
Document Version 1.3 © Oracle Corporation

This document may be reproduced whole and intact including the Copyright notice.

FIPS 140-2 Non-Proprietary Security Policy

Oracle Linux 8 NSS Cryptographic Module

FIPS 140-2 Level 1 Validation

 Software Version: R8-8.4.0

Date: July 6th, 2022

Oracle Linux 8 NSS Cryptographic Module Security Policy

 i

Title: Oracle Linux 8 NSS Cryptographic Module Security Policy

Date: July 6th, 2022

Author: Oracle Security Evaluations – Global Product Security

Contributing Authors:

Oracle Linux Engineering

atsec information security

Oracle Corporation

World Headquarters

2300 Oracle Way

Austin, TX 78741

U.S.A.

Worldwide Inquiries:

 Phone: +1.650.506.7000

Fax: +1.650.506.7200

www.oracle.com

Copyright © 2022, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the contents hereof are subject
to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or
implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. Oracle specifically disclaim any liability with
respect to this document and no contractual obligations are formed either directly or indirectly by this document. This document may reproduced or
distributed whole and intact including this copyright notice.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

http://www.oracle.com/

Oracle Linux 8 NSS Cryptographic Module Security Policy
 ii

TABLE OF CONTENTS

Section Title Page

1. Introduction ... 1

1.1 Overview.. 1
1.2 Document Organization .. 1

2. Oracle Linux 8 NSS Cryptographic Module ... 2

2.1 Functional Overview .. 2
2.2 FIPS 140-2 Validation Scope .. 2

3. Cryptographic Module Specification .. 3

3.1 Definition of the Cryptographic Module ... 3
3.2 Definition of the Physical Cryptographic Boundary .. 3
3.3 Approved or Allowed Security Functions .. 4
3.4 Non-Approved but Allowed Security Functions .. 7
3.5 Non-Approved Security Functions .. 7

4. Module Ports and Interfaces ... 9

4.1 PKCS #11 .. 9
4.2 Inhibition of Data Output .. 9
4.3 Disconnecting the Output Data Path from the Key Processes .. 10

5. Physical Security ... 11

6. Operational Environment .. 12

6.1 Tested Environments... 12
6.2 Vendor Affirmed Environments .. 12
6.3 Operational Environment Policy ... 12

7. Roles, Services and Authentication .. 13

7.1 Roles .. 13
7.2 FIPS Approved Operator Services and Descriptions ... 13
7.3 Non-FIPS Approved Services and Descriptions ... 18
7.4 Operator Authentication ... 20
7.4.1 Role Assumption .. 20
7.4.2 Strength of Authentication Mechanism .. 20

8. Key and CSP Management .. 22

8.1 Random Number Generation .. 25
8.2 Key/CSP Storage .. 25
8.3 Key/CSP Zeroization .. 25
8.4 Key/CSP Generation .. 26
8.5 Key Agreement/Key Transport .. 26
8.6 Key Derivation ... 27

9. Self-Tests .. 28

9.1 Power-Up Self-Tests .. 28
9.2 Conditional Self-Tests .. 29

10. Crypto-Officer and User Guidance ... 30

Oracle Linux 8 NSS Cryptographic Module Security Policy
 ii

10.1 Crypto-Officer Guidance.. 30
10.1.1 AES NI Support and Manual Method .. 31
10.1.1 Access to Audit Data .. 31
10.2 User Guidance ... 32
10.2.1 Triple-DES keys .. 33
10.2.2 Key derivation using SP 800-132 PBKDF.. 33
10.2.3 AES-GCM IV ... 33
10.3 Handling Self-Test Errors ... 33

11. Mitigation of Other Attacks ... 34

Acronyms, Terms and Abbreviations ... 35

References ... 36

Oracle Linux 8 NSS Cryptographic Module Security Policy

 iii

List of Tables

Table 1: FIPS 140-2 Security Requirements.. 2
Table 2: FIPS Approved Security Functions .. 7
Table 3: Non-Approved but Allowed Security Functions .. 7
Table 4: Non-Approved and Disallowed Functions .. 8
Table 5: Mapping of FIPS 140-2 Logical Interfaces ... 9
Table 6: Tested Operating Environment .. 12
Table 7: Vendor Affirmed Operational Environments .. 12
Table 8: FIPS Approved Operator Services and Descriptions .. 18
Table 9: Non-FIPS Approved Operator Services and Descriptions ... 20
Table 10: CSP Table .. 25
Table 11: Power-On Self-Tests .. 28
Table 12: Conditional Self-Tests .. 29
Table 13: Mitigation of Other Attacks ... 34
Table 14: Acronyms .. 35

List of Figures

Figure 1: Oracle Linux 8 NSS Logical Cryptographic Boundary .. 3
Figure 2: Oracle Linux 8 NSS Hardware Block Diagram ... 4

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 1 of 37

1. Introduction

1.1 Overview

This document is the Security Policy for the Oracle Linux 8 NSS Cryptographic Module by Oracle Corporation. This
Security Policy specifies the security rules under which the module shall operate to meet the requirements of FIPS
140-2 Level 1. It also describes how the Oracle Linux 8 NSS Cryptographic Module functions in order to meet the
FIPS 140-2 requirements, and the actions that operators must take to maintain the security of the module.

This Security Policy describes the features and design of the Oracle Linux 8 NSS Cryptographic Module using the
terminology contained in the FIPS 140-2 specification. FIPS 140-2, Security Requirements for Cryptographic
Module specifies the security requirements that will be satisfied by a cryptographic module utilized within a
security system protecting sensitive but unclassified information. The NIST/CCCS Cryptographic Module
Validation Program (CMVP) validates cryptographic module to FIPS 140-2. Validated products are accepted by
the Federal agencies of both the USA and Canada for the protection of sensitive or designated information.

1.2 Document Organization

The FIPS 140-2 Submission Package contains:

• Oracle Linux 8 NSS Cryptographic Module Non-Proprietary Security Policy

• Other supporting documentation as additional references

With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Validation Documentation is
proprietary to Oracle and is releasable only under appropriate non-disclosure agreements. For access to these
documents, please contact Oracle.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 2 of 37

2. Oracle Linux 8 NSS Cryptographic Module

2.1 Functional Overview

The Oracle Linux 8 NSS Cryptographic Module (hereafter referred to as the “module”) is a set of libraries designed
to support cross-platform development of security-enabled applications. Applications built with the Oracle Linux
8 NSS Cryptographic Module can support SSL v3, TLS, IKE, PKCS #5, PKCS #7, PKCS #11 (version 3.0), PKCS #12,
S/MIME, X.509 v3 certificates, and other security standards supporting FIPS 140-2 validated cryptographic
algorithms. It combines a vertical stack of Oracle Linux components intended to limit the external interface each
separate component may provide. The Oracle Linux 8 NSS Cryptographic Module is distributed with the Oracle
Linux open-source distributions. The module provides a C-language Application Program Interface (API) for use by
other processes that require cryptographic functionality.

Oracle Linux 8 NSS Cryptographic Module supports 2 types of cryptographic implementations:

a) NSS in Native C Programming Language; and
b) AES-NI for X86 processors.

2.2 FIPS 140-2 Validation Scope

The following table shows the security level for each of the eleven sections of the validation. See Table 1 below.

Security Requirements Section Level
Cryptographic Module Specification 1
Cryptographic Module Ports and Interfaces 1
Roles and Services and Authentication 2
Finite State Machine Model 1
Physical Security N/A
Operational Environment 1
Cryptographic Key Management 1
EMI/EMC 1
Self-Tests 1
Design Assurance 3
Mitigation of Other Attacks 1

Table 1: FIPS 140-2 Security Requirements

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 3 of 37

3. Cryptographic Module Specification

3.1 Definition of the Cryptographic Module

The Oracle Linux 8 NSS Cryptographic Module with version R8-8.4.0 is defined as a software only multi-chip
standalone module as defined by the requirements within FIPS PUB 140-2. The logical cryptographic boundary of
the module consists of shared library files and their integrity check signature files, which are delivered through
the Package Manager (RPM) as listed below:

• nss-softokn RPM file with version nss-softokn-3.53.1-17.el8_3.x86_64.rpm or nss-softokn-3.53.1-
17.el8_3.aarch64.rpm which contains the following files:
o /usr/lib64/libnssdbm3.chk (64 bits)
o /usr/lib64/libnssdbm3.so (64 bits)
o /usr/lib64/libsoftokn3.chk (64 bits)
o /usr/lib64/libsoftokn3.so (64 bits)

• nss-softokn-freebl RPM file with version nss-softokn-freebl-3.53.1-17.el8_3.x86_64.rpm or nss-softokn-
freebl-3.53.1-17.el8_3.aarch64.rpm, which contains the following files:

o /lib64/libfreeblpriv3.chk (64 bits)
o /lib64/libfreeblpriv3.so (64 bits)

Figure 1 shows the logical block diagram of the module executing in memory on the host system.

Figure 1: Oracle Linux 8 NSS Logical Cryptographic Boundary

3.2 Definition of the Physical Cryptographic Boundary

The physical cryptographic boundary of the module is defined as the hard enclosure of the host system on which
it runs. See Figure 2 below. No components are excluded from the requirements of FIPS PUB 140-2.

https://yum.oracle.com/repo/OracleLinux/OL8/appstream/x86_64/getPackage/nss-softokn-3.53.1-17.el8_3.x86_64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/4/security/validation/aarch64/getPackage/nss-softokn-3.53.1-17.el8_3.aarch64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/4/security/validation/aarch64/getPackage/nss-softokn-3.53.1-17.el8_3.aarch64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/appstream/x86_64/getPackage/nss-softokn-freebl-3.53.1-17.el8_3.x86_64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/4/security/validation/aarch64/getPackage/nss-softokn-freebl-3.53.1-17.el8_3.aarch64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/4/security/validation/aarch64/getPackage/nss-softokn-freebl-3.53.1-17.el8_3.aarch64.rpm

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 4 of 37

Figure 2: Oracle Linux 8 NSS Hardware Block Diagram

3.3 Approved or Allowed Security Functions

The module supports two modes of operation: FIPS Approved mode and non-Approved mode.

