Get to Production Sooner
Complete projects 21% Faster with JRebel on WebLogic

Table Of Contents:

1. Comparison Chart: Turnaround-Reducing Options:
a. Dynamic Classloaders
b. JVM HotSwap
c. JRebel
2. Brief Overview
3. Turnaround Explained
a. The Java EE Development Cycle
b. Why does the development cycle look like this?
c. How does WebLogic handle redeployment?
4, The HotSwap Conundrum
Improving Iterative Development with FastSwap
6. Eliminating Turnaround: Creating Applications 21% faster with JRebel on WebLogic
a. What is JRebel?
b. What can it handle?
c. Skipping Builds
d. Java EE, Frameworks, IDEs, and beyond
e. Configuring JRebel on WebLogic Server
7. Tracking the effects of JRebel in your environment
Conclusion
9. References, Further Reading
a. About Oracle
b. About ZeroTurnaround

g

®

1. Comparison Chart: Turnaround-Reducing Options:

Usual Redeploy JVM HotSwap FastSwap JRebel
(Dynamic
Classloaders)

Time spent per 2.5 mins average <1sec <1sec <1sec
reload
Issues Loses application Needs WLS 10.3.0+; only PermGen heap
state, navigate debugger changes to class should be set to
from scratch, session, slows files in exploded at least 128m
rewarm caches, application directories are
potential for class supported;
loader leaks Reflection API
issues!”
Class reloading Full Method Enhanced with Everything
bodies only some except Static
documented Hierarchy
limitations Changes
Skipping builds Limited Full Full

Java EE changes Full JSP, Servlet, EJB ~90% @
support classes

Framework Full None ~75% ©)

Configuration and

Component changes

Average mandatory

redeploys/day

Time Spent

Redeploying

Annually (40-hour

weeks)

(1) Added methods and fields are not visible through the Reflection API, synthetic methods and
fields necessary to run with FastSwap are visible, which can cause behaviour changes and
issues with frameworks like Spring.

(2) Supports JSP, JSF, Servlet, EJB, JPA and CDI changes

(3) For supported frameworks: Spring, Hibernate, Stripes, Guice, Struts, Tapestry4, Velocity,
Wicket, etc. SDK for third-party plugins is available. For full list see
www.zeroturnaround.com/jrebel/comparison

Get to Production sooner. Complete projects 21%
Faster with JRebel on WebLogic.

2. Brief Overview

This whitepaper looks into the challenge of “Turnaround” — the time
spent redeploying and restarting when a developer wants to see the
effects of changes they have coded. It looks into the challenges
imposed by the Java language, identifies the technologies currently
available to remedy the situation, and shows how to combine the
functionality and feature set of WebLogic Server with the development
speed and productivity that JRebel enables. Together, they empower
teams to complete enterprise projects faster, make development
more enjoyable for developers, and deliver high-quality applications to
production sooner.

Oracle WebLogic Server is world's best application server for building
and running enterprise applications and services. It fully implements
the latest Java EE standards and offers choice in development
frameworks and tooling. Comprehensive and accessible management
capabilities enable administration of sophisticated systems via a well-
designed graphical console and/or automation. All users benefit from
Oracle WebLogic Server's reliability and performance, which has been
tested over years of enterprise-grade production use in demanding
customer environments the world over.

JRebel is a JVM plugin that works seamlessly with WebLogic Server to
eliminate the build and redeploy phases from the development cycle.
Using this approach, on some applications, we estimate that JRebel
can save up to 21% of the time that developers spend coding,
eliminate a frustrating java-specific process, and speed up the
completion of projects. JRebel supports Java as far back as Java SE 1.4,
directly integrates into Eclipse, IntelliJ, and NetBeans, supports JSP,
EJB, JSF, JPA, and CDI changes, as well as changes to frameworks such
as Spring, Hibernate, Seam, Guice, Stripes, Struts, Tapestry4, Velocity,
and Wicket.

3. Turnaround Explained

“Turnaround” is defined as the duration from coding a change to
seeing the effects of that change in an application. When using Java,
Turnaround has become something of an elephant in the room:
everyone knows that it consumes a significant percentage of
development time (and is frustrating to developers), but since
solutions tend to be expensive or incomplete, most teams simply
ignore the problem and take it as part of the standard Java EE
Development Cycle.

“Every time | want to see
code changes in action, |
have to redeploy my app
server. | understand that
there are technical
challenges, but | believe
that development should
be an incremental and
iterative process, where |
see changes immediately -
instead of watching the
logs roll by, losing focus, or
wasting my time.”

