

Oracle Complex Event Processing
High Availability

An Oracle White Paper

November 2010

Oracle CEP High Availability Page 2

Oracle Complex Event Processing

High Availability

Introduction .. 4
HA overview .. 4

Purpose of HA .. 4
Types of HA .. 5

Active-active .. 5
Active-passive .. 6
Upstream backup .. 7

HA quality of service .. 8
Missed events .. 8
Duplicate events ... 8
Wrong Events ... 9
Precise recovery .. 9

Oracle CEP HA Overview ... 9
Failure Scenarios .. 10
HA Adapters .. 12

HA Use cases.. 13
HA application that publishes to external system 14
HA design patterns ... 14

Adapter types .. 15
Simple failover ... 15
Simple failover with buffering ... 16
Lightweight queue trimming ... 16
Precise ... 17

Connecting to external systems .. 17
JMS.. 17
JTA .. 18
Connecting to other CEP services ... 19
Coherence .. 20

Application considerations ... 20
EPN considerations .. 20

Ordering of output events ... 20
Deterministic behavior .. 21
Multithreading ... 21
Monotonic versus nonmonotonic event ids 21

Oracle CEP High Availability Page 3

CQL considerations... 22
Application time versus system time ... 22

Restart after failure .. 22
Benchmark Study ... 23

Benchmark Methodology ... 25
Load Injection ... 25
Configurations Measured .. 25
Metrics Collected .. 26

Hardware and Software Stack ... 26
Benchmark Results.. 27

Conclusions .. 28
References ... 29

Oracle CEP High Availability Page 4

 Oracle Complex Event Processing

High Availability

INTRODUCTION

Oracle Complex Event Processing (Oracle CEP) provides a modular platform for

building applications based on an event-driven architecture. At the heart of the

Oracle CEP platform is the Continuous Query Language (CQL) which allows

applications to filter, query, and perform pattern matching operations on streams

of data using a declarative, SQL-like language. Developers use CQL in

conjunction with a lightweight Java programming model to write applications.

Other platform modules include a feature-rich IDE, management console,

clustering, distributed caching, event repository, and monitoring, to name a few.

As event-driven architecture and complex event processing have become

prominent features of the enterprise computing landscape, more and more

enterprises have begun to build mission-critical applications using CEP technology.

Today, mission-critical CEP applications can be found in many different industries.

For example, CEP technology is being used in the power industry to make utilities

more efficient by allowing them to react instantaneously to changes in demand for

electricity. CEP technology is being used in the credit card industry to detect

potentially fraudulent transactions as they occur in real time. The list of mission-

critical CEP applications continues to grow.

The use of CEP technology to build mission-critical applications has led to a need

for Oracle CEP applications to be made highly available and fault-tolerant. This

whitepaper describes the high availability (HA) solutions available in Oracle CEP

11g Release 1 Patch Set 2 and presents the results of a benchmark study

demonstrating the performance of the Oracle CEP HA solutions. Since HA is

such a complex and multi-faceted topic we first describe HA problems in general

and HA problems specific to CEP. This sets the context for presenting Oracle

CEP HA and gives users a solid grounding in the problem domain, so that an

overall HA solution appropriate to their usage can be correctly selected.

HA OVERVIEW

Purpose of HA

Today's IT environments generate continuous streams of data for everything from

monitoring financial markets and network performance, to business process

Oracle CEP High Availability Page 5

execution and tracking RFID tagged assets. Oracle CEP provides a rich,

declarative environment for developing event processing applications to improve

the effectiveness of your business operations. Oracle CEP can process multiple

event streams to detect patterns and trends in real time and provide enterprises the

necessary visibility to capitalize on emerging opportunities or mitigate developing

risks.

Like any computing resource CEP systems can be subject to both hardware and

software faults, which, if unaddressed can lead to data- or service-loss and hence

negatively impact a company’s cash flow, reputation, or even legal standing.

High availability systems seek to mitigate both the likelihood and the impact of

such faults through a combination of hardware, software, management,

monitoring, policy, and planning. Generally HA has an associated cost and

generally speaking the cost is inversely proportional to the resultant likelihood of

failure. Many books have been devoted to the allocation of HA resources (for a

good overview see “Blueprints for High Availability” by Marcus and Stern), but in

this whitepaper we shall only consider software solutions to hardware and software

faults.

Types of HA

CEP systems differ from other kinds of systems in that the data involved (events)

is very dynamic, changing constantly. In a typical system, such as a database, the

data is relatively static and HA systems (for example) both improve the reliability

of the stored data and the availability of querying against that data. Since CEP data

changes so fast storing it reliably can become problematic from a performance

standpoint, or may even be pointless if the only relevant data is the latest data.

In a similar vein, CEP systems themselves are often highly stateful, building up a

historically influenced view of incoming event streams, and HA must take account

of this statefulness. Of course the state of the CEP system is likely to be changing

as rapidly as the incoming events are arriving and so preserving this state reliably

and accurately can also be quite problematic.

Typically the problem of the statefulness of the system itself is solved one of three

ways; either by replicating the behavior of the system – termed active/active – or

by replicating the state of the system – termed active/passive – or by saving the

stream of events that produced the state so that the state can be rebuilt in the

event of failure – termed upstream backup. We will now discuss these three

approaches in more detail.

Active-active

As the name implies, active-active systems employ primary and secondary servers

that are active. The secondary servers are also known as “hot” standbys. Active in

the context of CEP means that each server is processing an identical stream of

events, regardless of whether the results of that processing are actually used or not.

Oracle CEP High Availability Page 6

Figure 1 contains a high-level view of the active-active architecture. In Figure 1

each server produces an identical stream(s) of output events.

