

OAC Essbase Hybrid

Block Storage Option

Performance Tuning
Oracle Analytics Cloud (OAC) Essbase has a new Hybrid Calculation

Engine that improves the overall performance of Essbase Applications

and reduces development time. This whitepaper highlights new

considerations for developers to build Hybrid Block Storage Option

(BSO) Applications for optimal performance during retrieval.

WHITE PAPER / JUNE 11, 2018

MIKE LARIMER, ORACLE & RICK SAWA, KROGER

2 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

DISCLAIMER

The following is intended to outline our general product direction. It is intended for information

purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any

material, code, or functionality, and should not be relied upon in making purchasing decisions. The

development, release, and timing of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

3 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

Table of Contents

PERFORMANCE TUNING ON OAC ESSBASE

Introduction .. 5

White Paper Organization .. 6

Cube Design .. 6

Dense and Sparse Dimensions ... 6

Dimension Storage .. 9

Dimension Ordering ... 9

Caches .. 12

Index Cache ...12

Data Cache...12

Calculator Cache ..12

CALCPARALLEL, CALCTASKDIMS ..13

Report Layout .. 13

Symmetric vs Asymmetric ..13

Query Odometers ...13

Diagnostics .. 14

App Configuration Parameters ...14

ODL Logs ...15

4 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

Query Trace Logs ...16

Calc Trace Logs ...17

Fragmentation ... 17

Background ..17

Causes ...18

Block Margin ...18

Defragmenting ..18

Appendix .. 19

Case study #1 ...19

Case Study #2 ..20

Case Study #3 ..21

Case Study #4 ..22

5 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

INTRODUCTION

One of the good things about the new Hybrid Block Storage Option (BSO)

is that many of the concepts that we learned over the years about tuning a

BSO cube still apply. Knowing what a block is and why it is important is just

as valuable today in Hybrid BSO as it was 25 years ago when BSO was

introduced. There are new considerations, however, which are the subject

of this white paper.

For example, performance optimization requires determining whether to

perform sparse dynamic calculations and aggregations instead of storing

data. The data block must be defined carefully to ensure that it meets all

processing requirements. Formulas must be scrutinized to determine

whether they can be dynamically calculated or whether they are better

stored and procedurally calculated. Dimension ordering still impacts things

like calculation order, and it can also be used to optimize parallel

operations and reduce index contention. Calculator cache usage also

depends on the order of sparse dimensions.

The default cache settings for OAC Essbase have been increased to 100

MB for both the index and data caches. In high concurrency environments

that include parallel calculations as well as multi-user query environments,

the proper index cache setting to hold the entire index in memory will prove

beneficial to performance. This is because by keeping the full index in

memory, requests to the index take less time, reducing contention for index

pages.

With Hybrid BSO, it is important to understand that the layout of a report

affects query performance. The reason is that the hybrid query engine

processes symmetric reports and when it encounters an asymmetric report,

OAC Essbase must break that report down into multiple symmetric queries.

There are new logs to help OAC Essbase developers debug calculation

flow and query performance. Also, OAC Essbase has added functionality

6 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

within Smart View to help developers understand and modify the solve

order.

WHITE PAPER ORGANIZATION

This paper has been divided into four sections: Cube Design, Caches, Report Layout and Diagnostics.

There is an appendix which contains case studies to help you visualize and understand the impact of

the topics being discussed.

CUBE DESIGN

Dense and Sparse Dimensions

BACKGROUND

The BSO storage structure is correctly conceived as an array (or matrix). In BSO, we talk about

intersection points and cells. We talk about data blocks as opposed to data rows. BSO OAC Essbase

essentially converts business elements to members of an array and stores floating point numbers at

intersection points defined by one member from each dimension in the array.

Multidimensional arrays are inherently empty, or sparse, structures: the number of intersection points

in an array that contain data is significantly fewer than the total number of intersections defined by the

array. Let’s walk through a trivial example.

We can easily conceive a company that sells every product in every region of operation. This very

primitive ‘business model’ contains the two dimensions of product and geography. In terms of sales,

they completely populated with data: Every product has sold in every region.

