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Introduction to Monty JVM



CLDC HI VM Overview
• Connected Limited Device Configuration JVM

– Build-time choice of CLDC 1.0, 1.1, 1.1.1 and 8 profiles
– First release: October, 2003

• HotSpot Implementation (optional)
– Profiler-driven dynamic compilation
– Optimistic speculative optimizations
– Dynamic deoptimization (when necessary)

• Targeted to small mobile & embedded devices
– Slow processor and memory
– Constrained memory (16K-16M RAM)
– May not have a fully capable OS

• Single process
• Single native thread
• May or may not support page protection and memory-mapped files
• May have no OS (bare metal)



Target processors

• ARM 9, 11 with optional coprocessors and instruction 
set extensions
– Thumb, Thumb 2
– JazelleDBX (HW bytecode interpreter)
– ARM VFP (Vector Floating Point coprocessor)

• ARM Cortex A, M3, M4
• Intel x386+

– For debugging and cross-compilation

• SuperHitachi SH3, SH4
• SPARC

– For cross-compilation only



Evolution of CLDC profile
• CLDC 1.0, 1.1, 1.1.1

– Subsets of J2SE (JDK 1.3)
– No user-defined class loaders
– No reflection (except for Class.forName)
– No serialization
– No JNI and native code in applications
– No user-defined finalizers
– Requires 32K RAM, 160K ROM for VM and class library

• CLDC 8
– Subset of Java SE 8, released April 2014
– Supports new language features (Generics, Annotations...)
– Retains all limitations of the older CLDC profiles
– No invokedynamic
– No annotations with RUNTIME retention policy
– Requires 128K RAM, 512K ROM  for VM and class library



VM technologies under hood

• Manually optimized assembly interpreter
– Most of the code is interpeted due to the lack of memory
– Can use h/w acceleration
– Execution stacks are elastic and allocated in the object heap

• Grow and shrink when necessary

– Can be easily extended with new internal bytecodes
• But not many spare bytecodes left

• (Almost) Everything is a runtime object
– But not necessarily Java object

• Method, Compiled method, Execution stack...
• Any runtime object could be made Java object

– New kind of runtime objects can be easily defined
• object_size(obj) – compute the object size
• oops_do(obj, func) – apply a function to every reference field
• print_on(stream) – pretty-printing for convenience of debugging (optional)
• Statically register the kind and get the kind_id



VM technologies under hood (1)
• Single-pass dynamic adaptive compiler (optional)

– Pauseless incremental schedulable compilation
– Driven by a dynamic profiler

• Combined sampling and instrumentaion

– Compiled code and temporary data allocated in a distinguished 
area of the heap

• Relocatable and resizable
• Execution of compiled code is profiled 
• “Cold” code is evicted, no GC is necessary

– No IR constructed: direct abstract interpretation of bytecodes
– Optimizations:

• Constant folding
• Type, constant and copy propagation
• CSE (with a dictionary of bytecode strings)
• Null check and checkcast elimination
• Limited-depth inlining of method calls
• Speculative devirtualization (unguarded)
• Loop and branch optimizations



VM technologies under hood (2)

• System class pre-linking (ROMization)
– System libraries and pre-installed applications loaded at build time
– The classes are selectively initialized
– Aggressively optimized for size and speed

• Open- and closed-world models supported
• Reduction of interface and virtual method calls
• Elimination of unreachable methods, fields and classes
• Selective AOT compilation
• Symbolic information stripped
• Constant pools are merged
• Immutable data separated, stored in ROM, shared between isolates

– The generated image is compiled & linked into VM executable
– Reduces static and dynamic footprint
– Greatly reduces VM start-up time



VM technologies under hood (3)
• Generational mark & compact garbage collector

– Heap occupancy > 80%
– Linear allocation, sliding window compaction
– Preserves allocation order

• Improves locality
• Helps to eliminate cross-references in persistent groups of objects

• Multiple virtual threads over single native thread
• Multitasking within single native process (Isolates)

– With task priorities, resource quotas and shared libraries
– Synchronous native finalization on isolate termination

• Lightweight native interface
– Direct access to Java objects via the generated C++ structures
– KNI



Bytecode Quickening
• Interpreter rewrites some bytecodes during execution

– When necessary, a method can be quickened by request

• Resolve symbolic references
• Validate the semantics
• If successful, patch the bytecode with a quicker version