The Java EE Development Cycle

Phase Two
Phase One
Changes are compiled and optionally
Add feature, fix bug, or improve code packaged into EARs / WARs
using IDE of choice : Eclipse,
NetBeans, IntelliJ IDEA, etc

JRebel works with

your current
Make Code Changes Build and Compile technology stack and
allows your team to
Skip Phase 2 and 3.
See Changes Deploy Your team gains

weeks of actual
development time.

Phase Four Phase Three P

See the effects of code changes, The application is redeployed to the

and choose to improve the change container.

or move on to something new. Either

way, go to Phase One.

Eleven-hundred Java EE Developers recently participated in a survey that led to
ZeroTurnaround’s WebLogic Server Redeploy and Restart Report. Based on the survey inputs, it
was calculated that developers using WebLogic Server spend an average of 12.9 minutes per
coding hour redeploying their code. This covers many different types of applications in terms of
size and complexity, though it can be noted that firms using WebLogic Server tend to build large
and complex enterprise-level projects, which take longer to build and redeploy, and rely on the
dependability, scalability, and security features that WebLogic Server provides.

Why does the development cycle look like this?

Basically, we can look at step 2 and 3 in the development cycle as compiling classes, packaging
the application as a .WAR or .EAR archive, and deploying that package to the app server. This
makes sense in production, as it provides a standardized and consistent way to assemble and
deploy the application. It enables WebLogic Server to manage its deployment across a wide
variety of topologies, from single domains to large multi-server clusters. Unfortunately, this level
of enterprise support can sometimes hinder the development process, making developers wait
for every small change to be deployed.

How does WebLogic Server handle redeployment using dynamic classloaders?

For rapid incremental development the server uses dynamic classloaders, like this:

1. Dynamic classloaders are created by the server. In the default configuration, WebLogic
Server creates one classloader for each application and web module. If custom classloaders

are configured, then every EJB module may also have a separate class loader. The
classloaders form a hierarchy as illustrated:

WAR1 WAR2 WAR3 WAR4

2. Classloaders are reloaded - In WebLogic Server, each web application is managed by an instance
of the ChangeAwareClassLoader which loads the web application classes. When a user presses
“redeploy” in the WebLogic Console the following will happen:

* The previous_ ChangeAwareClassLoader instance is replaced with a new one
* All reference to servlets are dropped

* New servlets are created according to the web.xml

* Servlet.init() is called on each servlet instance

Redeploy

Servlet.init()

m Sevlet
| Librares

ChangeAwareClassLoader ChangeAwareClassLoader

- 'Sevlet |
Libraries

Calling Servlet.init() recreates the “initialized” application state with the updated classes loaded
using the new classloader instance.

If an application is deployed as an .EAR archive, WebLogic allows redeployment of each application
module separately, when it is updated. This saves time spent waiting for non-updated modules to
reinitialize after redeployment.

It is also possible to avoid the packaging step for some applications by deploying them to WLS in
exploded directory form. Unfortunately, this doesn’t eliminate the deployment step, but it does help
to reduce Turnaround.

Unfortunately, although dynamic classloaders are a good step forward, they often cause other
problems, and don’t go far enough to eliminate Turnaround. Some issues include:

* To recreate the “initialized” state, initialization is run from scratch, which usually includes
loading and processing metadata/configuration, warming up caches, and running a variety of
checks (e.g. reinitializing the Spring ApplicationContext). In a small application this might
take a few seconds and is fast enough to seem instant, but in a larger application this can
take many minutes.

* Java EE applications on all application containers often cause the classloader of a previous
application version to leak memory on redeployment. After a few redeploys an
OutOfMemoryError will occur. This is an unfortunate limitation of the class loader model in
the current Java ecosystem.

¢ According to the Redeploy Report survey results, developers reported that the average
redeploy time using dynamic classloaders was 2.5 minutes, and developers redeploy an
average of 5 times per hour.

4. The HotSwap Conundrum

In 2002, Sun introduced a new experimental technology into the Java SE 1.4 JVM, called HotSwap. It
was incorporated within the Debugger API, and allowed debuggers to update class bytecode in
place, using the same class identity. This meant that all objects could refer to an updated class and
execute new code when their methods were called, preventing the need to reload a container
whenever class bytecode was changed. All modern IDEs (including Eclipse, IDEA and NetBeans)
support it. As of Java 5 this functionality is also available directly to Java applications, through

the Instrumentation API.

User saves class
from IDE

$

HotSwap
New Code

111000100
101010010

... Debugger

New Code
_ 111000100
101010010

Unfortunately, this redefinition is limited only to changing method bodies — it cannot either add
methods or fields or otherwise change anything else, except for the method bodies. This limits the
usefulness of HotSwap, and it also suffers from other problems:

* The Java compiler will often create synthetic methods or fields even if you have just changed
a method body (e.g. when you add a class literal, anonymous and inner classes, etc).
* Running in debug mode will often slow the application down or introduce other problems

This causes HotSwap to be used less than, perhaps, it should be.