When we start adding dimensionality to the business model to provide more analytic value, the

concept of sparseness becomes manifest. If we track sales by the day, we suspect that we probably

don’t sell every product, in every region, on every day. If we want to track sales for every customer by

the hour, it becomes easier to see that no customer purchases every product, in every region, every

hour of every day. The point here is that an array will contain an intersection, or cell, for every possible

combination even when there won’t be anything to store there.

The size of an array in OAC Essbase gets very large, very quickly. For example, consider a

hypothetical matrix with the following dimensionality:

Array (172, 21, 27, 32, 209, 32765)

This array contains six dimensions that define 172 * 21 * 27 * 32 * 209 * 32765 = 21,370,660,375,680

potential points of intersection. How do software applications represent this matrix? The solution the

developers of OAC Essbase came up with was to modularize the matrix by mapping it as index and

data block storage structures, and introduce the concepts of dense and sparse dimensions.

7 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

Dense dimensions comprise the data block and are materialized within ess*pag files. Sparse

dimensions comprise the index and are materialized in ess*ind files. The database designer

determines which dimensions are tagged either as dense or as sparse. Dense dimensions create a

unit of storage called the block. The size of the block in the above example is 21*172 = 3612 cells. In

OAC Essbase, each cell consumes eight bytes, so this data block consumes 28,896 bytes. The

dimensions that are tagged sparse comprise the index. Index entries are unique in OAC Essbase, and

each entry points to a single data block.

Configured in this way, the larger array has been modularized into the smaller and more manageable

units of storage (block and index) that a computer is able to move in and out of memory with

efficiency. An important corollary is that where no index entries exist, no data blocks are created. This

is how BSO OAC Essbase squeezes sparseness out of the model.

MATRIX MODELLING

In matrix modelling, the goal of defining the block is to make the dense matrix match the over-arching

requirements of the application. For example, if the highest priority of the application is to produce the

fastest queries where the matrix is defined as Time across the columns and Accounts in the rows,

then it stands to reason that the dense dimensions should include the Time dimension and the

Accounts dimension. And if the highest priority of the application is to perform an allocation from one

department to hundreds of departments as fast as possible, then it would stand to reason that the

dense dimensions should include the Department dimension.

This type of modeling is a great starting point for the definition of the block as it is a simple and fast

way to get a reasonably tuned block. One drawback to this type of modelling is that many times the

combination of the desired dense dimensions will produce a block that is too large. And it is rarely the

case that an OAC Essbase cube has only a single performance objective. A configuration that

optimizes one objective (e.g. the Department allocation) often conflicts with the configuration to

optimize another objective (e.g. daily outline updates of the Department dimension).

TECHNICAL MODELLING

In technical modelling, the goal of defining the block is to produce the fewest number of the densest

blocks. This requires understanding the density of the data on a per dimension basis. It also requires

understanding how many blocks will be generated on a per dimension basis.

One way to get the necessary statistics for technical modeling is to systematically set each dimension

as the only dense dimension, load the data and then observe the number of blocks created for each

dimension. The ODL log records the total number of cells that were created during the data load

process. The density for a dimension can then be calculated by this formula:

Density = (Total Cells with data / Total Blocks) / Total Possible Cells in a block

Technical modelling uses a formula to produce a value which will rank the dense dimensional

combinations based on their actual density and the number of blocks created. It gives a higher weight

to the combination creating the fewest number of blocks. The higher the value the better.

Value = Total Cells with data / (Total Blocks2 * Total Possible Cells in a block)

BLOCK (AND SIZE)

The block size in bytes is computed by multiplying the total number of stored members in each dense

dimension by each other, and multiplying that result by 8. The size of the block will have an impact on

performance. A very large block will have too much sparsity which will make it inefficient to process at

query time because more missing values will be “touched” during the block scan.

8 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

For example, suppose that you have a 1G data block and a query that requests all cells. If only 1K of

cells are not #Missing (i.e. contain data) then OAC Essbase still must scan all (1G of) cells. But if the

block would be made smaller and split into more blocks – completely empty blocks would be omitted

and many fewer “misses” would happen during the data scan. And it is also possible that a large block

read into memory will have to reside on multiple memory pages, and the number of switches between

these pages comes with additional I/O overhead. On the other hand, a very small block can lead to too

many blocks being swapped in and out of memory.

