding for the data of a message, JavaMail assumes that any of
CR, LF, or CRLF are valid line terminators in message parts that contain only
printable ASCII characters, even if the part is not a MIME text type. It’s common,
especially on UNIX systems, for data of MIME type application/octet-stream (for
example) to really be textual data that should be transmitted with the encoding rules
for MIME text. In rare cases, such pure ASCII text may in fact be binary data in which
the CR and LF characters must be preserved exactly. The
mail.mime.encodeeol.strict System property (NOTE: not Session property)
controls whether JavaMail will consider a lone CR or LF in a body part that’s not a
MIME text type to indicate that the body part needs to be encoded.

Add isGroup and getGroup methods to InternetAddress
(4650952)

To better support RFC822 group addresses, the following methods would be added.

 /**
 * Indicates whether this address is an RFC 822 group address.
 * Note that a group address is different than the mailing
 * list addresses supported by most mail servers. Group addresses
 * are rarely used; see RFC 822 for details.
 *
 * @return true if this address represents a group
 * @since JavaMail 1.3
 */
 public boolean isGroup()

 /**
 * Return the members of a group address. A group may have zero,
 * one, or more members. If this address is not a group, null
 * is returned. The <code>strict</code> parameter controls whether
 * the group list is parsed using strict RFC 822 rules or not.

106 Appendix H: Features Added in JavaMail 1.3
Support per-session debug output stream (4517686)

March 2013 JavaMail™ API Design Specification

 * The parsing is done using the <code>parseHeader</code> method.
 *
 * @return array of InternetAddress objects, or null
 * @exception AddressException if the group list can’t be parsed
 * @since JavaMail 1.3
 */
 public InternetAddress[] getGroup(boolean strict)

throws AddressException

Support per-session debug output stream (4517686)
To allow the debugging output for a session to be redirected, we add the following
methods to Session.

 /**
 * Set the stream to be used for debugging output for this session.
 * If <code>out</code> is null, <code>System.out</code> will be used.
 * Note that debugging output that occurs before any session is
created,
 * as a result of setting the <code>mail.debug</code> system property,
 * will always be sent to <code>System.out</code>.
 *
 * @param out the PrintStream to use for debugging output
 * @since JavaMail 1.3
 */
 public void setDebugOut(PrintStream out)

 /**
 * Returns the stream to be used for debugging output. If no stream
 * has been set, <code>System.out</code> is returned.
 *
 * @return the PrintStream to use for debugging output
 * @since JavaMail 1.3
 */
 public PrintStream getDebugOut()

107

JavaMail™ API Design Specification March 2013

Appendix I:
Features Added in JavaMail 1.4

This appendix summarizes the features that were added in JavaMail 1.4. Refer to the
appropriate Javadoc documentation for additional information about each item. The
numbers in parentheses are bug numbers; you can find more information about the
bug reports at:

 http://bugs.sun.com/bugdatabase/index.jsp

Add MimePart.setText(text, charset, subtype) method
(6300765)

The setText method is a convenience method used to set the content for a text/plain
part. With the increased use of HTML and XML in mail messages, it would be useful
to have a convenience method to set content of those types as well. To support this
usage we add a new method to the MimePart interface:

 /**
 * Convenience method that sets the given String as this part’s
 * content, with a primary MIME type of “text” and the specified
 * MIME subtype. The given Unicode string will be charset-encoded
 * using the specified charset. The charset is also used to set
 * the “charset” parameter.
 *
 * @param text the text content to set
 * @param charset the charset to use for the text
 * @param subtype the MIME subtype to use (e.g., “html”)
 * @exception MessagingException if an error occurs
 * @since JavaMail 1.4
 */
 public void setText(String text, String charset, String subtype)
 throws MessagingException;

The MimeMessage and MimeBodyPart classes, which implement the MimePart
interface, will be updated to provide implementations of the new method.

108 Appendix I: Features Added in JavaMail 1.4
Add mail.mime.encodefilename and decodefilename properties (6300768)

March 2013 JavaMail™ API Design Specification

Add mail.mime.encodefilename and decodefilename
properties (6300768)

According to the MIME spec (RFC 2047), filenames included in the filename
parameter of the Content-Disposition header may not include MIME “encoded-
words”, and thus may contain only US-ASCII characters. However, many mailers
violate this spec requirement and use standard MIME encoding techniques to store
non-ASCII filenames in this filename parameter.

If the mail.mime.encodefilename System property is set to “true”. the
MimeMessage and MimeBodyPart setFileName methods will use the
MimeUtility.encodeText method to encode the filename.

If the mail.mime.decodefilename System property is set to “true”. the
MimeMessage and MimeBodyPart getFileName methods will use the
MimeUtility.decodeText method to decode the filename.

Both of these properties default to “false”.

The following text is added to the MimeMessage and MimeBodyPart setFileName
methods:

 * If the <code>mail.mime.encodefilename</code> System property
 * is set to true, the {@link MimeUtility#encodeText
 * MimeUtility.encodeText method will be used to encode the
 * filename. While such encoding is not supported by the MIME
 * spec, many mailers use this technique to support non-ASCII
 * characters in filenames. The default value of this property
 * is false.

The following text is added to the MimeMessage and MimeBodyPart getFileName
methods:

 * If the <code>mail.mime.encodefilename</code> System property
 * is set to true, the {@link MimeUtility#decodeText
 * MimeUtility.decodeText method will be used to decode the
 * filename. While such encoding is not supported by the MIME
 * spec, many mailers use this technique to support non-ASCII
 * characters in filenames. The default value of this property
 * is false.

Add Service.connect(user, password) (6300771)
This convenience method uses the host already known to the Service (Transport or
Store). Equivalent to connect(null, user, password).

Appendix I: Features Added in JavaMail 1.4 109
Add mail.mime.multipart.ignoremissingendboundary System property (4971381)

JavaMail™ API Design Specification March 2013

 /**
 * Connect to the current host using the specified username
 * and password. This method is equivalent to calling the
 * <code>connect(host, user, password)</code> method with null
 * for the host name.
 *
 * @param user the user name
 * @param password this user’s password
 * @exception AuthenticationFailedException for authentication failures
 * @exception MessagingException for other failures
 * @exception IllegalStateException if the service is already connected
 * @see javax.mail.event.ConnectionEvent
 * @see javax.mail.Session#setPasswordAuthentication
 * @see #connect(java.lang.String, java.lang.String, java.lang.String)
 * @since JavaMail 1.4
 */
 public void connect(String user, String password)

throws MessagingException

Add mail.mime.multipart.ignoremissingendboundary
System property (4971381)

The current implementation of the MimeMultipart class will ignore a missing end
boundary line; if EOF is reached when parsing the content before seeing an end
boundary line, the last part of the multipart is terminated and no error is returned.

Some users have requested a way to force the multipart parsing to more strictly
enforce the MIME specification. To support this we we introduce a new System
property:

 mail.mime.multipart.ignoremissingendboundary

If this property is set to “false” MimeMultipart will throw a
MessagingException when parsing a multipart that does not include the proper
end boundary line.

This property is already supported as part of the JavaMail implementation. This
change makes the property a part of the standard API.

 * The <code>mail.mime.multipart.ignoremissingendboundary</code>
 * System property may be set to <code>false</code> to cause a
 * <code>MessagingException</code> to be thrown if the multipart
 * data does not end with the required end boundary line. If this
 * property is set to <code>true</code> or not set, missing end
 * boundaries are not considered an error and the final body part

110 Appendix I: Features Added in JavaMail 1.4
Add MimeMultipart.isComplete() method (6300811)

March 2013 JavaMail™ API Design Specification

 * ends at the end of the data. <p>

Add MimeMultipart.isComplete() method (6300811)
As described above, parsing of a MIME multipart may terminate without an error,
even though no final boundary line was seen. This method will return true if the final
boundary line was seen. This will allow applications to successfully parse mal-
formed messages, while also being able to tell that they were mal-formed.