When the module is powered on, the power-up self-tests are executed automatically without any operator
intervention. If the power-up self-tests complete successfully, the module will be in FIPS Approved mode by
default. In Approved mode, only Approved algorithms (as listed in Table 2) and non-approved but Allowed
algorithms (as listed in Table 3) can be used.

Approved Security Functions Certificate

Symmetric Algorithms

AES Generic C:
AES in CBC, ECB, CTR, GCM Modes (e/d; Key Sizes 128, 192, 256 for all modes)

A 1623

AESNI:
AES in CBC, ECB, CTR, GCM Modes (e/d; Key Sizes 128, 192, 256 for all modes)

A 1624

Generic C CTS:
AES in CBC-CS1 mode (d/e; Key Sizes 128, 192, 256)

A 1629

Generic C CMAC:
Generation/Verification (Key Sizes 128, 192, 256)
MAC: 128

A 1626

AESNI_KW:
AES-KW (d/e; Key Sizes 128 , 192, 256)
AES-KWP (d/e; Key Sizes 128, 192, 256)

A 1627

Generic C KW:
AES-KW (d/e; Key Sizes 128 , 192, 256)
AES-KWP (d/e; Key Sizes 128, 192, 256)

A 1625

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14137
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14142
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14139
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14140
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14138

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 5 of 37

Approved Security Functions Certificate

Triple-DES
(3-Key)1

Generic C:
Triple-DES in CBC and ECB Modes (e/d; KO 1 for all modes)

A 1623

Cryptographic Key Generation (CKG)

CKG NIST SP 800-133rev2
Asymmetric and Symmetric Cryptographic Key Generation

(Vendor
Affirmed)

Secure Hash Standard (SHS)

SHS Generic_C:
SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

A 1623

Data Authentication Code

HMAC Generic_C:
HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512

A 1623

Asymmetric Algorithms

RSA Generic_C:
FIPS 186-4:
PKCS 1.5 (Key Gen, Sig Gen, Sig Ver); Modulus Sizes 2048, 3072, 4096 with hash sizes
SHA-256, SHA-384, SHA-512; (SHA-1 allowed for Sig Ver operations supported)

A 1623

DSA Generic_C:
FIPS 186-4:
Key Gen, PQG Gen, PQG Ver, Sig Gen, Sig Ver; Modulus Sizes 2048, 3072, with hash
sizes SHA-224, SHA-256, SHA-384, SHA-512; (Modulus size 1024 and SHA-1 allowed
for PQG Ver and Sig Ver operations only)

A 1623

ECDSA Generic_C:
FIPS 186-4:
Key Gen, Key Ver, Sig Gen, Sig Ver; Curves P-256, P-384, P-521 with hash sizes SHA-
224, SHA-256, SHA-384, SHA-512; (SHA-1 allowed for Sig Ver operations only)

A 1623

Random Number Generation

DRBG Generic_C:
Hash_Based DRBG: (SHA-256)

A 1623

Key Establishment Scheme (NIST SP 800-56Ar3)

KAS-FFC-
SSC-SP800-
56Ar3

Generic_C:
KAS-FFC-SSC SP 800-56Ar3:
dhEphem scheme, Domain Parameter Generation and Mod P Methods (ffdhe2048,
ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192, MODP-2048, MODP-3072, MODP-
4096, MODP-6144, MODP-8192) KAS role: initiator, responder

A 1623

KAS-ECC-
SSC-SP800-
56Ar3

Generic_C:

KAS-ECC-SSC SP 800-56Ar3:

ephemeralUnified scheme for KAS-ECC-SSC (Curves P-256, P-384, P-521). KAS role:
initiator, responder

1 3-Key Triple-DES key shall not be used to encrypt more than 216 64-bit blocks of data.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 6 of 37

Approved Security Functions Certificate

Safe
Primes
Key
Generation

Generic_C:

Safe Primes Key Generation:

Safe Prime Groups: ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192, MODP-
2048, MODP-3072, MODP-4096, MODP-6144, MODP-8192

RSA Key Transport Scheme (SP 800-56Br2)

KTS-RSA Generic_C:
Function: partialVal; Modulo: 2048, 3072, 4096, 6144, 8192;
Key Generation Methods: rsakpg1-basic;
Scheme: KTS-OAEP-basic:
KAS Role: initiator, responder;
Key Transport Method Hash Algorithms: SHA2-224, SHA2-256, SHA2-384, SHA2-512

A 1623

Key Derivation Using Pseudo Random Functions (SP 800-108)

KBKDF Generic_C:
KDF Mode: Counter and Feedback
MAC Modes: HMAC-SHA-1, HMAC-SHA2-224, HMAC-SHA2-256, HMAC-SHA2-384,
HMAC-SHA2-512

A 1623

Key Derivation (NIST SP 800-135)

KDF IKE
(CVL)

IKE_KDF:
IKEv1, IKEv2 (SHA 1, 256, 384, 512)

A 1628

KDF TLS
(CVL)

Generic_C:
TLS 1.0, TLS 1.1, TLS 1.2 with SHA-256, SHA-384, SHA-512

A 1623

KDA HKDF TLS_v1.3:
HKDF: (NIST SP 800-56Cr1 with HMAC-SHA (224, 256, 384, 512))

A 1622

Password Based Key Derivation Function (PBKDF)

PBKDF Generic_C:
PBKDF with HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, HMAC-
SHA-512

A 1623

Key Transport Scheme (KTS)

KTS AESNI_KW:
AES-KW (d/e; Key Sizes 128 , 192, 256)
AES-KWP (d/e; Key Sizes 128, 192, 256)

A 1627

Generic C KW:
AES-KW (d/e; Key Sizes 128 , 192, 256)
AES-KWP (d/e; Key Sizes 128, 192, 256)

A 1625

AES-GCM key wrapping with 128, 192 and 256 bit keys A 1623
A 1624

AES-CBC with 128 and 256 bit keys and HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-
256, HMAC-SHA-384, or HMAC-SHA-512 key wrapping.

A 1623 (AES
& HMAC)

A 1624 (AES)

Triple-DES CBC with 192 bit key and HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256,
HMAC-SHA-384, or HMAC-SHA-512 key wrapping.

A 1623

Entropy

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14141
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14135
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14140
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14138
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14137
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14137
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 7 of 37

Approved Security Functions Certificate

ENT (NP) NIST SP 800-90B N/A

Table 2: FIPS Approved Security Functions

Note: No parts of the TLS protocol except the KDF with cert #A 1623 and #A 1622 have been reviewed or tested by
CMVP or CAVP. Also, no parts of the IKE protocol except the KDF with cert #A 1628 have been reviewed or tested by
CMVP or CAVP.

3.4 Non-Approved but Allowed Security Functions

The following are considered non-Approved but allowed security functions:

Algorithm Usage

RSA PKCS#1-v1.5 Key Wrapping with key
sizes greater than 2048-bit up to 16384 bits

Key wrapping using PKCS#1-v1.5 padding scheme method, key
establishment methodology provides between 112 and 256 bits of
encryption strength.

MD5 (no security claimed per IG 1.23) Message digest used in TLS only.

Table 3: Non-Approved but Allowed Security Functions

3.5 Non-Approved Security Functions

The following algorithms are considered non-Approved. Using any of these algorithms will put the module in the
non-Approved mode implicitly. The services associated with these non-Approved algorithms are specified in
Section 7.3.

Algorithm Usage

AES-GCM With counter IV generation
With random IV generation using less than 96 bits
With external IV generation

Camellia Encryption/Decryption

ChaCha20-Poly1305 Authenticated Encryption/Decryption

SEED Encryption/Decryption

DES Encryption/Decryption

RC2 Encryption/Decryption

RC4 Encryption/Decryption

RC5 Encryption/Decryption

SEED Encryption/Decryption

Two-Key Triple-DES Encryption/Decryption, key wrapping using two-key Triple-DES

MD2 Hashing

MD5 Hashing

DSA with non-compliant key
size

DSA key pair generation with key size less than 2048 bits.

DSA signature generation with key size less than 2048 bits.

DSA signature generation with SHA-1.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14136
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14135
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14141

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 8 of 37

Algorithm Usage

DSA signature verification with key size less than 1024 bits.

RSA with non-compliant key
size

RSA key pair generation with key size less than 2048 bits.

RSA Signature generation with SHA-1

RSA signature generation with key size less than 2048 bits

RSA signature verification with key size less than 1024 bits.

RSA key wrapping with key size less than 2048 bits.

RSA PSS Signature Generation/Verification

ECDSA with non-compliant
hash size

ECDSA signature generation using SHA-1

Diffie-Hellman with non-
compliant key size

Diffie-Hellman shared secret computation with key size less than 2048 bits.

Diffie-Hellman
keys generated with domain
parameters other than safe
primes.