The optimal block size depends upon the application requirements. There are no strict rules on block

size but a typical block size range is between 2 KB and 200 KB. There are customer Production cubes

out there that have a block size many times larger than 200 KB. Whether this block size will remain

efficient in OAC Essbase will require verification.

DATA SECURITY (BLOCK LOCKING)

The OAC Essbase locking system is based on block locking, and which blocks are locked depends

upon the sparse dimensions being retrieved. Those dimensions defined as dense will have all

members locked when a lock is required for any one member. For example, consider a hypothetical

cube with Time (dense) and Location (sparse) dimensions. A lock on January when the Time

dimension is dense will result in all months being locked for that location since they are all contained

within the block being locked, but updates can still happen for individual Locations. Now consider the

configuration where Time is sparse and Location is dense. If locking for update is required for only one

location, all locations would be unavailable for update by other users/processes requesting update

lock status for the same Time. Here, the Location dimension would not be a good candidate for being

tagged dense.

Whereas the complexity of locking becomes more granular as dimensionality increases, the principle

remains the same.

VOLATILITY (RESTRUCTURING)

A restructure of the database is required when the outline is modified. This modification can be in the

form of loading an alias table, reorganizing a hierarchical relationship, adding a new member, etc.

There are two types of restructures that can occur depending on the event that caused the restructure.

A minimal restructure is performed when a change to the outline does not cause the size of the block

to be altered. This restructure is very fast and does not require a back-up of the database. A complete

restructure is performed when the block size has been altered either by adding/deleting a member of a

dense dimension or the dense/sparse settings have been modified.

During a complete restructure creates a new version of the index and data files by rebuilding every

data block. Depending on the size of the database, the time it takes to complete this task can be

considerable. Understanding the dynamic nature of each dimension in the application, and setting

dimensions with frequently changing members as sparse, can save a lot of time restructuring

databases.

ATTRIBUTES

Nothing has changed here. Only a sparse dimension can have an Attribute dimension associated with

it. Therefore, any dimension that is designated as a base dimension for attributes cannot be declared

dense.

9 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

FORMULAS

The number and type of formula assigned to members in the outline might dictate whether to make

that dimension dense. Typically, the Account type dimension has many formulas that can be

calculated at query time, and this makes that dimension a good candidate for being dense. If a formula

is considered “intense” because it requires a lot of data during execution, this too makes its dimension

a good candidate for being dense.

An easy methodology for selecting dense dimensions based on formulas is to try to ensure that the

data required by formulas are located within a single block. This is the fastest type of calculation in

OAC Essbase. Less optimal configurations occur when the data required for the calculation require

multiple blocks to be accessed.

Dimension Storage

DYNAMIC

In OAC Essbase there are three types of calculations: hierarchical aggregations, member formulas

and procedural calculation scripts. The value proposition of the Hybrid technology is to reduce the

amount of data that is generated and stored on disk by relying on the robust nature of the Hybrid

Aggregation calculation engine. This is achieved by dynamically calculating as many of the

hierarchical aggregations and member formulas as is practical. The overall effectiveness of this

approach is determined by the number of data cells existing at the leaf level. For example, if a query

requires the query engine to retrieve millions of leaf-level cells, it is expected that this will not be a sub-

second query. There is simply too much data to retrieve and calculate for that query performance

expectation.

STORING TO REDUCE QUERY INTENSITY

When the number of cells required to satisfy a report becomes too large, query performance becomes

unacceptable. The number of cells required is ultimately determined by the number of

hierarchies/members in the outline, or by a member formula which requires a large amount of data to

compute.

The technique for reducing the number of cells required at query time is to calculate and store the data

only for specific narrow slices of the cube. This is very similar to the concept of “aggregate views” in an

ASO database. Intense member formulas can be easily set to be stored by OAC Essbase, and a

calculation script can be written to execute the member formulas on demand. Similarly, whole or

partial dimensions can be calculated and stored that will reduce the number of dynamically calculated

cells required to satisfy the upper level queries.

Dimension Ordering

QUERY SOLVE ORDER

Solve order is important in multi-dimension databases to ensure accurate results. Solve order can also

impact the performance of the calculation script or query. In OAC Essbase, solve order can be applied

per dimension or per member. The minimum solve order is 0 and the maximum solve order is 127.