 /**
 * Return true if the final boundary line for this
 * multipart was seen. When parsing multipart content,
 * this class will (by default) terminate parsing with
 * no error if the end of input is reached before seeing
 * the final multipart boundary line. In such a case,
 * this method will return false. (If the System property
 * “mail.mime.multipart.ignoremissingendboundary” is set to
 * false, parsing such a message will instead throw a
 * MessagingException.)
 *
 * @return true if the final boundary line was seen
 * @since JavaMail 1.4
 */
 public boolean isComplete() throws MessagingException

Add
mail.mime.multipart.ignoremissingboundaryparamet
er property (6300814)

The following property is already supported as part of the JavaMail implementation.
This change makes the property a part of the standard API.

 * The <code>mail.mime.multipart.ignoremissingboundaryparameter</code>
 * System property may be set to <code>false</code> to cause a
 * <code>MessagingException</code> to be thrown if the Content-Type
 * of the MimeMultipart does not include a <code>boundary</code> parameter.
 * If this property is set to <code>true</code> or not set, the multipart
 * parsing code will look for a line that looks like a bounary line and
 * use that as the boundary separating the parts.

Appendix I: Features Added in JavaMail 1.4 111
Add MimeMultipart getPreamble and setPreamble methods (6300828)

JavaMail™ API Design Specification March 2013

Add MimeMultipart getPreamble and setPreamble methods
(6300828)

In a MIME multipart message, it’s possible to include text between the headers and
the first boundary line. This text is called the preamble. It may include instructions
for users of non-MIME compliant software. The getPreamble method allows access
to this text when available. (Note that IMAP servers provide no convenient access to
this text.) The setPreamble method allows an application to set the preamble for a
message being constructed.

 /**
 * Get the preamble text, if any, that appears before the
 * first body part of this multipart. Some protocols,
 * such as IMAP, will not allow access to the preamble text.
 *
 * @return the preamble text, or null if no preamble
 * @since JavaMail 1.4
 */
 public String getPreamble() throws MessagingException

 /**
 * Set the preamble text to be included before the first
 * body part. Applications should generally not include
 * any preamble text. In some cases it may be helpful to
 * include preamble text with instructions for users of
 * pre-MIME software.
 *
 * @param preamble the preamble text
 * @since JavaMail 1.4
 */
 public void setPreamble(String preamble) throws MessagingException

Add MimeMessage.updateMessageID() protected method
(6300831)

Some applications want more control over the data that’s used to create the Message-
ID for a message. This method allows an application to provide a simple subclass of
MimeMessage that overrides the Message-ID algorithm.

 /**
 * Update the Message-ID header. This method is called
 * by the <code>updateHeaders</code> and allows a subclass
 * to override only the algorithm for choosing a Message-ID.
 *
 * @since JavaMail 1.4

112 Appendix I: Features Added in JavaMail 1.4
Add MimeMessage.createMimeMessage() protected method (6300833)

March 2013 JavaMail™ API Design Specification

 */
 protected void updateMessageID() throws MessagingException

Add MimeMessage.createMimeMessage() protected method
(6300833)

The MimeMessage.reply method creates and returns a new MimeMessage.
Subclasses of MimeMessage may need the reply method to create a new message of
the appropriate subclass. This method allows subclasses to control the class created in
this case.

 /**
 * Create and return a MimeMessage object. The reply method
 * uses this method to create the MimeMessage object that it
 * will return. Subclasses can override this method to return
 * a subclass of MimeMessage. This implementation simply constructs
 * and returns a MimeMessage object using the supplied Session.
 *
 * @param session the Session to use for the new message
 * @return the new MimeMessage object
 * @since JavaMail 1.4
 */
 protected MimeMessage createMimeMessage(Session session)

throws MessagingException

Make the part field of MimePartDataSource protected (6300834)
Subclasses of MimePartDataSource may need access to the part field in order to
implement the getInputStream method. The part field is currently private, this
change will make it protected.

/**
 * The MimePart that provides the data for this DataSource.
 *
 * @sinceJavaMail 1.4
 */
protected MimePart part;

Appendix I: Features Added in JavaMail 1.4 113
Folder.getSeparator should not require the folder to exist (6301381)

JavaMail™ API Design Specification March 2013

Folder.getSeparator should not require the folder to exist
(6301381)

IMAP folders are able to determine the separator character without knowing whether
the folder exists. Checking whether the folder exists in order to throw
FolderNotFoundException introduces additional overhead. Because other
methods often need to know the separator character, this overhead can be noticable.
The specification of this method is changed as follows:

 /**
 * Return the delimiter character that separates this Folder’s pathname
 * from the names of immediate subfolders. This method can be invoked
 * on a closed Folder.
 *
 * @exception FolderNotFoundException if the implementation
 * requires the folder to exist, but it does not
 * @return Hierarchy separator character
 */
 public abstract char getSeparator() throws MessagingException;

Add PreencodedMimeBodyPart class (6301386)
In some cases an application will have data that has already been encoded using (for
example) base64 encoding. There should be an easy way to attach such data to a
message without the need to decode it and reencode it. This class provides such
support.

/**
 * A MimeBodyPart that handles data that has already been encoded.
 * This class is useful when constructing a message and attaching
 * data that has already been encoded (for example, using base64
 * encoding). The data may have been encoded by the application,
 * or may have been stored in a file or database in encoded form.
 * The encoding is supplied when this object is created. The data
 * is attached to this object in the usual fashion, by using the
 * <code>setText</code>, <code>setContent</code>, or
 * <code>setDataHandler</code> methods.
 *
 * @sinceJavaMail 1.4
 */

public class PreencodedMimeBodyPart extends MimeBodyPart {
 /**
 * Create a PreencodedMimeBodyPart that assumes the data is
 * encoded using the specified encoding. The encoding must
 * be a MIME supported Content-Transfer-Encoding.

114 Appendix I: Features Added in JavaMail 1.4
Add MimeBodyPart attachFile and saveFile methods (6301390)

March 2013 JavaMail™ API Design Specification

 */
 public PreencodedMimeBodyPart(String encoding)
}

Add MimeBodyPart attachFile and saveFile methods
(6301390)

It’s very common for applications to create messages with files as attachments, and to
receive attachments and save them in files. To simplify this usable, we add several
convenience methods to the MimeBodyPart class:

 /**
 * Use the specified file to provide the data for this part.
 * The simple file name is used as the file name for this
 * part and the data in the file is used as the data for this
 * part. The encoding will be chosen appropriately for the
 * file data.
 *
 * @param file the File object to attach
 * @exception IOException errors related to accessing the file
 * @exception MessagingException message related errors
 * @since JavaMail 1.4
 */
 public void attachFile(File file)

throws IOException, MessagingException

 /**
 * Use the specified file to provide the data for this part.
 * The simple file name is used as the file name for this
 * part and the data in the file is used as the data for this
 * part. The encoding will be chosen appropriately for the
 * file data.
 *
 * @param file the name of the file to attach
 * @exception IOException errors related to accessing the file
 * @exception MessagingException message related errors
 * @since JavaMail 1.4
 */
 public void attachFile(String file)

throws IOException, MessagingException

 /**
 * Save the contents of this part in the specified file. The content
 * is decoded and saved, without any of the MIME headers.
 *
 * @param file the File object to write to
 * @exception IOException errors related to accessing the file
 * @exception MessagingException message related errors
 * @since JavaMail 1.4

Appendix I: Features Added in JavaMail 1.4 115
Add MimeUtility fold and unfold methods (6302118)

JavaMail™ API Design Specification March 2013

 */
 public void saveFile(File file) throws IOException, MessagingException

 /**
 * Save the contents of this part in the specified file. The content
 * is decoded and saved, without any of the MIME headers.
 *
 * @param file the name of the file to write to
 * @exception IOException errors related to accessing the file
 * @exception MessagingException message related errors
 * @since JavaMail 1.4
 */
 public void saveFile(String file)

throws IOException, MessagingException

Add MimeUtility fold and unfold methods (6302118)
When dealing with long header lines, it’s often necessary to fold the lines to avoid
exceeding line length limitations. When retrieving the data from such headers, the
folding needs to be undone. The JavaMail implementation includes private fold and
unfold methods for this purpose. These methods should be made public.