– To avoid repeated quickening of the same bytecode
– Bytecode size has to remain the same

• Can be padded with nop's

quick_getstatic, quick_<T>getfield,
quick_invokevirtual,  quick_invokeinvirtual_final, 
quick_invokespecial, quick_invokeinterface,
quick_instanceof, quick_checkcast

• Frequently used sequences of bytecodes can be 
replaced with faster super-instructions
– i.e. aload_0_fast_agetfield_1



Closures in Java



Closures
• Closure is a function (or reference to a function) together 

with the environment referenced by the function
– Introduced in Scheme programming language (1975-80)

• In stateful programming language a function can modify 
its environment
– Block in Smalltalk and Self
– Activation record in Beta
– Locals of outer scopes can be modified

|count incrementCount|

count := 0.

incrementCount := [count := count + 1].

1 to: 10 do: [:i | i even ifTrue: incrementCount].

^count

• Closures in Java can be modeled with inner classes and 
lambda expressions (in Java 8+)
– Non-local variables are captured and cannot be modified



Lambda expressions in Java 8+
• Lambda expression produces an instance of functional 

interface
– Essentially an interface with a single abstract method
– Notional interface can be induced by an intersection type

FunctionalInterface & MarkerInterface(s)

– The JLS 8 carefully avoids unnecessary restrictions on
the implementation of the interface

– Usually local class implementing the functional interface is created 

• Lambda expression is compiled to:
– the method representing the lambda body
– invokedynamic for a method of  java.lang.invoke.LambdaMetafactory

• Can we use lambda expressions in CLDC?
– They are convenient and expressive
– But there is no invokedynamic and java.lang.invoke package
– Invokedynamic for LambdaMetafactory can be treated as an idiom



Example: Inner class implementing
a functional interface and capturing one 
value

interface MyFunction {
  int my_function();
}

class OuterClass {
  int x;

  class MyClass implements MyFunction {
    int my_function() {
      return x;
    }
  }
}



Internals of MyClass implementing 
MyFunction and capturing one value 

header

class_info

Class MyClass

supertype_cache_0

supertype_cache_1

array_class

superclass

hash_next

instance_field_map

No static fields

size
instance

size

field_map

prototypical_proxy

Java mirror java.lang.Class

InstanceClass

null (created lazily)

Object

header ClassInfo

size class_id

access_flags

name #MyClass

local_interfaces

instance_field_desc

methods

constant_pool

virtual_table
(3+1 = 4 methods)

root_interface_table
(&MyFunction, 0)

interface_tables
(&my_method)

header

hash_value, lock

class_info

header

array_length: 1

&MyFunction

header

array_length: 1

&my_method

MyClass.my_method

MyClass.<init>
Overhead: at least 50
words (200 bytes)



Classless Implementation of 
Closures



Classless closure for MyFunction

header

captured values

MyFunction_id args_oop_map

method

com.sun.cldchi.jvm.SimpleClosure

my_method

• SimpleClosure
– Hidden abstract instance class, extends Object

– May (but not required to) override inherited methods (equals, hashCode, toString)

• Method
– A reference to a method of any class, must have compatible type

• MyFunction_id
– Every class and interface has unique id

– Max 16K classes per Isolate: fits in 14 bits

• args_oop_map
– Number of captured words and a bitmap of pointers among them

• 4 bits for size + 14 for bitmap, or 17 for bitmap + 1 for the terminator bit



Relaxed type compatibility for
fully quickened methods

• Quick bytecodes are fully resolved
– Symbolic references are replaced by adresses, offsets and indices
– Access rights are already validated during the quickening

• Method is fully quickened if:
– Contains only quick versions of bytecodes
– Is invoked only by quick bytecodes

• Type compatibility of static and virtual methods
– SomeClass.static_method(SomeClass receiver, args) and

SomeClass.virtual_method(args) are type-compatible
– Only total number of arguments, their order and types are important

• Mobility of static methods
– Fully quickened static method of one class can be moved to any 

other class while all references to the method preserved



Invocation of Simple Closures
• Polymorphism of functional interfaces

– Java type system cannot distinguish regular Java class and 
SimpleClosure implementations of the same interface

• Type system of dynamic/AOT compiler can be richer – it can be able to 
make it for some call site at compile time

– The same code must work with both representations
– Bytecodes may need to handle the difference in run time

• Four bytecodes require modification 
– quick_invokespecial
– quick_invokeinterface
– quick_isinstanceof
– quick_checkcast

• No need to modify quick_invokevirtual
– For final classes invokevirtual is always quickened to 

quick_invokevirtual_final
– Calls a resolved reference to the method in the constant pool



Modification of quick_invokespecial
• quick_invokespecial <method_index> (receiver ...)