The higher the solve order setting, the lower in the order the member is calculated. Put another way, a

formula with a solve order of 1 will be solved before a member with a solve order of 2. The following

chart provides an overview of solve ordering settings:

Table 1: Default Solve Order Settings

DIMENSION TYPE DEFAULT SOLVE ORDER VALUE

10 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

Stored members 0

Sparse dimension 10

Dense dimension – Account 30

Dense dimension – Time 40

Dense dimension – Account 50

Dense dimension – Two Pass Account 60

Dense dimension – Two Pass Time 70

Two Pass 80

Attribute dimension 90

DEFAULT CALCULATION ORDER REDEFINED

The order of the dimensions in the outline will also determine the solve order for those dimensions not

marked as Account, Time or Two Pass. Sparse dimensions are calculated in outline order from top to

bottom. Although two Pass is supported in OAC Essbase, it is a best practice recommendation to

explicitly set the Solve Order instead of using Two Pass.

FORMULAS

The order of operation for formulas can be managed at the dimension level or at the individual

member level. There are two general considerations for formulas. First, the order of operations can

impact the correctness of the result. And prices, rates and ratios do not aggregate.

The following chart summarizes best practices:

Table 2: Best Practices for Formula

TYPE OF FORMULA BEST PRACTICE

Any formula that can be calculated after an

aggregation such as a ratio.

Dynamically calculate with a high solve order.

Any formula which must be computed before

aggregation.

If performance is slow, consider making it a

stored member and use a calculation script.

Any formula that requires data to be retrieved from

many blocks such as a rolling forecast.

If performance is slow, consider making it a

stored member and use a calculation script.

The second consideration is more performance related. In OAC Essbase, it is fastest to let the OAC

Essbase kernel perform hierarchical aggregations first, and then let the hybrid engine perform other

calculations dynamically. This can be achieved either by ordering those dimensions which contain

formulas to calculate last for both the dense and sparse dimensions, or by setting the precise solve

order for each formula.

This is the recommended dimension ordering in OAC Essbase:

1. Dense Dimensions (Dynamic non-formula)

2. Dense Dimensions (Dynamic formula)

Enhanced Hybrid Engine

The value proposition of the

Hybrid technology is to reduce the

amount of data that is generated

and stored on disk by relying on

the robust nature of the Hybrid

Aggregation calculation engine.

11 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

3. Sparse Dimension (Calculated and Stored)

4. Sparse Dimension (Dynamic non-formula)

5. Sparse Dimension (Dynamic formula)

6. Sparse Dimension (Task dimension for Parallelism)

Case Study #4 in the Appendix shows an example of a properly re-designed cube that includes this

recommended ordering.

CONCURRENCY

OAC Essbase has a high dependency on the index when reading and writing data. Index entries to all

blocks are stored on individual index page, and the location of index entries to these pages are strictly

dependent on the order of sparse dimensions.

The last sparse dimension will have its index entries farthest apart in the index, and therefore are most

likely to be located on different index pages. In high concurrency situations, such as performing

multiple parallel calculations, it is crucial that the operations do not ask for the same index page at the

same time, or there will be index page contention, and performance will degrade. It is a best practice

to declare the “task” dimension(s) for parallel calculations explicitly as the last sparse dimension(s).

EXPORT LAYOUT

One thing to keep in mind when ordering dense dimensions is that the layout of a system export file

will change depending on the dense dimension order. If the column dimension happens to be very

small, you can end up with an export file layout that produces many rows with very few values on each

row. This will slow the export process and inflate the size of the export file(s).

Here is the logic OAC Essbase follows in choosing the system export layout:

Start looking at the first dense dimension size compared to the 2nd dense dimension.

1. If the 2nd dimension size is less than 100 and it has more members than last chosen column

dimension then choose it as the new column dimension

2. If the 2nd dimension is shorter than 1st dense dimension then choose it as shorter dimension

If after the execution of the loop we find a column dimension in step 1, that dimension is taken as the

final chosen column dimension otherwise the shortest dense dimension found in 2 is finally chosen as

the dense dimension.

Essbase will not select the first dense dimension to be in the column of the export file unless all other

dense dimensions have more than 100 stored members.

Note: There are alternatives to using the system export such as the DATAEXPORT calc script

command and the MDX Export command. With these alternative export methods, the layout of the

export file is defined regardless of the dimension outline order.