There are two main advantages of an active-active setup – performance and

simplicity. The system has good performance during normal operation and at

failover time because a hot standby has little processing to do in order to take over

from a failing primary. The state of the standby should reflect that of the old

primary since it has processed the same set of events and the only impact at

failover is actually detecting that the old primary has failed and synchronizing the

new primary with the output state of the old. The system is also simple because

failover does not require any state replication between servers.

In the context of CEP, which is usually highly stateful, the absence of a

requirement to replicate state is very attractive. Likewise fast failover is essential in

CEP systems since they are often expected to perform near real-time processing of

high volume event streams. The downsides of active-active systems are that it can

be difficult to build state for newly started servers, and the hardware resource

requirements are high because of the redundant processing involved.

Active-passive

In active-passive systems, backups are not processing the incoming event stream;

instead they are expected to take over from a failed primary through some kind of

state replication. This could mean that the old primary has been spilling state to

stable storage or directly to the secondary itself. Figure 2 presents a high-level view

of the active-passive approach.

The advantages of active-passive systems are twofold – synchronization is implicit

because state is being replicated; and resource utilization is lower than active-active

since backup servers are essentially idle and could be used for additional

processing.

primary

output
streams

secondary

output
streams

state state

input
streams

Figure 1. Active-Active server architecture.

Oracle CEP High Availability Page 7

However, in the context of CEP active-passive systems are complicated to

implement because of the need to replicate the state of the CEP system.

Performance is also an issue both in terms of the demands put on the primary to

replicate state; and at failover time in terms of a new primary having to rebuild its

state from the replicated state.

Upstream backup

Upstream backup is a specialized case of active-passive. Instead of replicating the

state of the CEP system, the incoming event stream is saved so that it can be

replayed to secondaries at failover. Figure 3 presents a high-level view of the

upstream backup HA architecture.

Saving the event stream has the advantage of not putting significant performance

burden on the primary and is relatively simple to implement since an

understanding of the CEP system’s state is not required. The state can be thought

of as being implicitly held by the saved event stream.

primary secondary

output
streams

Figure 3. Upstream backup server architecture.

state causality
messages

saved
events

input
streams

primary

input
streams

secondary

output
streams

Figure 2. Active-Passive server architecture.

state
replication

state state

Oracle CEP High Availability Page 8

However, saving the incoming event stream can be costly at high event rates; and

the overhead and complexity for the primary is not zero since it needs to keep a

record of both where it has processed to in the event stream and which events

need to be processed in order to affect the output (event causality). In degenerate

situations all previously seen events need to be replayed in order to give accurate

output and upstream backup is not feasible in these situations.

HA quality of service

So far we have discussed in general terms the basic mechanisms that can be

employed to ensure continuity of service in a CEP system. However, as with any

fault tolerant system, the details of what exactly happens at failover dictates the

level of fidelity that can be provided. Different failover mechanisms can result in

slightly different – with different levels of accuracy - results depending on the end

user requirements and constraints of cost, performance, and correctness.

We can categorize the possible inaccuracies under four headings and we will

discuss each in more detail below. In each case it is assumed that there is more

than one server than can possibly process an input event or output a processed

event. This is most common for active-active scenarios but is also possible in the

active-passive and upstream backup cases since the handoff between servers may

involve some loss of availability.

Missed events

Generally the most important thing that CEP users are interested in is not missing

events. This covers input events – for instance it would be bad if a trading system

missed or mispriced an order during failover; and output events – for instance it

would be bad if an emergency services system failed to issue an alert when it had

received notification of an individual entering a hazardous area.

Missed events are easy to avoid through the use of the types of redundant system

that we have already described. In fact the easiest solution is to use fully redundant

systems that function identically. In this instance events will never be missed

(except perhaps through the loss of a datacenter) but erring on the side of caution

raises another potential issue – that of output events being emitted more than

once.

Duplicate events

As we have described the easiest solution to avoiding missing events is

redundancy, but this raises the possibility of duplicate events. Duplicate events can

also be very bad in certain circumstances – for instance it would be bad if a trading

system processed a trade twice, or a banking system actioned a transfer twice! In

fully redundant systems duplicate events are the norm and must be dealt with

unless the receiver of events can cope. In fact being able to deal with the case

where pretty much all events are duplicated also generally solves the case where

only one or two are duplicated in exceptional situations – so often it is easier to

Oracle CEP High Availability Page 9

design the system with this in mind. Duplicate elimination usually takes the form

of first of all detecting that an event is a duplicate, and if so preventing its output.

Generally this involves a computational cost and the fewer duplicates the system

can tolerate the higher the cost.

Wrong Events

So far we have described scenarios that assume the incoming and outgoing stream

of events is largely identical for all servers. This does not have to be the case,

however. Setting aside byzantine failures caused by cosmic rays and other esoteric

conditions, there still remains the largely common case of servers starting at

different times. If servers start at different times then it is likely that the later one

will receive a subset of the events received by the first one. This condition is even

more likely when a failed server is restarted – often the restart will be needed while

the system is active. On the face of it, not receiving some events doesn’t seem so

bad, but problems can occur because of CEP’s stateful nature. Often events that

are output are the product of a complex set of state transitions triggered by a

number of previously seen events. Thus missed input events can actually lead to

output events that are wrong rather than merely missing.

Precise recovery

Precise recovery means that downstream client(s) see(s) exactly the same stream of

events that would have been produced if no upstream failure had occurred (missed

events and duplicate events are not allowed). In some systems precise recovery is

required, but the challenge is to provide precise recovery without impacting

performance too greatly.

