
Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 1

Project Valhalla Update

Brian Goetz, Java Language Architect

JVM Language Summit, Santa Clara, August 2016

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 2

The following is intended to outline our general product
direction. It is intended for information purposes only,
and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making
purchasing decisions. The development, release, and
timing of any features or functionality described for
Oracle’s products remains at the sole discretion of
Oracle.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 3

Project Valhalla

 Project Valhalla starts with a simple-seeming feature: value types
– Pure data aggregates that (ideally) should have no ancillary overhead
– This is the same reason Java has primitive types in the first place!

 But, features interact with other features
– Adding one feature means adjusting many others
– It’s a long string…

 This will be a whirlwind tour of some of the areas we’re investigating
– The map is not fully drawn
– Some parts are better filled in than others!

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 4

Project Valhalla

 The motivation for value types is simple

• Identity leads to pointers
• Pointers lead to indirection
• Indirection leads to suffering

Why value types?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 5

Project Valhalla
The data layout we have

final class Point {
 final int x;
 final int y;
}

header Point[] pts =

header

x

y

header

x

y

header

x

y

header

x

y

header

x

y

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 6

Project Valhalla
The data layout we want

header header

x

y

x

y

x

y

x

y

Point[] pts =

value class Point {
 int x;
 int y;
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 7

Valhalla: Goals

 Density and Flatness!
– Get rid of extraneous headers and pointers (and heap allocation) when

they don’t add value
 Stop making users choose between performance and abstraction

– Eliminate temptations to hand-unroll object abstractions into primitives
– Eliminate need to hand-roll primitive specializations (like IntStream)
– Generics should be the tool of choice for abstracting over types

 Value types, and specialized generics over values, eliminate these
frictions

Performance goals

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 8

Valhalla: Goals

 Caulk the seam between primitives and references
 Let generics abstract over references, primitives, values (and void!)

– Write it once, not N+1 times
 Java 8 libraries illustrated the limitations here

– Hand-written specializations like IntStream
– Explosion of functional interfaces (Consumer<T>, ToIntFunction<T>, etc)
– Streams of tuples are painful, inefficient

 Plus: existing libraries need help taking take advantage of new features
– Just as Collections acquired lambda-friendly behavior via default methods

Expressiveness goals

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 9

Value Types

 Value types are “pure data” aggregates
– Just data, no identity
– No representational polymorphism (no superclasses or subclasses)
– Not mutable
– Not nullable*
– Equality comparison based on state (since there is no identity)

 By giving up on identity, mutability, polymorphism, we get…
– Values routinely flattened into arrays, other values, objects
– No object header needed
– Aggregates (with behavior) that have runtime behavior of primitives

*Some possible relaxation may be needed here for migration compatibility

Our starting point

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 10

Value Types

 But, unlike primitives
– Can have methods, fields
– Can implement interfaces
– Can use encapsulation to hide representation
– Can be generic

 General rubric for answering “how would it work” questions
– “What Would Int Do”

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 11

Value Types

 Application writers
– Can reason about locality and footprint of data-intensive code

 Library writers
– Efficient and expressive implementations of smart pointers, alternate

numerics, cursors, abstract data types
– More efficient collections

 Compiler writers
– Efficient substrate for language features like tuples, multiple return, built-in

numeric types, wrapped native resources
 Everyone wants value types!

Who wants value types?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 12

Generics

 We can easily express everything we want with boxed generics
– ArrayList<Integer> expresses what the user needs

 But each Integer in that list has the same problems as our Point class
– Object header, indirection, allocation, GC overhead

 For all the same reasons we wanted values, we want ArrayList<int>
instead of ArrayList<Integer>

– Where the List is backed by a real int[]
– (And same with generics over user-defined value types)

 Having value types, but no generics over values, would be terrible!
– This is the string…

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 13

Value Types: Alternatives

 The question suggests that structs are simpler than values
 But they aren’t simpler, they’re just more familiar!