12 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

CACHES

Index Cache

OAC Essbase stores information about each block in an index. The location of the index entries in the

index are determined by the order of the sparse dimensions. The first sparse dimension’s index entries

will be clustered together. Subsequent sparse dimension index entries will be stored further and

further apart within the index.

The index has its own cache and can have a minimum value of 1 MB. The default value for this cache

in OAC Essbase is set to 100 MB.

In memory, the index cache is made up of index pages that are 8 KB in size. The purpose of the index

cache is to minimize the wait time when a new index page is required to complete the operation.

The index is persisted on disk in files with the extension ess*ind.

The index gets locked at the index page level whenever it needs to be updated. This is an exclusive

lock and all other requests must wait until the update operation has completed. It is very important to

ensure that any contention on the index is minimized. Index contention can occur during concurrent

calculations such as when using CALCPARALLEL or FIXPARALLEL.

Data Cache

OAC Essbase stores the matrix of data values in a collection of blocks defined by the dense

dimensions.

The data blocks have their own data cache which has a minimum value of 3 MB. The default value for

this cache in OAC Essbase is set to 100 MB. The purpose of the data cache is to minimize the wait

time when new blocks are required to complete an operation. The data is persisted on disk in files with

the .pag extension.

Calculator Cache

Under the right circumstances, the calculator cache can be very beneficial to the performance of

calculations that involve aggregations. It stores a bitmap of the index for the uppermost sparse

dimensions that fit into the size of the defined calculator cache. There are several types of calc cache

configurations that OAC Essbase can establish, all based on the sparse dimensionality of each cube

individually.

The calculator cache is essentially an area of memory that can be set aside by OAC Essbase to

enhance sparse calculations that create data blocks. It is not a cache in the sense of a stash of index

or data pages. It is better understood as a roadmap that tracks children and parents in support of block

creation. By default, the CALCCACHE is on, and OAC Essbase will use either 200,000 bytes or

whatever value is established using the CALCCACHEDEFAULT configuration setting, though there

are reasons to disable it.

One reason is the amount of available RAM. OAC Essbase will establish one calculator cache for

every thread involved in the aggregation process. A parallel aggregation involving 16 CPUs, for

example, will spawn 16 calculator cache instances. And if the configuration sets the calculator cache

to the maximum 200 MB, then 3.2 GB of memory will be consumed for the calc cache alone for this

one calculation. In an environment where multiple parallel calculations are occurring, as in planning

type cube environments, the amount of memory being allocated can easily consume available

memory. The calculator cache can be detrimental at times, specifically due to the overhead of having

13 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

to create the bitmap over and over for every task in the parallel processing for every thread in the

process.

In an OAC Essbase environment where blocks tend to be updated rather created, the setting is of

nominal use. Under the right circumstances, aggregations can benefit from a CALC CACHE. And

developers have the option to toggle the CALC CACHE on and off (as well as the degree of

parallelism) procedurally in complex calc script scenarios.

In OAC Essbase, the customer modified CFG file is set on an application basis and can be modified

using the OAC Essbase UI. It is stored in a file called appName.cfg. The essbase.cfg file still exists for

global settings. It is controlled by Oracle and should not be modified by the customer.

The three values (HIGH, DEFAULT and LOW) for CALCCACHE are set in the appName.cfg file. The

specific value used during a given calculation can be controlled through the SET CACHE setting in the

calc script. The default setting is for OAC Essbase to use the CALC CACHE but OAC Essbase really

should be configured to use this cache based on the specific contents of the calculation script and

cube outline.

It is also true that in complex FIX operations OAC Essbase will turn the CALC CACHE off. Developers

can force its use by issuing the SET CACHE ALL command in the script. Conversely, because the

default is for OAC Essbase to use the CALC CACHE, you can force it off by issuing the SET CACHE

OFF command.

CALCPARALLEL, CALCTASKDIMS

The manual setting of CALCTASKDIMS has been deprecated in OAC Essbase. This means that it can

remain transparent to the developer that OAC Essbase can select different CALCTASKDIMS during a

calculation when the CALC CACHE is ON than when it is set OFF. This situation is compounded by

the fact that OAC Essbase can be expected to behave (i.e. perform) very differently depending on the

order of sparse dimensions. Testing has shown that performance is better when favoring parallelism

than it is when favoring the use of the CALC CACHE. Regardless, optimal calc script performance will

be achieved by systematically testing to determine the correct outline order in combination with the

use, or not, of the CALC CACHE. Remember that the range of useful calculator cache values depends

on cube metadata as well as on available memory resources. Performance results are cube

dependent.