ORACLE CEP HA OVERVIEW

Oracle CEP supports an active-active HA architecture. The active-active approach

has the advantages of high performance, simplicity, and short failover time relative

to other approaches, as was mentioned previously. An Oracle CEP application that

needs to be highly available is deployed to a group composed of two or more

Oracle CEP server instances running in an Oracle CEP cluster. Oracle CEP will

choose one server in the group to be the active primary. The remaining servers

become active secondaries. It is not possible to specify the server that will be the

initial primary as it is chosen automatically.

The number of active secondaries depends, of course, on the number of servers in

the group hosting the application. If the group contains n server instances then

there will be n-1 secondary instances running the application. The number of

secondaries in the group determines the number of concurrent server failures that

the application can handle safely. A server failure may be due to either a software

or hardware failure which effectively causes termination of the server process.

Note that most applications require just one or possibly two secondaries to ensure

Oracle CEP High Availability Page 10

the required level of availability. Figure 4 shows a high-level view of an Oracle

CEP application deployed to a group of three servers.

During normal operation -- prior to a failure occurring -- all server instances

hosting the application process the same stream of input events. The active

primary instance is responsible for sending output events to the downstream

clients of the application. The active secondary instances, on the other hand,

typically insert the output events that they generate into an in-memory queue.

Events are buffered in the queue in the event that they are needed to recover from

a failure of the active primary instance. Queued events are proactively discarded,

or "trimmed", when Oracle CEP HA determines that they are no longer needed

for recovery.

Failure Scenarios

Failure of an active secondary instance does not cause any change in the behavior

of the remaining instances in the group, but it does mean that there is one less

secondary available in case the active primary instance should fail. The active

primary continues to be responsible for sending output events to downstream

clients, while the remaining active secondaries continue to enqueue their output

events. Figure 5 illustrates this scenario.

primary

output
streams

state

secondary

state

secondary

state

group

Figure 4. HA application during normal operation.

server 1 server 2 server 3

input
streams

Oracle CEP High Availability Page 11

Failure of the active primary instance, on the other hand, results in failover to an

active secondary instance. The secondary instance becomes the new active

primary and takes over the responsibility of sending output events to downstream

clients. The new active primary will begin by sending the output events that are

currently contained in its output queue(s) before sending any new output events

that are generated following failover. Figure 6 illustrates the failure of active

primary server 1. In this case, the failure has caused failover to server 3 which is

now the new active primary.

Multiple failures can occur as well as single failures, of course. Continuing with the

example shown in Figure 6, suppose that server 3 fails after being selected as the

new active primary. This results in the application state shown in Figure 7.

primary

output
streams

state

secondary

state

primary

state

group

Figure 6. Failure of an active primary instance.

server 1 server 2 server 3

input
streams

primary

output
streams

state

secondary

state

secondary

state

group

Figure 5. Failure of an active secondary instance.

server 1 server 2 server 3

input
streams

Oracle CEP High Availability Page 12

Following the failure of active primary server 3, server 2 has been selected as the

new active primary and has begun to send output events to downstream clients.

From the perspective of a downstream client, the failure of server 1 and server 3 is

transparent except for possibility missed or duplicate output events and a brief

pause in event traffic, depending on the HA quality of service configured for the

application. Since there are no additional active secondaries running following the

failure of server 1 and server 3, a system administrator would need to add a new

server to the group or restart a failed server before the application could safely

cope with additional failures.

HA Adapters

Developers make the Oracle CEP applications that they write HA-capable by

adding additional components to the application's event processing network

(EPN). For a detailed discussion of the Oracle CEP programming model which

includes the EPN, see the Oracle CEP IDE Developer's Guide for Eclipse which

is part of the Oracle CEP 11g Release 1 (11.1.1) documentation set. The EPN

components that enable HA functionality are termed "HA adapters" because there

is a 1-1 correspondence between them and the regular output adapters that send

the application's output events. An HA adapter can be thought of as a proxy stage

in the EPN which implements HA behavior, such as queuing output events, and

delegates to the regular output adapter for sending events to downstream clients.

Figure 8 shows a sample EPN that contains an input adapter which receives input

events from an external system. Events flow through Channels into and out of a

CQL Processor stage. Finally, the output adapter stage sends output events to

downstream clients.

primary

output
streams

state

primary

state

primary

state

group

Figure 7. Multiple failures of the active primary instance.

server 1 server 2 server 3

input
streams

Oracle CEP High Availability Page 13

The HA Adapter acts as a proxy for the output adapter. On the active primary

instance the HA adapter passes events to the output adapter so that they are sent

downstream. In addition, the primary may perform other HA related processing.

On the active secondary instance – remember that the same application EPN is

deployed to all nodes in the group – the HA adapter typically puts events in an in-

memory queue instead of sending the events to the output adapter. Oracle CEP

HA provides a number of different HA adapter implementations designed to

address specific application requirements. These different adapter

implementations and their behavior are presented later in the paper.

HA USE CASES

“There is no such thing as a free lunch”, the old adage goes and this applies equally

to HA systems. Making systems more reliable involves a cost, but the kind of cost

involved can be variable – it could be in terms of hardware resource or

performance or accuracy, and in most HA systems customers can select different

trade-offs depending on their application and operational requirements. Thus it is

essential that customers understand the bounds of the systems they are

implementing so that effective decisions can be made concerning HA and other

operational characteristics.

Understanding this dimensionality also involves understanding the cost of failure.

HA systems are typically measured in terms of “9s” of availability – thus a system

with four 9’s of availability would be up 99.99% of the time, or 52 minutes

downtime in a year. That might not seem like a lot; but if each of those minutes

costs $10m in lost revenue then it is possibly worth implementing an even more

highly available system than this. If each of those minutes cost $10 however, one

might wonder why four 9’s is needed at all. In a similar vein, suppose spending

$100m on HA is justified because of the downtime costs involved, it is pointless

spending all of that money on software if the hardware is substandard, likewise it is

pointless spending it all on hardware and software if there is no 24x7 operational

maintenance in place, or if the electricity supply is temperamental. It is thus vital

that HA be approached holistically rather than from simply a software or even

input
event
stream

output
event
stream

Figure 8. EPN containing HA adapter stage.