5. Improving Iterative Deployment with FastSwap

WebLogic Server (10.3.0 and later) provides a dynamic class swapping feature called FastSwap, in
which some steps have been taken to address the iterative redeployment concerns that are imposed
through the use of dynamic classloaders and the limitations inherited with HotSwap.

With FastSwap, Java classes are redefined in-place without reloading the classloader, thereby having
the decided advantage of fast turnaround times. This means that you do not have to wait for an
application to redeploy and then navigate back to wherever you were in the Web page flow. Instead,
you can make your changes, auto compile, and see the effects immediately.

FastSwap extends the HotSwap model by providing support for dynamic redefinition of classes with
new shapes. With FastSwap, changes to classes such as the addition and removal of methods and
fields, adding and removing constructors, numerous static level class changes and some EJB 3.0
specific enhancements are all supported.

The use of FastSwap can help facilitiate a more effective and efficient iterative development model,
particulaly when paired with the use of Oracle Enterprise Package for Eclipse that provides
configurable support for using FastSwap with development projects. However

FastSwap does have some limitations in the extent of dynamic class changes it can support and the
limited dynamic reloading support it offers for 3" party frameworks.

6. Eliminating WebLogic Turnaround with JRebel

What is JRebel?

JRebel is an award-winning productivity tool for Java EE development. It is a JVM-plugin that maps
your project workspace directly to your running application, so that when you change any class,
configuration, or resource in your IDE, you can immediately see it in your application, thereby
skipping the build and redeploy phases in the development cycle. JRebel supports Java SE 1.4
onwards, Java EE 5, and Java EE 6. It directly integrates into Eclipse, IntelliJ, and NetBeans, and
supports changes to JSPs, EJBs, JSF, JPA, and CDI, as well as changes to frameworks such as Spring,
Hibernate, Seam, Guice, Stripes, log4j, Struts, Tapestry4, Velocity, and Wicket.

Development Tools

Application
Server

What can JRebel handle?

The feature JRebel is best know for is picking up changes in Java classes on-the-fly. When a class is
loaded JRebel will try to find a corresponding .class file for it. It will search your workspace as
specified in the rebel.xml configuration file. If it finds a .class file, JRebel instruments the loaded class
and associates it with the found .class file. The .class file timestamp is checked for changes when the
class is used and updates are propagated through the extended class loader, to the application.

MyObiject.class file
OldClassLoader changed

v

New Code
111000100

101010010
New Code
111000100

101010010

I

Importantly, when loading updates to a class, JRebel preserves all of the existing instances of that
class. This allows the application to continue working, but means that when adding a new instance
field it will not be initialized into the existing instances, since the constructor will not be rerun. State
is preserved!

Unlike updating the class in the debugging session (know as HotSwap) JRebel is not limited to
updates to method bodies. It can also add methods, constructors and fields, change signatures and
modifiers, change values of static fields and enums, and even propagate changes to annotations. All
changes are also reflected in the Reflection API. The only limitation is that changes to the class
hierarchy are not supported -- that is you cannot change the “extends” relation or add an
implemented interface without having to redeploy the application.

Skipping builds

In addition to handling class changes JRebel also helps to skip the build or assembly phase.
According to the Build Tool Report(s), a survey of 600 Java developers, the average length of a build
is 1.9 minutes, with a standard deviation of 2.9 minutes — greatly depending on the build tool used.
To eliminate this phase, instead of creating a WAR or EAR for development, the rebel.xml
configuration file maps a deployed application back to the IDE workspace. JRebel integrates with the
application server, and when a class or resource is updated it is read from the workspace instead of
the archive.

¥ & petclinic
» ‘&3 Deployment Descriptor: petclinic
v 7% Java Resources: src
> 5 org.springframework.samples.pet
jdbc.properties
log4).properties
messages.properties
X rebel.xm
» =) Libraries [. .
B JavaScript Support petC| lnIC.Waf
build .)
db
lib
3> WebContent

% | build.xml

YyY¥y¥y ¥y

X Jjetty.xml
] petclinic.war
ReadMe.txt

This allows for instant updates of not just classes, but any kind of resources like HTML, XML, JSP, CSS,
.properties and so on. For Maven users, the JRebel Maven plugin will automatically generate the
necessary rebel.xml file.