Shared secret computation

J-PAKE Key agreement

EC with Edwards 25519 Curve Key management

Key Wrapping non-SP 800-38F AES and Triple-DES Key wrapping

PBKDF (non-compliant with
SP800-132)

Key derivation

Table 4: Non-Approved and Disallowed Functions

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 9 of 37

4. Module Ports and Interfaces

The module FIPS 140 interfaces can be categorized as follows:

• Data Input Interface

• Data Output Interface

• Control Input interface

• Status Output Interface

As a software-only module, the module does not have physical ports. For the purpose of FIPS 140-2 validation,
the physical ports of the module are interpreted to be the physical ports of the hardware platform on which it
runs. The logical interface is a C-language Application Program Interface (API) following the PKCS #11
specification, the database files in kernel file system, and environment variables.

The module uses different function arguments for input and output to distinguish between data input, control
input, data output, and status output, to disconnect the logical paths followed by data/control entering the
module and data/status exiting the module. The module doesn't use the same buffer for input and output. After
the module is done with an input buffer that holds security related information, it always zeroizes the buffer so
that if the memory is later reused as an output buffer, no sensitive information can be inadvertently leaked.

Table 5 below shows the mapping of interfaces as per FIPS 140-2 standard.

FIPS 140-2 Interface Module Interfaces
Data Input API input parameters and database files in kernel file system

Data Output API output parameters and database files in kernel file system

Control Input API function calls and environment variables

Status Output API return codes and status parameters

Table 5: Mapping of FIPS 140-2 Logical Interfaces

4.1 PKCS #11

The logical interfaces of the module consist of the PKCS #11 (Cryptoki) API. The API itself defines the module's
logical boundary, i.e., all access to the module is through this API. The functions in the PKCS #11 API are listed in
Table 8.

4.2 Inhibition of Data Output

All data output via the data output interface is inhibited when the NSS cryptographic module is performing
self-tests or in the Error state.

• During self-tests: All data output via the data output interface is inhibited while self-tests are executed.

• In Error state: The Boolean state variable sftk_fatalError tracks whether the NSS cryptographic module is in the
Error state. Most PKCS #11 functions, including all the functions that output data via the data output interface,
check the sftk_fatalError state variable and, if it is true, return the CKR_DEVICE_ERROR error code
immediately. Only the functions that shut down and restart the module, reinitialize the module, or output
status information can be invoked in the Error state. These functions are FC_GetFunctionList, FC_Initialize,
FC_Finalize, FC_GetInfo, FC_GetSlotList, FC_GetSlotInfo, FC_GetTokenInfo, FC_InitToken, FC_CloseSession,
FC_CloseAllSessions, and FC_WaitForSlotEvent.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 10 of 37

4.3 Disconnecting the Output Data Path from the Key Processes

During key generation and key zeroization, the module may perform audit logging, but the audit records do not
contain sensitive information. The module does not return the function output arguments until the key
generation or key zeroization is finished. Therefore, the logical paths used by output data exiting the module are
logically disconnected from the processes/threads performing key generation and key zeroization.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 11 of 37

5. Physical Security

The module is comprised of software only and thus does not claim any physical security.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 12 of 37

6. Operational Environment

6.1 Tested Environments

The module operates in a modifiable operational environment under the FIPS 140-2 definition. The module was
tested on the following environments with and without PAA (i.e., AES-NI):

Operating Environment Processor Hardware
Oracle Linux 8.4 64-bit Intel® Xeon® Platinum 8167M Oracle Server X7-2C

Oracle Linux 8.4 64-bit AMD EPYC™ 7551 Oracle Server E1-2C

Oracle Linux 8.4 64-bit Ampere®Altra® Neoverse-N1 Oracle Server A1-2C

Table 6: Tested Operating Environment

6.2 Vendor Affirmed Environments

The following platforms have not been tested as part of the FIPS 140-2 level 1 certification. However, Oracle
“vendor affirms” that these platforms are equivalent to the tested and validated platforms. Additionally, Oracle
affirms that the module will function the same way and provide the same security services on any of the systems
listed below.

Operating Environment Hardware
Oracle Linux 8 64-bit Oracle X Series Servers

Oracle Linux 8 64-bit Oracle E Series Servers

Oracle Linux 8 64-bit Oracle A Series Servers

Table 7: Vendor Affirmed Operational Environments

Note: CMVP makes no statement as to the correct operation of the module or the security strengths of the
generated keys when so ported if the specific operational environment is not listed on the validation certificate.

6.3 Operational Environment Policy

The operating system is restricted to a single operator (concurrent operators are explicitly excluded).

The application that makes calls to the module is the single user of the module, even when the application is
serving multiple clients.

In operational mode, the ptrace system call, the debugger gdb, and strace shall be not used. In addition, other
tracing mechanisms offered by the Linux environment, such as ftrace or systemtap, shall not be used.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 13 of 37

7. Roles, Services and Authentication

This section defines the roles, services, and authentication mechanisms and methods with respect to the applicable FIPS 140-2 requirements.

7.1 Roles

The module implements a Crypto Officer (CO) role and a User role:

• The CO role is supported for the installation and initialization of the module. Also, the CO role can access other general-purpose services (such
as message digest and random number generation services) and status services of the module. The CO does not have access to any service
that utilizes the secret or private keys of the module. The CO must control the access to the module both before and after installation,
including management of physical access to the computer, executing the module code as well as management of the security facilities
provided by the operating system.

• The User role has access to all cryptographically secure services which use the secret or private keys of the module. It is also responsible for
the retrieval, updating and deletion of keys from the private key database.

7.2 FIPS Approved Operator Services and Descriptions

The module has a set of API functions denoted by FC_xxx as listed in Table 8. Among the module's API functions, only FC_GetFunctionList is
exported and therefore callable by its name. All the other API functions must be called via the function pointers returned by FC_GetFunctionList.
It returns a CK_FUNCTION_LIST structure containing function pointers named C_xxx such as C_Initialize and C_Finalize. The C_xxx function
pointers in the CK_FUNCTION_LIST structure returned by FC_GetFunctionList point to the FC_xxx functions.

The following convention is used to describe API function calls. Here FC_Initialize is used as an example:

• When “call FC_Initialize” is mentioned, the technical equivalent of “call the FC_Initialize function via the C_Initialize function pointer in the
CK_FUNCTION_LIST structure returned by FC_GetFunctionList” is implied.

The module supports Crypto-Officer services which require no operator authentication, and User services which require operator authentication.
Crypto-Officer services do not require access to the secret and private keys and other CSPs associated with the user. The message digesting
services are available to Crypto-Officer only when CSPs are not accessed. User services which access CSPs (e.g., FC_GenerateKey,
FC_GenerateKeyPair) require operator authentication.

Table 8 lists all the services available in FIPS Approved mode. Please refer to Table 2 and Table 3 for the Approved or allowed cryptographic
algorithms supported by the module.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 14 of 37

U CO Service Name Function Service Description Keys and CSP(s) Access
 X Get Function List FC_GetFunctionList Return a pointer to the list of function

pointers for the operational mode
None N/A

 X Module Initialization FC_InitToken Initialize or re-initialize a token User password and all keys Z

 X FC_InitPIN Initialize the user's password, i.e., set the
user's initial password

User password W

 X General Purpose FC_Initialize Initialize the module library None N/A

 X FC_Finalize Finalize (shut down) the module library All keys Z

 X FC_GetInfo Obtain general information about the
module library

None N/A

 X Slot and Token
Management

FC_GetSlotList Obtain a list of slots in the system None N/A

 X FC_GetSlotInfo Obtain information about a particular slot None N/A

 X FC_GetTokenInfo Obtain information about the token (This
function provides the Show Status service)

None N/A

 X FC_GetMechanismList Obtain a list of mechanisms (cryptographic
algorithms) supported by a token

None N/A

 X FC_GetMechanismInfo Obtain information about a particular
mechanism

None N/A

X FC_SetPIN Change the user's password User password R, W

 X Session Management FC_OpenSession Open a connection (session) between an
application and a particular token

None N/A

 X FC_CloseSession Close a session All keys for the session Z

 X FC_CloseAllSessions Close all sessions with a token All keys Z

 X FC_GetSessionInfo Obtain information about the session (This
function provides the Show Status service)

None N/A

 X FC_GetOperationState Save the state of the cryptographic
operations in a session (This function is only
implemented for message digest
operations)

None N/A

 X FC_SetOperationState Restore the state of the cryptographic
operations in a session (This function is only
implemented for message digest
operations)

None N/A

X FC_Login Log into a token User Password R, W, X

X FC_Logout Log out from a token None N/A

X Object Management FC_CreateObject Create a new object Key W

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 15 of 37

U CO Service Name Function Service Description Keys and CSP(s) Access
X FC_CopyObject Create a copy of an object Original Key, new key4 R, W

X FC_DestroyObject Destroy an object Key Z

X FC_GetObjectSize Obtain the size of an object in bytes Key R

X FC_GetAttributeValue Obtain an attribute value of an object Key R

X FC_SetAttributeValue Modify an attribute value of an object Key W

X FC_FindObjectsInit Initialize an object search operation None N/A

X FC_FindObjects Continue an object search operation Keys matching the search
criteria

R

X FC_FindObjectsFinal Finish an object search operation None N/A

X Encryption and
Decryption

FC_EncryptInit Initialize an encryption operation AES/Triple-DES key R

X FC_Encrypt Encrypt single-part data AES/Triple-DES key R

X FC_EncryptUpdate Continue a multiple-part encryption
operation

AES/Triple-DES key R

X FC_EncryptFinal Finish a multiple-part encryption operation AES/Triple-DES key R

X FC_DecryptInit Initialize a decryption operation AES/Triple-DES key R

X FC_Decrypt Decrypt single-part encrypted data AES/Triple-DES key R

X FC_DecryptUpdate Continue a multiple-part decryption
operation

AES/Triple-DES key R

X FC_DecryptFinal Finish a multiple-part decryption operation AES/Triple-DES key R

