

White Paper

The Security Benefits of Self-Patching: Oracle Autonomous Database

Sponsored by: Oracle Corp.

Carl W. Olofson October 2018

IN THIS WHITE PAPER

In this white paper, we consider the important role of timely patching of database management systems (DBMS) software, especially where security patches are involved. Patching is done on an infrequent basis in most datacenters, exposing the database to risk in the delay. This white paper discusses that risk and related factors involving database unavailability.

One might think that moving to a managed database service in the cloud would solve the availability problem, but these services may still require interaction between the customer and the service provider, resulting in database unavailability during the patching process. The Oracle Autonomous Database Cloud Service, by contrast, overcomes this issue, providing timely patching without downtime for continuous availability and maximum security.

SITUATION OVERVIEW

The Patching Issue

Computer software is never in a steady state. It requires constant improvement and updating. Some of this effort has to do with shifting usage models or the correction of previously undetected problems, but a great deal has to do with countering vulnerabilities that may be found and exploited by bad actors. This is especially important for databases, where breaches result in significant liability for the enterprise. These updates are applied through patching.

What Is Patching?

A patch is a piece of code that is inserted into existing software to alter its behavior. It may represent a fix to a known problem, a much-requested enhancement, or the removal of a security vulnerability. Applying a patch to a database server normally requires taking it offline to modify the code and then bringing it up again.

Why Is Patching Such a Problem?

If a delay in patching exposes the enterprise to potential hacking, why isn't a patch done right away? Because patching requires both downtime and staff time, it must be scheduled for off-hours. Even at night, however, taking the database offline is going to inconvenience someone, and in the case of a 24 x 7 availability requirement, an offline option is not possible. The alternative is to set up a second

database server, load the software, apply the patches, test the patched system, and then swap servers. This approach usually results in brief interruption as one server is quiesced, the last transactions are passed over to the other system, and then the other system comes online. So patching causes extra staff effort, interrupts other work, and disrupts the operations schedule. These activities can represent considerable cost. Most users have many database instances, and the total staff time cost can be calculated at roughly an hour per instance. Even if the patch itself only takes 15 minutes, the process of taking the system offline, applying the patch, verifying the patch, and bringing the system back online can take an hour altogether. And that doesn't even take into account the operational disruption as systems administrators and other operations staff must work around this activity. This is why patches are not usually applied as they come in but instead are batched up and applied in bunches at some scheduled time.

What Are the Risks of Delayed Patching?

When patches are not applied in a timely manner, problems that have been fixed in the current code base are not addressed, improvements are not available and, most importantly, known vulnerabilities are still present, exposing the database to potential hacking. Such delays also create problems. How many DBAs get that sinking feeling when they call in with a problem, and the first question the support engineer asks is, "What is your patch level?" If it's not current, the advice may be to get up to the current patch level and then call back if the problem persists. The security risk is particularly significant. Once patches are issued to address a vulnerability, that vulnerability becomes widely known and hackers are looking for databases that have not yet been patched. So the danger of delayed patching is considerable.

Cloud Service Patching

Moving to the cloud can address the problem of timely patching, yet this is not necessarily a perfect fix. In many cases where a public cloud service is involved, the user may operate under a "shared responsibility model" that places physical responsibility for the system, including its security, in the hands of the managed cloud provider but leaves responsibility for the state of the software, including patching, in the hands of the user. Here, once again, the patching effort must be done by staff and results in downtime.

Even some managed cloud database providers that offer full software support for the database server may need to schedule patching with the user because the patching operation causes an interruption in service. This alone could compel some users to batch up patches rather than have them applied as they come in.

What's Required to Address the Patching Issue?

The only way to ensure the timely application of patches is to use a service that offers a nondisruptive patching process. This obviates the need to delay or batch up patches and ensure that the database servers are running with the latest version, including the fixes for all known security vulnerabilities. The critical nature of this capability should be obvious.

Oracle Autonomous Database

Oracle Autonomous Database is a managed cloud database service. It is offered on the Oracle Cloud. For customers that need to keep the data in the datacenter, for either legal or operational reasons, Oracle also offers Oracle Cloud at Customer, which is a physical system that is managed remotely by the Oracle Cloud team yet is situated locally in the customer's datacenter.

©2018 IDC #US44350118 2

A Full Cloud Database Service

As a full cloud service, Oracle Autonomous Database is delivered in a way that ensures all operational chores are taken on by the Oracle Cloud team. Upgrades and patches are applied as a matter of course. The system is also self-tuning, using machine learning algorithms to improve performance tuning on a continuous basis. The system is designed for transparent rolling upgrades, which means that patches can be applied as they come in and without any interruption of service. This also means the user does not need to think about scheduling the patch or worry about downtime.

