
<Insert Picture Here>

Classless Closures for a Small Embedded VM

Oleg Pliss
Java ME Embedded
Internet of Things

Agenda

• Introduction to Monty JVM
• Closures in Java
• Classless implementation of closures
• Q & A

Introduction to Monty JVM

CLDC HI VM Overview
• Connected Limited Device Configuration JVM

– Build-time choice of CLDC 1.0, 1.1, 1.1.1 and 8 profiles
– First release: October, 2003

• HotSpot Implementation (optional)
– Profiler-driven dynamic compilation
– Optimistic speculative optimizations
– Dynamic deoptimization (when necessary)

• Targeted to small mobile & embedded devices
– Slow processor and memory
– Constrained memory (16K-16M RAM)
– May not have a fully capable OS

• Single process
• Single native thread
• May or may not support page protection and memory-mapped files
• May have no OS (bare metal)

Target processors

• ARM 9, 11 with optional coprocessors and instruction
set extensions
– Thumb, Thumb 2
– JazelleDBX (HW bytecode interpreter)
– ARM VFP (Vector Floating Point coprocessor)

• ARM Cortex A, M3, M4
• Intel x386+

– For debugging and cross-compilation

• SuperHitachi SH3, SH4
• SPARC

– For cross-compilation only

Evolution of CLDC profile
• CLDC 1.0, 1.1, 1.1.1

– Subsets of J2SE (JDK 1.3)
– No user-defined class loaders
– No reflection (except for Class.forName)
– No serialization
– No JNI and native code in applications
– No user-defined finalizers
– Requires 32K RAM, 160K ROM for VM and class library

• CLDC 8
– Subset of Java SE 8, released April 2014
– Supports new language features (Generics, Annotations...)
– Retains all limitations of the older CLDC profiles
– No invokedynamic
– No annotations with RUNTIME retention policy
– Requires 128K RAM, 512K ROM for VM and class library

VM technologies under hood

• Manually optimized assembly interpreter
– Most of the code is interpeted due to the lack of memory
– Can use h/w acceleration
– Execution stacks are elastic and allocated in the object heap

• Grow and shrink when necessary

– Can be easily extended with new internal bytecodes
• But not many spare bytecodes left

• (Almost) Everything is a runtime object
– But not necessarily Java object

• Method, Compiled method, Execution stack...
• Any runtime object could be made Java object

– New kind of runtime objects can be easily defined
• object_size(obj) – compute the object size
• oops_do(obj, func) – apply a function to every reference field
• print_on(stream) – pretty-printing for convenience of debugging (optional)
• Statically register the kind and get the kind_id

VM technologies under hood (1)
• Single-pass dynamic adaptive compiler (optional)

– Pauseless incremental schedulable compilation
– Driven by a dynamic profiler

• Combined sampling and instrumentaion

– Compiled code and temporary data allocated in a distinguished
area of the heap

• Relocatable and resizable
• Execution of compiled code is profiled
• “Cold” code is evicted, no GC is necessary

– No IR constructed: direct abstract interpretation of bytecodes
– Optimizations:

• Constant folding
• Type, constant and copy propagation
• CSE (with a dictionary of bytecode strings)
• Null check and checkcast elimination
• Limited-depth inlining of method calls
• Speculative devirtualization (unguarded)
• Loop and branch optimizations

VM technologies under hood (2)

• System class pre-linking (ROMization)
– System libraries and pre-installed applications loaded at build time
– The classes are selectively initialized
– Aggressively optimized for size and speed

• Open- and closed-world models supported
• Reduction of interface and virtual method calls
• Elimination of unreachable methods, fields and classes
• Selective AOT compilation
• Symbolic information stripped
• Constant pools are merged
• Immutable data separated, stored in ROM, shared between isolates

– The generated image is compiled & linked into VM executable
– Reduces static and dynamic footprint
– Greatly reduces VM start-up time

VM technologies under hood (3)
• Generational mark & compact garbage collector

– Heap occupancy > 80%
– Linear allocation, sliding window compaction
– Preserves allocation order

• Improves locality
• Helps to eliminate cross-references in persistent groups of objects

• Multiple virtual threads over single native thread
• Multitasking within single native process (Isolates)

– With task priorities, resource quotas and shared libraries
– Synchronous native finalization on isolate termination