– A struct needs an identity
 Sometimes the identity of the enclosing object
 Sometimes an ad-hoc identity, if the struct is held in a local

– Structs need both pass-by-value and pass-by-reference
 Java only has pass-by-value – so this is new complexity surface

 Less optimizable
 Structs is really more work, and complexity, than values

– Not “A OR B”, it’s “A OR (A AND B)”
 Conclusion: more cost, less safety

Why not “just” do structs?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 14

Value Types: Alternatives

 We could easily denote “tuple of int and long” with the descriptor “(IJ)”
– And provide opcodes for pushing, popping, and decomposing tuples
– Semantics are very straightforward
– Verification is easy

 But … almost as much new classfile surface area as values
 Would work for some value use cases
 What we’d lose is: encapsulation and nominality

– Not suitable for secure representations (e.g., native pointers)
– Point and IntRange would be the same type

 Conclusion: slightly less cost, measurably less benefit

Why not “just” do tuples?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 15

Value Types

 What does it mean for the JVM to support value types?
– How do we construct values?
– How do we transfer values between stack and local variables?
– How do we access fields of values?
– How do we invoke methods of values?
– How do we embed values as fields of objects?
– How are values denoted in member descriptors?
– How many stack slots does a value take?
– How do we convert values to objects?

 Need new bytecodes, new type descriptors
– Unlike refs or primitives, value types have variable size

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 16

Stack slots

 If a Point has two longs, how many slots should it take?
 Obvious (but wrong) answer is “4”

– Would burn representation into client’s bytecode
– Adding/removing fields would not be binary compatible
– Might undermine encapsulation

 Reasonable answers include “1” and “2” (and other fixed numbers)
– But both mean extra work for interpreter

 As we’ll see later, would like to get to all `xload` ops taking 1 slot –
even dload/lload

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 17

Value Boxes

 Need a way to convert values to/from Object (and interfaces)
 Don’t want ad-hoc, hand-written boxes like java.lang.Integer

– Want to derive boxed projection from value classfile
 Do we need a way to separately denote boxed and unboxed values?
 Working theory:

– LPoint; describes the boxed projection
– QPoint; describes the unboxed projection

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 18

Value Bytecodes

 Bytecode design has many constituents
– Verifier – can we guarantee type safety (especially pointer safety)?
– GC – can we find all the pointers?
– Compiler writers / code generators
– Tools – can we easily extract and optimize data and control flow?

 Various bytecode schemes possible
– Tradeoff between number of new bytecodes, footprint, and complexity
– Some cases (e.g., getfield) could be retrofitted onto existing bytecodes
– Could model most v* bytecodes with a prefix (typed QFoo; aload)

 We’ll err on the side of simplicity now, and optimize later

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 19

Value Bytecodes

Point point = __make Point(3, 4);
int x = point.x;
int y = point.y;

 0: iconst_3
 1: iconst_4
 2: vnew #19 // <vinit>:(II)QPoint;
 5: vstore 1 QPoint;
 7: vload 1 QPoint;
 9: vgetfield #12 // Field x:I
 12: istore_2
 13: vload 1
 15: vgetfield #15 // Field y:I
 18: istore_3

How many
slots?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 20

Object Model

 Should Object be the top type?
– Seems like “has identity” should be reflected in the type system

 Should there be a new “Any” type?
– What would its in-memory representation be?

 Should there be a top type for values?
 Where should common methods (equals, hashCode) be defined?
 Should primitives become more like values?

– Have methods, implement interfaces?

Lots of new questions

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 21

Generics

 Generics embed an uneasy compromise: cannot generify over primitives
 Why?

– No common top type between Object and int
– No bytecode that can move both a ref and an int

 Assuming away primitives solved a lot of problems
– But leaves us with lousy performance with boxed primitives
– More allocation, less locality

 Library writers compensate with tricks like IntStream
– Usually by cut and paste duplication
– More footprint, more bugs
– Less abstraction!

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 22

Generics

 Erasure gets a bad rap, but was a pragmatic compromise
– Enabled Java to acquire generics with no VM changes
– Significant additional type safety, ZERO additional runtime cost
– No additional runtime code footprint

 Permitted gradual migration compatibility
– Libraries could be generified independently from clients
– Clients could generify immediately, later, or never
– No “flag days”

 Libraries are often in different maintenance domains than their clients
(e.g., java.util.ArrayList)

– Dynamic linkage is the norm, not the exception

Erasure

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 23

Specialized Generics

 What does the bytecode look like for this class?
– What are the method and field descriptors?
– What bytecode pushes a T? aload? Something else?

class Box<any T> {
 T t; // LBox;

 T get() { return t; } // ()LObject;
 void reset() { this.t = T.default; } // ()V
 void set(T t) { this.t = t; } // (LObject;)V
 Box<T> dup() { return new Box<T>(t); } // ()LBox;
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 24

Specialized Generics

 Our first attempt (“Model 1”) annotated the classfile with type-variable
metadata and specialized at runtime
 An aload bytecode that moved a `T` would get annotated as such

– Specializer would rewrite appropriately to iload, dload, etc
 Amazingly, this worked!