Method method;

if (receiver.class == SimpleClosure) {

  method = ((SimpleClosure)receiver).method;

} else {

  // Regular Java class

  method = receiver.classinfo.get_virtual_method(method_index);

}

invoke(method);



Modification of quick_invokeinterface
• quick_invokeinterface <interface_id, method_index, n_args>  

                                   (receiver ...)
Method method;

if (receiver.class == SimpleClosure) {

  method = ((SimpleClosure)receiver).method;

} else {

  // Regular Java class

  const ClassInfo classinfo = receiver.classinfo;

  method = classinfo.lookup_interface_table(interface_id)        
             [method_index];

}

invoke(method);



Modification of quick_isinstanceof
• quick_isinstanceof <class_id> (obj)

Class klass = obj.class;

if (klass == SimpleClosure) {

  // Lookup the superclasses of SimpleClosure

  // Object is the only accessible superclass of SimpleClosure

  if (class_id == Object_id) {

    return true;

  }

  klass = get_class_by_id(((SimpleClosure)obj).interface_id);  

}

return klass.is_subtype_of(class_id);

• quick_checkcast <class_id> (obj)
– Is similar but throws an exception instead of returning a boolean



Creation of SimpleClosures
• New internal bytecode 

new_simple_closure<interface_id, method, args_map>
– Args_map combines n_args and oop_map in a short value
– Creates new SimpleClosure for n_args of captured values
– Initializes interface_id and method fields
– Pops a block of n_args words from stack to the captured fields

• Plain data copy (could use memcpy) followed by the adjustment of SP
• No need in write barrier – it is an initialization of a young object
• Type correctness must be guaranteed by bytecode construction

• Do we have enough space at the capture site to 
generate this bytecode without the method expansion?
– For the old Java the answer is positive
– For the new Java it is negative

• Have to move interface_id from the bytecode to the cpool or the method:

new_simple_closure<method_cp_index, args_map>



Creating a Simple Closure in Old Java
new <MyClass>  ; 3 bytes
dup                            ; 1 byte
aload_0                        ; N captured values (N >= 0)
…
invokespecial <MyClass.<init>> ; 3 bytes

aload_0                        ; N captured values
…
new_simple_closure <MyFunction_id, method, N> ; 7 bytes:
       ; interface_id – immediate 2 bytes
       ; method – constant pool index to resolved method, 2 bytes
       ; args_map – immediate 2 bytes

• Exception table may need to be updated
– Bytecode indices have changed



Creating a Simple Closure in New Java

aload_0                             ; N captured values
…
invokedynamic <call site specifier> ; 5 bytes

aload_0                             ; N captured values
…
new_simple_closure <method, N> ; 5 bytes:
       ; method – constant pool index to the pair of indices
       ;   (resolved_static_method, class_id)
       ; n_args_and_oopmap – immediate 2 bytes

• Constant pool entries can be shared between the 
bytecodes
– It may be easier to store interface_id somewhere in the method 

and to share just a ResolvedStaticMethod entry between 
equivalent call sites



Simple Closure conversion for old Java

• Class implementing the interface is created statically
– It contains a virtual method implementing the interface method

• Check if the class can be converted to Simple Closure
• Adjust the reads of captured values in the method

– Offset of captured fields is different in Simple Closure (3 words) and 
the original Java class (1 word)

– Java stack may grow downwards
• It is easier to reorder fields once than to modify code generators for all supported 

ISAs

– Adjust field offset in the instance field descriptors before quickening 
the method

• Convert the signature to the static method
• Move the method to the closest outer Java class
• Dispose the implementing class