• Lightweight native interface
– Direct access to Java objects via the generated C++ structures
– KNI

Bytecode Quickening
• Interpreter rewrites some bytecodes during execution

– When necessary, a method can be quickened by request

• Resolve symbolic references
• Validate the semantics
• If successful, patch the bytecode with a quicker version

– To avoid repeated quickening of the same bytecode
– Bytecode size has to remain the same

• Can be padded with nop's

quick_getstatic, quick_<T>getfield,
quick_invokevirtual, quick_invokeinvirtual_final,
quick_invokespecial, quick_invokeinterface,
quick_instanceof, quick_checkcast

• Frequently used sequences of bytecodes can be
replaced with faster super-instructions
– i.e. aload_0_fast_agetfield_1

Closures in Java

Closures
• Closure is a function (or reference to a function) together

with the environment referenced by the function
– Introduced in Scheme programming language (1975-80)

• In stateful programming language a function can modify
its environment
– Block in Smalltalk and Self
– Activation record in Beta
– Locals of outer scopes can be modified

|count incrementCount|

count := 0.

incrementCount := [count := count + 1].

1 to: 10 do: [:i | i even ifTrue: incrementCount].

^count

• Closures in Java can be modeled with inner classes and
lambda expressions (in Java 8+)
– Non-local variables are captured and cannot be modified

Lambda expressions in Java 8+
• Lambda expression produces an instance of functional

interface
– Essentially an interface with a single abstract method
– Notional interface can be induced by an intersection type

FunctionalInterface & MarkerInterface(s)

– The JLS 8 carefully avoids unnecessary restrictions on
the implementation of the interface

– Usually local class implementing the functional interface is created

• Lambda expression is compiled to:
– the method representing the lambda body
– invokedynamic for a method of java.lang.invoke.LambdaMetafactory

• Can we use lambda expressions in CLDC?
– They are convenient and expressive
– But there is no invokedynamic and java.lang.invoke package
– Invokedynamic for LambdaMetafactory can be treated as an idiom

Example: Inner class implementing
a functional interface and capturing one
value

interface MyFunction {
 int my_function();
}

class OuterClass {
 int x;

 class MyClass implements MyFunction {
 int my_function() {
 return x;
 }
 }
}

Internals of MyClass implementing
MyFunction and capturing one value

header

class_info

Class MyClass

supertype_cache_0

supertype_cache_1

array_class

superclass

hash_next

instance_field_map

No static fields

size
instance

size

field_map

prototypical_proxy

Java mirror java.lang.Class

InstanceClass

null (created lazily)

Object

header ClassInfo

size class_id

access_flags

name #MyClass

local_interfaces

instance_field_desc

methods

constant_pool

virtual_table
(3+1 = 4 methods)

root_interface_table
(&MyFunction, 0)

interface_tables
(&my_method)

header

hash_value, lock

class_info

header

array_length: 1

&MyFunction

header

array_length: 1

&my_method

MyClass.my_method

MyClass.<init>
Overhead: at least 50
words (200 bytes)

Classless Implementation of
Closures

Classless closure for MyFunction

header

captured values

MyFunction_id args_oop_map

method

com.sun.cldchi.jvm.SimpleClosure

my_method

• SimpleClosure
– Hidden abstract instance class, extends Object

– May (but not required to) override inherited methods (equals, hashCode, toString)

• Method
– A reference to a method of any class, must have compatible type

• MyFunction_id
– Every class and interface has unique id

– Max 16K classes per Isolate: fits in 14 bits

• args_oop_map
– Number of captured words and a bitmap of pointers among them

• 4 bits for size + 14 for bitmap, or 17 for bitmap + 1 for the terminator bit

Relaxed type compatibility for
fully quickened methods

• Quick bytecodes are fully resolved
– Symbolic references are replaced by adresses, offsets and indices
– Access rights are already validated during the quickening

• Method is fully quickened if:
– Contains only quick versions of bytecodes
– Is invoked only by quick bytecodes

• Type compatibility of static and virtual methods
– SomeClass.static_method(SomeClass receiver, args) and

SomeClass.virtual_method(args) are type-compatible
– Only total number of arguments, their order and types are important