Output
Adapter

Input
Adapter

Oracle CEP application EPN

Channel
CQL

Processor
HA
Adapter

Channel

Oracle CEP High Availability Page 14

technical viewpoint. Many good books on this topic exist and we would refer the

reader to these for an in-depth treatise. For the purposes of this whitepaper we will

assume that all operational concerns have been looked at, with the techniques

discussed here forming a small part of the overall solution.

We will now describe the core use case that Oracle CEP HA is designed to

address.

HA application that publishes to external system

An application receives input events from one or more external systems. The

external systems are publish-subscribe style systems that allow multiple instances

of the application to connect simultaneously and receive the same stream of

messages. The application does not update any external systems in a way that

would cause conflicts should multiple copies of the application run concurrently.

The application sends output events to an external downstream system(s).

Multiple instances of the application can connect to the downstream system

simultaneously, although only one instance of the application is allowed to send

messages at any one time. Within these constraints three different cases are of

interest:

• The application is allowed to skip sending some output events to the

downstream system when there is a failure. Duplicates are also allowed.

• The application is allowed to send duplicate events to the downstream

system, but must not skip any events when there is a failure.

• The application must send exactly the same stream of messages/events to

the downstream system when there is a failure, modulo a brief pause

during which events may not be sent when there is a failure.

Note that in describing this use case we have treated the CEP application as a

black box concerned with only input and output events. This allows us to discuss

HA of the core CEP operations, but it is likely that the scope of HA for a CEP

system is broader than this since the CEP application may be updating other

external systems that are not event based. For instance it could be writing to a

distributed cache or a database. If this is the case then careful consideration needs

to be given to HA for these systems also. Alternatively the application can be

structured so that these systems are essentially dealt with as event-based external

systems. The key point is that it is not usually sufficient to simply improve the

reliability and accuracy of event delivery – even when only considering software,

the system must still be treated holistically.

HA design patterns

With this scenario in mind we can identify several design patterns that can be used

to inform the HA decision-making process and improve the HA performance for a

CEP application.

Oracle CEP High Availability Page 15

• Only preserve what you need. Most CEP systems are characterized by a

large number of raw input events being queried to generate a smaller

number of “enriched” events. In general it makes sense to only try and

preserve these enriched events – both because there are fewer of them

and because they are more valuable.

• Limit engine state. CEP systems allow you to query windows of events. It

can be tempting to build systems using very large windows, but this

increases the state that needs to be rebuilt when failure occurs. In general

it is better to think of long-term state as something better kept in stable

storage, such as a distributed cache or a database – since the HA facilities

of these technologies can be appropriately leveraged.

• Source event identity externally. Many HA solutions require that events be

correlated between different servers and to do this events need to be

universally identifiable. The best way to do this is use external information

– preferably a timestamp – to seed the event, rather than relying on the

CEP system to provide this.

• Select the minimum HA your application can tolerate.

• Avoid coupling servers. The most performant HA for CEP systems is

when servers can run without requiring coordination between them.

Generally this can be achieved if there is no shared state and the

downstream system can tolerate duplicates. Increasing levels of HA are

targeted at increasing the fidelity of the stream of events that the

downstream system sees, but this increasing fidelity comes with a

performance cost.

ADAPTER TYPES

This section provides a high-level description the different types of HA adapters

that are available in Oracle CEP. Developers pick an HA adapter which provides

the appropriate HA guarantees for their application at design time by adding the

adapter to the EPN. Different output streams in the same application can use

different HA adapter types if they have different HA requirements.

Simple failover

Oracle CEP provides a callback framework which allows application instances to

receive notifications when the cluster membership changes, i.e. when a server

instance fails or joins the cluster. Layered upon the callback framework is a simple

HA adapter which leverages the callbacks to switch on or off an outgoing stream

of events. This "simple failover HA adapter" provides what might be termed

“best effort” HA. More precisely, the active primary instance sends output events

to downstream clients of the application, while active secondaries discard their

output events. If the current active primary fails, a new active primary is chosen

and begins sending output events once it is notified. Thus, output events may be

Oracle CEP High Availability Page 16

missed or duplicated by the new primary depending on whether it is running ahead

of or behind the old primary, respectively.

For many applications this is good enough – a temporary glitch is acceptable as

long as the application is available, and accurate, for the majority of the time.

Think of Yahoo!’s stock ticker for instance, transient failures may not even be seen

by the majority of users – and the system provides no guarantees to end-users.

Although simple failover HA cannot guarantee that output events won't be missed

or duplicate events sent, it is very attractive because it has no impact on overall

application performance.

Simple failover with buffering

A variant of the simple failover HA adapter has active secondaries buffer, rather

than discard, events. The buffer of events can be replayed at failover to reduce the

chance of missed events. This scheme, while simple and performant, has the

disadvantage of outputting a significant number of duplicates at failover when

larger buffers are employed. Of course larger buffers also reduce the chance of

missed messages so we once again see a tradeoff in the approach. Figure 4 shows

simple failover with buffering.

Lightweight queue trimming

If an application is tolerant of the occasional duplicate, but cannot tolerate missed

messages then a natural extension to lightweight buffering is lightweight queue

trimming. When using the queue trimming HA adapter, the active primary

communicates to the secondaries the events that it has actually processed. This

enables the secondaries to “trim” their buffer of output events so that it contains

only those events that have not been sent by the primary at a particular point in

time. This allows the secondary to avoid missing any output events when there is a

failover -- since events are only trimmed after they have been sent by the current

primary.