Oracle's Approach to Patching

Oracle applies all security patches immediately and others on a scheduled basis. Patching is done on a rolling basis, which eliminates downtime, ensuring that the database is continuously available. Oracle can do this because the hardware is configured for nonstop operation, and the software provides a smooth cutover from server to server. Oracle's long history of server clustering for uninterrupted operation — most notably in Real Application Clusters (RAC) introduced in 2001 — has made this possible. The flexibility afforded by the self-tuning functions of the Oracle Autonomous Database software ensures smooth performance throughout. This technology is the result of decades of research and development at Oracle and first rose to prominence with the self-managing features of Oracle9*i*. The patching and patch testing processes take place behind the scenes, so the effect is to make the patch process seem virtually undetectable by the user. Contrast this with the manual and error-prone processes of other patching methods.

Other Security Features of Oracle Autonomous Database

Oracle Autonomous Database offers three key areas of functionality to ensure the security of the database, besides patch management. These are as follows:

- Encryption. Oracle offers encryption at rest and in motion. Data is transferred from storage to
 processing nodes encrypted. It is even kept encrypted in cache. This function is enabled
 automatically.
- Separation of the duties of data management and database administration. Oracle is using features like Database Vault and the Pluggable Database Lockdown profiles to isolate database administration (managed by Oracle) from data administration (managed by the Autonomous Database customer).
- Audit. Data auditing is automatically configured and enabled and in constant operation. The
 database system records suspicious patterns of access and includes the flexibility to extend
 analysis of the collected data to other services or even to on-premises security information and
 event monitoring systems.

FUTURE OUTLOOK

IDC believes that most enterprise data will move to the cloud in five to seven years and that, as this happens, the security of that data will be improved. Still, capabilities such as those of the Oracle Autonomous Database may prove to be key to the decision as to which RDBMS to entrust with valuable and sensitive enterprise data going forward. The volumes and changeability of that data will continue to grow rapidly, and the challenges in identifying data for protection and establishing methods that ensure such protection without impeding database performance will continue apace.

©2018 IDC #US44350118 3

CHALLENGES/OPPORTUNITIES

Moving data to the cloud eliminates most of the common methods of illicit data access, including poorly configured servers and "backdoor" passwords that often exist in enterprise datacenters. Oracle Autonomous Database covers much more ground in securing data. But bad guys are clever, and unforeseen methods are bound to occur. Even as competitors look to catch up with the security methods outlined here, new threats will loom over both Oracle and Oracle's competitors in the area of database security that will require vigilance, creativity, and foresight to overcome.

CONCLUSION

Database security is threatened by several factors, some of which involve application design and development but others of which involve the database management system. When vulnerabilities are found by the DBMS developer, patches are issued to correct for these vulnerabilities. Delays in applying such patches leave databases open to attack. Such delays can occur because of the cost, risk, and operational disruption involved in applying patches manually.

Oracle's approach to this problem within the Oracle Autonomous Database allows for the timely and automatic application of security patches without the risk of manual work (because it is automated) and without operational disruption. This may involve moving the data to the Oracle Cloud or keeping the data in the local datacenter using the Oracle Cloud at Customer offering.

The benefits of this service to the customer with respect to database security include the following:

- Elimination of the cost and risk associated with manually applying security patches
- Timely, automated application of security patches, ensuring that the latest updates have been applied against all known vulnerabilities
- Other features that enhance database security, including encryption of data both in motion and at rest, automatic and continuous activity auditing, and Database Vault, which ensures that only those personnel who actually work with the data can see the data

Considering these benefits, IDC recommends that users do the following:

- Ask the question, "How often do we apply security patches, and how many known vulnerabilities threaten our data?"
- Calculate the labor and operational cost of applying security patches including disruption and the risk of human error – to determine how much the current practice is costing the enterprise.
- Consider a system that applies security procedures automatically, managed by a professional team of experts, as an alternative to the current security methods.
- Evaluate the potential benefits of Oracle Autonomous Database in ensuring database security is taken to the maximum.

©2018 IDC #US44350118 4

About IDC

International Data Corporation (IDC) is the premier global provider of market intelligence, advisory services, and events for the information technology, telecommunications and consumer technology markets. IDC helps IT professionals, business executives, and the investment community make fact-based decisions on technology purchases and business strategy. More than 1,100 IDC analysts provide global, regional, and local expertise on technology and industry opportunities and trends in over 110 countries worldwide. For 50 years, IDC has provided strategic insights to help our clients achieve their key business objectives. IDC is a subsidiary of IDG, the world's leading technology media, research, and events company.

Global Headquarters

5 Speen Street Framingham, MA 01701 USA 508.872.8200 Twitter: @IDC idc-community.com

Copyright Notice

www.idc.com

External Publication of IDC Information and Data – Any IDC information that is to be used in advertising, press releases, or promotional materials requires prior written approval from the appropriate IDC Vice President or Country Manager. A draft of the proposed document should accompany any such request. IDC reserves the right to deny approval of external usage for any reason.

Copyright 2018 IDC. Reproduction without written permission is completely forbidden.

