

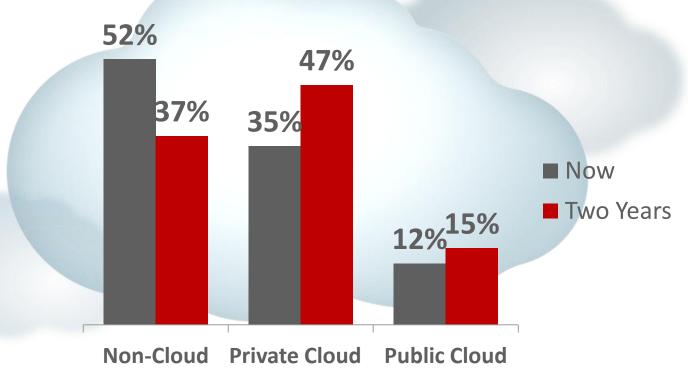
Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle.

Program Agenda

- 1 Current Challenges
- 2 EM 12c Solution
- 3 The Details
- 4 Summary

Program Agenda


- 1 Current Challenges
- 2 EM 12c Solution, including Live Demo
- 3 The Details
- 4 Summary

5X

Cloud computing investment is growing FIVE TIMES faster than traditional IT investment

Private Cloud: Fastest Growing!

Source: Computerworld Strategic Marketing Services, February-March 2014 Cloud Survey

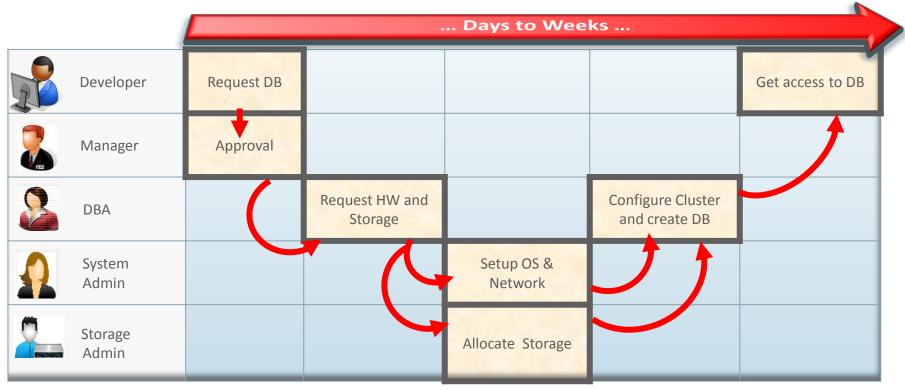
Platform as a Service: Fastest Growing Private Cloud Segment

"current PaaS adoption"

*Source: Computerworld Strategic Marketing Services, February-March 2014 Cloud Survey **Source: GigaOM Research and VC North Bridge

Application Development and Testing The most adopted cloud use case in the next two years

Source: Computerworld Strategic Marketing Services, February-March 2014 Cloud Survey



Application Development and Testing all Need Data(bases) But currently that has some bottlenecks

Time Risk Money 4+ months **Availability Issues** 5x storage to deploy new introduced by migrations and to provide DB test copies business applications upgrades

Current Database Provisioning Process

Time Consuming and Inefficient

Real-life Challenges

60,000

refresh/year

2,000+

Dev/Test DB

3-5TB

Typical DB size

RMAN

full clones

10 - 20

issues/day

EMC & NetApp

storage

"Database Refresh is a necessary evil!"

Program Agenda

- 1 Current Challenges
- EM 12c Solution, including Live Demo
- 3 The Details
- 4 Summary

What is Snap Clone?

DBaaS approach to creating clones of large (~TB) databases

Space Efficient

Significantly reduce the storage footprint

Time Efficient

Clone DBs in minutes not days/weeks

Storage Agnostic

Supports ALL storage vendors (NAS & SAN)

Self Service

Empower the user to make adhoc clones

Space efficient

Eliminating DB Storage Overhead Costs for Dev/Test

Business Value: 90%+ reduction in storage overhead via 'Snap Clone'

- Substantial DB storage overhead exists to support operations
 - For every DB in prod, 8-12 copies exist
 - Uses: Development, Test, Back-up, Archive
- DBaaS Snap Clone benefits:
 - 95% reduction in storage overhead, impact easily quantified
 - Storage growing 35-40% / year
 - Delivery time cut from 2 weeks to > 1 hour