• Mobility of static methods
– Fully quickened static method of one class can be moved to any

other class while all references to the method preserved

Invocation of Simple Closures
• Polymorphism of functional interfaces

– Java type system cannot distinguish regular Java class and
SimpleClosure implementations of the same interface

• Type system of dynamic/AOT compiler can be richer – it can be able to
make it for some call site at compile time

– The same code must work with both representations
– Bytecodes may need to handle the difference in run time

• Four bytecodes require modification
– quick_invokespecial
– quick_invokeinterface
– quick_isinstanceof
– quick_checkcast

• No need to modify quick_invokevirtual
– For final classes invokevirtual is always quickened to

quick_invokevirtual_final
– Calls a resolved reference to the method in the constant pool

Modification of quick_invokespecial
• quick_invokespecial <method_index> (receiver ...)

Method method;

if (receiver.class == SimpleClosure) {

 method = ((SimpleClosure)receiver).method;

} else {

 // Regular Java class

 method = receiver.classinfo.get_virtual_method(method_index);

}

invoke(method);

Modification of quick_invokeinterface
• quick_invokeinterface <interface_id, method_index, n_args>

 (receiver ...)
Method method;

if (receiver.class == SimpleClosure) {

 method = ((SimpleClosure)receiver).method;

} else {

 // Regular Java class

 const ClassInfo classinfo = receiver.classinfo;

 method = classinfo.lookup_interface_table(interface_id)
 [method_index];

}

invoke(method);

Modification of quick_isinstanceof
• quick_isinstanceof <class_id> (obj)

Class klass = obj.class;

if (klass == SimpleClosure) {

 // Lookup the superclasses of SimpleClosure

 // Object is the only accessible superclass of SimpleClosure

 if (class_id == Object_id) {

 return true;

 }

 klass = get_class_by_id(((SimpleClosure)obj).interface_id);

}

return klass.is_subtype_of(class_id);

• quick_checkcast <class_id> (obj)
– Is similar but throws an exception instead of returning a boolean

Creation of SimpleClosures
• New internal bytecode

new_simple_closure<interface_id, method, args_map>
– Args_map combines n_args and oop_map in a short value
– Creates new SimpleClosure for n_args of captured values
– Initializes interface_id and method fields
– Pops a block of n_args words from stack to the captured fields

• Plain data copy (could use memcpy) followed by the adjustment of SP
• No need in write barrier – it is an initialization of a young object
• Type correctness must be guaranteed by bytecode construction

• Do we have enough space at the capture site to
generate this bytecode without the method expansion?
– For the old Java the answer is positive
– For the new Java it is negative

• Have to move interface_id from the bytecode to the cpool or the method:

new_simple_closure<method_cp_index, args_map>

Creating a Simple Closure in Old Java
new <MyClass> ; 3 bytes
dup ; 1 byte
aload_0 ; N captured values (N >= 0)
…
invokespecial <MyClass.<init>> ; 3 bytes

aload_0 ; N captured values
…
new_simple_closure <MyFunction_id, method, N> ; 7 bytes:
 ; interface_id – immediate 2 bytes
 ; method – constant pool index to resolved method, 2 bytes
 ; args_map – immediate 2 bytes

• Exception table may need to be updated
– Bytecode indices have changed

Creating a Simple Closure in New Java

aload_0 ; N captured values
…
invokedynamic <call site specifier> ; 5 bytes

aload_0 ; N captured values
…
new_simple_closure <method, N> ; 5 bytes:
 ; method – constant pool index to the pair of indices
 ; (resolved_static_method, class_id)
 ; n_args_and_oopmap – immediate 2 bytes

• Constant pool entries can be shared between the
bytecodes
– It may be easier to store interface_id somewhere in the method

and to share just a ResolvedStaticMethod entry between
equivalent call sites

Simple Closure conversion for old Java

• Class implementing the interface is created statically
– It contains a virtual method implementing the interface method

• Check if the class can be converted to Simple Closure
• Adjust the reads of captured values in the method

– Offset of captured fields is different in Simple Closure (3 words) and
the original Java class (1 word)

– Java stack may grow downwards
• It is easier to reorder fields once than to modify code generators for all supported

ISAs

– Adjust field offset in the instance field descriptors before quickening
the method

• Convert the signature to the static method
• Move the method to the closest outer Java class
• Dispose the implementing class