 /**
 * Fold a string at linear whitespace so that each line is no longer
 * than 76 characters, if possible. If there are more than 76
 * non-whitespace characters consecutively, the string is folded at
 * the first whitespace after that sequence. The parameter
 * <code>used</code> indicates how many characters have been used in
 * the current line; it is usually the length of the header name. <p>
 *
 * Note that line breaks in the string aren’t escaped; they probably
 * should be.
 *
 * @param used characters used in line so far
 * @param s the string to fold
 * @return the folded string
 */
 public static String fold(int used, String s)

 /**
 * Unfold a folded header. Any line breaks that aren’t escaped and
 * are followed by whitespace are removed.
 *
 * @param s the string to unfold
 * @return the unfolded string
 */
 public static String unfold(String s)

116 Appendix I: Features Added in JavaMail 1.4
Allow more control over headers in InternetHeaders object (6302832)

March 2013 JavaMail™ API Design Specification

Allow more control over headers in InternetHeaders object
(6302832)

Some applications, such as mail server applications, need more control over the order
of headers in the InternetHeaders class. To support such usage, we allow such
applications to subclass InternetHeaders and access the List of headers directly.
InternetHeaders exposes a protected field:

 protected List headers;

The elements of the list are objects of a new protected final class
InternetHeaders.InternetHeader that extends the javax.mail.Header class.
To allow the InternetHeader class to make use of the Header class, we make the
following fields of Header protected:

 /**
 * The name of the header.
 *
 * @since JavaMail 1.4
 */
 protected String name;

 /**
 * The value of the header.
 *
 * @since JavaMail 1.4
 */
 protected String value;

Allow applications to dynamically register new protocol providers
(6302835)

Some applications would like to register new protocol providers at runtime rather
than depending on the JavaMail configuration files and resources. To support such
usage we make the constructor for the Provider class public:

 /**
 * Create a new provider of the specified type for the specified
 * protocol. The specified class implements the provider.
 *
 * @param type Type.STORE or Type.TRANSPORT
 * @param protocol valid protocol for the type
 * @param classname class name that implements this protocol

Appendix I: Features Added in JavaMail 1.4 117
Allow applications to dynamically register address type mappings (4377727)

JavaMail™ API Design Specification March 2013

 * @param vendor optional string identifying the vendor (may be null)
 * @param version optional implementation version string (may be null)
 * @since JavaMail 1.4
 */
 public Provider(Type type, String protocol, String classname,

 String vendor, String version)

We also add a new method to Session to allow registering such Providers:

 /**
 * Add a provider to the session.
 *
 * @param provider the provider to add
 * @since JavaMail 1.4
 */
 public void addProvider(Provider provider)

Allow applications to dynamically register address type mappings
(4377727)

Along with the above item, some applications will want to dynamically control the
mapping from address type to protocol. This could also be used to change the default
internet protocol from “smtp” to “smtps”. We add the following method to Session:

 /**
 * Set the default transport protocol to use for addresses of
 * the specified type. Normally the default is set by the
 * <code>javamail.default.address.map</code> or
 * <code>javamail.address.map</code> files or resources.
 *
 * @param addresstype type of address
 * @param protocol name of protocol
 * @see #getTransport(Address)
 * @since JavaMail 1.4
 */
 public void setProtocolForAddress(String addresstype, String protocol)

ParameterList class should support non US-ASCII parameters
(4107342)

RFC 2231 describes a method for encoding non-ASCII parameters in MIME headers.
We introduce the following System properties to control encoding and decoding such
parameters.

118 Appendix I: Features Added in JavaMail 1.4
Standard interface for Stores that support quotas (6304051)

March 2013 JavaMail™ API Design Specification

If the mail.mime.encodeparameters System property is set to “true”. non-
ASCII parameters will be encoded per RFC 2231.

If the mail.mime.decodeparameters System property is set to “true”.
parameters encoded per RFC 2231 will be decoded.

Both of these properties default to “false”.

Note that RFC 2231 also describes a technique for splitting long parameter values
across multiple parameters. We do not plan to support such parameter continuations.

To allow specifying the charset to use for a parameter, we add the following method
to ParameterList:

 /**
 * Set a parameter. If this parameter already exists, it is
 * replaced by this new value. If the
 * <code>mail.mime.encodeparameters</code> System property
 * is true, and the parameter value is non-ASCII, it will be
 * encoded with the specified charset.
 *
 * @param name name of the parameter.
 * @param value value of the parameter.
 * @param charset charset of the parameter value.
 * @since JavaMail 1.4
 */
 public void set(String name, String value, String charset)

Standard interface for Stores that support quotas (6304051)
Some IMAP stores support quotas. To allow applications to make use of quota
support without depending on IMAP-specific APIs, we provide a QuotaAwareStore
interface that Stores, such as the IMAP Store, can implement. We also provide a
Quota class to represent a set of quotas for a quota root.

package javax.mail;

/**
 * An interrface implemented by Stores that support quotas.
 * The {@link #getQuota getQuota} and {@link #setQuota setQuota} methods
 * support the quota model defined by the IMAP QUOTA extension.
 * Refer to RFC 2087
 * for more information. <p>
 *
 * @since JavaMail 1.4
 */
public interface QuotaAwareStore {
 /**
 * Get the quotas for the named quota root.

Appendix I: Features Added in JavaMail 1.4 119
Standard interface for Stores that support quotas (6304051)

JavaMail™ API Design Specification March 2013

 * Quotas are controlled on the basis of a quota root, not
 * (necessarily) a folder. The relationship between folders
 * and quota roots depends on the server. Some servers
 * might implement a single quota root for all folders owned by
 * a user. Other servers might implement a separate quota root
 * for each folder. A single folder can even have multiple
 * quota roots, perhaps controlling quotas for different
 * resources.
 *
 * @param root the name of the quota root
 * @return array of Quota objects
 * @exception MessagingException if the server doesn’t support the
 * QUOTA extension
 */
 Quota[] getQuota(String root) throws MessagingException;

 /**
 * Set the quotas for the quota root specified in the quota argument.
 * Typically this will be one of the quota roots obtained from the
 * <code>getQuota</code> method, but it need not be.
 *
 * @param quota the quota to set
 * @exception MessagingException if the server doesn’t support the
 * QUOTA extension
 */
 void setQuota(Quota quota) throws MessagingException;
}

package javax.mail;

/**
 * This class represents a set of quotas for a given quota root.
 * Each quota root has a set of resources, represented by the
 * <code>Quota.Resource</code> class. Each resource has a name
 * (for example, “STORAGE”), a current usage, and a usage limit.
 * See RFC 2087.
 *
 * @since JavaMail 1.4
 */

public class Quota {

 /**
 * An individual resource in a quota root.
 *
 * @since JavaMail 1.4
 */
 public static class Resource {

/** The name of the resource. */
public String name;
/** The current usage of the resource. */
public long usage;
/** The usage limit for the resource. */

120 Appendix I: Features Added in JavaMail 1.4
Add ByteArrayDataSource class (4623517)

March 2013 JavaMail™ API Design Specification

public long limit;

/**
 * Construct a Resource object with the given name,
 * usage, and limit.
 *
 * @param name the resource name
 * @param usage the current usage of the resource
 * @param limit the usage limit for the resource
 */
public Resource(String name, long usage, long limit)

 }

 /**
 * The name of the quota root.
 */
 public String quotaRoot;

 /**
 * The set of resources associated with this quota root.
 */
 public Quota.Resource[] resources;

 /**
 * Create a Quota object for the named quotaroot with no associated
 * resources.
 *
 * @param quotaRoot the name of the quota root
 */
 public Quota(String quotaRoot)

 /**
 * Set a resource limit for this quota root.
 *
 * @param name the name of the resource
 * @param limit the resource limit
 */
 public void setResourceLimit(String name, long limit)
}

Add ByteArrayDataSource class (4623517)
The ByteArrayDataSource has been included in the JavaMail demo source code for
quite some time. Quite a few applications need a class of this sort. It’s time to add it
as a standard API. To avoid conflicting with applications that have used the demo
version, we put this version in a new javax.mail.util package.

package javax.mail.util;

Appendix I: Features Added in JavaMail 1.4 121
Add ByteArrayDataSource class (4623517)