 X Message Digest FC_DigestInit Initialize a message digesting operation None N/A

 X FC_Digest Digest single-part data None N/A

 X FC_DigestUpdate Continue a multiple-part digesting
operation

None N/A

X FC_DigestKey Continue a multiple-part message-digesting
operation by digesting the value of a secret
key as part of the data already digested

HMAC Key R

 X FC_DigestFinal Finish a multiple-part digesting operation None N/A

X Signature Generation
and Verification

FC_SignInit Initialize a signature operation DSA/ECDSA/RSA private key,
HMAC key

R

X FC_Sign Sign single-part data DSA/ECDSA/RSA private key,
HMAC key

R

X FC_SignUpdate Continue a multiple-part signature
operation

DSA/ECDSA/RSA private key,
HMAC key

R

4 'Original key' and 'New key' are the secret keys or public/private key pairs.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 16 of 37

U CO Service Name Function Service Description Keys and CSP(s) Access
X FC_SignFinal Finish a multiple-part signature operation DSA/ECDSA/RSA private key,

HMAC key
R

X FC_SignRecoverInit Initialize a signature operation, where the
data can be recovered from the signature

DSA/ECDSA/RSA private key R

X FC_SignRecover Sign single-part data, where the data can be
recovered from the signature

DSA/ECDSA/RSA private key R

X FC_VerifyInit Initialize a verification operation DSA/ECDSA/RSA public key,
HMAC key

R

X FC_Verify Verify a signature on single-part data DSA/ECDSA/RSA public key,
HMAC key

R

X FC_VerifyUpdate Continue a multiple-part verification
operation

DSA/ECDSA/RSA public key,
HMAC key

R

X FC_VerifyFinal Finish a multiple-part verification operation DSA/ECDSA/RSA public key,
HMAC key

R

X FC_VerifyRecoverInit Initialize a verification operation, where the
data is recovered from the signature

DSA/ECDSA/RSA public key R

X FC_VerifyRecover Verify a signature on single-part data,
where the data is recovered from the
signature

DSA/ECDSA/RSA public key R

X Dual Function
Cryptographic
Operations

FC_DigestEncryptUpdate Continue a multiple-part digesting and
encryption operation

AES/Triple-DES key R

X FC_DecryptDigestUpate Continue a multiple-part decryption and
digesting operation

AES/Triple-DES key R

X FC_SignEncryptUpdate Continue a multiple-part signing and
encryption operation

DSA/ECDSA/RSA private key,
HMAC key, AES/Triple-DES key

R

X FC_DecryptVerifyUpdate Continue a multiple-part decryption and
verify operation

DSA/ECDSA/RSA public key,
HMAC key, AES/Triple-DES key

R

X Key Management FC_GenerateKey Generate a secret key (Also used by TLS to
generate a pre-master secret)

AES/Triple-DES/HMAC key W

Derive a key from a password or passphrase
using PBKDF

Password or passphrase R

PBKDF derived key W

FC_GenerateKeyPair Generate a public/private key pair (This
function performs the pair-wise consistency
tests)

DSA/ECDSA/RSA key pair, Diffie-
Hellman/EC Diffie-Hellman key
pair

W

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 17 of 37

U CO Service Name Function Service Description Keys and CSP(s) Access
FC_WrapKey Wrap (encrypt) a key using one of the

following mechanisms:
(1) SP 800-38F AES Key wrapping
(2) RSA encryption

Wrapping Key5, Key to be
wrapped6

R

FC_UnwrapKey Unwrap (decrypt) a key using one of the
following mechanisms:
(1) SP 800-38F AES Key unwrapping
(2) RSA decryption

Unwrapping key7 R

Unwrapped key8 W

FC_DeriveKey Shared secret computation Diffie-Hellman and
EC Diffie-Hellman key pairs

R

KAS-FFC-SS and KAS-ECC-SSC
shared secrets

W

TLS derived key from TLS master secret
which is derived from TLS premaster secret
using TLS KDF

Derive a key from KAS-FFC-SSC/KAS-ECC-SSC
shared secret using HKDF

TLS pre-master secret R

TLS master secret R, W

TLS and HKDF derived key9 W

Derive keys from IKE shared secret using IKE
KDF.

IKE shared secret (from KAS-
FFC-SSC/KAS-ECC-SSC)

R

IKE derived keys W

IKE SA Tunnel Encryption Keys
IKE SA Tunnel Integrity Keys
IPsec SA Tunnel Encryption Keys
IPsec SA Tunnel Integrity Keys

W

Derive keys from a key derivation key using
KBKDF

Key derivation key, KBKDF
derived key

W

 X Random Number
Generation

FC_SeedRandom Mix in additional seed material to the
random number generator

Entropy input string, seed,
DRBG V and C values

R, W

5 'Wrapping key' corresponds to the secret key or public key used to wrap another key.
6 'Key to be wrapped' is the key that is wrapped by the 'wrapping key'.
7 'Unwrapping key' corresponds to the secret key or private key used to unwrap another key.
8 'Unwrapped key' is the plaintext key that has not been wrapped by a 'wrapping key'.
9 'Derived key' is the key obtained by a key derivation function which takes the 'TLS master secret' as input.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 18 of 37

U CO Service Name Function Service Description Keys and CSP(s) Access
FC_GenerateRandom Generate random data (This function

performs the continuous random number
generator test)

Random data, DRBG V and C
values

R, W

 X Parallel Function
Management

FC_GetFunctionStatus A legacy function, which simply returns the
value 0x00000051 (function not parallel)

None N/A

FC_CancelFunction A legacy function, which simply returns the
value 0x00000051 (function not parallel)

None N/A

 X Self-Tests N/A The self-tests are performed automatically
when loading the module

DSA 2048-bit public key for
module integrity test

R

 X Show Status N/A Via exit codes N/A N/A

X Zeroization FC_DestroyObject All CSPs are automatically zeroized when
freeing the cipher handle

All secret or private keys and
password

Z

 X FC_InitToken
FC_Finalize
FC_CloseSession
FC_CloseAllSessions

Table 8: FIPS Approved Operator Services and Descriptions

R – Read, W – Write, X – Execute, Z – Zeroize

Note: The message digesting functions (except FC_DigestKey) that do not use any keys of the module can be accessed by the Crypto-Officer role and
do not require authentication to the module. The FC_DigestKey API function computes the message digest (hash) of the value of a secret key, so it is
available only to the User role.

7.3 Non-FIPS Approved Services and Descriptions

Table 9 lists all the services available in non-Approved mode with API function and the non- Approved algorithm that the function may invoke.
Please note that the functions are the same as the ones listed in Table 8, but the underneath non-Approved algorithms are invoked. Please also
refer to Table 4 for the non-Approved algorithms. If any service invokes the non-Approved algorithms, then the module will enter non-
Approved mode implicitly.

Service Name Function Non-Approved Algorithm Invoked
Encryption and
Decryption

FC_EncryptInit AES-GCM listed in Table 4, Camellia, ChaCha20-Poly 1305 (authenticated), DES, RC2, RC4, RC5, SEED,
Two-Key Triple-DES FC_Encrypt

FC_EncryptUpdate

FC_EncryptFinal

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 19 of 37

Service Name Function Non-Approved Algorithm Invoked
FC_DecryptInit AES-GCM listed in Table 4, Camellia, ChaCha20-Poly 1305 (authenticated), DES, RC2, RC4, RC5, SEED,

Two-Key Triple-DES FC_Decrypt

FC_DecryptUpdate

FC_DecryptFinal

Message Digest FC_DigestInit MD2, MD5

FC_Digest

FC_DigestUpdate

FC_DigestKey

FC_DigestFinal

Signature Generation
and Verification

FC_SignInit DSA signature generation with non-compliant key size < 2048, DSA signature generation with SHA-1,
RSA PSS, RSA signature generation with non-compliant key sizes < 2048, RSA signature generation
with SHA-1, ECDSA signature generation using SHA-1

FC_Sign

FC_SignUpdate

FC_SignFinal

FC_SignRecoverInit

FC_SignRecover

FC_VerifyInit DSA signature verification with non-compliant key sizes < 1024, RSA PSS, RSA signature verification
with non-compliant key sizes < 1024 FC_Verify

FC_VerifyUpdate

FC_VerifyFinal

FC_VerifyRecoverInit

FC_VerifyRecover

Dual Function
Cryptographic
Operations

FC_DigestEncryptUpdate AES-GCM listed in Table 4, MD2, MD5, Camellia, DES, RC2, RC4, RC5, SEED, Two-Key Triple-DES

FC_DecryptDigestUpdate AES-GCM listed in Table 4, Camellia, DES, RC2, RC4, RC5, SEED, MD2, MD5, Two-Key Triple-DES

FC_SignEncryptUpdate DSA signature generation with non-compliant key sizes < 2048, DSA signature generation with SHA-
1, RSA PSS, RSA signature generation with non-compliant key sizes < 2048, RSA signature generation
with SHA-1, ECDSA signature generation with SHA-1, AES-GCM listed in Table 4, Camellia, DES, RC2,
RC4, RC5, SEED, Two-key Triple-DES

FC_DecryptVerifyUpdate DSA signature verification with non-compliant key sizes < 1024, RSA PSS, RSA signature verification
with non-compliant key sizes < 1024, AES-GCM listed in Table 4, Camellia, DES, RC2, RC4, RC5, SEED,
Two-key Triple-DES

Key Management FC_GenerateKey Derive a key from a password or passphrase using PBKDF (non-compliant with SP800-132)

FC_GenerateKeyPair DSA key pair generation with non-compliant key sizes < 2048, RSA key pair generation with non-
compliant key sizes < 2048

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 20 of 37

Service Name Function Non-Approved Algorithm Invoked
FC_WrapKey Triple-DES key wrapping (encrypt) using Two-key or Three-key Triple-DES, RSA key wrapping

(encrypt) with non-compliant key sizes < 2048, non-SP 800-38F AES key wrapping (encrypt)

FC_UnwrapKey Triple-DES key wrapping (decrypt) using Two-key or Three-key Triple-DES, RSA key wrapping
(decrypt) with non-compliant key sizes < 2048, non-SP 800-38F AES key unwrapping (decrypt)

FC_DeriveKey Diffie-Hellman shared secret computation with noncompliant key sizes < 2048

Diffie-Hellman keys generated with domain parameters other than safe primes.