When an instance class can be
converted to Simple Closure

• Final, extends Object, implements single functional interface
• Contains no fields or methods except for the implemented

functional method and the constructor
• The constructor initializes every field by the respective

argument
• Contains only resolvable symbolic references

– And so can be fully quickened

• Referenced only at capture site to create a closure
– Anonymous class is just a class with mangled name
– The enclosing scope of inner class definition is lost during compilation

to the class file
• Closed syntactic scope within a method or a class is expanded to the package
• A loaded later class can refer to the any other class in its package

– We can guess but cannot really prove the class is properly used

Simple Closure conversion for new Java

• Lambda body is represented by a method of the enclosing
class
– All captured values are passed as arguments

• Can the interpreter push a block of previously captured
values and call this method?

closure lambda_args --> closure lambda_args captured_values

– Unfortunately, no: the number and the order of arguments differ
– … and their types can be different too

• Adapter method has to be generated
– Let's make it a static method in the same class as the lambda body
– LambdaMetafactory has to be partially re-implemented in the runtime
– The generation of the adapter may require boxing/unboxing and

widening conversions of the arguments and the result

Transparency of Simple Closures
• Is there an observable difference between Simple Closure

and anonymous internal Java class implementing the
same interface?
– closure.getClass() returns a different class

• It is the same for all simple closures, and this is observable

– SimpleClosure cannot have the same properties as the respective
internal class

• closure.getClass().newInstance() never creates a closure, throws an exception
• MyFunction.isAssignableFrom(SimpleClosure) returns false regardless of the

interface implemented by its instances

– Not a part of older CLDC profiles

– Specified in CLDC 8 but never used anywhere in the libraries

– If required, closure.getClass() could create a fake Java class lazily
• Must be shared between all Simple Closures created by the same capture site

– class_id has to be allocated eagerly
• Must be in correct relation with its instances and the implemented interface
• Disposable when not referenced

Which Java is better for Simple Closures
• Ideally, there should be one statically generated method

– Captured values can be represented as fields or the tail arguments
– The head arguments must be compatible with the interface

• Both the old and the new Java deviate from the ideal
• The old Java:

– Generates a method with the matching arguments
– … but it is located in a wrong package-private class
– All references to the class have to be analyzed

• The analysis would be easier if the class could be local within a method

– Bytecodes of the capture site must be analyzed and rewritten

• The new Java:
– Generates a method in the proper class but with wrong arguments
– An additional adapter method must be generated by VM

• Memory and performance overhead
• Bytecode generator does not naturally belong to this VM

Bridge methods and marker interfaces

• Bridge methods are artifacts of generics in Java type
system
– Do not naturally belong to closures or lambda expressions

• Marker interfaces is a value add-on for lambdas
– Do not naturally belong to closures or lambda expressions
– Memory overhead
– Performance overhead in current implementation of

invokeinterface, instanceof and checkcast bytecodes
• The interface table lookup is linear on the number of implemented interfaces

regardless of the number of the methods

• Hopefully, they can be omitted in CLDC subset
• … But what if we had to implement them anyway?

Simple Closures with bridge methods

header

...

Static call site

n_methods

SimpleClosureheader

Simple closure

interface_idsize/oop_map

captured values

• Fields interface_id and method moved from Simple Closure to Static Call
Site

• Field size/oop_map is the same Simple Closures created by one Static
Calls Site. But it cannot be moved to Static Call Site: it defines object size
and so must be accessible via no more than one hop from object header.

• A bit more complicated implementation of bytecodes quick_invokeinterface,
quick_invokespecial, quick_instanceof and quick_checkcast

call_site

&my_method_0

&my_method_n

Simple Closures with bridge methods
and marker interfaces

• A bit more complicated implementation of bytecodes quick_instanceof and
quick_checkcast

– Extra 1-2 words for supertype cache could improve the performance

• Getting closer to regular classes... Are they really so terrible?

header

...

Static call site

n_methods

SimpleClosureheader

Simple closure

n_interfacessize/oop_map

captured values

call_site

&my_method_0

&my_method_n

...

&MyFunction_0

&MyFunction_n

Alternative Approach

• Adapters can be generated by the runtime-specific
external convertor
– Standard class file format can be used
– The change can be encoded by a different method of

LambdaMetafactory in the call site descriptor
– The method may not exist – it is just an idiom for the runtime

Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