Financial Customer Scenario

- 5 Prod DB = 30 TB
- 5 Standby DB = 30 TB
- 5 Masked DB = 30 TB
- 6 Clones (6 * 5 * 2 GB of writable space)

= 180TB 60 GB

Total

270 ~90 TB

Time = days/weeks minutes

Eliminating DB Storage Overhead Costs for Dev/Test

Business Value: 90%+ reduction in storage overhead via 'Snap Clone'

- Substantial DB storage overhead exists to support operations
 - For every DB in prod, 8-12 copies exist
 - Uses: Development, Test, Back-up, Archive
- DBaaS Snap Clone benefits:
 - 95% reduction in storage overhead, impact easily quantified
 - Storage growing 35-40% / year
 - Delivery time cut from 2 weeks to > 1 hour
- Oracle assessment: Likely millions more dollars of value to recapture though not included in ROI study.

Financial Customer Scenario

- 5 Prod DB = 30 TB
- 5 Standby DB = 30 TB
- 5 Masked DB = 30 TB
- 6 Clones (6 * 5 * 2 GB of writable space)

$$= 180TB 60 GB$$

Total

- 270 ~90 TB
- Time = days/weeks minutes

Developers/Q&A team request new DB's all the time

- Storage needs are exploding
- Lack of automation
- Archaic processes followed to conserve storage
 - Clones shared by multiple users and applications
 - Degraded performance due to increased sharing amongst users
 - All data changes have to be managed, this adds to OPEX
- Low rate of refresh
 - Fixed refresh cycle; no adhoc cloning requests

Customer Scenarios with Snap Clone


```
Customer Scenario 1 [Telecom
           Industry]
```

- Prod DB = 12 TB
- Standby DB = 12 TB
- 7 Clop4

14 GB

Total

108 ~24 TB **Customer Scenario 2 [Banking** Industry]

- = 12 TB
 Over 99.97% Storage Savings

 5.04

 - 6 Clones (6 * 5 * 2 GB of writable space)

= 180TB60 GB

Total **270** ~90 TB

Time efficient

Provisioning and Cloning takes too much time

51% DBAs state dealing with manual tasks like provisioning & cloning of new databases for test/dev systems is too time consuming

Dräxlmaier D

"Provisioning a database server takes us 4-5 days with involvement of different groups to create a system meeting enterprise standards. Need to *roll out services on short order* in matter of minutes and hours"

Same customer scenarios with Snap Clone

Customer Scenario 1 [Telecom Industry]

- Prod DB
- Significant reduction in Time. Standby Da
- A typical terabyte database takes just a few minutes to clone 7 Cld

minutes Time =

= 180TB

Customer Scenario 2 [Banking

Industryl

Time = weeks

hours

Storage Agnostic

Supported Cloning Options

Full Clones

Snap (Thin) Clones

Database Native [Storage Agnostic]

RMAN Restore RMAN Duplicate

Data Pump

- Leverage your existing investments
- Cater to both functional and stress testing needs
- Maximize for best performance

Use Snap Clone whenever you need >1 clones!

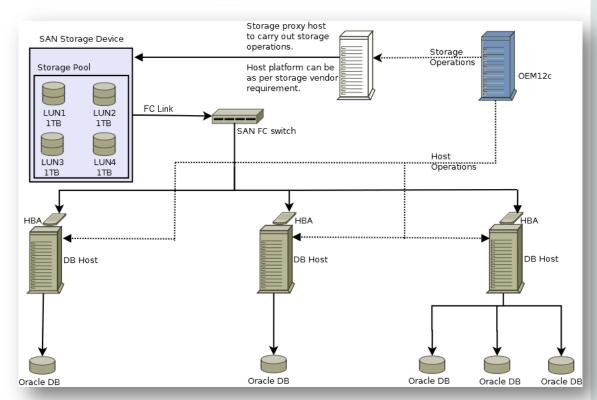
Software Solution [Vendor Agnostic]

Hardware Solution [Vendor Specific]