JavaMail™ API Design Specification March 2013

/**
 * A DataSource backed by a byte array. The byte array may be
 * passed in directly, or may be initialized from an InputStream
 * or a String.
 *
 * @since JavaMail 1.4
 */
public class ByteArrayDataSource implements DataSource {
 /**
 * Create a ByteArrayDataSource with data from the
 * specified byte array and with the specified MIME type.
 */
 public ByteArrayDataSource(byte[] data, String type)

 /**
 * Create a ByteArrayDataSource with data from the
 * specified InputStream and with the specified MIME type.
 * The InputStream is read completely and the data is
 * stored in a byte array.
 */
 public ByteArrayDataSource(InputStream is, String type)

throws IOException

 /**
 * Create a ByteArrayDataSource with data from the
 * specified String and with the specified MIME type.
 * The MIME type should include a <code>charset</code>
 * parameter specifying the charset to be used for the
 * string. If the parameter is not included, the
 * default charset is used.
 */
 public ByteArrayDataSource(String data, String type) throws IOException

 /**
 * Return an InputStream for the data.
 * Note that a new stream is returned each time
 * this method is called.
 */
 public InputStream getInputStream() throws IOException

 /**
 * Return an OutputStream for the data.
 * Writing the data is not supported; an <code>IOException</code>
 * is always thrown.
 */
 public OutputStream getOutputStream() throws IOException

 /**
 * Get the MIME content type of the data.
 */
 public String getContentType()

 /**

122 Appendix I: Features Added in JavaMail 1.4
Add SharedByteArrayInputStream class (6304189)

March 2013 JavaMail™ API Design Specification

 * Get the name of the data.
 * By default, an empty string (““) is returned.
 */
 public String getName()

 /**
 * Set the name of the data.
 */
 public void setName(String name)
}

Add SharedByteArrayInputStream class (6304189)
The SharedInputStream interface allows the JavaMail implementation to efficiently
process data when parsing messages, without needing to make many copies of the
data. This class is an implementation of the SharedInputStream interface that uses
a byte array as the backing store.

package javax.mail.util;

/**
 * A ByteArrayInputStream that implements the SharedInputStream interface,
 * allowing the underlying byte array to be shared between multiple
 * readers.
 *
 * @since JavaMail 1.4
 */
public class SharedByteArrayInputStream extends ByteArrayInputStream

implements SharedInputStream {
 /**
 * Position within shared buffer that this stream starts at.
 */
 protected int start;

 /**
 * Create a SharedByteArrayInputStream representing the entire
 * byte array.
 */
 public SharedByteArrayInputStream(byte[] buf)

 /**
 * Create a SharedByteArrayInputStream representing the part
 * of the byte array from <code>offset</code> for <code>length</code>
 * bytes.
 */
 public SharedByteArrayInputStream(byte[] buf, int offset, int length)

 /**
 * Return the current position in the InputStream, as an

Appendix I: Features Added in JavaMail 1.4 123
Add SharedFileInputStream class (6304193)

JavaMail™ API Design Specification March 2013

 * offset from the beginning of the InputStream.
 *
 * @return the current position
 */
 public long getPosition()

 /**
 * Return a new InputStream representing a subset of the data
 * from this InputStream, starting at <code>start</code> (inclusive)
 * up to <code>end</code> (exclusive). <code>start</code> must be
 * non-negative. If <code>end</code> is -1, the new stream ends
 * at the same place as this stream. The returned InputStream
 * will also implement the SharedInputStream interface.
 *
 * @paramstartthe starting position
 * @paramendthe ending position + 1
 * @returnthe new stream
 */
 public InputStream newStream(long start, long end)
}

Add SharedFileInputStream class (6304193)
Finally, SharedFileInputStream is an implementation of the
SharedInputStream interface that uses a file as the backing store.

package javax.mail.util;

/**
 * A <code>SharedFileInputStream</code> is a
 * <code>BufferedInputStream</code> that buffers
 * data from the file and supports the <code>mark</code>
 * and <code>reset</code> methods. It also supports the
 * <code>newStream</code> method that allows you to create
 * other streams that represent subsets of the file.
 * A <code>RandomAccessFile</code> object is used to
 * access the file data.
 *
 * @since JavaMail 1.4
 */
public class SharedFileInputStream extends BufferedInputStream

implements SharedInputStream {

 /**
 * The file containing the data.
 * Shared by all related SharedFileInputStream instances.
 */
 protected RandomAccessFile in;

124 Appendix I: Features Added in JavaMail 1.4
Add SharedFileInputStream class (6304193)

March 2013 JavaMail™ API Design Specification

 /**
 * The normal size of the read buffer.
 */
 protected int bufsize;

 /**
 * The file offset that corresponds to the first byte in
 * the read buffer.
 */
 protected long bufpos;

 /**
 * The file offset of the start of data in this subset of the file.
 */
 protected long start = 0;

 /**
 * The amount of data in this subset of the file.
 */
 protected long datalen;

 /**
 * Creates a <code>SharedFileInputStream</code>
 * for the file.
 *
 * @param file the file
 */
 public SharedFileInputStream(File file) throws IOException

 /**
 * Creates a <code>SharedFileInputStream</code>
 * for the named file.
 *
 * @param file the file
 */
 public SharedFileInputStream(String file) throws IOException

 /**
 * Creates a <code>SharedFileInputStream</code>
 * with the specified buffer size.
 *
 * @param file the file
 * @param size the buffer size.
 * @exception IllegalArgumentException if size <= 0.
 */
 public SharedFileInputStream(File file, int size) throws IOException

 /**
 * Creates a <code>SharedFileInputStream</code>
 * with the specified buffer size.
 *
 * @param file the file
 * @param size the buffer size.

Appendix I: Features Added in JavaMail 1.4 125
Add SharedFileInputStream class (6304193)

JavaMail™ API Design Specification March 2013

 * @exception IllegalArgumentException if size <= 0.
 */
 public SharedFileInputStream(String file, int size) throws IOException

 /**
 * See the general contract of the <code>read</code>
 * method of <code>InputStream</code>.
 *
 * @return the next byte of data, or <code>-1</code> if the end of
 * the stream is reached.
 * @exception IOException if an I/O error occurs.
 */
 public int read() throws IOException

 /**
 * Reads bytes from this stream into the specified byte array,
 * starting at the given offset.
 *
 * <p> This method implements the general contract of the corresponding
 * <code>{@link java.io.InputStream#read(byte[], int, int) read}</code>
 * method of the <code>{@link java.io.InputStream}</code> class.
 *
 * @param b destination buffer.
 * @param off offset at which to start storing bytes.
 * @param len maximum number of bytes to read.
 * @return the number of bytes read, or <code>-1</code> if the end
 * of the stream has been reached.
 * @exception IOException if an I/O error occurs.
 */
 public int read(byte b[], int off, int len) throws IOException

 /**
 * See the general contract of the <code>skip</code>
 * method of <code>InputStream</code>.
 *
 * @param n the number of bytes to be skipped.
 * @return the actual number of bytes skipped.
 * @exception IOException if an I/O error occurs.
 */
 public long skip(long n) throws IOException

 /**
 * Returns the number of bytes that can be read from this input
 * stream without blocking.
 *
 * @return the number of bytes that can be read from this input
 * stream without blocking.
 * @exception IOException if an I/O error occurs.
 */
 public int available() throws IOException

 /**
 * See the general contract of the <code>mark</code>

126 Appendix I: Features Added in JavaMail 1.4
Add SharedFileInputStream class (6304193)

March 2013 JavaMail™ API Design Specification

 * method of <code>InputStream</code>.
 *
 * @param readlimit the maximum limit of bytes that can be read
 * before the mark position becomes invalid.
 * @see #reset()
 */
 public void mark(int readlimit)

 /**
 * See the general contract of the <code>reset</code>
 * method of <code>InputStream</code>.
 * <p>
 * If <code>markpos</code> is <code>-1</code>
 * (no mark has been set or the mark has been
 * invalidated), an <code>IOException</code>
 * is thrown. Otherwise, <code>pos</code> is
 * set equal to <code>markpos</code>.
 *
 * @exception IOException if this stream has not been marked or
 * if the mark has been invalidated.
 * @see #mark(int)
 */
 public void reset() throws IOException