The frequency with which the active primary sends queue trimming messages to

active secondaries is configurable. Queue trimming messages can be sent on an

event basis – every n events (0<n) -- which limits the number of duplicate output

events to at most n events at failover or on a timed basis – every n milliseconds (0

<n). The queue trimming adapter requires a way to identify events consistently

among the active primary and secondaries. This is a requirement that the simple

failover and buffering HA adapters do not have. The recommended approach is

to use "application time" to identify events, but any key value that uniquely

identifies events will do. The use of application time to identify events is discussed

in more detail later in the paper.

Oracle CEP High Availability Page 17

The advantage of queue trimming is that output events are never lost. There is a

performance overhead at the active primary, however, for sending the trimming

messages that need to be communicated and this overhead increases as the fidelity

of trimming increases. Fortunately the Oracle CEP container is able to leverage the

high performance TCMP protocol from Oracle Coherence so that the impact of

this is minimized.

Precise

If duplicates simply cannot be tolerated then a precise recovery adapter is provided

by the OCEP system to output a single stream of events. The mechanism used to

achieve this varies depending on the requirements and downstream system

involved, but all solutions require distributed correlation of events. Typically this

will be done through Coherence, which has proven mission-critical performance in

this space.

Connecting to external systems

Two type of external system in particular are catered for by the precise adapter –

JMS and JTA.

JMS

Oracle CEP provides a JMS adapter out-of-the-box for connecting to external

systems. The majority of messaging-oriented and event-oriented products support

some kind of JMS access and so the JMS adapter is a universally applicable and

easy-to-use choice for connecting to external systems. JMS providers are generally

highly optimized and support very high message rates thus being a good fit for

CEP type applications. In terms of HA, JMS is also a very attractive technology

supporting both message-level delivery guarantees and publish-subscribe style

connectivity.

Typically HA in JMS involves transactionally enqueuing or dequeuing messages,

but in a CEP system this can have quite a significant impact on performance and

state

secondary

state

group

Figure 9. HA adapter using lightweight queue trimming.

server 1

output
streams

secondary

state

server 2 server 3

primary

input
streams

trim trim

Oracle CEP High Availability Page 18

also is often simply inappropriate to the application style. For instance there may

not be a 1-1 correspondence between input and output events so coordinating

with the upstream system can be problematic. Fortunately in an active-active setup

there is a reasonably simply solution to these problems. In active-active we are not

concerned with transactional guarantees along the event path for a single-server

but in guaranteeing a single output from a set of servers. To achieve this

secondaries can be setup to listen, over JMS, to the event stream being published

by the primary. As Figure 10 shows, this incoming event stream is essentially a

source of reliable queue-trimming messages and so can be used to trim the output

queue of the secondaries. If JMS is configured for reliable delivery we can be sure

that the stream of events seen by the secondary is precisely the stream of events

output by the primary and thus failover will allow the new primary to output

precisely those events not delivered by the old primary.

The only configuration necessity is that of making sure the new primary has indeed

seen all of the events published by the old primary and a simple timeout suffices

here.

JTA

In the previous section we alluded to the use of JTA in CEP systems and how this

may not be the most appropriate technology in this instance. However, as we have

also discussed, it is not just the CEP engine that needs to reliable; the CEP

application as a whole will likely involve other external resources such as

distributed caches and databases and it is the update of these resources that may

well require the use of JTA.

JTA ensures the ACID coordination of updates between transactional resources.

Thus, if a CEP system is publishing to a transactional downstream system – usually

state

secondary

state

group

server 1

output
stream

secondary

state

server 2 server 3

primary

input
streams

trim trim

JMS

Figure 10. Precise HA adapter using JMS.

Oracle CEP High Availability Page 19

JMS – and is updating a transactional store – e.g. Coherence – it makes sense that

these updates be coordinated so that the store does not contain data for

unpublished events or vice versa.

Figure 11 shows a high-level view of an application that outputs events to a

downstream JTA-enabled system using the JTA adapter. Output events and queue

trimming messages are sent to the downstream JTA resource manager as well as to

the active secondary instances as part of the same JTA transaction. This ensures

that secondaries only trim messages that have been received by the downstream

client. Batching can be used to improve performance.

Connecting to other CEP services

Oracle CEP provides a variety of mechanisms for connecting to other systems

and, being based on the Spring framework, supports all of the connectivity options

supported by Spring. However, the vast majority of these connectivity options are

not transactional and this fact needs to be constantly borne in mind when

developing an HA-ready application. As with any HA system, the reliability of the

system is governed by its weakest link – single points-of-failure will mean that the

entire system is vulnerable to catastrophic failure, even though many pieces may be

fully HA enabled.

Thus, for instance, it may be counter-productive to use precise recovery for output

events if these events are correlated with updates to an unreliable webservice.

In all of these scenarios a good practice is to treat the CEP system as a black box

and then consider all of the ways that information can get in and out of the system.

Understanding these information flows will then enable you to make appropriate

decisions about the type of HA to employ in the application. Understanding

state

secondary

state

group server 1

output
stream

secondary

state

server 2 server 3

primary

input
streams

trim trim

JTA
Resource
Manager

Figure 11. Precise HA adapter using JTA.

Oracle CEP High Availability Page 20

information flows will also inform exactly where to place HA capabilities – for

instance it often makes sense to update external systems in the final stages of your

EPN, rather than making scattered updates throughout the application. In this

way, even if the external systems are not transactional, a reasonable level of data

consistency can be attained.