When an instance class can be 
converted to Simple Closure

• Final, extends Object, implements single functional interface
• Contains no fields or methods except for the implemented 

functional method and the constructor
• The constructor initializes every field by the respective 

argument
• Contains only resolvable symbolic references

– And so can be fully quickened

• Referenced only at capture site to create a closure
– Anonymous class is just a class with mangled name
– The enclosing scope of inner class definition is lost during compilation 

to the class file 
• Closed syntactic scope within a method or a class is expanded to the package
• A loaded later class can refer to the any other class in its package

– We can guess but cannot really prove the class is properly used



Simple Closure conversion for new Java

• Lambda body is represented by a method of the enclosing 
class
– All captured values are passed as arguments

• Can the interpreter push a block of previously captured 
values and call this method?

closure lambda_args --> closure lambda_args captured_values

– Unfortunately, no: the number and the order of arguments differ
– … and their types can be different too

• Adapter method has to be generated 
– Let's make it a static method in the same class as the lambda body
– LambdaMetafactory has to be partially re-implemented in the runtime
– The generation of the adapter may require boxing/unboxing  and 

widening conversions of the arguments and the result



Transparency of Simple Closures
• Is there an observable difference between Simple Closure 

and anonymous internal Java class implementing the 
same interface?
– closure.getClass() returns a different class

• It is the same for all simple closures, and this is observable

– SimpleClosure cannot have the same properties as the respective 
internal class

• closure.getClass().newInstance() never creates a closure, throws an exception
• MyFunction.isAssignableFrom(SimpleClosure) returns false regardless of the 

interface implemented by its instances

– Not a part of older CLDC profiles

– Specified in CLDC 8 but never used anywhere in the libraries

– If required, closure.getClass() could create a fake Java class lazily
• Must be shared between all Simple Closures created by the same capture site

– class_id has to be allocated eagerly
• Must be in correct relation with its instances and the implemented interface
• Disposable when not referenced



Which Java is better for Simple Closures
• Ideally, there should be one statically generated method

– Captured values can be represented as fields or the tail arguments
– The head arguments must be compatible with the interface

• Both the old and the new Java deviate from the ideal
• The old Java:

– Generates a method with the matching arguments
– … but it is located in a wrong package-private class
– All references to the class have to be analyzed

• The analysis would be easier if the class could be local within a method

– Bytecodes of the capture site must be analyzed and rewritten

• The new Java: 
– Generates a method in the proper class but with wrong arguments
– An additional adapter method must be generated by VM

• Memory and performance overhead
• Bytecode generator does not naturally belong to this VM



Bridge methods and marker interfaces

• Bridge methods are artifacts of generics in Java type 
system 
– Do not naturally belong to closures or lambda expressions

• Marker interfaces is a value add-on for lambdas
– Do not naturally belong to closures or lambda expressions
– Memory overhead
– Performance overhead in current implementation of 

invokeinterface, instanceof and checkcast bytecodes
• The interface table lookup is linear on the number of implemented interfaces 

regardless of the number of the methods

• Hopefully, they can be omitted in CLDC subset
• … But what if we had to implement them anyway?



Simple Closures with bridge methods 

header

...

Static call site

n_methods

SimpleClosureheader

Simple closure

interface_idsize/oop_map

captured values

• Fields interface_id and method moved from Simple Closure to Static Call 
Site

• Field size/oop_map is the same Simple Closures created by one Static 
Calls Site. But it cannot be moved to Static Call Site: it defines object size 
and so must be accessible via no more than one hop from object header.

• A bit more complicated implementation of bytecodes quick_invokeinterface, 
quick_invokespecial, quick_instanceof and quick_checkcast

call_site

&my_method_0

&my_method_n



Simple Closures with bridge methods 
and marker interfaces 

• A bit more complicated implementation of bytecodes quick_instanceof and 
quick_checkcast

– Extra 1-2 words for supertype cache could improve the performance

• Getting closer to regular classes... Are they really so terrible?

header

...

Static call site

n_methods

SimpleClosureheader

Simple closure

n_interfacessize/oop_map

captured values

call_site

&my_method_0

&my_method_n

...

&MyFunction_0

&MyFunction_n



Alternative Approach

• Adapters can be generated by the runtime-specific 
external convertor 
– Standard class file format can be used
– The change can be encoded by a different method of 

LambdaMetafactory in the call site descriptor
– The method may not exist – it is just an idiom for the runtime



Q&A
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