REPORT LAYOUT

Symmetric vs Asymmetric

An asymmetric report is one where the cross dimensional layout of the members being queried

changes in either the rows or the columns. The Hybrid query engine processes only symmetric grids

so if it encounters an asymmetric query, it automatically breaks that asymmetric grid down into

multiple symmetric grids. These multiple symmetric grids are then processed one at a time and then

returned to the client in the original asymmetric form.

Query Odometers

In the OAC Essbase logs, there is a new term called an odometer which represents the number of

queries the query engine had to execute to complete the query. A single symmetric query has a query

odometer value of 1. The odometer value of an asymmetric query will represent the total number of

symmetric queries the query engine had to populate to complete the asymmetric query. The odometer

value of a query can be viewed by using either the LongQueryTimeThreshold or QUERY_TRACE

application configuration settings (see below in Diagnostics).

14 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

The higher the query odometer value, the greater the impact the layout of the report will have on query

performance due to the serial nature of asymmetric report processing. In other words, each query in

the odometer is run one after the other.

Figure 1. Serial nature of asymmetric report processing.

One example of an asymmetric query layout that might not seem obvious is the use of attribute

members within the rows. In the example below, the query odometer is seven since there are seven

individual symmetric queries which can be constructed from this single asymmetric grid:

Table 3: Individual Symmetric Queries in single Asymmetric Grid

 OUTER ROW DIMENSION INNER ROW DIMENSIONS

Symmetric Query #1 Location1 Attribute1_1->Attribute2-> Attribute3_1

Symmetric Query #2 Location2

Location11

Attribute1_2->Attribute2-> Attribute3_2

Symmetric Query #3 Location3

Location6

Location9

Attribute1_2->Attribute2-> Attribute3_3

Symmetric Query #4 Location4

Location10

Attribute1_2->Attribute2-> Attribute3_3

Symmetric Query #5 Location5 Attribute1_3->Attribute2-> Attribute3_4

Symmetric Query #6 Location7 Attribute1_2->Attribute2-> Attribute3_5

Symmetric Query #7 Location8 Attribute1_3->Attribute2-> Attribute3_5

DIAGNOSTICS

App Configuration Parameters

Table 4: Application Configuration Parameters

PARAMETER DESCRIPTION

LongQueryTimeThreshol

d

Specify the time limit, in seconds, for queries. Any query that runs longer

than this limit is considered slow and will trigger alert messages.

15 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

LongCalcTimeThreshold Specify the time limit, in seconds, for top level calc commands. Any top

level calc command, which runs longer than this limit, is considered slow

and will trigger alert messages.

QUERYTRACE Specify the value to determine the contents of the tracing log for this

application. A value of -1 will provide all details.

CALCTRACE Specify TRUE|FALSE to determine if calc tracing will be enabled for this

application.

ODL Logs

CALC

For calc diagnostics, there is a log entry which can be activated by a CFG property called

LongCalcTimeThreshold. The value to use is dependent on the application and whether you want to

trigger this alert. As was stated earlier, the customer modified CFG file is now on an application basis

and can be modified using the OAC Essbase UI.

Alert messages contain the following information:

• User name

• Calc script name

• Corresponding line numbers [x – y]

• The first 256 characters of the command’s text.

• Number of blocks read, write, and create.

• Execution time of the command

There is also useful information in the default ODL logs for calculations such as the number of blocks

existing after the calculation at both the leaf level and total level.

[2018-03-30T12:41:50.351-07:00] [_K_Baseline] [NOTIFICATION:16] [REQ-449] [REQ] [ecid:

1522433698545,0] [tid: 140437732837120] [DBNAME: SOS200] [REQ_ID: 6538802943238340626]

[REQ_INFO: Calculate] [REQ_STATE: finished] [EXEC_TIME: 1110141] [LEVEL0_BLOCKS: 24510297]

[TOTAL_BLOCKS: 53129960]

QUERY

For query diagnostics, there is a log entry which can be activated by an appname.cfg configuration

called LongQueryTimeThreshold. The value to use is something small so that it triggers the log entry. I

use the value of .01.