Coherence

We have described how CEP state should be considered as either “long-term” or

“short-term” so that other technologies can be employed for storing long-term

data. An ideal technology for storing longer term data is Oracle Coherence. Not

only does Coherence have an impressive track record in the reliable storage of in-

memory data, but Oracle CEP provides direct integration with Coherence such

that Coherence cache’s can be treated as sources and sinks of event information.

Often in CEP applications frequent updates need to be made to application state

where roundtrips to the database would negatively impact performance. Since

Coherence is able to handle the storage of data in-memory, much greater

performance is achievable without a reduction in availability.

APPLICATION CONSIDERATIONS

This section discusses the things that application architects and developers need to

bear in mind as they design and write applications that will ultimately need to be

made highly available. Typically these "design considerations" only effect a subset

of HA adapter types, so it is important to keep in mind the HA requirements of

the particular application, and hence the HA adapter that will be used, when

deciding which design considerations need to be observed. This illustrates an

important fact which is that the application should be designed with HA in mind

from the very beginning; rather than HA being added at the end of the

development process.

EPN considerations

This section describes the constraints and best practices that should be observed

when designing the EPN of an HA application.

Ordering of output events

In some cases it is important that the active primary and secondary instances

generate not only the same output events, but also that they generate them in

exactly the same order. This issue affects the lightweight queue trimming adapter

shown in Figure 9. When using this adapter, generating output events in different

orders can lead to either missed output events or unnecessary duplicate output

events when there is a failure. Let's take a look at why this is so.

Suppose the application's output events have a unique key value that identifies

them. Call this property of the output events the "event id". The event id could

be a transaction id in a credit card application, or a claim id in an insurance fraud

Oracle CEP High Availability Page 21

application, or a similar unique value in a different application domain. Figure 12

shows a partial stream of output events produced by the fictitious application.

In Figure 12, events on the right in the stream are output first. For example, event

'a' is output first by both the primary and secondary. Now, suppose that the

primary decides to send a queue trimming message after event 'c' is output. This

will cause the secondary to trim all events in its queue generated prior to event 'c'

including event 'c' itself. In this case the set of events trimmed will be {a, b, e, d,

c} which is erroneous because events ‘d’ and ‘e’ have not yet been sent by the

primary. If a failover occurs after processing the trimming message, events will be

lost.

Deterministic behavior

In order for an application to generate events in the same order when run on

multiple instances, it must be deterministic. This means that the application must

not use things like a random number generator that may return different results on

different machines. The application also must not rely on the results of methods

like System.getTimeMillis() or System.nanoTime() which can return different

results on different machines because the system clocks are not synchronized.

Multithreading

Multithreading is another source of nondeterministic behavior in applications since

thread scheduling algorithms are very timing dependent. This can result in

different threads being scheduled at different times on different machines. One

should be aware of the threading model underlying the EPN. It is important, for

example, to avoid creating an EPN in which multiple threads send events to the ha

adapter in parallel which can lead to the problems discussed above. For example,

configuring a Channel with multiple threads and making the channel an event

source for the HA adapter would cause events to be sent to the adapter in parallel

by different threads and could make the event order nondeterministic.

Monotonic versus nonmonotonic event ids

Using a monotonic id to identify events instead of an id that only supports equality

comparisons is another best practice when using the lightweight queue trimming

primary

secondary

f, e, d, c, b, a

f, c, d, e, b, a

trim

output event stream

Figure 12. Effect of out-of-order events.

Oracle CEP High Availability Page 22

adapter. This adds a level of robustness to the queue trimming algorithm since

secondaries can use the monotonic nature of the id to ensure that day never trim

an event whose id follows an event that has been processed by the primary.

CQL CONSIDERATIONS

This discusses best practices and restrictions related to the use of CQL in HA

applications.

Application time versus system time

This issue affects all HA adapters since it can cause primary and secondary

instances to output different, not just differently ordered, event streams. In Oracle

CEP each event is associated with a point in time at which the event occurred.

There are two general flavors of time: application time and system time.

Application time means that a time value is assigned to each event "externally" by

the application before the event enters the CQL processor. System time, on the

other hand, means that a time value is associated with an event when it arrives at

the CQL processor, essentially by calling System.nanoTime().

Application time is generally the best approach for applications that need to be

highly available. The application time is associated with an event before the event

is sent to Oracle CEP, so it is consistent across active primary and secondary

instances. System time, on the other hand, can cause application instances to

generate different results since the time value associated with an event can be

different on each instance due to system clocks not being synchronized.

Using system time is not a problem for applications whose CQL queries do not

use time-based windows. Applications that use only event-based windows depend

only on the arrival order of events rather than the arrival time, so system time may

be used in this case. For applications that need to use system time and that also

use time-based windows in CQL, Oracle CEP provides a special input adapter that

intercepts incoming events and assigns a consistent time that spans primary and

secondary instances.

Restart after failure

We have discussed how active secondary servers can provide seamless availability

in the presence of failure of a primary, however in order to provide high-levels of

availability it is important that failed servers can be restarted, or new secondaries

brought online. Restarts of this kind present a particular issue with regard to the

state of the application, in that it must be possible for the new server to “catch up”

with the state of the already running servers.

This problem is actually non-trivial to solve in a general way and application

developers must give it consideration, especially with respect to persisted state. The

simplest solution to this problem is to wait – the assumption being that if long-

term state can be read from stable storage then short-term state will be rebuilt

within some time period when a sufficient number of incoming events have been

Oracle CEP High Availability Page 23

seen. This is one reason why it’s important not to rely too much on the query

engine for storing long-term state – it makes it difficult for servers to ever catch

up.