– All done with compiler and classloader trickery – no VM involvement
– But … messy, intrusive and complex

 No commonality between List<int> and List<long>
– No wildcards!

Model 1

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 25

Specialized Generics

 Just as with the first time around, we need gradual migration
compatibility for enhanced generics

– Anyfying an existing type variable must be source- and binary-compatible
(for clients and subclasses)

– Generifying an enclosing scope must be source/binary compatible
– Alpha-renaming a type variable must be source/binary compatible
– Adding a new type var at the end should be binary compatible

 Hierarchies anyfied from the top down
– Clients/subclasses should have choice of anyfying immediately, later, or

never
– No flag days!

The prime directive: compatibility

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 26

Specialized Generics

 The bytecode set has various annoying non-orthogonalities
 Some data types take one slot, some take two

– How many LVT slots should we allow for a T in List<T>?
 Some instructions are not symmetric across types

– Compare and branch: if_acmpeq for refs, dcmp + if for doubles
– Array creation: anewarray for refs; newarray for primitives
– Default values; aconst_null for refs; iconst_0 for int, etc

 These make it hard to represent a generic class in a classfile
– Also made the specialization transform in Model 1 highly intrusive

Bytecode set is hostile to parametric polymorphism

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 27

Specialized Generics

 Our 3rd attempt lightly refactors the classfile format to move all
specializable metadata to the constant pool
 Declarations and uses of generic types captured in the classfile

– Attributes to capture generic class declaration
– Constants to describe uses of type variables, parameterized types
– Bytecodes / bytecode modifiers to describe moving tvar-valued quantities,

boxing conversions
 End result – specializing a class becomes specializing the constant

pool!
 Still needs some help with long/double taking two slots

Model 3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 28

Specialized Generics

 An any-generic class has a
GenericClass attribute
 “Table of contents” for type variables

for this class and enclosing classes
– Type variables from enclosing classes

are implicitly part of a class declaration!
 Then refer to type variables by number

GenericClass attribute

GenericClass {
 u2 name_index;
 u4 length;
 u1 classCount;
 struct {
 u2 clazz;
 u1 tvarCount;
 struct {
 u2 name;
 u1 isAny;
 u2 bound;
 } tvars[tvarCount];
 } classes[classCount];
}

class Outer<any T> {
 class Inner<any U> { ... }
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 29

Specialized Generics

 We need a way to denote List<int> in a descriptor
– Where List is a generic class

 We describe a class with a Constant_Class_info
– So how about describing a parameterized class with a similar constant?

 Needs to capture
– Parameterization of enclosing class, if any
– Name of the generic class to be parameterized
– The type parameters

ParameterizedType constant

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 30

Specialized Generics

 Can denote List<int> as ParamType[List, I]
 Type params can refer to “type entries” in constant pool

– Including other parameterized types
– Preserves structure of type description

 Can denote List<Optional<int>> as
 ParamType[List, ParamType[Optional, I]]

ParameterizedType constant

 CONSTANT_ParameterizedType_info {
 u1 tag;
 u2 enclosing; // ParamType of enclosing class
 u2 templateClassName; // Generic class
 u1 count; // # of tvars
 u2 params[count]; // type parameters
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 31

Specialized Generics

 We also need a way to describe an erased parameterization
– At the very least, need this for compatibility with existing generics
– Existing classfiles only know about erased parameterizations

 Use a special type parameter token (we use _) to denote “erased”
– List of int : ParamType[List, I]
– List of reified String : ParamType[List, Class[String]]
– List of erased String : ParamType[List, _]

Incorporating erasure

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 32

Specialized Generics

 How do we put a parameterized type in a method descriptor?
– Currently, method descriptors just concatenate nominal descriptors of

parameter types
– But parameterized types don’t have a nominalization…

 Need a structural descriptor for method descriptors!
– Return type, arg types can refer to other types in CP

MethodDescriptor constant

CONSTANT_MethodDescriptor_info {
 u1 tag;
 u1 argCount;
 u2 returnType;
 u2[argCount] argTypes;
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 33

Specialized Generics

 How do we refer to an array of a parameterized type?
– Same trick – make a structural descriptor for array types

 Can denote List<int>[] as
 ArrayType[1, ParamType[List, I]]

 Type entries in ParamType, MethodDescriptor can also refer to arrays

ArrayType constant

CONSTANT_ArrayType_info {
 u1 tag;
 u1 arrayDepth;
 u2 componentType;
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 34

Specialized Generics

 How do we refer to a type variable, or a parameterization that includes
a type variable?