Java EE, Frameworks, IDEs and beyond

Reloading classes and skipping builds gives an important boost to developer productivity, but JRebel
does even more. Using the open-source SDK a number of plugins have been created for the Java EE
standards and popular frameworks that handle metadata and configuration changes in the
container. Some examples include:

* Adding EJB 1.x-3.x session bean methods
* Changing JPA entities

* Changing JSF beans

* Adding Spring dependencies

¢ Adding Struts 1.x or 2.x Actions

* Changing Hibernate entities

¢ Changing ResourceBundle properties

* Adding Guice dependencies

To make configuring and using JRebel as smooth an experience as possible, IDE plugins for Eclipse,
NetBeans and IntelliJ IDEA improve the debugger behaviour and provide simple options for
configuring JRebel.

Configuring JRebel on WebLogic Server

To configure JRebel with WebLogic you just need to follow the Configuration Wizard launched
automatically by the installer. But the three steps (on Windows) are:

1. Create a startWeblogic-jrebel.cmd in the same directory where the regular startWebLogic.cmd

script resides:
@echo off
set JAVA_OPTIONS=-noverify -javaagent:%REBEL_HOME%\jrebel.jar %JAVA_OPTIONS%

call %~dpO\startWeblogic.cmd %*

Where REBEL_HOME should point to the directory where JRebel was installed. This step is only
necessary if you run a standalone server, otherwise it’s enough to enable a checkbox in the
Launch configuration in the IDE.

2. Use the IDE or Maven plugin to generate the rebel.xml for your project and put it in the source
directory in your workspace (make sure it’s copied to the target classes directory too). It’s also
easy enough to edit by hand if necessary. An example follows:
<application>

<classpath>
<dir name="${myWorkspace}/petclinic/bin"/>
</classpath>
<web>
<link target="/"><dir name="${myWorkspace}/petclinic/WebContent"/></link>
</web>
</application>

3. Use the startWeblogic-jrebel.cmd to start the server and make sure that you see the JRebel
banner in the console log. JRebel will indicate the directories it is monitoring for changes and will
issue a “Reloaded class XXX” message every time you use a changed class.

From then on, all changes made in the IDE will be reloaded instantly, greatly speeding up
development.

7. Tracking the effects of JRebel in your environment

The effects of eliminating Turnaround from the development cycle can be quite easily measured and
tracked. JRebel itself is able to detect the number of redeploys that it has prevented, and it displays
them in the log when WebLogic is first started with JRebel enable, each day.

8. Conclusion

Reducing the cost of development projects is a very real and important concern in todays business
climate. Enabling developers to work in an agile, iterative development enviroment helps to reduce
the overall cost of the development effort. With the use of intelligent technologies such as Oracle
WebLogic Server FastSwap and JRebel, changes made to application code and resources as the
application is being developed can be instantly detected and reflected. Using these technologies,
the amount of time developers spend packaging and redeploying applications in order to test their
changes is significantly reduced, enabling applications to move from development to production in
much less time and reducing development cost.

9. References, Further Reading
1. Oracle WebLlogic Server: http://www.oracle.com/us/products/middleware/application-

server/weblogic-suite/index.html

2. JRebel: http://www.zeroturnaround.com/jrebel/

3. Reloading Java Classes — 5 part series: http://www.zeroturnaround.com/blog/reloading-
objects-classes-classloaders/

4. WebLogic Redeploy and Restart Report: http://www.zeroturnaround.com/weblogic-
redeploy-report/

5. Build Tool Report: http://www.zeroturnaround.com/blog/the-build-tool-report-turnaround-
times-using-ant-maven-eclipse-intellij-and-netbeans/

About Oracle
Oracle provides the world’s most complete, open, and integrated business software and hardware
systems, with more than 370,000 customers—including 100 of the Fortune 100—representing a

variety of sizes and industries in more than 145 countries around the globe. Oracle's product
strategy provides flexibility and choice to our customers across their IT infrastructure. Now, with Sun
server, storage, operating-system, and virtualization technology, Oracle is the only vendor able to
offer a complete technology stack in which every layer is integrated to work together as a single
system. In addition, Oracle's open architecture and multiple operating-system options gives our
customers unmatched benefits from industry-leading products, including excellent system
availability, scalability, energy efficiency, powerful performance, and low total cost of ownership.

About ZeroTurnaround

ZeroTurnaround builds technologies that make the Java platform more productive: both for
development and production. Our Rebel technology integrates directly into the JVMs, application
servers, and development tools that most teams use — making them more competitive. JRebel saves
Java EE developers between 3-7 weeks of wasted development time (yup; 40-hour workweeks), has
been downloaded hundreds of thousands of times, and pays for itself in under a week. Our
customers are the who’s who of the finance, web application, and technology industries, including
many global banks plus American Airlines, Lufthansa, LinkedIn, HP, Siemans, Logica, Kayak, Oracle,
IBM, and more. For rolling out or rolling back upgrades to live applications instantly, check out our
next product, LiveRebel, in private beta now.