During this catch-up period it’s possible that the event output of the new server

will differ, perhaps significantly, from other secondaries in the group. This is

because the query engine is working with incomplete state. Now although this may

not matter because the secondary is not actually outputting any events, it does

cause a problem with HA strategies that rely on correlation between event streams

of different servers. For this reason it is generally sensible for new secondaries to

not take part in HA algorithms until the catch-up window has expired.

BENCHMARK STUDY

This section describes a benchmark study that demonstrates the performance and

scalability of the Oracle CEP product in various HA configurations. The

application used in the benchmark implements a Signal Generation scenario in

which incoming streams of data are monitored for the occurrence of a certain

conditions that then trigger the generation of output events. This is a very

common CEP usecase in financial services (algorithmic trading) as well as other

industries. The input data for the application consists of simulated stock market

data (symbol and price) for 1460 distinct stocks, with time varying prices. For each

input event, the CQL processor initially applies a filtering query to determine if the

symbol is on a watch list of 300 symbols being monitored. This initial filter

reduces the input data by roughly a factor of 5. For events matching the 300

monitored symbols a subsequent CQL query applies a pattern match that

determines whether the price for a given stock increases or decreases by more than

2 percent from the immediately previous price. Any time an increase or decrease

of more than 2 percent is detected, an output event is generated. The net result is

that the output rate is approximately 5 percent of the input rate over the duration

of a benchmark run.

The CEP cluster configuration for the benchmark consisted of two machines, and

four total CEP server instances. Each machine hosts one primary and one

secondary as shown in Figure 13. For both scaling and HA purposes, the cluster is

configured with 2 groups. Each group is configured with a primary and a

secondary server such that the primary and secondary for a given group are on

separate machines. The same application is deployed to both groups, but the input

data is partitioned with half of the input delivered to group 1 (servers 1 and 3) and

the other half of the input delivered to group 2 (servers 2 and 4). In this specific

benchmark application the partitioning is based on stock symbol. All output data

is sent to a JMS topic hosted by a separate Oracle WebLogic Server cluster. In the

event of a failure of either primary server (or the

Oracle CEP High Availability Page 24

machine hosting the primary) the active secondary for the group will become the

new group primary and begin sending output events for that group (beginning with

output
event
streams

Figure 14. Benchmark Application EPN.

Input
Adapter

Partitioning
Channel

HA
Adapter Channel

CQL
Processors

Channel
HA
Adapter

Output
Adapter

Output
Adapter

server 1
(Group 1
Primary)

JMS

Figure 13. Benchmark Cluster Configuration.

server 2
(Group 2
Secondary)

server 3
(Group 1
Secondary)

server 4
(Group 2
Primary)

Machine 1 Machine 2

Group 1
Output

Group 2
Output

Group 1 Input Group 2 Input

input
event
streams

Oracle CEP High Availability Page 25

any queued events). This configuration allows a CEP cluster to provide both

scalability and availability simultaneously and can be used with any of the HA

adapters and qualities of service described earlier.

The configuration of the application’s EPN within a given server instance is shown

in Figure 14. Because the benchmark application does order-based comparison of

stock prices, correct behavior of the application requires that all events associated

with a given stock symbol be processed in order. To maintain this guarantee and

minimize locking overhead, the input events for a given server instance are further

partitioned within the server instance with each partition handled by a separate

thread. In order to meet the determinism requirement discussed in the previous

section the HA adapters and CQL processors are single threaded with separate

adapter and processor instances per partition.

Benchmark Methodology

Load Injection

The input data was fed into the system by a load generator that was configured to

partition the total set of stock symbols such that half of the stock symbols are sent

to group 1 (servers 1 and 3) and the other half are sent to group 2 (servers 2 and

4). The input is sent at a configured, metered rate (referred to as the injection rate)

which is identical for all servers in the cluster. Within a group, the load generator

sends an identical input stream (same symbols and prices in the same order) to

both servers. Ordering is based on an external timestamp applied by the load

generator which ensures determinism across the servers in a group (see earlier

discussion of application time vs. system time).

Each benchmark run consisted of a 10 minute warmup run, followed by a 10

minute measurement run at the specified load.

Configurations Measured

The following HA adapter configurations were measured to provide a clear picture

of the performance/quality-of-service tradeoffs available in different

configurations:

• Simple failover with no buffering

• Simple failover with a 15 second buffer (default buffer size)

• Lightweight queue trimming with trim interval of 100 events

• Lightweight queue trimming with trim interval of 1 event (trim on every

event to minimize duplicates on failure)

• Precise recovery

Note that in each case the JMS topic used for output was configured with a quality

of service that was appropriate for the CEP configuration being measured. CEP

adapter configurations that have some potential for message loss on failure (simple

Oracle CEP High Availability Page 26

failover) were measured using a non-persistent JMS configuration that could also

experience message loss in the case of JMS server failure, while CEP

configurations that guarantee no message loss (lightweight queue trimming and

precise) were measured with JMS message persistence ensuring reliable delivery of

the output even in the case of a JMS failure. This approach allows a performance

comparison of different quality of service levels for the system as a whole,

including the JMS output.

Metrics Collected

For each benchmark configuration, the following metrics were recorded:

• HA adapter configuration (determines HA Quality-of-Service)

• Number of partitions within a given server instance.

• Injection rate per server. This is the maximum injection rate that could be

sustained in steady state over a 10 minute benchmark run.

• Server processing latency. This latency is measured only on the primary

servers and only for events that result in output. An initial timestamp is taken

in the adapter after reading the input data from the socket and prior to

unmarshalling. A second timestamp is taken after the corresponding output

event has been sent to JMS and the HA adapter has completed any processing

associated with the event (e.g. trimming messages to the secondary). The

difference between the timestamps is recorded as the latency for a particular

event. Latencies are aggregated, and average and 99.99 percentile latencies are

reported for each run.