EC with Edwards 25519 Curve

J-PAKE key agreement

Table 9: Non-FIPS Approved Operator Services and Descriptions

7.4 Operator Authentication

7.4.1 Role Assumption

The CO role is implicitly assumed by an operator while installing the module by following the instructions in Section 10.1 and while performing
other CO services on the module.

The module implements a password-based Role based authentication for the User role as defined by FIPS 140-2. To perform any security
services under the User role, an operator must log into the module and complete an authentication procedure using the password information
unique to the User role operator. The password is passed to the module via the API function as an input argument and won't be displayed. The
return value of the function is the only feedback mechanism, which does not provide any information that could be used to guess or determine
the User's password. The password is initialized by the CO role as part of module initialization and can be changed by the User role operator.

If a User-role service is called before the operator is authenticated, it returns the CKR_USER_NOT_LOGGED_IN error code. The operator must call
the FC_Login function to provide the required authentication.

Once a password has been established for the module, the user is allowed to use the security services if and only if the user is successfully
authenticated to the module. Password establishment and authentication are required for the operation of the module. When the module is
powered off, the result of previous authentication will be cleared and the user needs to be re-authenticated.

7.4.2 Strength of Authentication Mechanism

The module imposes the following requirements on the password. These requirements are enforced by the module on password initialization or
change.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 21 of 37

• The password must be at least seven characters long.

• The password must consist of characters from three or more character classes. We define five character classes: digits (0-9), ASCII lowercase
letters (a-z), ASCII uppercase letters (AZ), ASCII non-alphanumeric characters (space and other ASCII special characters such as '$', '!'), and non-
ASCII characters (Latin characters such as 'e', 's'; Greek characters such as 'Ω', 'θ'; other non-ASCII special characters such as '.'). If an ASCII
uppercase letter is the first character of the password, the uppercase letter is not counted toward its character class. Similarly, if a digit is the
last character of the password, the digit is not counted toward its character class.

To estimate the maximum probability that a random guess of the password will succeed, we assume that:

• The characters of the password are independent with each other.

• The password contains the smallest combination of the character classes, which are five digits, one ASCII lowercase letter and one ASCII
uppercase letter. The probability to guess every character successfully is (1/10)5 * (1/26) * (1/26) = 1/67,600,000.

Since the password can contain seven characters from any three or more of the aforementioned five character classes, the probability that a
random guess of the password will succeed is less than or equals to 1/67,600,000, which is smaller than the required threshold 1/1,000,000.

After each failed authentication attempt, the NSS cryptographic module inserts a one-second delay before returning to the caller, allowing at
most 60 authentication attempts during a one-minute period. Therefore, the probability of a successful random guess of the password during a
one-minute period is less than or equals to 60 * 1/67,600,000 = 0.089 * (1/100,000), which is smaller than the required threshold 1/100,000.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 22 of 37

8. Key and CSP Management

The following keys, cryptographic key components and other critical security parameters are contained in the
module.

CSP Name Generation Entry/Output Storage Zeroization
AES Key (128, 192, 256
bits)

NIST SP 800-90A
DRBG

Encrypted through key
wrapping using
FC_UnwrapKey for
input and FC_WrapKey
for output

Application
memory or key
database

Automatically
zeroized when
freeing the cipher
handle

Triple-DES Key (192 bits) NIST SP 800-90A
DRBG

Encrypted through key
wrapping using
FC_UnwrapKey for
input and FC_WrapKey
for output

Application
memory or key
database

Automatically
zeroized when
freeing the cipher
handle

DSA Private Key (2048 and

3072 bits)

Public and private
keys are
generated using
the FIPS 186-4
key generation
method via the
FC_GenerateKeyP
air function;
random values
are obtained
from the SP800-
90A DRBG.

Encrypted through key
wrapping using
FC_UnwrapKey for
input and FC_WrapKey
for output

Application
memory or key
database

Automatically
zeroized when
freeing the cipher
handle

ECDSA Private Key (P-256,

P-384, P-521)

Public and private
keys are
generated using
the FIPS 186-4
key generation
method via the
FC_GenerateKeyP
air function;
random values
are obtained
from the SP800-
90A DRBG.

Encrypted through key
wrapping using
FC_UnwrapKey for
input and FC_WrapKey
for output

Application
memory or key
database

Automatically
zeroized when
freeing the cipher
handle

RSA Private Key (2048,

3072, 4096 bits)

Public and private
keys are
generated using
the FIPS 186-4
key generation
method via the
FC_GenerateKeyP
air function;
random values
are obtained
from the SP800-
90A DRBG.

Encrypted through key
wrapping using
FC_UnwrapKey for
input and FC_WrapKey
for output

Application
memory or key
database

Automatically
zeroized when
freeing the cipher
handle

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 23 of 37

CSP Name Generation Entry/Output Storage Zeroization
HMAC Key (≥ 112 bits) NIST SP 800-90A

DRBG
Encrypted through key
wrapping using
FC_UnwrapKey for
input and FC_WrapKey
for output

Application
memory or key
database

Automatically
zeroized when
freeing the cipher
handle

DRBG Entropy Input String Obtained from
CPU jitter source

N/A Application
memory

Automatically
zeroized when
freeing DRBG handle

DRBG seed, V and C
values

Derived from
entropy input

N/A Application
memory

Automatically
zeroized when
freeing DRBG handle

TLS Pre-Master Secret Use of SP 800-
90A DRBG or
DH/ECDH shared
secret
computation.

Generated by TLS
client as output
from DRBG when
using RSA key
exchange.

Entry: if received by
module as TLS server,
wrapped with server’s
public RSA key;
otherwise no entry.
Output: if generated by
module as TLS client,
wrapped with server’s
public RSA key;
otherwise, no output.

Application
memory or key
database

Automatically
zeroized when
freeing the cipher
handle

TLS Master Secret Derived from TLS
pre-master secret
By using key
derivation

N/A Application
memory or key
database

Automatically
zeroized when
freeing the cipher
handle

TLS derived keys TLS derived keys
Generated during
the TLS v1.0/1.1
and v1.2 KDFs
from TLS master-
secret

Encrypted through key
wrapping using
FC_WrapKey

Application
memory or key
database

Automatically
zeroized when
freeing the cipher
handle

HKDF derived keys Derived SP800-
56Crev1 HKDF
KDF mechanisms

Encrypted through key
wrapping using
FC_WrapKey

Application
memory or key
database

Automatically
zeroized when
freeing the cipher
handle

Diffie-Hellman public and
private keys

Public and private
keys are
generated using
the SP800-
56ARev3 Safe
Primes key
generation
method via the
FC_GenerateKeyP
air function;
random values
are obtained
from the SP800-
90A DRBG.

Encrypted through key
wrapping using
FC_UnwrapKey for
input and FC_WrapKey
for output

Application
memory or key
database

Automatically
zeroized when
freeing the cipher
handle

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 24 of 37

CSP Name Generation Entry/Output Storage Zeroization
KAS-ECC-SSC public and
private keys

Public and private
keys are
generated using
the FIPS 186-4
key generation
method via the
FC_GenerateKeyP
air function;
random values
are obtained
from the SP800-
90A DRBG.

Encrypted through key
wrapping using
FC_UnwrapKey for
input and FC_WrapKey
for output

Application
memory or key
database

Automatically
zeroized when
freeing the cipher
handle

KAS-FFC-SSC shared
secret

Generated during
shared secret
computation via
FC_DeriveKey.

Shared secret is output
in plaintext form.

Application
memory or key
database

Automatically
zeroized when
freeing the cipher
handle

KAS-ECC-SSC shared
secret

Generated during
shared secret
computation via
FC_DeriveKey.

Shared secret is output
in plaintext form.

Application
memory or key
database

Automatically
zeroized when
freeing the cipher
handle

PBKDF password N/A API input parameter

Application
memory or key
database

Automatically
zeroized when freeing
the cipher handle

PBKDF derived key Derived using

SP800-132 PBKDF
mechanisms

Encrypted for output
using FC_WrapKey

Application
memory or key
database

Automatically
zeroized when freeing
the cipher handle

KBKDF derived key Derived SP800-
108 KBKDF KDF
mechanisms.

Encrypted for output
using FC_WrapKey

Application
memory or key
database

Automatically
zeroized when freeing
the cipher handle

Key derivation key for
KBKDF

Input key used
for KBKDF
function.

API input paramater Application
memory or key
database

Automatically
zeroized when freeing
the cipher handle

IKE SA tunnel encryption
keys

SP 800-135 IKE
KDF

Encrypted for output
using FC_WrapKey

Ephemeral Close of IKE SA or
termination of Pluto
IKE Daemon zeroizes
the CSP

IKE SA tunnel integrity
keys

SP 800-135 IKE
KDF

Encrypted for output
using FC_WrapKey

Ephemeral Close of IKE SA or
termination of Pluto
IKE Daemon zeroizes
the CSP

IKE derived keys Generated during
the IKEv1 and
IKEv2 KDFs

Keys are output in
plaintext form.