 /**
 * Tests if this input stream supports the <code>mark</code>
 * and <code>reset</code> methods. The <code>markSupported</code>
 * method of <code>SharedFileInputStream</code> returns
 * <code>true</code>.
 *
 * @return a <code>boolean</code> indicating if this stream type
 * supports the <code>mark</code> and <code>reset</code>
 * methods.
 * @see java.io.InputStream#mark(int)
 * @see java.io.InputStream#reset()
 */
 public boolean markSupported()

 /**
 * Closes this input stream and releases any system resources
 * associated with the stream.
 *
 * @exception IOException if an I/O error occurs.
 */
 public void close() throws IOException

 /**
 * Return the current position in the InputStream, as an
 * offset from the beginning of the InputStream.
 *
 * @return the current position
 */
 public long getPosition()

Appendix I: Features Added in JavaMail 1.4 127
Add SharedFileInputStream class (6304193)

JavaMail™ API Design Specification March 2013

 /**
 * Return a new InputStream representing a subset of the data
 * from this InputStream, starting at <code>start</code> (inclusive)
 * up to <code>end</code> (exclusive). <code>start</code> must be
 * non-negative. If <code>end</code> is -1, the new stream ends
 * at the same place as this stream. The returned InputStream
 * will also implement the SharedInputStream interface.
 *
 * @param start the starting position
 * @param end the ending position + 1
 * @return the new stream
 */
 public InputStream newStream(long start, long end)

 /**
 * Force this stream to close.
 */
 protected void finalize() throws Throwable
}

128 Appendix I: Features Added in JavaMail 1.4
Add SharedFileInputStream class (6304193)

March 2013 JavaMail™ API Design Specification

129

JavaMail™ API Design Specification March 2013

Appendix J:
Features Added in JavaMail 1.5

This appendix summarizes the features that were added in JavaMail 1.5. Refer to the
appropriate Javadoc documentation for additional information about each item. The
numbers in parentheses are bug numbers; you can find more information about the
bug reports at:

 https://kenai.com/bugzilla/

Add FetchProfile.Item.SIZE (5682)
The FetchProfile.Item.SIZE item allows prefetching the size of a message.
Previously this was an IMAP-specific fetch item.

 /**
 * SIZE is a fetch profile item that can be included in a
 * <code>FetchProfile</code> during a fetch request to a Folder.
 * This item indicates that the sizes of the messages in the specified
 * range should be prefetched. <p>
 *
 * @sinceJavaMail 1.5
 */
 public static final Item SIZE;

Fix protected fields in final classes in javax.mail.search (5683)
Several final classes in the javax.mail.search package contain protected fields. Since
the classes are final, they can’t be subclassed, and the protected fields can not be
accessed. This change cleans up these fields by making them private. The following
fields are changed:
javax.mail.search.AndTerm:
 private SearchTerm[] terms;

javax.mail.search.FlagTerm:
 private boolean set;
 private Flags flags;

javax.mail.search.HeaderTerm:

130 Appendix J: Features Added in JavaMail 1.5
Add MimeMultipart(String subtype, BodyPart... bps) constructor (5684)

March 2013 JavaMail™ API Design Specification

 private String headerName;

javax.mail.search.NotTerm:
 private SearchTerm term;

javax.mail.search.OrTerm:
 private SearchTerm[] terms;

javax.mail.search.RecipientTerm:
 private Message.RecipientType type;

Add MimeMultipart(String subtype, BodyPart... bps)
constructor (5684)

These convenience constructors create a MimeMultipart object given an

array or varargs list of BodyParts.

 /**
 * Construct a MimeMultipart object of the default “mixed” subtype,
 * and with the given body parts. More body parts may be added later.
 *
 * @since JavaMail 1.5
 */
 public MimeMultipart(BodyPart... parts) throws MessagingException

 /**
 * Construct a MimeMultipart object of the given subtype
 * and with the given body parts. More body parts may be added later.
 *
 * @since JavaMail 1.5
 */
 public MimeMultipart(String subtype, BodyPart... parts)
 throws MessagingException

Exceptions should support exception chaining (5685)
javax.mail.MessagingException was designed before exception chainging was
added to Java SE, but it does support a similar concept itself, and that support should
be made available to all subclasses.

javax.mail.AuthenticationFailedException:
 /**

Appendix J: Features Added in JavaMail 1.5 131
Exceptions should support exception chaining (5685)

JavaMail™ API Design Specification March 2013

 * Constructs an AuthenticationFailedException with the specified
 * detail message and embedded exception. The exception is chained
 * to this exception.
 *
 * @param message The detailed error message
 * @param e The embedded exception
 * @since JavaMail 1.5
 */
 public AuthenticationFailedException(String message, Exception e)

javax.mail.FolderClosedException:
 /**
 * Constructs a FolderClosedException with the specified
 * detail message and embedded exception. The exception is chained
 * to this exception.
 *
 * @param folder The Folder
 * @param message The detailed error message
 * @param e The embedded exception
 * @since JavaMail 1.5
 */
 public FolderClosedException(Folder folder, String message, Exception e)

javax.mail.FolderNotFoundException:
 /**
 * Constructs a FolderNotFoundException with the specified
 * detail message and embedded exception. The exception is chained
 * to this exception.
 *
 * @param folder The Folder
 * @param s The detailed error message
 * @param e The embedded exception
 * @since JavaMail 1.5
 */
 public FolderNotFoundException(Folder folder, String s, Exception e)

javax.mail.IllegalWriteException:
 /**
 * Constructs an IllegalWriteException with the specified
 * detail message and embedded exception. The exception is chained
 * to this exception.
 *
 * @param s The detailed error message
 * @param e The embedded exception
 * @since JavaMail 1.5
 */
 public IllegalWriteException(String s, Exception e)

javax.mail.MessageRemovedException:
 /**
 * Constructs a MessageRemovedException with the specified
 * detail message and embedded exception. The exception is chained
 * to this exception.

132 Appendix J: Features Added in JavaMail 1.5
Exceptions should support exception chaining (5685)

March 2013 JavaMail™ API Design Specification

 *
 * @param s The detailed error message
 * @param e The embedded exception
 * @since JavaMail 1.5
 */
 public MessageRemovedException(String s, Exception e)

javax.mail.MethodNotSupportedException:
 /**
 * Constructs a MethodNotSupportedException with the specified
 * detail message and embedded exception. The exception is chained
 * to this exception.
 *
 * @param s The detailed error message
 * @param e The embedded exception
 * @since JavaMail 1.5
 */
 public MethodNotSupportedException(String s, Exception e)

javax.mail.NoSuchProviderException:
 /**
 * Constructs a NoSuchProviderException with the specified
 * detail message and embedded exception. The exception is chained
 * to this exception.
 *
 * @param message The detailed error message
 * @param e The embedded exception
 * @since JavaMail 1.5
 */
 public NoSuchProviderException(String message, Exception e)

javax.mail.ReadOnlyFolderException:
 /**
 * Constructs a ReadOnlyFolderException with the specified
 * detail message and embedded exception. The exception is chained
 * to this exception.
 *
 * @param folder The Folder
 * @param message The detailed error message
 * @param e The embedded exception
 * @since JavaMail 1.5
 */
 public ReadOnlyFolderException(Folder folder, String message, Exception
e)

javax.mail.StoreClosedException:
 /**
 * Constructs a StoreClosedException with the specified
 * detail message and embedded exception. The exception is chained
 * to this exception.
 *
 * @param store The dead Store object
 * @param message The detailed error message

Appendix J: Features Added in JavaMail 1.5 133
ParameterList needs to support use by IMAP (5686)

JavaMail™ API Design Specification March 2013

 * @param e The embedded exception
 * @since JavaMail 1.5
 */
 public StoreClosedException(Store store, String message, Exception e)

ParameterList needs to support use by IMAP (5686)
The IMAP provider has special needs when processing multi-segment parameters
defined by RFC 2231. This new method supports such use by the IMAP provider.