– Same trick – a TypeVar constant
– Refers to a type var (by number), and carries (contextual) erasure with it

 “In case of erasure, break glass”
– Can denote List<T> as

 ParamType[List, TypeVar[0, “LObject;”]]

TypeVar constant

CONSTANT_TypeVar_info {
 u1 tag;
 u1 tvarNumber; // index into tvar table
 u2 ifErased; // type to use for erasure
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 35

Specialized Generics

 Parameterized types (and array types) are fundamentally structural
– Method descriptors are structural too

 New CP forms retain this structure, rather than flattening it
– Leaves of tree are ground types (classes, primitives)

 “Type entry” fields can refer to a ground type, or to a ArrayType,
ParamType, or TypeVar constant

Structural descriptions of types

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 36

Specialized Generics

 Strategy: consolidate all type information in the constant pool
– Much of the type information is already there (e.g., method sigs)
– There should be one place where the binding T=int is recorded
– Turn specialization of classes into specialization of the constant pool

 There is a simple, mechanical transformation on the CP for a generic
class to produce a CP for any given specialization

– Storing the erasure with each type variable use means that erasure
computation is owned entirely by the language compiler

 VM is free to share rest of the class

Constant pool reduction

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 37

Specialized Generics
Specialization example
class Example<any T, any U> {
 Example<T,U> example;
 Example<int, int> ii;
 Example<int, String> is;

 void m(Example<T, U> e) { }
}

 #2 = Utf8 _ // erased
 #3 = TypeVar 0/#2 // T
 #7 = Utf8 V
 #11 = Utf8 Example
 #12 = TypeVar 1/#2 // U
 #13 = ParameterizedType #11<#3,#12> // Example<T,U>
 #23 = Utf8 I
 #24 = ParameterizedType #11<#23,#23> // Example<I,I>
 #27 = ParameterizedType #11<#23,#2> // Example<I,_>
 #32 = MethodDescriptor (#13)#7

 T=int, U=int
 #2 = Utf8 _
 #3 = Utf8 I
 #7 = Utf8 V
 #11 = Utf8 Example
 #12 = Utf8 I
 #13 = Utf8 Example${II}
 #23 = Utf8 I
 #24 = Utf8 Example${II}
 #27 = Utf8 Example${I_}
 #32 = Utf8 (LExample${II};)V

 T=int, U=_
 #2 = Utf8 _
 #3 = Utf8 I
 #7 = Utf8 V
 #11 = Utf8 Example
 #12 = Utf8 Object
 #13 = Utf8 Example${I_}
 #23 = Utf8 I
 #24 = Utf8 Example${II}
 #27 = Utf8 Example${I_}
 #32 = Utf8 (LExample${I_};)V

 T=_, U=_
 #2 = Utf8 _
 #3 = Utf8 Object
 #7 = Utf8 V
 #11 = Utf8 Example
 #12 = Utf8 Object
 #13 = Utf8 Example
 #23 = Utf8 I
 #24 = Utf8 Example${II}
 #27 = Utf8 Example${I_}
 #32 = Utf8 (LExample;)V

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 38

Specialized Generics

 Wait, what about bytecodes?
– Bytecodes operands point into the CP too!
– So if we modify a bytecode with a “typed” prefix…

 typed operand aload_0
– Operand points to a type entry in the CP (like a TypeVar constant)

 Theoretically only need a “typed” prefix, and a conversion bytecode (for
boxing and unboxing)
 a2b from-operand to-operand

– Alternately could define family of uload/etc which take a type operand

New bytecodes

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 39

Specialized Generics

 Historically, there was a (mostly) 1:1 relationship between source files,
classfiles, and runtime types

– Not for values: classfile describes at least two types, the value and the box
– Not for generics: classfile describes a parametric family of runtime types

 We’ve been using the term species to describe deriving multiple
related runtime types from a single classfile

– The class of List<int> is still List, but the species is List<int>
– Object.getClass() will still return the class

– Something else (TBD) will have to return the species

Runtime representation

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 40

Specialized Generics

 Generic methods pose a new challenge
– VM has a notion of class, but no first-class notion of method
– But code can refer to type variables defined in enclosing generic methods