Application
memory or key
database

Automatically
zeroized when freeing
the cipher handle

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 25 of 37

CSP Name Generation Entry/Output Storage Zeroization
IPsec SA Tunnel
Encryption Keys

SP 800-135 IKE
KDF

Encrypted for output
using FC_WrapKey

Ephemeral Zeroized from the
module's memory
when passed to the
kernel after
establishment of the
SA

IPsec SA Tunnel Integrity
Keys

SP 800-135 IKE
KDF

Encrypted for output
using FC_WrapKey

Ephemeral Zeroized from the
module's memory
when passed to the
kernel after
establishment of the
SA

User Passwords N/A (supplied by
the calling
application)

N/A (input through API
parameter)

Application
memory or key
database in salted
form

Automatically
zeroized when the
module is reinitialized
or overwritten when
the user changes its
password

Table 10: CSP Table

8.1 Random Number Generation

The module employs the Deterministic Random Bit Generator (DRBG) based on [SP 800-90A] for the random
number generation. The DRBG supports the Hash_DRBG mechanism with SHA-256. The module uses CPU jitter
as a noise source provided by the operational environment which is within the module’s physical boundary but
outside of the module’s logical boundary. The source is compliant with [SP 800-90B] and marked as ENT on the
certificate. The entropy source provides at least 230 bits of entropy and the following caveat applies: The module
generates keys whose strength are modified by available entropy. Lastly, the module performs the DRBG health
tests as defined in section 11.3 of [SP 800-90A].

8.2 Key/CSP Storage

The module employs the cryptographic keys and CSPs in the FIPS Approved mode of operation as listed in Table
10. The module does not perform persistent storage for any keys or CSPs. Note that the private key database
(provided with the files key3.db/key4.db) mentioned in Table 10 is within the module's physical boundary but
outside its logical boundary.

8.3 Key/CSP Zeroization

The application that uses the module is responsible for appropriate zeroization of the key material. The module
provides zeroization methods to clear the memory region previously occupied by a plaintext secret key, private
key or password. A plaintext secret or private key gets zeroized when it is passed to an FC_DestroyObject call. All
plaintext secret and private keys must be zeroized when the module is shut down (with an FC_Finalize call),
reinitialized (with an FC_InitToken call), or when the session is closed (with an FC_CloseSession or
FC_CloseAllSessions call). All zeroization is to be performed by storing the value 0 into every byte of the memory
region that is previously occupied by a plaintext secret key, private key or password. Zeroization is performed in a
time that is not sufficient to compromise plaintext secret or private keys and password.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 26 of 37

8.4 Key/CSP Generation

The module provides an SP 800-90A-compliant Deterministic Random Bit Generator (DRBG) for creation of
symmetric keys, key components of asymmetric keys, and random number generation.

The key generation methods implemented in the module for Approved services in FIPS mode is compliant with [SP
800-133].

For generating RSA, DSA and ECDSA keys the module implements asymmetric key generation services compliant
with [FIPS 186-4]. A seed (i.e. the random value) used in asymmetric key generation is directly obtained from the
[SP 800-90A] DRBG.

The public and private keys used in the EC Diffie-Hellman shared secret computation schemes are generated
internally by the module using ECDSA key generation compliant with [FIPS 186-4] and [SP 800-56Ar3]. The Diffie-
Hellman shared secret computation scheme is also compliant with [SP 800-56Ar3], and generates keys using safe
primes defined in RFC 7919 and RFC 3526, as described in the next section.

8.5 Key Agreement/Key Transport

The module provides KAS-FFC-SSC and KAS-ECC-SSC compliant with SP 800-56Arev3, in accordance with scenario
X1 (1) of IG D.8. The module provides support for Diffie-Hellman an EC Diffie-Hellman key agreement schemes
compliant with SP800-56Arev3 by offering separate services for shared secret computation and the key derivation
using the SP800- 135 TLS KDF (for use within the TLS protocol), so that the user application can implement the key
agreement.

For Diffie-Hellman, the module supports the use of safe primes defined in RFC 7919 for domain parameters and
key generation, which are used in TLS key exchange.

• TLS (RFC7919)

◦ ffdhe2048 (ID = 256)

◦ ffdhe3072 (ID = 257)

◦ ffdhe4096 (ID = 258)

◦ ffdhe6144 (ID = 259)

◦ ffdhe8192 (ID = 260)

The module also supports the use of safe primes defined in RFC 3526, which are part of the Modular Exponential
(MODP) Diffie-Hellman groups that can be used for Internet Key Exchange (IKE). Note that the module only
implements key generation and shared secret computation of safe primes, and no other part of the IKE protocol
(with the exception of the IKE KDF, which is separately implemented).

• IKEv2 (RFC3526)

◦ MODP-2048 (ID=14)

◦ MODP-3072 (ID=15)

◦ MODP-4096 (ID=16)

◦ MODP-6144 (ID=17)

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 27 of 37

◦ MODP-8192 (ID=18)

According to Table 2: Comparable strengths in [SP 800-57], the key sizes of AES, Triple-DES, RSA, Diffie-Hellman
and EC Diffie-Hellman provide the following security strength in FIPS mode of operation:

• Diffie-Hellman shared secret computation provides between 112 and 200 bits of encryption strength.

• EC Diffie-Hellman shared secret computation provides between 128 and 256 bits of encryption strength.

• RSA key wrapping with PKCS#1-v1.5 provides between 112 and 256 bits of encryption strength considering
the use of keys equal to or larger than 2048 bits up to 16384 bits; Allowed per IG D.9

• AES key wrapping with KW, KWP and GCM; KTS (AES Certs. #A1623, #A1624, #A1625 and #A1627; key
establishment methodology provides between 128 and 256 bits of encryption strength).

• AES key wrapping with AES CBC and HMAC; KTS (AES Certs. #A1623 and #A1624 and HMAC Certs. #A1623;
key establishment methodology provides 128 or 256 bits of encryption strength).

• Triple-DES Key wrapping with Triple-DES CBC and HMAC; KTS (Triple-DES Cert. #A1623 and HMAC Certs.
#A1623; key establishment methodology provides 112 bits of encryption strength).

• RSA key wrapping with OAEP; KTS-RSA (Cert. #A1623; key establishment methodology provides between 112
and 200 bits of encryption strength).

8.6 Key Derivation

The module supports the following key derivation methods according to [SP 800-135]:

• KDF for the TLS protocol, used as pseudo-random functions (PRF) for TLSv1.0/1.1 and TLSv1.2.

• HKDF for the TLS protocol TLSv1.3.

• KDF for the IKE protocol.

The module supports the following key derivation methods according to [SP 800-108]:

• Key Based Key Derivation Function (KBKDF).

The module also supports password-based key derivation (PBKDF). The implementation is compliant with option
1a of [SP 800-132]. Keys derived from passwords or passphrases using this method can only be used in storage
applications.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 28 of 37

9. Self-Tests

FIPS 140-2 requires that the module perform self-tests to ensure the integrity of the module, and the correctness
of the cryptographic functionality at start up. In addition, conditional tests are required during operational stage
of the module. All of these tests are listed and described in this section.

9.1 Power-Up Self-Tests

All the power-up self-tests are performed automatically by initializing or re-initializing the module without
requiring any operator intervention. During the power-up self-tests, no cryptographic operation is available and
all input or output is inhibited. Once the power-up self-tests are completed successfully, the module enters
operational mode and cryptographic operations are available. If any of the power-up self-tests fail, the module
enters the Error state. In Error state, all output is inhibited and no cryptographic operation is allowed. The
module returns the error code CKR_DEVICE_ERROR to the calling application to indicate the Error state. The
module needs to be reinitialized in order to recover from the Error state. The following table provides the lists of
Known-Answer Test (KAT) and Integrity Test as the power up self-tests:

Algorithm Test

AES KATs for ECB and CBC, modes: encryption and decryption are tested separately

AES-GCM KAT for encryption and decryption

Triple-DES KATs for ECB and CBC modes: encryption and decryption are tested separately

KAS-FFC-SSC Primitive “Z” Computation KAT with 2048-bit key

DSA KAT: signature generation and verification are tested separately

KAS-ECC-SSC Primitive “Z” Computation KAT with P-256 curve

ECDSA KAT: signature generation and verification are tested separately

RSA KAT: encryption and decryption are tested separately
KAT: signature generation and verification are tested separately

SHA KAT: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

HMAC KAT: HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512

CMAC KAT: AES-CMAC KAT

PBKDF KDF KAT: Using SHA-256

TLS KDF KAT: TLS 1.0 PRF KAT and TLS 1.2 KAT using SHA-224, SHA-256, SHA-384 and SHA-512

HKDF KDF KAT: HKDF KAT using SHA-256, SHA-384 and SHA-512

IKE KDF KAT: SP800-135 IKE PRF using SHA-1, SHA-256, SHA-384 and SHA-512.

KBKDF KDF KAT: Counter KDF and HMAC-SHA256

DRBG KAT of Hash_DRBG with SHA-256

DRBG DRBG health tests as specified in section 11.3 of NIST SP 800-90Ar1

Module Integrity DSA signature verification with 2048 bits key and SHA-256

Table 11: Power-On Self-Tests

The power-up self-tests can be performed on demand by reinitializing the module.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 29 of 37

9.2 Conditional Self-Tests

The following table provides the lists of Pairwise Consistency Test (PCT) and Continuous Random Number
Generation Test (CRNGT) as the conditional self-tests. If any of the conditional test fails, the module enters the
Error state. It returns the error code CKR_DEVICE_ERROR to the calling application to indicate the Error state. The
module needs to be reinitialized in order to recover from the Error state.