 /**
 * Normal users of this class will use simple parameter names.
 * In some cases, for example, when processing IMAP protocol
 * messages, individual segments of a multi-segment name
 * (specified by RFC 2231) will be encountered and passed to
 * the {@link #set} method. After all these segments are added
 * to this ParameterList, they need to be combined to represent
 * the logical parameter name and value. This method will combine
 * all segments of multi-segment names. <p>
 *
 * Normal users should never need to call this method.
 *
 * @since JavaMail 1.5
 */
 public void combineSegments()

ContentType and ContentDisposition toString should
never return null (5687)

The general contract of Object.toString is that it never returns null. The
toString methods of ContentType and ContentDisposition were defined to
return null in certain error cases. Given the general toString contract it seems
unlikely that anyone ever depended on these special cases, and it would be more
useful for these classes to obey the general contract. These methods have been
changed to return an empty string in these error cases.

javax.mail.internet.ContentType:
 /**
 * Retrieve a RFC2045 style string representation of
 * this Content-Type. Returns an empty string if
 * the conversion failed.
 *

134 Appendix J: Features Added in JavaMail 1.5
Add Transport.send(msg, username, password) method (5689)

March 2013 JavaMail™ API Design Specification

 * @return RFC2045 style string
 */
 public String toString()

javax.mail.internet.ContentDisposition:
 /**
 * Retrieve a RFC2045 style string representation of
 * this ContentDisposition. Returns an empty string if
 * the conversion failed.
 *
 * @return RFC2045 style string
 * @since JavaMail 1.2
 */
 public String toString()

Add Transport.send(msg, username, password) method
(5689)

It’s now very common that email servers require authentication before sending a
message, so we add these new convenience methods.

 /**
 * Send a message. The message will be sent to all recipient
 * addresses specified in the message (as returned from the
 * <code>Message</code> method <code>getAllRecipients</code>).
 * The <code>send</code> method calls the <code>saveChanges</code>
 * method on the message before sending it. <p>
 *
 * Use the specified user name and password to authenticate to
 * the mail server.
 *
 * @param msg the message to send
 * @param user the user name
 * @param password this user’s password
 * @exception SendFailedException if the message could not
 * be sent to some or any of the recipients.
 * @exception MessagingException
 * @see Message#saveChanges
 * @see #send(Message)
 * @see javax.mail.SendFailedException
 * @since JavaMail 1.5
 */
 public static void send(Message msg,
 String user, String password) throws MessagingException

 /**
 * Send the message to the specified addresses, ignoring any
 * recipients specified in the message itself. The
 * <code>send</code> method calls the <code>saveChanges</code>

Appendix J: Features Added in JavaMail 1.5 135
8. Add MimeMessage.setFrom(String) method (5690)

JavaMail™ API Design Specification March 2013

 * method on the message before sending it. <p>
 *
 * Use the specified user name and password to authenticate to
 * the mail server.
 *
 * @param msg the message to send
 * @param addresses the addresses to which to send the message
 * @param user the user name
 * @param password this user’s password
 * @exception SendFailedException if the message could not
 * be sent to some or any of the recipients.
 * @exception MessagingException
 * @see Message#saveChanges
 * @see #send(Message)
 * @see javax.mail.SendFailedException
 * @since JavaMail 1.5
 */
 public static void send(Message msg, Address[] addresses,
 String user, String password) throws MessagingException

8. Add MimeMessage.setFrom(String) method (5690)
This new convenience method allows the From header to be set using a String.

 /**
 * Set the RFC 822 “From” header field. Any existing values are
 * replaced with the given addresses. If address is <code>null</code>,
 * this header is removed.
 *
 * @param address the sender(s) of this message
 * @exception IllegalWriteException if the underlying
 * implementation does not support modification
 * of existing values
 * @exception IllegalStateException if this message is
 * obtained from a READ_ONLY folder.
 * @exception MessagingException
 * @since JvaMail 1.5
 */
 public void setFrom(String address) throws MessagingException

Add Message.getSesssion() method (5691)
Alow access to the Session used when the Message was created.

 /**
 * Return the Session used when this message was created.

136 Appendix J: Features Added in JavaMail 1.5
MimeBodyPart.attachFile should set the disposition to ATTACHMENT (5692)

March 2013 JavaMail™ API Design Specification

 *
 * @return the message’s Session
 * @since JavaMail 1.5
 */
 public Session getSession()

MimeBodyPart.attachFile should set the disposition to
ATTACHMENT (5692)

An oversight when these methods were originally added. Clearly attachments should
set the disposition to ATTACHMENT.

 /**
 * Use the specified file to provide the data for this part.
 * The simple file name is used as the file name for this
 * part and the data in the file is used as the data for this
 * part. The encoding will be chosen appropriately for the
 * file data. The disposition of this part is set to
 * {@link Part#ATTACHMENT Part.ATTACHMENT}.
 *
 * @param file the File object to attach
 * @exception IOException errors related to accessing the
file
 * @exception MessagingException message related errors
 * @since JavaMail 1.4
 */
 public void attachFile(File file) throws IOException,
MessagingException

 /**
 * Use the specified file to provide the data for this part.
 * The simple file name is used as the file name for this
 * part and the data in the file is used as the data for this
 * part. The encoding will be chosen appropriately for the
 * file data.
 *
 * @param file the name of the file to attach
 * @exception IOException errors related to accessing the
file
 * @exception MessagingException message related errors
 * @since JavaMail 1.4
 */
 public void attachFile(String file) throws IOException,
MessagingException

Appendix J: Features Added in JavaMail 1.5 137
Add MimeMessage.reply(replyToAll, setAnswered) method (5693)

JavaMail™ API Design Specification March 2013

Add MimeMessage.reply(replyToAll, setAnswered)
method (5693)

Add a method to control whether the ANSWERED flag is set in the original message
when creating a reply message.

 /**
 * Get a new Message suitable for a reply to this message.
 * The new Message will have its attributes and headers
 * set up appropriately. Note that this new message object
 * will be empty, i.e., it will not have a “content”.
 * These will have to be suitably filled in by the client. <p>
 *
 * If <code>replyToAll</code> is set, the new Message will be addressed
 * to all recipients of this message. Otherwise, the reply will be
 * addressed to only the sender of this message (using the value
 * of the <code>getReplyTo</code> method). <p>
 *
 * If <code>setAnswered</code> is set, the
 * {@link javax.mail.Flags.Flag#ANSWERED ANSWERED} flag is set
 * in this message. <p>
 *
 * The “Subject” field is filled in with the original subject
 * prefixed with “Re:” (unless it already starts with “Re:”).
 * The “In-Reply-To” header is set in the new message if this
 * message has a “Message-Id” header.
 *
 * The current implementation also sets the “References” header
 * in the new message to include the contents of the “References”
 * header (or, if missing, the “In-Reply-To” header) in this message,
 * plus the contents of the “Message-Id” header of this message,
 * as described in RFC 2822.
 *
 * @param replyToAll reply should be sent to all recipients
 * of this message
 * @param setAnswered set the ANSWERED flag in this message?
 * @return the reply Message
 * @exception MessagingException
 * @since JavaMail 1.5
 */
 public Message reply(boolean replyToAll, boolean setAnswered)
 throws MessagingException

Add additional “next” methods to HeaderTokenizer (5694)
These additional “next” methods make it easier to parse headers that don’t obey the
MIME syntax requirements.