NAS

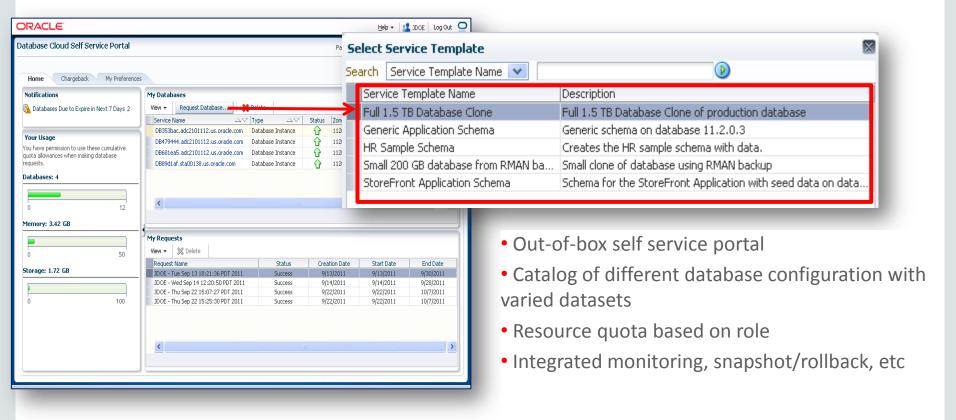
SAN

Snap Clone using Solaris File System (ZFS)


- Uses a single stock Solaris 11.1+ image physical or virtual [and NOT the Sun ZS3 Appliance]
- Supports any kind storage NAS or SAN
- For SAN, mount luns as raw disk and format with ZFS filesystem
- Does NOT require the snapshot/clone licenses from the storage vendor, these features are available for free
- Additional features include compression, deduplication, IO caching, etc.
- HA has to be handled externally either via Solaris Clusters, or by using HA features of the underlying hypervisor

Snap Clone on ASM + EMC Storage

- Ability to create 'live' thin clones of databases on ASM
- Live Clone: NOT snapshot based, but a live clone of DB
- Clone can be within the same or on a different cluster
- EMC VMAX (with Time Finder VPSnap) and VNX storage appliances
- Supported configurations: SI and RAC
- Supported Versions: DB = 10.2.0.5 or higher; GI = 11.2 and higher



Self Service

Self Service Provisioning and Service Catalog

Program Agenda

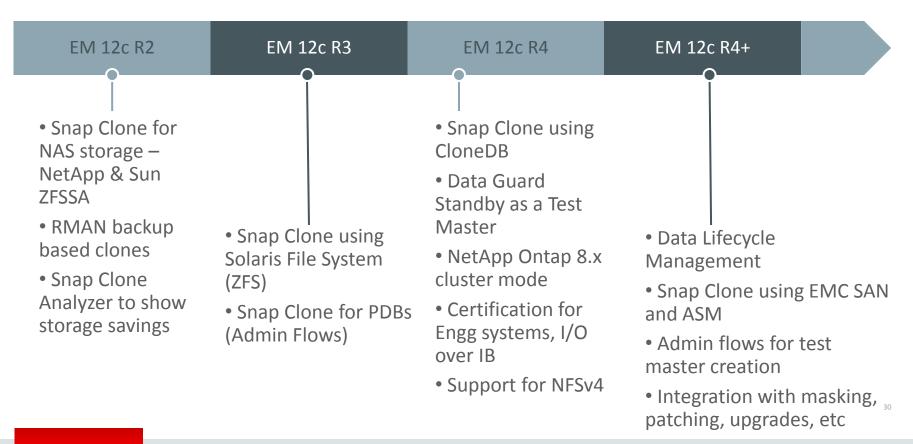
- 1 Current Challenges
- 2 EM 12c Solution, including Live Demo
- 3 The Details
- 4 Summary