Algorithm Test
DSA PCT for DSA key generation

ECDSA PCT for ECDSA key generation

RSA PCT for RSA key generation

DRBG CRNGT

Table 12: Conditional Self-Tests

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 30 of 37

10. Crypto-Officer and User Guidance

10.1 Crypto-Officer Guidance

The version of the RPM containing the validated module is stated in section 3.1 above. The RPM package of the
Module shall be installed by standard tools recommended for the installation of Oracle packages on an Oracle
Linux system (for example, yum, RPM, and the RHN remote management tool). The integrity of the RPM is
automatically verified during the installation of the Module and the Crypto Officer shall not install the RPM file if
the Oracle Linux Yum Server indicates an integrity error. The RPM files listed in section 3 are signed by Oracle and
during installation; Yum performs signature verification which ensures as secure delivery of the cryptographic
module. If the RPM packages are downloaded manually, then the CO should run ‘rpm –K <rpm-file-name>’
command after importing the builder’s GPG key to verify the package signature. In addition, the CO shall also
verify the hash of the RPM package to confirm a proper download.

Recommended method

The system-wide cryptographic policies package (crypto-policies) contains a tool that completes the installation of
cryptographic modules and enables self-checks in accordance with the requirements of Federal Information
Processing Standard (FIPS) Publication 140-2. We call this step “FIPS enablement”. The tool named fips-mode-
setup installs and enables or disables all the validated FIPS modules and it is the recommended method to install
and configure an Oracle Linux 8 system.

1. Ensure that the OL8 x86_64 or aarch64 system is configured with "BaseOS Latest", "AppStream Latest" and

"Security Validation (Update 8)" yum repositories enabled:
 # yum-config-manager --enable ol8_baseos_latest ol8_appstream ol8_u4_security_validation
Note: If system is configured with the Unbreakable Linux Network (ULN) depending on the architecture make
sure enabled channels [ol8_x86_64_baseos_latest, ol8_x86_64_appstream,
ol8_x86_64_u4_security_validation] for x86_64 or [ol8_aarch64_baseos_latest,
ol8_aarch64_appstream, ol8_aarch64_u4_security_validation] for aarch64.

2. Install nss-softokn RPM file e.g for x86_64 or aarch use yum command:
yum install nss-softokn-3.53.1-17.el8_3.x86_64 or nss-softokn-3.53.1-17.el8_3.aarch64

3. Install nss-softokn-freebl RPM file from the yum/ULN:
yum install nss-softokn-freebl-3.53.1-17.el8_3.x86_64 or nss-softokn-freebl-3.53.1-17.el8_3.aarch64
yum update nss-softokn-freebl

4. Switch the system to FIPS enablement in Oracle Linux 8:
fips-mode-setup --enable
Setting system policy to FIPS
FIPS mode will be enabled.
Reboot the system for the setting to take effect.

5. Restart your system:
reboot

6. After the restart, you can check the current state:
fips-mode-setup --check
FIPS mode is enabled.

Note: As a side effect of the enablement procedure the fips-mode-enable tool also changes the system wide
cryptographic policy level to a level named “FIPS”, this level helps applications by changing configuration defaults
to approved algorithms.

http://yum.oracle.com/oracle-linux-7.html
https://yum.oracle.com/repo/OracleLinux/OL8/appstream/x86_64/getPackage/nss-softokn-3.53.1-17.el8_3.x86_64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/4/security/validation/aarch64/getPackage/nss-softokn-3.53.1-17.el8_3.aarch64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/appstream/x86_64/getPackage/nss-softokn-freebl-3.53.1-17.el8_3.x86_64.rpm
https://yum.oracle.com/repo/OracleLinux/OL8/4/security/validation/aarch64/getPackage/nss-softokn-freebl-3.53.1-17.el8_3.aarch64.rpm

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 31 of 37

10.1.1 AES NI Support and Manual Method

According to the NSS FIPS 140-2 Security Policy, the NSS module supports the AES-NI Intel processor instruction
set as an approved cipher. The AES-NI instruction set is used by the Module.

In case you configured a full disk encryption using AES, you may use the AES-NI support for a higher performance
compared to the software-only implementation.

Verify that your processor offers the AES-NI instruction set by calling the following command:

cat /proc/cpuinfo | grep aes

If the command returns a list of properties, including the “aes” string, your CPU provides the AES-NI instruction
set. If the command returns nothing, AES-NI is not supported.

The recommended method automatically performs all the necessary steps. The following steps can be done
manually but are not recommended and are not required if the systems have been installed with the fips-mode-
setup tool:

• Create a file named /etc/system-fips, the contents of this file are never checked

• Ensure to invoke the command ‘fips-finish-install --complete’ on the installed system

• Ensure that the kernel boot line is configured with the fips=1 parameter set

• Reboot the system

NOTE: If /boot or /boot/efi resides on a separate partition, the kernel parameter boot=<boot partition> must be
supplied. The partition can be identified with the command "df | grep boot". For example:

$ df | grep boot

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda1 233191 30454 190296 14% /boot

The partition of the /boot file system is located on /dev/sda1 in this example.

Therefore, the parameter boot=/dev/sda1 needs to be appended to the kernel command line in addition
to the parameter fips=1.

10.1.1 Access to Audit Data

The module may use the Unix syslog function and the audit mechanism provided by the operating system to audit
events. Auditing is turned off by default. Auditing capability shall be turned on as part of the initialization
procedures by setting the environment variable NSS_ENABLE_AUDIT to 1. The Crypto-Officer shall also configure
the operating system's audit mechanism.

The module uses the syslog function to audit events, so the audit data are stored in the system log. Only the root
user can modify the system log. On some platforms, only the root user can read the system log; on other
platforms, all users can read the system log. The system log is usually under the /var/log directory. The exact
location of the system log is specified in the /etc/syslog.conf file. The module uses the default user facility and
the info, warning, and err severity levels for its log messages.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 32 of 37

The module can also be configured to use the audit mechanism provided by the operating system to audit events.
The audit data would then be stored in the system audit log. Only the root user can read or modify the system
audit log. To turn on this capability it is necessary to create a symbolic link from the library file
/usr/lib64/libaudit.so.0 to /usr/lib64/libaudit.so.1.0.0 (on 64-bit platforms).

10.2 User Guidance

In order to run the module in FIPS-Approved mode, only the FIPS Approved or allowed services listed in Table 8
with the validated or allowed cryptographic algorithms/security functions listed in Table 2 and Table 3 shall be
used.

The following module initialization steps shall be followed before starting to use the NSS module:

• Set the environment variable NSS_ENABLE_AUDIT to 1 before using the module with an application.

• Use the application to get the function pointer list using the API “FC_GetFunctionList”.

• Use the API FC_Initialize to initialize the module and ensure that it returns CKR_OK. A return code other than
CKR_OK means the module is not initialized correctly, and in that case, the module shall be reset and initialized
again.

• For the first login, provide a NULL password and login using the function pointer C_Login, which will in-turn call
FC_Login API of the module. This is required to set the initial NSS User password.

• Now, set the initial NSS User role password using the function pointer C_InitPIN. This will call the module's API
FC_InitPIN API. Then, logout using the function pointer C_Logout, which will call the module's API FC_Logout.

• The NSS User role can now be assumed on the module by logging in using the User password. And the Crypto-
Officer role can be implicitly assumed by performing the Crypto-Officer services as listed in Section 7.2.

The module can be configured to use different private key database formats: key3.db or key4.db. “key3.db”
format is based on the Berkeley DataBase engine and should not be used by more than one process concurrently.
“key4.db” format is based on SQL DataBase engine and can be used concurrently by multiple processes. Both
databases are considered outside the module's logical boundary and all data stored in these databases is
considered stored in plaintext. The interface code of the module that accesses data stored in the database is
considered part of the cryptographic boundary.

Secret and private keys, plaintext passwords and other security-relevant data items are maintained under the
control of the cryptographic module. Secret and private keys shall be passed to the calling application in
encrypted (wrapped) form with FC_WrapKey and entered from calling application in encrypted form with
FC_UnwrapKey. The key transport methods allowed for this purpose in FIPS Approved mode are SP 800-38F
based AES key wrapping and RSA key wrapping using the corresponding Approved modes and key sizes.
Note: If the secret and private keys passed to the calling application are encrypted using a symmetric key
algorithm, the encryption key may be derived from a password. In such a case, they should be considered to be in
plaintext form.

Automated key transport methods shall use FC_WrapKey and FC_UnwrapKey to output or input secret and
private keys from or to the module.

All cryptographic keys used in the FIPS Approved mode of operation shall be generated in the FIPS Approved
mode or imported while running in the FIPS Approved mode.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 33 of 37

10.2.1 Triple-DES keys

According to IG A.13, the same Triple-DES key shall not be used to encrypt more than 216 64-bit blocks of data.
Encrypting greater than 216 blocks will result in the module operating in non-Approved mode implicitly. It is the
User’s responsibility to ensure the module’s compliance with this requirement.

10.2.2 Key derivation using SP 800-132 PBKDF

The module provides password-based key derivation (PBKDF), compliant with SP 800-132. The module supports
option 1a from section 5.4 of [SP 800-132], in which the Master Key (MK) or a segment of it is used directly as the
Data Protection Key (DPK).

In accordance with [SP 800-132], the following requirements shall be met.