138 Appendix J: Features Added in JavaMail 1.5
Add @MailSessionDefinition and @MailSessionDefinitions for Java EE 7 (5743)

March 2013 JavaMail™ API Design Specification

 /**
 * Parses the next token from this String.
 * If endOfAtom is not NUL, the token extends until the
 * endOfAtom character is seen, or to the end of the header.
 * This method is useful when parsing headers that don’t
 * obey the MIME specification, e.g., by failing to quote
 * parameter values that contain spaces.
 *
 * @param endOfAtom if not NUL, character marking end of token
 * @return the next Token
 * @exception ParseException if the parse fails
 * @since JavaMail 1.5
 */
 public Token next(char endOfAtom) throws ParseException

 /**
 * Parses the next token from this String.
 * endOfAtom is handled as above. If keepEscapes is true,
 * any backslash escapes are preserved in the returned string.
 * This method is useful when parsing headers that don’t
 * obey the MIME specification, e.g., by failing to escape
 * backslashes in the filename parameter.
 *
 * @param endOfAtom if not NUL, character marking end of token
 * @param keepEscapes keep all backslashes in returned string?
 * @return the next Token
 * @exception ParseException if the parse fails
 * @since JavaMail 1.5
 */
 public Token next(char endOfAtom, boolean keepEscapes)
 throws ParseException

Add @MailSessionDefinition and
@MailSessionDefinitions for Java EE 7 (5743)

These new annotations support configuring JavaMail Session resources in Java EE 7
application servers.

javax.mail.MailSessionDefinition:

/**
 * Annotation used by Java EE applications to define a <code>MailSession</
code>
 * to be registered with JNDI. The <code>MailSession</code> may be
configured
 * by setting the annotation elements for commonly used <code>Session</
code>

Appendix J: Features Added in JavaMail 1.5 139
Add @MailSessionDefinition and @MailSessionDefinitions for Java EE 7 (5743)

JavaMail™ API Design Specification March 2013

 * properties. Additional standard and vendor-specific properties may be
 * specified using the <code>properties</code> element.
 * <p/>
 * The session will be registered under the name specified in the
 * <code>name</code> element. It may be defined to be in any valid
 * <code>Java EE</code> namespace, and will determine the accessibility of
 * the session from other components.
 *
 * @since JavaMail 1.5
 */
@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface MailSessionDefinition {

 /**
 * Description of this mail session.
 */
 String description() default ““;

 /**
 * JNDI name by which the mail session will be registered.
 */
 String name();

 /**
 * Store protocol name.
 */
 String storeProtocol() default ““;

 /**
 * Transport protocol name.
 */
 String transportProtocol() default ““;

 /**
 * Host name for the mail server.
 */
 String host() default ““;

 /**
 * User name to use for authentication.
 */
 String user() default ““;

 /**
 * Password to use for authentication.
 */
 String password() default ““;

 /**
 * From address for the user.
 */
 String from() default ““;

140 Appendix J: Features Added in JavaMail 1.5
Make cachedContent field protected in MimeMessage and MimeBodyPart (5769)

March 2013 JavaMail™ API Design Specification

 /**
 * Properties to include in the Session.
 * Properties are specified using the format:
 * <i>propertyName=propertyValue</i> with one property per array
element.
 */
 String[] properties() default {};
}

javax.mail.MailSessionDefinitions:

import java.lang.annotation.Target;
import java.lang.annotation.Retention;
import java.lang.annotation.ElementType;
import java.lang.annotation.RetentionPolicy;

/**
 * Declares one or more <code>MailSessionDefinition</code> annotations.
 *
 * @see MailSessionDefinition
 * @since JavaMail 1.5
 */
@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface MailSessionDefinitions {
 MailSessionDefinition[] value();
}

Make cachedContent field protected in MimeMessage and
MimeBodyPart (5769)

Exposing this previously private field makes it easier to subclass these classes.

 /**
 * If our content is a Multipart or Message object, we save it
 * the first time it’s created by parsing a stream so that changes
 * to the contained objects will not be lost. <p>
 *
 * If this field is not null, it’s return by the {@link #getContent}
 * method. The {@link #getContent} method sets this field if it
 * would return a Multipart or MimeMessage object. This field is
 * is cleared by the {@link #setDataHandler} method.
 *
 * @since JavaMail 1.5
 */
 protected Object cachedContent;

Appendix J: Features Added in JavaMail 1.5 141
Make MimeMultipart fields protected to allow subclassing (5770)

JavaMail™ API Design Specification March 2013

Make MimeMultipart fields protected to allow subclassing (5770)
Most of these fields control how the MimeMultipart class parses messages that don’t
conform to the MIME spec. The new initializeProperties method initializes
these fields based on System properties. Exposing these previously private fields
makes it easier to subclass MimeMultipart.

 /**
 * Have we seen the final bounary line?
 *
 * @since JavaMail 1.5
 */
 protected boolean complete = true;

 /**
 * The MIME multipart preamble text, the text that
 * occurs before the first boundary line.
 *
 * @since JavaMail 1.5
 */
 protected String preamble = null;

 /**
 * Flag corresponding to the
“mail.mime.multipart.ignoremissingendboundary”
 * property, set in the {@link #initializeProperties} method called
 * from constructors and the parse method.
 *
 * @since JavaMail 1.5
 */
 protected boolean ignoreMissingEndBoundary = true;

 /**
 * Flag corresponding to the
 * “mail.mime.multipart.ignoremissingboundaryparameter”
 * property, set in the {@link #initializeProperties} method called
 * from constructors and the parse method.
 *
 * @since JavaMail 1.5
 */
 protected boolean ignoreMissingBoundaryParameter = true;

 /**
 * Flag corresponding to the
 * “mail.mime.multipart.ignoreexistingboundaryparameter”
 * property, set in the {@link #initializeProperties} method called
 * from constructors and the parse method.
 *
 * @since JavaMail 1.5
 */
 protected boolean ignoreExistingBoundaryParameter = false;

142 Appendix J: Features Added in JavaMail 1.5
Make MimeMultipart fields protected to allow subclassing (5770)

March 2013 JavaMail™ API Design Specification

 /**
 * Flag corresponding to the “mail.mime.multipart.allowempty”
 * property, set in the {@link #initializeProperties} method called
 * from constructors and the parse method.
 *
 * @since JavaMail 1.5
 */
 protected boolean allowEmpty = false;

 /**
 * Initialize flags that control parsing behavior,
 * based on System properties described above in
 * the class documentation.
 *
 * @since JavaMail 1.5
 */
 protected void initializeProperties()

The following additional System properties are defined corresponding to the last two
fields above:

mail.mime.multipart.ignoreexistingboundaryparameter:

Normally the boundary parameter in the Content-Type header of a multipart
body part is used to specify the separator between parts of the multipart body.
This System property may be set to ”true” to cause the parser to look for a line
in the multipart body that looks like a boundary line and use that value as the
separator between subsequent parts. This may be useful in cases where a broken
anti-virus product has rewritten the message incorrectly such that the boundary
parameter and the actual boundary value no longer match.

The default value of this property is false.

mail.mime.multipart.allowempty:

Normally, when writing out a MimeMultipart that contains no body parts, or
when trying to parse a multipart message with no body parts, a
MessagingException is thrown. The MIME spec does not allow multipart
content with no body parts. This System property may be set to ”true” to
override this behavior. When writing out such a MimeMultipart, a single empty
part will be included. When reading such a multipart, a MimeMultipart will be
created with no body parts.

The default value of this property is false.

Appendix J: Features Added in JavaMail 1.5 143
Need simple way to override MIME type and encoding of attachment (5818)

JavaMail™ API Design Specification March 2013

Need simple way to override MIME type and encoding of attachment
(5818)

First, we define an interface that allows a DataSource to specify the Content-
Transfer-Encoding to use:

package javax.mail;

/**
 * A {@link javax.activation.DataSource DataSource} that also implements
 * <code>EncodingAware</code> may specify the Content-Transfer-Encoding
 * to use for its data. Valid Content-Transfer-Encoding values specified
 * by RFC 2045 are “7bit”, “8bit”, “quoted-printable”, “base64”, and
 * “binary”.
 * <p>
 * For example, a {@link javax.activation.FileDataSource FileDataSource}
 * could be created that forces all files to be base64 encoded: <p>
 * <blockquote><pre>
 * public class Base64FileDataSource extends FileDataSource
 * implements EncodingAware {
 * public Base64FileDataSource(File file) {
 * super(file);
 * }
 *
 * // implements EncodingAware.getEncoding()
 * public String getEncoding() {
 * return “base64”;
 * }
 * }
 * </pre></blockquote><p>
 *
 * @since JavaMail 1.5
 * @author Bill Shannon
 */

public interface EncodingAware {

 /**
 * Return the MIME Content-Transfer-Encoding to use for this data,
 * or null to indicate that an appropriate value should be chosen
 * by the caller.
 *
 * @return the Content-Transfer-Encoding value, or null
 */
 public String getEncoding();
}

Then we add new methods to MimeBodyPart:

144 Appendix J: Features Added in JavaMail 1.5
Need simple way to override MIME type and encoding of attachment (5818)

March 2013 JavaMail™ API Design Specification

 /**
 * Use the specified file with the specified Content-Type and
 * Content-Transfer-Encoding to provide the data for this part.
 * If contentType or encoding are null, appropriate values will
 * be chosen.
 * The simple file name is used as the file name for this
 * part and the data in the file is used as the data for this
 * part. The disposition of this part is set to
 * {@link Part#ATTACHMENT Part.ATTACHMENT}.
 *
 * @param file the File object to attach
 * @param contentType the Content-Type, or null
 * @param encoding the Content-Transfer-Encoding, or
null
 * @exception IOException errors related to accessing the
file
 * @exception MessagingException message related errors
 * @since JavaMail 1.5
 */
 public void attachFile(File file, String contentType, String encoding)
 throws IOException, MessagingException

 /**
 * Use the specified file with the specified Content-Type and
 * Content-Transfer-Encoding to provide the data for this part.
 * If contentType or encoding are null, appropriate values will
 * be chosen.
 * The simple file name is used as the file name for this
 * part and the data in the file is used as the data for this
 * part. The disposition of this part is set to
 * {@link Part#ATTACHMENT Part.ATTACHMENT}.
 *
 * @param file the name of the file
 * @param contentType the Content-Type, or null
 * @param encoding the Content-Transfer-Encoding, or
null
 * @exception IOException errors related to accessing the
file
 * @exception MessagingException message related errors
 * @since JavaMail 1.5
 */
 public void attachFile(String file, String contentType, String
encoding)
 throws IOException, MessagingException

Appendix J: Features Added in JavaMail 1.5 145
Enable RFC 2231 support by default (5819)

JavaMail™ API Design Specification March 2013

Enable RFC 2231 support by default (5819)
RFC 2231 support for encoded parameter values is now widely implemented, it’s time
to change the default to support this standard. Given the way RFC 2231 is defined,
it’s extremely unlikely that this would cause compatibility problems with existing
applications.

The System properties mail.mime.decodeparameters and
mail.mime.encodeparameters now default to true instead of false.

146 Appendix J: Features Added in JavaMail 1.5
Enable RFC 2231 support by default (5819)

March 2013 JavaMail™ API Design Specification

	Chapter 1: Introduction
	Target Audience
	Acknowledgments

	Chapter 2: Goals and Design Principles
	Chapter 3: Architectural Overview
	JavaMail Layered Architecture
	JavaMail Class Hierarchy
	The JavaMail Framework
	Major JavaMail API Components
	The Message Class
	Message Storage and Retrieval
	Message Composition and Transport
	The Session Class

	The JavaMail Event Model
	Using the JavaMail API

	Chapter 4: The Message Class
	The Part Interface
	Message Attributes
	The ContentType Attribute

	The Address Class
	The BodyPart Class
	The Multipart Class
	The Flags Class
	Message Creation And Transmission

	Chapter 5: The Mail Session
	The Provider Registry
	Resource Files
	Provider
	Protocol Selection and Defaults
	Example Scenarios

	Managing Security
	Store and Folder URLs

	Chapter 6: Message Storage And Retrieval
	The Store Class
	Store Events

	The Folder Class
	The FetchProfile Method
	Folder Events
	The Expunge Process

	The Search Process

	Chapter 7: The JavaBeans Activation Framework
	Accessing the Content
	Example: Message Output

	Operating on the Content
	Example: Viewing a Message
	Example: Showing Attachments

	Adding Support for Content Types

	Chapter 8: Message Composition
	Building a Message Object
	Message Creation
	Setting Message Attributes
	Setting Message Content
	Building a MIME Multipart Message

	Chapter 9: Transport Protocols and Mechanisms
	Obtaining the Transport Object
	Transport Methods

	Transport Events
	ConnectionEvent
	TransportEvent

	Using The Transport Class

	Chapter 10: Internet Mail
	The MimeMessage Class
	The MimeBodyPart Class
	The MimeMultipart Class
	The MimeUtility Class
	Content Encoding and Decoding
	Header Encoding and Decoding

	The ContentType Class

	Appendix A: Environment Properties
	Appendix B: Examples Using the JavaMail API
	Example: Showing a Message
	Example: Listing Folders
	Example: Search a Folder for a Message
	Example: Monitoring a Mailbox
	Example: Sending a Message

	Appendix C: Message Security
	Overview
	Displaying an Encrypted/Signed Message
	MultiPartEncrypted/Signed Classes
	Reading the Contents
	Verifying Signatures
	Creating a Message

	Appendix D: Part and Multipart Class Diagram
	Appendix E: MimeMessage Object Hierarchy
	Appendix F: Features Added in JavaMail 1.1
	The MessageContext Class and MessageAware Interface
	The getMessageID method
	Additions to the InternetAddress Class
	Additions to the MimeUtility Class
	New SearchTerms
	Additions to the Folder Class
	New Service Class

	Appendix G: Features Added in JavaMail 1.2
	Additions to the MimeMessage Class
	Additions to the MimeMultipart Class
	The getRawInputStream method
	Additions to the InternetAddress Class
	The MailDateFormat Class
	Additions to Exceptions and Events
	Additions to the Session Class
	Additions to the MimeUtility Class
	Additions for serializable javax.mail.search terms
	Additions to the Store Class
	New ContentDisposition Class
	New performance improvements
	Additions to the ParameterList class

	Appendix H: Features Added in JavaMail 1.3
	Add setSender and getSender methods to MimeMessage (4405115)
	Add setContentID method to MimeBodyPart (4377720)
	Add mail.mime.charset property (4377731)
	Add getDeletedMesageCount method to Folder (4388730)
	Support parsing illegal Internet addresses (4650940)
	Add mail.mime.address.strict property (4650940)
	Add mail.mime.decodetext.strict property (4201203)
	Add mail.mime.encodeeol.strict property (4650949)
	Add isGroup and getGroup methods to InternetAddress (4650952)
	Support per-session debug output stream (4517686)

	Appendix I: Features Added in JavaMail 1.4
	Add MimePart.setText(text, charset, subtype) method (6300765)
	Add mail.mime.encodefilename and decodefilename properties (6300768)
	Add Service.connect(user, password) (6300771)
	Add mail.mime.multipart.ignoremissingendboundary System property (4971381)
	Add MimeMultipart.isComplete() method (6300811)
	Add mail.mime.multipart.ignoremissingboundaryparamet er property (6300814)
	Add MimeMultipart getPreamble and setPreamble methods (6300828)
	Add MimeMessage.updateMessageID() protected method (6300831)
	Add MimeMessage.createMimeMessage() protected method (6300833)
	Make the part field of MimePartDataSource protected (6300834)
	Folder.getSeparator should not require the folder to exist (6301381)
	Add PreencodedMimeBodyPart class (6301386)
	Add MimeBodyPart attachFile and saveFile methods (6301390)
	Add MimeUtility fold and unfold methods (6302118)
	Allow more control over headers in InternetHeaders object (6302832)
	Allow applications to dynamically register new protocol providers (6302835)
	Allow applications to dynamically register address type mappings (4377727)
	ParameterList class should support non US-ASCII parameters (4107342)
	Standard interface for Stores that support quotas (6304051)
	Add ByteArrayDataSource class (4623517)
	Add SharedByteArrayInputStream class (6304189)
	Add SharedFileInputStream class (6304193)

	Appendix J: Features Added in JavaMail 1.5
	Add FetchProfile.Item.SIZE (5682)
	Fix protected fields in final classes in javax.mail.search (5683)
	Add MimeMultipart(String subtype, BodyPart... bps) constructor (5684)
	Exceptions should support exception chaining (5685)
	ParameterList needs to support use by IMAP (5686)
	ContentType and ContentDisposition toString should never return null (5687)
	Add Transport.send(msg, username, password) method (5689)
	8. Add MimeMessage.setFrom(String) method (5690)
	Add Message.getSesssion() method (5691)
	MimeBodyPart.attachFile should set the disposition to ATTACHMENT (5692)
	Add MimeMessage.reply(replyToAll, setAnswered) method (5693)
	Add additional “next” methods to HeaderTokenizer (5694)
	Add @MailSessionDefinition and @MailSessionDefinitions for Java EE 7 (5743)
	Make cachedContent field protected in MimeMessage and MimeBodyPart (5769)
	Make MimeMultipart fields protected to allow subclassing (5770)
	Need simple way to override MIME type and encoding of attachment (5818)
	Enable RFC 2231 support by default (5819)