• Output event rate

Hardware and Software Stack

The hardware environment consisted of a two machine Oracle CEP cluster with

additional machines hosting the load generator and the external WebLogic JMS

topic used for output. The two machines hosting the CEP cluster had similar, but

not identical hardware specifications as described below:

Machine 1:

• 2 Intel Xeon X5670 processors at 2.93 GHz (6 cores each with

hyperthreading – 24 total hardware threads)

• 72 GB Memory

Machine 2:

• 2 Intel Xeon X5660 processors at 2.80 GHz (6 cores each with

hyperthreading – 24 total hardware threads)

• 36 GB Memory

The software stack for all CEP server instances was identical as follows:

Oracle CEP High Availability Page 27

• Oracle Enterprise Linux 5.4, kernel 2.6.18-164, x86_64

• Oracle JRockit JVM 1.6.0_20, 32 bit build

• Oracle Complex Event Processing 11.1.1.4

Benchmark Results

Table 1 shows the runtime performance results for various HA adapter

configurations. The table shows the maximum steady state injection rate

achievable in each of 5 different adapter configurations. Note that the granularity

used when increasing the injection rate to determine the maximum was in

increments of 1000 events per second per partition. As a result, any differences in

maximum throughput that were smaller than this increment weren’t detected.

Partitions

per Server

Injection

Rate/Server

(events/sec)

Total

Injection

Rate

Output Rate

(events/sec)

Average

Latency

(microsecs)

99.99%

Latency

(millisecs)

Simple Failover (no buffering)

8 456,000 912,000 46,213 78.3 9.7

Simple Failover with Buffering (15 second buffer)

8 376,000 752,000 38,110 95.4 28.1

Lightweight Queue Trimming with Trim Interval of 100

8 184,000 368,000 18,597 453.1 20.5

Lightweight Queue Trimming with Trim Interval of 1 (trim on every event)

8 184,000 368,000 18,504 560 21.1

Precise

8 176,000 352,000 17,769 594.7 15.8

 Table 1. Runtime Throughput and Latency

The following points are noteworthy in these results:

• There is a significant difference in both throughput and latency when

comparing simple failover with no buffering to simple failover with a 15

second buffer. Even though there is no additional work done on the primary

when buffering is configured, the secondary does incur some overhead in

managing the buffer and also experiences additional garbage collection cost

related to the buffer memory.

Oracle CEP High Availability Page 28

• There is measurable difference in performance of lightweight queue trimming

when making a significant change to the trimming interval. Although the

maximum throughput is the same for the two measured trimming intervals

(within the injection granularity), the performance impact of more frequent

trimming can be seen in the latency results. So there is a tradeoff in this case

between performance, and the potential for duplicates on failure (which

increases with an increased trim interval).

• The latencies are significantly higher and throughputs are lower for lightweight

queue trimming and precise when compared to the simple failover

configurations. A major factor contributing to the performance difference is

the difference in how JMS output is handled. For lightweight queue trimming

and precise recovery the primary makes a synchronous call to the JMS server

for each output event, and the output processing isn’t complete until JMS has

persisted the message and sent a response acknowledging the reliable message

receipt. In the simple failover configurations a lower quality of service was

configured for JMS output as discussed earlier, and so output events are sent

without waiting for a synchronous acknowledgement and the overhead of the

roundtrip network latency to the JMS server and the JMS persistence costs are

avoided.

• Looking at the overall relationship of performance vs. quality-of-service we

see that performance improves with a lower quality-of-service as one would

expect. The various adapter configurations provided by CEP allow users the

flexibility to make the performance/QOS tradeoff that is appropriate for their

environment and specific requirements.

Overall the various adapter configurations were able to demonstrate very high

throughputs and low processing latencies in an HA configuration. These results

validate the belief that the active-active approach has very good performance

characteristics. In addition, the ability to scale both to multiple partitions (threads)

within a server instance and multiple server instances suggests that the Oracle CEP

HA approach will scale well as additional hardware resources are added.

CONCLUSIONS

This paper has described the general problem of providing high-availability for

complex event processing applications and presented a comparison of the

alternative approaches that are available. The active-active HA solution used by

the Oracle CEP product was presented along with a discussion of the advantages

of this approach and a benchmark study which validates the performance of this

approach. The Oracle CEP approach to high-availability emphasizes performance,

simplicity, and scalability.

Oracle CEP HA provides a number of alternatives that allow users to make the

most appropriate performance vs. quality-of-service tradeoff for their particular

environment, including a precise recovery option that guarantees no loss or

Oracle CEP High Availability Page 29

duplication of output events. The paper covered a number of application design

considerations that need to be taken into account by architects and developers of

HA applications. In all cases, a simple best practice was presented for making the

application highly available.

Oracle CEP HA addresses the problems that failure of an Oracle CEP instance

pose for an end-to-end HA solution. In general, enterprises need to take a holistic

view of high-availability and design applications to be highly available up front,

rather than attempting to address high availability later in the application

development lifecycle. Oracle CEP HA is designed to fit into a holistic approach

to high-availability, and can help make applications both highly available and

performant.

REFERENCES

• Marcus, E., and Stern, H., Blueprints For High-Availability, Second
Edition, Wiley Publishing, 2003

• Oracle CEP product page on OTN

• Oracle CEP online product documentation

• Oracle Complex Event Processing and Distributed Caching, Oracle
Whitepaper, December 2008

• Oracle Coherence product page on OTN

Oracle Complex Event Processing High Availability

November 2010

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This document is provided for information purposes only and the

contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any

other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations

are formed either directly or indirectly by this document. This document

may not be reproduced or transmitted in any form or by any means,

electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Other names may be trademarks of their respective owners.