• Derived keys shall only be used in storage applications. The Master Key (MK) shall not be used for other
purposes. The length of the MK or DPK shall be of 112 bits or more.

• A portion of the salt, with a length of at least 128 bits, shall be generated randomly using the SP 800-90A
DRBG,

• The iteration count shall be selected as large as possible, as long as the time required to generate the key
using the entered password is acceptable for the users. The minimum value shall be 1000.

• Passwords or passphrases, used as an input for the PBKDF, shall not be used as cryptographic keys.

• The length of the password or passphrase shall be of at least 20 characters, and shall consist of lower-
case, upper-case and numeric characters. The probability of guessing the value is estimated to be 1/6220 =
10-36, which is less than 2-112.

The calling application shall also observe the rest of the requirements and recommendations specified in [SP 800-
132].

10.2.3 AES-GCM IV

The AES GCM IV generation is in compliance with the [RFC 5288] and shall only be used for the TLS protocol
version 1.2 to be compliant with [FIPS 140-2_IG] IG A.5, provision 1 (“TLS protocol IV generation”); The counter
portion of the IV is set by the module within its cryptographic boundary. This counter portion i.e., nonce_explicit
part of the IV does not exhaust the maximum number of possible values for a given session key. In case the
module’s power is lost and then restored, the key used for the AES GCM encryption or decryption shall be
redistributed.

The module also complies with IG A.5, provision 2. The GCM random IV is generated by using the approved
Hash_DRBG and the user must ensure that the IV length is at least 96 bits.

When a GCM IV is used for decryption, the responsibility for the IV generation lies with the party that performs
the AES GCM encryption.

10.3 Handling Self-Test Errors

When the module enters the Error state, it needs to be reinitialized to resume normal operation. Reinitialization
is accomplished by calling FC_Finalize followed by FC_Initialize.

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 34 of 37

11. Mitigation of Other Attacks

The module is designed to mitigate the following attacks.

Attack Mitigation Mechanism Specific Limit
Timing attacks on RSA RSA blinding

Timing attack on RSA was first
demonstrated by Paul Kocher in 1996
[15], who contributed the mitigation
code to our module.
Most recently Boneh and Brumley
[16] showed that RSA blinding is an
effective defense against timing
attacks on RSA.

None.

Cache-timing attacks on the modular
exponentiation operation used in
RSA and DSA

Cache invariant modular
exponentiation
This is a variant of a modular
exponentiation implementation that
Colin Percival [17] showed to
defend against cache-timing
attacks

This mechanism requires intimate
knowledge of the cache line sizes of
the processor. The mechanism
may be ineffective when the
module is running on a processor
whose cache line sizes are unknown.

Arithmetic errors in RSA signatures Double-checking RSA
signatures
Arithmetic errors in RSA
signatures might leak the private key.
Ferguson and Schneier [18]
recommend that every RSA signature
generation should verify
the signature just generated.

None.

Table 13: Mitigation of Other Attacks

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 35 of 37

Acronyms, Terms and Abbreviations

Term Definition

AES Advanced Encryption Standard

AES-NI Intel Advanced Encryption Standard New Instructions

CBC Cipher Block Chaining

CMVP Cryptographic Module Validation Program

CCCS Canadian Centre for Cyber Security

CKG Cryptographic Key Generation

CMAC Cipher-Based Message Authentication Code

CRNGT Continuous Random Number Generator Test

CSP Critical Security Parameter

CTR Counter Block Chaining

CTS Ciphertext Stealing

CVL Component Validation List

DES Data Encryption Standard

DSA Digital Signature Algorithm

ECB Electronic Code Book

ECDSA Elliptic Curve Digital Signature Algorithm

DRBG Deterministic Random Bit Generator

GCM Galois/Counter Mode

HMAC (Keyed) Hash Message Authentication Code

IKE Internet Key Exchange

MAC Message Authentication Code

KAT Known Answer Test

KDF Key Derivation Function

NIST National Institute of Standards and Technology

NSS Network Security Services

PBKDF Password Based Key Derivation Function

PCT Pairwise Consistency Test

PKCS Public-Key Cryptographic Standard

PUB Publication

RSA Rivest, Shamir, Addleman

SHA Secure Hash Algorithm

TLS Transport Layer Security

Table 14: Acronyms

Oracle Linux 8 NSS Cryptographic Module Security Policy

 Page 36 of 37

References

The FIPS 140-2 standard, and information on the CMVP, can be found at
http://csrc.nist.gov/groups/STM/cmvp/index.html. More information describing the module can be found on the
Oracle web site at https://www.oracle.com/linux/ .

This Security Policy contains non-proprietary information. All other documentation submitted for FIPS 140-2
conformance testing and validation is “Oracle - Proprietary” and is releasable only under appropriate non-
disclosure agreements.

[1] FIPS 140-2 Standard, http://csrc.nist.gov/groups/STM/cmvp/standards.html
[2] FIPS 140-2 Implementation Guidance, https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-
validation-program/documents/fips140-2/FIPS1402IG.pdf
[3] FIPS 140-2 Derived Test Requirements, https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-
Validation-Program/documents/fips140-2/FIPS1402DTR.pdf
[4] FIPS 197 Advanced Encryption Standard, https://csrc.nist.gov/publications/detail/fips/197/final
[5] FIPS 180-4 Secure Hash Standard, https://csrc.nist.gov/publications/detail/fips/180/4/final
[6] FIPS 198-1 The Keyed-Hash Message Authentication Code (HMAC),
https://csrc.nist.gov/publications/detail/fips/198/1/final
[7] FIPS 186-4 Digital Signature Standard (DSS), https://csrc.nist.gov/publications/detail/fips/186/4/final
[8] NIST SP 800-38A, Recommendation for Block Cipher Modes of Operation: Methods and
Techniques, https://csrc.nist.gov/publications/detail/sp/800-38a/final
[9] NIST SP 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC, https://csrc.nist.gov/publications/detail/sp/800-38d/final
[10] NIST SP 800-38F, Recommendation for Block Cipher Modes of Operation: Methods for Key
Wrapping, https://csrc.nist.gov/publications/detail/sp/800-38f/final
[11] NIST SP 800-52 Revision 2, Guidelines for the Selection, Configuration, and Use of Transport Layer Security
(TLS) Implementations, https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
[12] NIST SP 800-56A Revision 3, Recommendation for Pair-Wise Key Establishment Schemes using Discrete
Logarithm Cryptography (Revised), https://csrc.nist.gov/publications/detail/sp/800-56a/rev-3/final
[13] NIST SP 800-67 Revision 2, Recommendation for the Triple Data Encryption Algorithm (TDEA)
Block Cipher, https://csrc.nist.gov/publications/detail/sp/800-67/rev-2/final
[14] NIST SP 800-90A, Recommendation for Random Number Generation Using Deterministic
Random Bit Generators, https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
[15] RSA Laboratories, “PKCS #11 v2.20: Cryptographic Token Interface Standard”, 2004.
[16] P. Kocher, "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems", CRYPTO '96, Lecture Notes In Computer Science, Vol. 1109, pp. 104-113, Springer-
Verlag, 1996. http://www.cryptography.com/timingattack/
[17] D. Boneh and D. Brumley, "Remote Timing Attacks are Practical",
http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html
[18] C. Percival, "Cache Missing for Fun and Profit", http://www.daemonology.net/papers/htt.pdf
[19] N. Ferguson and B. Schneier, Practical Cryptography, Sec. 16.1.4 "Checking RSA Signatures", p. 286, Wiley
Publishing, Inc., 2003.

http://csrc.nist.gov/groups/STM/cmvp/index.html
https://www.oracle.com/linux/
https://csrc.nist.gov/publications/detail/sp/800-38f/final
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf

	1. Introduction
	1.1 Overview
	1.2 Document Organization

	2. Oracle Linux 8 NSS Cryptographic Module
	2.1 Functional Overview
	2.2 FIPS 140-2 Validation Scope

	3. Cryptographic Module Specification
	3.1 Definition of the Cryptographic Module
	3.2 Definition of the Physical Cryptographic Boundary
	3.3 Approved or Allowed Security Functions
	3.4 Non-Approved but Allowed Security Functions
	3.5 Non-Approved Security Functions

	4. Module Ports and Interfaces
	4.1 PKCS #11
	4.2 Inhibition of Data Output
	4.3 Disconnecting the Output Data Path from the Key Processes

	5. Physical Security
	6. Operational Environment
	6.1 Tested Environments
	6.2 Vendor Affirmed Environments
	6.3 Operational Environment Policy

	7. Roles, Services and Authentication
	7.1 Roles
	7.2 FIPS Approved Operator Services and Descriptions
	7.3 Non-FIPS Approved Services and Descriptions
	7.4 Operator Authentication
	7.4.1 Role Assumption
	7.4.2 Strength of Authentication Mechanism

	8. Key and CSP Management
	8.1 Random Number Generation
	8.2 Key/CSP Storage
	8.3 Key/CSP Zeroization
	8.4 Key/CSP Generation
	8.5 Key Agreement/Key Transport
	8.6 Key Derivation

	9. Self-Tests
	9.1 Power-Up Self-Tests
	9.2 Conditional Self-Tests

	10. Crypto-Officer and User Guidance
	10.1 Crypto-Officer Guidance
	10.1.1 AES NI Support and Manual Method
	10.1.1 Access to Audit Data
	10.2 User Guidance
	10.2.1 Triple-DES keys
	10.2.2 Key derivation using SP 800-132 PBKDF
	10.2.3 AES-GCM IV
	10.3
	10.3 Handling Self-Test Errors

	11. Mitigation of Other Attacks
	Acronyms, Terms and Abbreviations
	References