 Need to include enclosing generic methods in GenericClass “table of
contents”

Generic methods

class Outer<any T> {
 class Inner<any U> {
 <any V> void m() {
 class Local<any W> {
 void m(T t, U u, V v, W w) { ... }
 }
 }
 }
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 41

Specialized Generics

 Current strategy is to desugar generic methods into nested classes
– Reduces method specialization to class specialization
– Invoke specialized via invokedynamic – bootstrap takes specialization

params (statically known at compile time)

Generic methods

class Foo<any T> {
 <any U> void m(T t, U v) { ... }
}

class Foo<any T> {
 bridge void m(Object t, Object u) { ... } // erased bridge

 synthetic class Foo$m<any U> {
 species-static void m(T t, U v) { ... }
 }
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 42

Specialized Generics

 A specialized class List<int> is reified
– But List<String> (probably) won’t be
– M3 classfiles can express both List<String> and List<_>
– Choice of when, and how, to erase becomes language’s prerogative

 Reified generics are harder to program with
– Real-world code resorts to tricks that implicitly assume erasure
– Casting through raw, unchecked ops

 Many potential compatibility, performance pitfalls
– We still want gradual migration compatibility for anyfying a library

 So erasure is still (probably) a pragmatic compromise here

These are not the reified generics you’re looking for…

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 43

Specialized Generics

 There are currently two “places” to put state / behavior
– Static members – associated with a class
– Instance members – associated with an instance

 Is it useful to associate members with a species too?
 Yes! This is the natural placement for

– Cached instances (e.g., empty list)
– Instantiation tracking (e.g., counters, interning)
– Reified type variables (e.g., List<T> has a species-specific field T)
– Static factories
– Cached associations (e.g., preferred box type of X in Y)

Species statics

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 44

Specialized Generics
Species statics

interface List<any T> {
 // old way
 private static List<?> empty = new EmptyList();

 @SuppressWarnings(“unchecked”)
 public static <T> List<T> emptyList() {
 return (List<T>) empty;
 }
}

 // new way
 private species-static List<T> empty = new EmptyList<>();

 public species-static <T> List<T> emptyList() {
 return empty; // no cast needed
 }

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 45

Specialized Generics
Species statics

class Foo<any T> {
 public synthetic final species-static ReflectiveThingie T;
}

Foo<int> fi = ...
... fi.T ... // reflective mirror for int
Foo<String> fs = ...
... fs.T ... // reflective mirror for “erased”

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 46

Specialized Generics

 There’s a mismatch between the language-level rules for accessibility
and the VM rules

– In Java language, private means “accessible from anywhere in my top-
most enclosing class”

– In VM, it means “only from within this classfile”
– Compiler emits access bridges (access$000) and downgrades private to

package to make up difference
 With species, the set of runtime types that derive from a single top-

level source class gets bigger (and more complicated)
– We introduce the concept of nest-mate, which eliminates the need for

bridges / encapsulation downgrades

Nestmates

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 47

Specialized Generics

 Nests form a partition over classes
– Each class belongs to exactly one nest
– What constitutes a nest is defined by language compiler
– All specializations of a class C belong to C’s nest
– All inner classes of C belong to C’s nest
– Private becomes “accessible from within my nest”

 This is not “friends”
– Simply a generalization of “common compilation unit”
– Fixing some age-old technical debt

Nestmates

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 48

Specialized Generics

 As the domain of generics broadens to include things like numerics…
– We start to want to condition behavior on receiver type parameters

– Here, sum() would be a member of Stream<int> but not Stream<Shoe>
– Represented in classfile as a ConditionalMethod attribute on the method

 Both an expressivity feature and a migration compatibility feature

Partial methods

interface Stream<any T> {
 <where T implements Arithmetic>
 T sum();
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 49

Specialized Generics

 Model 1 had no wildcards
– This was “wildly” unpopular
– Very difficult to port existing generic libraries without them

– Foo<int> is a subtype of Bar<int>
– And also a subtype of Foo<?>

 Foo<?> can be neither a class nor an interface
– Needs to be something new
– Need VM help here

Wildcards

class Foo<any T> extends Bar<T> { ... }

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 50

Reflection

 How do we reflect over specialized classes?
– Can we get a Class for List<int>?
– Can we reflect over an abstract template List<T>?
– How do we reflect over generic methods?
– How do we model erasure in reflection?