Evolution of Solutions

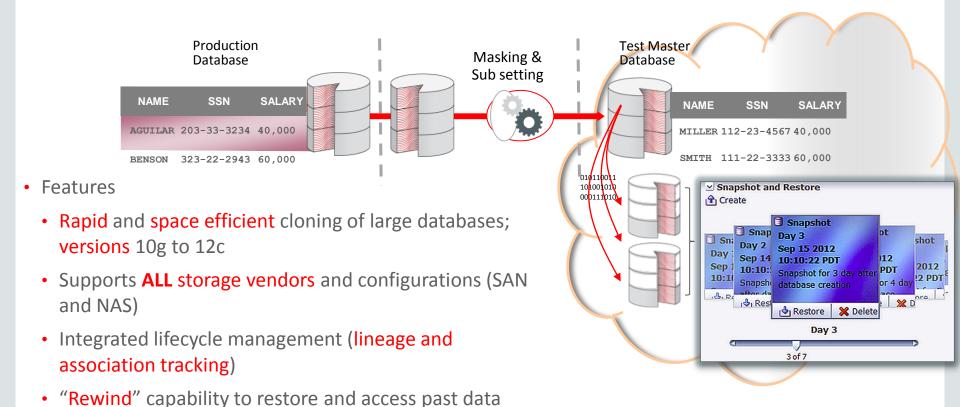
Point Features

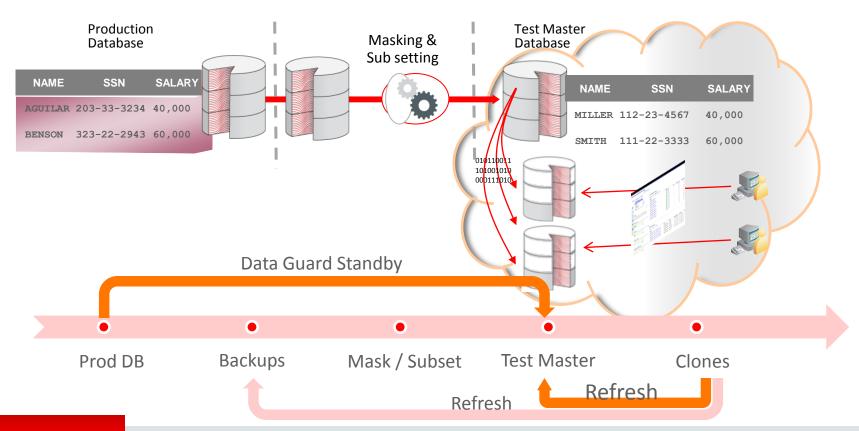
- ✓ Storage level: snapshot, volumn/lun thin clone, dedupe, compression, etc
- x Lacked DB or application context
- Does not solve process problem

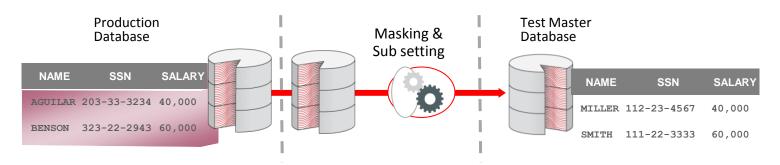
Point Tools


- ✓ VM cloning
- ✓ DB cloning using smart file systems
- x Limited focus on just cloning
- x Lacked lifecycle management of clones

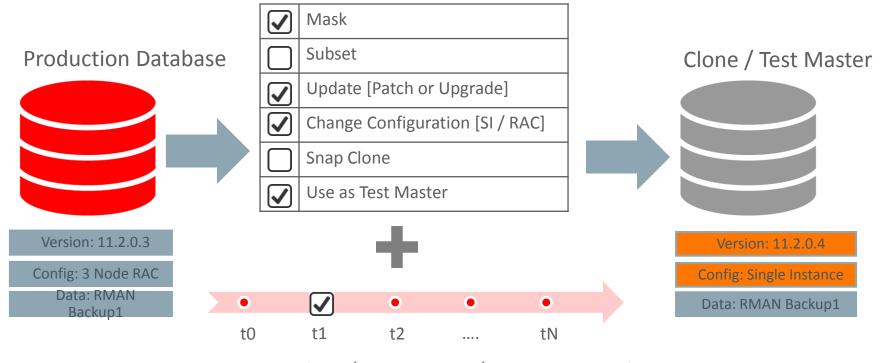
EM Solution


- ✓ Technology agnostic
- ✓ End-to-End automation from prod to test/dev
- ✓ Designed for DBAs
- ✓ Complete mgmt of clones - masking, performance, patch/upgrade, etc


Strong Investment in EM's Data Cloning Solution


DBaaS "Snap Clone"

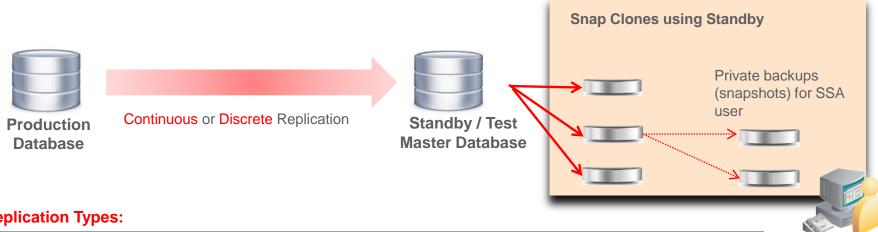
Data Movement


DB Clone and Refresh – Admin Flow

- Enable direct clones from production databases
- Provide automation to refresh the clone with data changes in production
- Works for storage snapshots, RMAN backups, data pump exports, etc
- Include masking & subsetting

- Works with patched or upgraded binary
- If using clone as test master, allow self service users to refresh existing clones with new data
- Reduce administrative overhead

DB Clone and Refresh – Admin Flow


Full or Snap Clone: How it Works?

Test master is regularly refreshed with current data from production Scheduled or Manual **Storage Snapshots** or **RMAN Backups** of the test master database, called **Profiles**

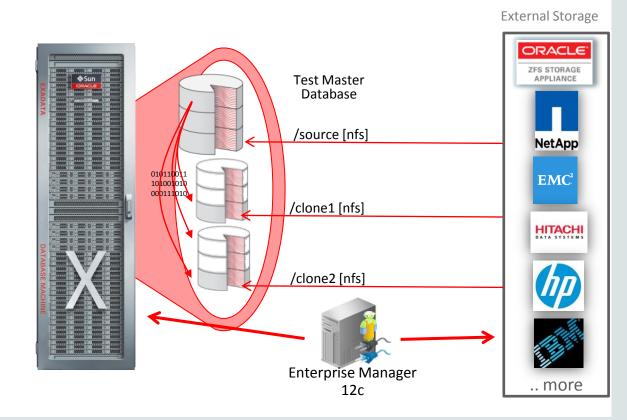
Deployment Scenarios

Replication Types:

	Continuous	Discrete
Technology	Data Guard, Golden Gate	RMAN, Snap Mirror, import/export
Data Refresh	Automatic and instantaneous	Manual and at scheduled intervals
Masking and Subsetting	Not possible	At source (in production), or in place at test master

Snap Clone with Oracle Engineered Systems

Exadata


- Compute nodes are used to run snap clone databases
- The storage is external to Exadata and served over NFS
- In case of ZS3 storage, all traffic over infiniband

SuperCluster

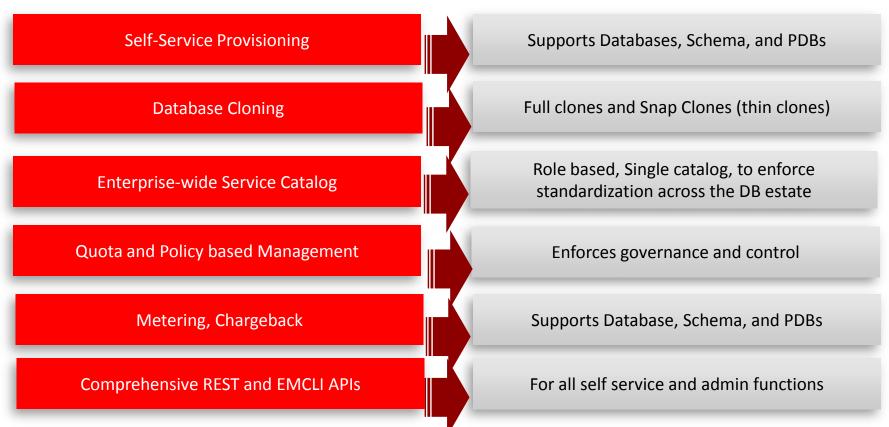
- Solaris Zones or LDOMS used to run snap clone databases
- Embedded ZS3-ES storage served over infiniband

Oracle Virtual Compute Appliance

- Oracle VMs used to run snap clone databases
- Embedded ZS3-ES storage served over infiniband

Snap Clone Vs Competition

- Scale, Scale, Scale
 - Supports 1 to 1000s of clones
- Protects your existing investments
 - Choice between hardware and software solution
 - Use of trusted technologies like data guard for test master refresh
- Part of Enterprise Manager 12c
 - Oracle's flagship management product for all your database needs
 - In sync with DB releases (support for PDBs on day 1)
 - Secure and role based access control; used by Fortune 1000 customers
 - Protection from unnecessary point tools; reduce TCO



Program Agenda

- 1 Current Challenges
- 2 EM 12c Solution, including Live Demo
- 3 The Details
- 4 Summary

Cloud Management Pack for Oracle Database Summary

Snap Clone

Space Efficient

Significantly reduce the storage footprint

Clone DBs in minutes not days/weeks

Storage Agnostic

Supports ALL storage vendors (NAS & SAN)

Self Service

Empower the user to make adhoc clones and restores

References

• Enterprise Manager Page on O.com

Snap Clone page on OTN

Cloud Administration Guide (Documentation)

• MOS Note: EM12c Recommended Plug-Ins and Patches for DBaaS (1549855.1)

ORACLE®