There are many important pieces of information contained in this log entry. The number of blocks read

and the number of output cells of the query gives an indication of the amount of data being requested.

The number of formulas executed is an indication of the formula intensity on the query. The number of

odometers is an indication of the asymmetric layout of the query.

16 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

[2018-04-01T18:02:14.893-07:00] [_K_All] [NOTIFICATION:16] [QX-70] [QX] [ecid: 1522622817955,0] [tid:

140114092427008] [DBNAME: SOS200] [EXEC_TIME: 2700] [QUERY_USER: admin] [reportType: Grid]

[nHash: 2908443362] [sts: 0] [nOdometers: 618] [sumOfOdomSizes: 42495] [sumOfOdomVolumes: 90675]

[bSuppressMissing: F] [bCellStatusMDX: F] [bMeaningless: F] [bSuppressInvalid: T] [ullBlocksRead:

86216] [ullFormulaExec: 0] [ullFormulaMissing: 0] [ullFormulaExecOOT: 0] [bAsoCacheFull: F]

[nMicrocubes: 0] [nRetrClusters: 0] [nRetrTuples: 0] [nOutCellsAll: 90714] [nOutCellsNonMi: 85771]

[tScanAgg: 630] Report Text…

Query Trace Logs

Using the QUERYTRACE configuration parameter sets a query calculation flow trace to be run and

the results to be printed out to a file.

With the parameter QUERYTRACE -1, the query tracing output file includes:

• The input query

• An expanded query odometer

• General information about query calculation units

• A list of formulas and aggregations

• An ordered list of all output cells that are calculated or aggregated during the query, according to

solve order

The query tracing output file, query_trace.txt, is written to the database files location. It is extremely

detailed and therefore can be very large (not shown). A summary query tracing file is also created

called query_summary.txt (shown below). It contains a subset of the important statistics contained in

the query trace file.

Fri Feb 9 12:07:54 2018

Number of odometers retrieved: 1
Odometers sizes: 81
Odometers volumes: 720.000000
Number of blocks read: 8037
Number of cells acquired after scan/agg (for calculations and/or output): 1701001
Number of formula cache windows processed : 69535
Total number of dynamic cells processed: 38398
Number of aggregated cells : 311860
Number of formula calculation cells : 526
Number of calculations returned #Missing : 30631
Number of skipped executions: 0
Number of non-missing output cells produced by this query : 537
--------------------- Units processing times: --------------------------
Stored data scan and kernel aggregation total processing time: 0.150
Calculation units total processing time: 4.980
Total query processing time: 5.150 sec
Max odometer processing time: 5.150 sec for odometer No.1

 ************************ Hints for this query optimizations *************************
More than 30 percent of formulas calculations returned #Missing values.
 It might be caused by top down formulas.

 **

17 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

Calc Trace Logs

Using the CALCTRACE configuration parameter you can analyze member formula processing, and

refine your calculation scripts. Calculation tracing enables you to access logged information about a

calculation after the calculation script successfully executes.

Tracing a calculation does not change anything about calculation behavior. If a calculation is launched

in Smart View, and the connected server has calculation tracing enabled by an administrator, Smart

View displays a pop-up dialog box containing details after the calculation finishes. The calculation

tracing information can be pasted from the pop-up dialog into a text editor. The same information is

written into calc_trace.txt, located in the database files directory on the cloud service.

The calculation tracing information can help you debug calculation script execution, in case the results

of the calculation are not what you expected. To enable calculation tracing, the administrator must first

turn on the CALCTRACE application configuration parameter. Then, Smart View users can select data

cells to trace.

Outside of Smart View, you can also use the SET TRACE calculation command in calculation scripts

to select data cells to trace. SET TRACE enables you to trace multiple data cells. Additionally, you can

trace sections of calculation scripts by using a combination of SET TRACE mbrList and SET TRACE

OFF. However, to use SET TRACE command, you must execute the calculation script outside of

Smart View, using Cube Designer or the Jobs page of the cloud service.

Calculation tracing is not supported on applications with scenario management enabled.

The calculation tracing log provides the following insights about how the calculation worked, on the cell

that was traced:

• Whether a traced cell was calculated several times.