 See “One Mirror To Rule Them All”, later today…

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 51

Arrays

 The lack of a common useful supertype between int[] and Object[]
becomes a bigger problem

– What happens when a method returns T[]?
 Some subset of Arrays 2.0 is needed here

– Common supertype Array<any T> for all array types?
 For migration compatibility, some way to migrate an Object[]-bearing

method to a T[]-bearing method is needed

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 52

Migration

 Phew, that was a lot
– … and we’re not done
– … actually we’re just getting started!

 What we’ve outlined so far might be OK if this was a NEW language
 What about migrating existing APIs, clients, and implementations?

– Some APIs won’t anyfy cleanly
– Anyfying core libraries must be compatible – for clients and subclasses
– Can we migrate existing reference types to value (like Optional?)
– Can we consolidate IntStream into Stream<int>?
– Can we consolidate the nine version of Arrays.fill() into one method?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 53

Migration

 Just as generifying libraries not designed for generics posed
challenges…
 … Anyfying APIs not designed for values also poses challenges

– Some signatures use Object instead of T, or Foo<?>
instead of Foo<? {extends,super} T>

– Some overloads become questionable (e.g., remove(T) vs remove(int))
– Some methods use null to signal “no answer” (e.g., Map.get())

 Anyfying implementations also requires code adjustments
– Assignment to / comparison with null
– Array creation – new T[n]
– Instanceof / cast

Anyfying existing libraries

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 54

Migration

 Some classes, like Optional, LocalDateTime, and BigInteger are
semantically values already

– We’d like to migrate their implementation to be values too!
 L/Q descriptor split was motivated by enabling binary compatibility via

bridge methods
– Good story, but doesn’t get us 100% of the way there
– LOptional is nullable and QOptional is not, means there are source

compatibility issues to be worked out

Migrating classes to values

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 55

Migration

 There are many kinds of signature migrations we’d like to make
compatible

– Migrate off of deprecated types: m(Date) -> m(LocalDateTime)
– Widen returns: migrate Collection.size() to return long
– Convert value types to reference types
– Squeeze IntStream to implement Stream<int>

 The older our libraries get, the more important it is that we be able to
flexibly and compatibly evolve them
 As we add language features, we’d like for existing libraries to have a

migration path, rather than making them “instant legacy”

Signature migration

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 56

Migration

 Investigating features to enable library authors to provide metadata for
“this method migrated from …”

– Old signature, conversion functions for argument/return
– Box/Unbox, Date <-> LocalDateTime, etc

 Binary compatibility for clients can be handled by bridges
 Binary compatibility for subclasses is harder … working on this
 Source compatibility is another story…

Signature migration

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 57

Summary

 We started out with a simple performance goal – dense/flat aggregates
– This led to value types

 In order for values to be useful, must address interaction with arrays,
generics, reflection, core libraries, …

– It’s a long string!
 In order for new language features to be useful, must be possible to

bring old libraries up to date
– So migration tools are a big part of the story too

 Some areas well understood … some areas still research

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 58

Summary

 3rd-generation prototype of anyfied generics (works over primitives) in
Valhalla repo

– More limited prototype of value types
 For further reference:

– Model 3: http://cr.openjdk.java.net/~briangoetz/valhalla/eg-
attachments/model3-01.html

– State of the Values: http://cr.openjdk.java.net/~jrose/values/values-0.html

Current status

http://cr.openjdk.java.net/~briangoetz/valhalla/eg-attachments/model3-01.html
http://cr.openjdk.java.net/~briangoetz/valhalla/eg-attachments/model3-01.html
http://cr.openjdk.java.net/~jrose/values/values-0.html

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 59

Project Valhalla Update

Brian Goetz, Java Language Architect

JVM Language Summit, Santa Clara, August 2016

	Project Valhalla Update��
	Slide Number 2
	Project Valhalla
	Project Valhalla
	Project Valhalla
	Project Valhalla
	Valhalla: Goals
	Valhalla: Goals
	Value Types
	Value Types
	Value Types
	Generics
	Value Types: Alternatives
	Value Types: Alternatives
	Value Types
	Stack slots
	Value Boxes
	Value Bytecodes
	Value Bytecodes
	Object Model
	Generics
	Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Specialized Generics
	Reflection
	Arrays
	Migration
	Migration
	Migration
	Migration
	Migration
	Summary
	Summary
	Project Valhalla Update��

