
An Oracle White Paper
August, 2009

Oracle JDBC Memory Management

Oracle White Paper—Oracle JDBC Memory Management

Introduction

The Oracle JDBC drivers can use large amounts of memory. This is a conscious design

choice, to trade off large memory use for improved performance. For the most part and

for most users this has proved to be a good choice. Some users have experienced

problems with the amount of memory the JDBC drivers use. This white paper is

addressed to those users. If your application performs acceptably then there is no reason

to worry about memory use. If your application does not have the performance you wish

and uses more memory than desirable, read on.

The 7.3.4, 8i, and 9i Oracle JDBC drivers used more or less the minimal amount of

memory possible. Unfortunately this resulted in an unacceptable performance penalty.

The drivers were rearchitected in 10g to improve performance. One of the most important

changes in that rearchitecture was how the drivers used memory. The development team

made a specific decision to trade memory footprint for performance. As a result the 10g

drivers were on average about 30% faster than the 9i drivers. Obviously your mileage

may vary.

Since memory is relatively cheap and typical physical memory sizes have grown

dramatically since the 10g drivers were released, most users have benefited from

improved performance. Some users, mostly those with very large scale applications,

have seen performance problems due to large heap size, garbage collector thrashing,

and even OutOfMemoryExceptions. In subsequent releases the development team has

worked to address those issues by improving the way the drivers use memory and by

providing users with additional control to address specific problems. This white paper

explains how the driver uses memory, how application details influence memory use, and

what users can do to better manage memory use and improve application performance.

Note: In the remainder of this paper the word “drivers” by itself refers to the 10g and later

Oracle JDBC drivers. Other uses will specify the particular version or versions being

referenced.

1

Oracle White Paper—Oracle JDBC Memory Management

Where Does It All Go?

The 10g Oracle JDBC drivers have a larger and more complex class structure than the previous
versions. These objects store more information and so take up more memory. This does trivially
increase the memory used, but is not the real issue. The real issue is the buffers used to store
query results. Each Statement (including PreparedStatement and CallableStatement) holds two
buffers, one byte[] and one char[]. The char[] stores all the row data of character type: CHAR,
VARCHAR2, NCHAR, etc. The byte[] stores all the rest. These buffers are allocated when the
SQL string is parsed, generally the first time the Statement is executed. The Statement holds
these two buffers until it is closed.

Since the buffers are allocated when the SQL is parsed, the size of the buffers depends not on
the actual size of the row data returned by the query, but on the maximum size possible for the
row data. After the SQL is parsed, the type of every column is known and from that information
the driver can compute the maximum amount of memory required to store each column. The
driver also has the fetchSize, the number of rows to retrieve on each fetch. With the size of each
column and the number of rows, the driver can compute the absolute maximum size of the data
returned in a single fetch. That is the size of the buffers.

Some types such as LONG and LONG RAW are too large to store in line in the buffers and are
handled differently. If the query result contains a LONG or LONG RAW, the fetch size is set to
1, which addresses most memory problems as will become clear further on. These types will not
be discussed further.

Character data is stored in the char[] buffer. Java chars take up two bytes per character. A
VARCHAR2(10) column will contain a maximum of ten characters, or ten Java chars or 20 bytes
per row. A VARCHAR2(4000) column will take 8K bytes per row. What matters is the defined
size of the column, not the size of the actual data. A VARCHAR2(4000) column that contains all
NULLs will still take 8K bytes per row. The buffers are allocated before the driver sees the query
results so the driver must allocate enough memory for the largest possible result. A column
defined as VARCHAR2(4000) can contain up to 4000 characters. The buffer must be allocated
large enough to hold 4000 chars, even if the actual result data is not so large.

BFILE, BLOB, and CLOB values are stored as locators. The locators can be up to 4K bytes, so
for each BFILE, BLOB, and CLOB column, the byte[] must have at least 4K bytes per row.
RAW columns can contain up to 4K bytes. Other types take substantially less. A reasonable
approximation is to assume 22 bytes per column per row for all other types.

2

Oracle White Paper—Oracle JDBC Memory Management

Example:

CREATE TABLE TAB (ID NUMBER(10), NAME VARCHAR2(40), DOB DATE)
ResultSet r = stmt.executeQuery(“SELECT * FROM TAB”);

When the driver executes the executeQuery method, the database will parse the SQL. The
database will report that the result will have three columns: a NUMBER(10), a VARCHAR2(40),
and a DATE. The first column needs (approximately) 22 bytes per row. The second column
needs 40 chars per row. The third column needs (approximately) 22 bytes per row. So one row
needs 22 + (40 * 2) + 22 = 124 bytes per row. Remember that each character needs two bytes.
The default fetchSize is 10 rows, so the driver will allocate a char[] of 10 * 40 = 400 chars (800
bytes) and a byte[] of 10 * (22 + 22) = 440 bytes, total of 1240 bytes. 1240 bytes is not going to
cause a memory problem. Some query results are bigger.

In the worst case, consider a query that returns 255 VARCHAR2(4000) columns. Each column
takes 8k bytes per row. Times 255 columns is 2040K bytes or 2MB per row. If the fetchSize is
set to 1000 rows, then the driver will try to allocate a 2GB char[]. This would be bad.

As a Java developer, the reader can undoubtedly think of other schemes for allocating and using
memory. Be assured that the Oracle JDBC development team can too. Many other schemes were
tested before settling on this one. Without going into detail this scheme was chosen with good
reason. This choice is integral to the performance of the drivers.

Managing the buffer sizes

There are several things a user can do to manage the size of these buffers.

1 Define tables carefully

2 Code queries carefully

3 Set the fetchSize carefully

Defining a column as VARCHAR2(4000) when VARCHAR2(20) would do makes a big
difference. A VARCHAR2(4000) column requires 8K bytes per row. A VARCHAR2(20) column
needs only 40 bytes per row. If the column in fact never hold more than 20 characters, then most
of the buffer space allocated by the driver for a VARCHAR2(4000) column is wasted.

Doing SELECT * when only a few columns are needed has a big performance impact aside
from just the buffer size. It takes time to fetch the row content, convert it, send it over the
network, and convert it to the Java representation. Returning dozens of columns when only a
few are needed forces the driver to allocate large buffers to store those unneeded results.

The primary tool for controlling memory use is the fetchSize. Although 2MB is pretty big, most
Java environments wouldn't have any trouble allocating buffers that size. Even the worst case
result of 255 VARCHAR2(4000) columns would not be a problem in most applications if the
fetchSize were set to 1.

3

Oracle White Paper—Oracle JDBC Memory Management

The first step in addressing a memory use issue is to review the SQL. Calculate the approximate
size per row for each query and look at the fetch size. If the size per row is very large consider
whether it would be possible to fetch fewer columns or to modify the schema to more tightly
constrain the data sizes. Finally set the fetch size to keep the buffers to a reasonable size. What is
“reasonable” depends on the details of the application. Oracle suggests the fetchSize be no more
than 100, although in some cases larger size may be appropriate. A fetchSize of 100 may be
inappropriately large for some queries even when many rows are returned.

Note: The Oracle specific method OracleStatement.defineColumnType may be used to reduce
the defined size of an overly large column. When called with a size argument, that size overrides
the schema defined size for that column. This allows you to work around cases where you do not
have the freedom to revise the schema to correct a problem. When using the Thin driver, you
can call defineColumnType on only the problematic column. When using the OCI driver you
must either not call it at all on a given statement or call it for all columns for that statement.
Fixing the schema is better when possible.

One statement does not make a problem

Excluding the pathological cases like 255 VARCHAR2(4000) columns or setFetchSize(100000), a
single statement is unlikely to cause a memory use issue. In practice, problems only appear in
systems that have hundreds or even thousands of Statement objects. A very large system might
have a couple of hundred connections open simultaneously. Each connection might have one or
two statements open at once. Such a very large system would run on a machine with very large
physical memory. With reasonable effort even such a very large system with a few hundred open
statements is unlikely to have serious memory issues. Yes, the drivers would be using a lot of
memory, but that's what memory is for, to be used. So in practice even very large systems can
avoid memory problems.

Large systems tend to execute the same SQL many times. For performance reasons it is
beneficial to reuse the PreparedStatements for each SQL rather than recreating them from
scratch. So large systems can have many PreparedStatements, one (or more) for each distinct
SQL string. Most large systems use a modular framework such as WebLogic. Independent
components within the framework create the PreparedStatements they need. This conflicts with
the need to keep PreparedStatements around. To address this need frameworks provide
statement caching. With statement caching it is easy for each connection to have a hundred or
more PreparedStatements in memory. Multiply by hundreds of connections and you have the
potential for a real memory problem.

The Oracle JDBC drivers address this problem via the drivers' built in statement cache, the
Implicit Statement Cache. (There is also an Explicit Statement Cache that is not discussed here.)
The Implicit Statement Cache is transparent. The user code calls prepareStatement just like
creating a new object. If the driver can satisfy the prepare call from the cache it does. If not it
creates a new object. Semantically the user code cannot distinguish between a new and reused

4

Oracle White Paper—Oracle JDBC Memory Management

object. From a performance perspective, it is faster to return a statement from the cache than to
create it anew,. The first execution of the cached statement is faster since the driver can reuse
much of the state from previous executions.

The Implicit Statement Cache knows the internal structure of Oracle JDBC PreparedStatements.
As a result it can manage that structure for optimum performance. In particular it can manage
the char[] and byte[] buffers. Different versions of the drivers manage these buffers in different
ways as Oracle developed a better understanding of how different buffer management schemes
performed in real world applications. But in all cases the Oracle JDBC drivers can manage the
char[] and byte[] buffers only when PreparedStatements are returned to the Implicit Statement
Cache. If the PreparedStatement is not closed, then the driver has no way to know that the
statement will not be immediately reused and so cannot do anything to manage buffer use.

Statement Batching and Memory Use

The row data buffers are not the only large buffers the Oracle JDBC drivers can create. They can
also create large buffers to send PreparedStatement parameters to the database. Applications
generally read more data than they write and write smaller chunks of data at one time. As a result
the parameter data buffers tend to be much smaller than the row data buffers. However, using
(misusing) statement batching it is possible to force the drivers to create large buffers.

When the application calls PreparedStatement. setXXX to set a parameter value, the driver stores
the value. This takes little memory; just a reference for arrays and Object types like String, 8 bytes
for long and double, and 4 bytes for all others. When the PreparedStatement is executed, the
driver must send those values to the database as SQL types, not Java types. The driver creates a
byte[] and a char[] buffer. The parameter data is converted to SQL representation which is stored
in the buffers. Then the driver ships the bytes across the network. Since the driver has the actual
data size before the buffer is allocated, it can create a minimum size buffers. If a statement is
executed multiple times, the driver tries to reuse the buffers. If the new data values need a larger
byte[] or char[] buffer, a larger buffer is allocated. With any reasonable amount of memory, it
would be impossible to run out of memory executing a single statement. With statement batching
however, things are different.

Both JDBC standard and Oracle statement batching execute a single statement many times in
one operation. To do this the driver must send all the parameter values for all of the
PreparedStatement executes at once. This means the driver must convert all of the parameter
data to SQL representation and store it into the buffers. The number of executes in a batch, the
batch size, is analogous to the fetch size for queries. While it is unlikely that converting the
parameters for a single statement execute could cause a memory problem, very large batch sizes
can.

In practice this is a rare problem, and only shows up with unreasonable large batch sizes, tens of
thousands. Calling executeBatch every few hundred rows should solve the problem.

5

Oracle White Paper—Oracle JDBC Memory Management

Version Specific Memory Management

This section describes how various versions of the Oracle JDBC drivers manage buffer memory
and how users can tune the driver for maximum performance.

Note: When discussing the details of memory management it is convenient to ignore the detail
that there are both char[] and byte[] buffers. In the remainder of this section, statements about
generic “buffers” apply equally and independently to both char[] and byte[] buffers.

Although Java memory management is quite good, allocating large buffers is expensive. It is not
the actual malloc cost. That is very fast. Instead the problem is the Java language requirement
that all such buffers be zero filled. So not only must a large buffer be malloc'ed, it must also be
zero filled. Zero filling requires touching every byte of the allocated buffer. Modern processors
with their multilevel data caches do ok with small buffers. Zero filling a large buffer overruns the
processor data caches and runs at memory speed, substantially less than the maximum speed of
the processor. Performance testing has repeatedly shown that allocating buffers is a huge
performance drag on the drivers. This has led to a struggle to balance the cost of allocating
buffers with the memory footprint required to save buffers for reuse.

Oracle Database Release 10g Oracle JDBC Drivers

The initial 10g drivers have a naive approach memory management. They manage memory for
maximum performance. When a PreparedStatement is first executed, the necessary byte[] and
char[] buffers are allocated. That's it. The buffers are freed only when the PreparedStatement
itself is freed. The Implicit Statement Cache does nothing with respect to managing the buffers.
All of the PreparedStatements in the Implicit Statement Cache hold their allocated byte[] and
char[] buffers ready for immediate reuse. As a result the only way to manage memory with this
version of the drivers is with setFetchSize, careful design of the schema, and careful coding of
SQL queries. The intial 10g driver is quite fast, but can have memory management issues,
including OutOfMemoryExceptions.

Oracle Database Release 10.2.0.4 Oracle JDBC Drivers

The 10.2.0.4.0 drivers added a connection property to begin to address the memory management
issues that appeared in the initial 10g drivers. This connection property is all or nothing. If set,
returning a PreparedStatement to the Implicit Statement Cache frees the buffers. The buffers are
reallocated when the statement is returned from the cache. This simple approach greatly reduces
memory use but at a substantial performance cost. As described above, allocating buffers is
expensive.

6

Oracle White Paper—Oracle JDBC Memory Management

The connection property is

oracle.jdbc.freeMemoryOnEnterImplicitCache

Its value is a boolean string, “true” or “false”. If “true” the buffers are freed when a
PreparedStatement is cached. If “false”, the default, the buffers are retained, as in the initial 10g
drivers. The property can either be set as a System property via -D or as a connection property
on the getConnection method. Note that setting freeMemoryOnEnterImplicitCache does not
cause the parameter value buffers to be released, only the row data buffers.

Oracle Database Release 11.1.0.6.0 Oracle JDBC Drivers

The JDBC development team recognized that the all or nothing approach used in 10.2.0.4.0 was
less than ideal. The 11.1.0.6.0 drivers have a more sophisticated approach to memory
management. There were two goals, minimize the amount of unused memory and minimize the
cost of allocating buffers. These drivers introduce an internal buffer cache for each Connection.
When a PreparedStatement is returned to the Implicit Statement Cache its buffers are cached in a
buffer cache. When a PreparedStatement is retrieved from the Implicit Statement Cache the
buffers are retrieved from the buffer cache. As a result, PreparedStatements in the Implicit
Statement Cache do not hold the large buffers and buffers are reused rather than being
reallocated. This provides substantial performance improvement over the 10g drivers with and
without freeMemoryOnEnterImplicitCache.

As noted in the introduction, the size of the buffers can vary widely, from zero to tens or even
hundreds of megabytes. The 11.1.0.6.0 buffer cache is simple, too simple as it turns out. All
cached buffers are the same size. Since a buffer can be used for any PreparedStatement in the
Implicit Statement Cache, that size has to be big enough for the PreparedStatement with the
largest demand. If only one statement at a time is in use, then there is only one buffer and that
buffer is used by all PreparedStatements. For some or even most statements that buffer will be
too large, but it will be the right size for at least one statement in the cache. If the pattern of
PreparedStatement reuse is not too skewed, then it will be more performant to keep that large
buffer around and reuse it constantly than to keep a smaller buffer and reallocate the large buffer
as needed. If multiple statements are open at once and one of the PreparedStatements require an
excessively large buffer there is a potential memory problem.

Consider an application where one PreparedStatement requires a 10MB buffer and the rest use
much smaller buffers. So long as only one statement per connection at a time is in use and that
the large PreparedStatement is reused sufficiently often, there is no problem. Each statement is
assigned the single 10MB buffer when it is in use and returns the buffer to the buffer cache when
the PreparedStatement is returned to the Implicit Statement Cache. The single 10MB buffer is
allocated once and constantly reused by the various PreparedStatements. Now consider what
happens if two PreparedStatements are open at once. Both must have buffers. Since any
PreparedStatement may be assigned any buffer all buffers must be the same the same size, the

7

Oracle White Paper—Oracle JDBC Memory Management

maximum size. With two PreparedStatements open at one time both buffers must be 10MB.
Opening a second PreparedStatement, even one that needs only tiny buffers requires allocating a
second 10MB buffer. If three statements are open at once, a third 10MB buffer is allocated. In a
large system with hundreds of connections and multiple hundreds of PreparedStatements open at
once, using the largest buffer size for all PreparedStatements can lead to excessive memory use.
This is obvious in retrospect, but the development team did not appreciate how big the problem
could be and did not see it in internal testing. This issue can be minimized by appropriate schema
design, SQL coding and choice of fetchSize.

Note that the 11.1.0.6.0 driver does not support freeMemoryOnEnterImplicitCache as buffers
are always released by the PreparedStatement when it is put into the cache. The released buffers
are stored in the internal buffer cache.

Oracle Database Release 11.1.0.7.0 Oracle JDBC Drivers

The 11.1.0.7.0 drivers introduce a connection property to address the large buffer problem. This
property bounds the maximum size of buffer that will be saved in the buffer cache. All larger
buffers are freed when the PreparedStatement is put in the Implicit Statement Cache and re-
allocated when the PreparedStatement is retrieved from the cache. If most PreparedStatements
require a modest size buffer, less than 100KB for example, but a few require much larger buffers,
then setting the property to 110KB allows the frequently used small buffers to be reused without
imposing the burden of allocating many maximum size buffers. Setting this property can improve
performance and can even prevent OutOfMemoryExceptions.

The connection property is

oracle.jdbc.maxCachedBufferSize

Its value is an int string, e.g. “100000”. The default is Integer.MAX_VALUE. This is the
maximum size for a buffer which will be stored in the internal buffer cache. A single size is used
for both the char[] and byte[] buffers. The size is in chars for the char[] buffers and bytes for the
byte[] buffers. It is the maximum buffer size, not a predefined size. If maxCachedBufferSize is
set to 100KB but the largest buffer size less than 100KB is only 50KB, then the buffers in the
buffer cache will be 50KB. Changes in the value of maxCachedBufferSize only make a difference
in performance when they include or exclude char[] and byte[] buffers from the drivers' internal
buffer cache. Huge changes, even of megabytes, may make no difference. Equally a change of 1
can make a difference when it causes the inclusion or exclusion of a PreparedStatement's
buffers. This property may be set as a System property via -D or as a connection property via
getConnection.

If you need to set maxCachedBufferSize, start by estimating the buffer sizes for the SQL queries
that require the largest buffers. In the process you may find that by tuning the fetch size for these
queries you can achieve the desired performance. Considering the frequency of execution and the
size of the buffers, pick a size such that most statements can use cached buffers, but still small

8

Oracle White Paper—Oracle JDBC Memory Management

enough so that the Java runtime can support the number of buffers needed in order to minimize
the frequency with which new buffers have to be allocated.

Some applications have large numbers of idle connections relative to the number of threads. An
application may need to connect to any one of a large number of databases, but only to one at a
time. If there is approximately one connection per thread to each database, then there are many
more idle connections than threads. Since by default the buffer cache is per Connection, idle
Connections result in unused buffers sitting in the buffer caches. This means a larger memory
footprint than is necessary. While this is a relatively rare situation, it is not unknown.

This case is addressed by setting the connection property

oracle.jdbc.useThreadLocalBufferCache

The value of this property is a boolean string, “true” or “false”. The default is “false”. When this
property is set to “true”, the buffer cache is stored in a ThreadLocal rather than in the
Connection directly. If there are fewer threads than Connections, then this will reduce the
amount of memory used. The property may be set as a System property via -D or as a
connection property via getConnection.

All Connections with useThreadLocalBufferCache = “true” share the same static ThreadLocal
field and thus the same set of buffer caches. All Connections with useThreadLocalBufferCache
= “true” must have the same value for maxCachedBufferSize if it is set. If a thread uses first one
Connection and then another, the two Connections will have some indirect impact on each
other's performance by the size and number of buffers used. Typically all Connections using the
ThreadLocal buffer cache will be part of the same application so this should not matter. If one
thread creates a statement and another thread closes the statement, the buffers will migrate from
one ThreadLocal buffer cache to another. This is not recommended practice. If all statements are
created in one thread and closed in another, then there would be no buffer reuse. Again, this is
not recommended, but if that is the case in your app, don't set useThreadLocalBufferCache to
“true”. It is possible to have some Connections use the ThreadLocal buffer cache and some the
default per Connection buffer cache.

Oracle Database Release 11.2 Oracle JDBC Drivers

The 11.2 driver has a more sophisticated buffer cache than 11.1.0.7.0. This buffer cache has
multiple buckets. All buffers in a bucket are of the same size and that size is predetermined..
When a PreparedStatement is executed for the first time the driver gets a buffer from the bucket
holding the smallest size buffers that will hold the result. If there is no buffer in the bucket, the
driver allocates a new buffer of the predefined size corresponding to the bucket. When a
PreparedStatement is closed, the buffers are returned to their appropriate buckets. Since buffers
are used for a range of size requirements, the buffers are usually somewhat larger than the
minimum required. The discrepancy is limited and in practice has no impact.

9

Oracle White Paper—Oracle JDBC Memory Management

The 11.2 drivers will always run in the same or less memory than the 11.1 or 10.2.0.4.0 drivers.
Sometimes this is deceptive as the 11.2 driver will run with a heap size that is too small for
adequate performance. Just because it will run with smaller memory doesn't mean it should be
deployed that way. It is not unusual for setting -Xms to a large value to greatly improve
performance with the 11.2 driver. See the section on Controlling the Java Heap below.

The 11.2 drivers support maxCachedBufferSize but it is of dramatically less importance. In 11.1
correctly setting maxCachedBufferSize can be the difference between outstanding performance
and OutOfMemoryExceptions. With the 11.2 driver setting maxCachedBufferSize can
sometimes improve performance in very large systems with large statement caches and SQL with
widely divergent buffer size requirements. In 11.2 the value of maxCachedBufferSize is
interpreted as the log base 2 of the maximum buffer size. For example if maxCachedBufferSize is
set to 20 the max size buffer that is cached is 220 = 1048576. For backwards compatibility,
values larger than 30 are interpreted as the actual size rather than log2 of the size, but using
powers of 2 is recommended.

It is usually the case that setting maxCachedBufferSize to a reasonable value has no impact. If
you need to set maxCachedBufferSize, start with 18. If you have to set the value to less than 16,
you probably need more memory.

The 11.2 drivers use the same buffer cache and caching scheme for the parameter data buffers.
When a PreparedStatement is put in the Implicit Statement Cache, the parameter data buffers are
cached in the buffer cache. When a PreparedStatement is executed for the first time or for the
first time after being retrieved from the Implicit Statement Cache, it gets parameter data buffers
from the buffer cache. Typically the parameter data buffers are much smaller than the row data
buffers, but these buffers can be large with very large batch sizes. The 11.2 drivers also use the
buffer cache for other large byte[] and char[] buffers such are for Bfile, Blob, and Clob
operations.

The 11.2 drivers support useThreadLocalBufferCache as well. Its function and the
recommendations on when and how to use it are the same as for 11.1.0.7.0.

The 11.2 drivers also add a new property to enable the Implicit Statement Cache.

oracle.jdbc.implicitStatementCacheSize

The value of the property is an integer string, e.g. “100”. It is the initial size of the statement
cache. Setting the property to a positive value enables the Implicit Statement Cache. The default
is “0”. The property can be set as a System property via -D or as a connection property via
getConnection. Calling OracleConnection.setStatementCacheSize and/or
OracleConnection.setImplicitCachingEnabled overrides the value of implicitStatementCacheSize.
This property may make it easier to enable the Implicit Statement Cache in cases where enabling
it in code is impractical.

10

Oracle White Paper—Oracle JDBC Memory Management

Controlling the Java Heap

Tuning Java runtime memory use is a bit of a black art. The two most important options are
-Xmx and -Xms. There are other parameters that vary by Java runtime version and OS. -Xmx
sets the maximum heap size that the Java runtime will use. -Xms sets the initial heap size. The
default values depend on the OS and the Java runtime version but roughly, the default for -Xmx
is 64MB and default for -Xms is 1MB. 32 bit JVMs will support heaps up to 2GB. 64 bit JVMs
will support even larger heaps. These options accept values given with “k”, “m”, and “g”
suffixes to indicate kilo-, mega-, and gigabytes, e.g. -Xmx1G.

The Oracle JDBC drivers give the best performance when running with adequate heap size. For
most applications increasing the application heap size up to some limit will improve
performance. Increases beyond that size will make no difference. If the heap size is so large that
the machine runs out of physical memory and heap memory is paged to secondary storage,
performance will suffer badly. When setting the heap size, it is not sufficient to set just the
maximum, -Xmx. The 11.2 driver in particular is so effective at minimizing the amount of
memory it uses that it frequently will not grow the heap beyond the minimum it can run in. If
you only set the maximum heap size, -Xmx, the driver may never actually use enough memory to
reach that limit. If you also increase the minimum heap size, -Xms, the drivers will make use of
the additional memory and frequently give better performance. It is important to do performance
tests with a fixed heap size, that is with both -Xmx and -Xms set and given the same value.
Generally a production application should run with a fixed heap size as well. Setting the -server
option will cause the JVM to be less aggressive about minimizing the heap size and so will
provide some performance improvement. Setting -Xms appropriately will often provide
additional performance beyond that provided by setting -server alone. Oracle recommends
setting -server, -Xms, and -Xmx for server applications. Usually -Xms and -Xmx should be set to
the same value.

Conclusion

The Oracle JDBC drivers use can use substantial amounts of memory to achieve maximum
performance. If memory is constraining the performance of your application you can tune for
maximum performance. Ideally you should have a reproducible test case that is representative of
the real world application workload. By systematically changing the various knobs and running
the test you can identify the optimum settings. For all versions of the Oracle JDBC drivers,
enabling the implicit statement cache, designing the database schema appropriately, coding SQL
queries carefully and setting the fetch size appropriately are the first steps. Next increase the Java
heap size by setting -Xmx and -Xms to the largest practical size. If that gives acceptable
performance you can try reducing -Xmx and -Xms, if a smaller heap is of any value. If
performance with the largest practical memory is less than desired, you should experiment with
freeMemoryOnEnterImplictCache, or maxCachedBufferSize as appropriate. It should be clear

11

Oracle White Paper—Oracle JDBC Memory Management

from the design of your application whether you should set useThreadLocalBufferCache. If you
need to eek out every last bit of performance, try tuning the Java garbage collector. (see
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html) In most cases setting -Xmx and
-Xms will be all that is required.

12

Oracle JDBC Memory Management

August 2009

Douglas Surber

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2009, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and

the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective

owners.

0109