• The value of the cell before calculation.

• For each calculation occurrence, dependent values and new values are shown.

• The final value of the traced cell after all calculation completes.

• The lines of the calculation script which are responsible for the updated values.

FRAGMENTATION

Background

The process of updating data has the potential to cause cube fragmentation. And fragmentation can

happen whenever a block needs to be updated.

When OAC Essbase updates a block during a data load or a calculation, it does so first in memory,

and eventually the block is passed to the OS file system cache to be persisted within the data file(s). If

the block being written back to the PAG file no longer fits in the same location from which it was

originally read, (because it contains more data), the block is written to a new location within the PAG

file and the index is updated to reflect the new location of the block. The old block location is

abandoned, and when a block location is abandoned, the PAG file becomes fragmented. As the PAG

file becomes fragmented, the IND file also becomes fragmented for the same reasons.

The higher the fragmentation in the cube, the slower the overall performance of operations.

18 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

Causes

POORLY SORTED DATA LOAD

The block is defined by the dense dimensions. The process of how a block is brought into memory and

written to disk makes it critical that the data being bulk loaded has been sorted so that all the data for

each block gets loaded at once. This requires that the data file be sorted by the sparse dimensions.

This way the block is brought only one time into memory, and after the data has been loaded into the

block, it is ready to be written to the PAG file.

The point is that if the data load file is not properly sorted, the block will be updated (read and written

to disk) many times. Because the data in the block is constantly changing, it might have to be written

to a new location in the PAG file, causing fragmentation.

It is also possible to cause a kind of block deadlock situation during unsorted data loads. This happens

when a block that has been sent by OAC Essbase to the OS to be written is simultaneously requested

to be brought back in to be updated again by the OAC Essbase data load process. The I/O overhead

required to manage blocks that OAC Essbase wants to update that are sitting in the file system cache

waiting to be written, greatly reduces data load performance on top of potentially fragmenting the

cube.

POORLY FOCUSED USE OF CREATEBLOCK IN CALC SCRIPT

A new function was introduced to allow for special cases when a block needs to be explicitly declared

before any data is written to the block. One example is when a parent block needs to be created so

that the @SUM function can then be used to populate it with the data of the children. This function

should be used with extreme caution as it can lead to empty blocks in a database. The best practice

when using CREATEBLOCK is to use the CLEARBLOCK EMPTY command after all processing has

completed.

Block Margin

In OAC Essbase, the concept of a block margin was introduced to address the issue of PAG file

fragmentation. The basic concept is that when a block is written to disk, the size of the block will be

padded by a certain percentage to accommodate future growth. When an updated block is written to

storage, it will ideally fit into its original location. This strategy effectively eliminates fragmentation but

is dependent upon the Administrator allocating the block margin accurately.

The margin percent is controlled by a CFG setting called INPLACEDATAWRITEMARGINPERCENT

and the default value is 20. This means that a block will always be allotted 20 percent more space on

disk to allow for block growth. As was stated earlier, the customer modified CFG file is now on an

application basis and can be modified using the OAC Essbase UI.

Defragmenting

Typical best practice is to determine a baseline size for the index and page files of an OAC Essbase

cube. When the sizes begin to grow without explanation, it is a good indication that these files have

become fragmented.

There is a MAXL command for defragmenting a cube:

alter database 'appName'.'cubeName' force restructure;

Note: The cube is unavailable for read or write during the restructure defragmentation process.

19 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

APPENDIX

Case study #1

METHODOLOGY

1. Export outline into DBX workbook because it is very easy to analyze the outline in this format.

2. Convert upper level member’s storage property to dynamic calc in all dimensions using either

Cube Designer or OAC Essbase web UI.

3. Run query and analyze ODL log.

4. Correct for too many formula executions during the query.

5. Run query and analyze ODL log.

6. Correct for too much data required by the query.

SUMMARY

In this case study, there are two issues effecting query performance when taking an on-premise BSO

application and shifting it to Hybrid BSO in OAC Essbase. Before starting the conversion process, the

application configuration parameter called “LongQueryTimeThreshold” was set to .01 to trigger the

query statistics in the ODL log. These query statistics are important in understanding the intensity of

the query. Then the Hybrid conversion process converted all upper level members of all dimensions

into dynamic members. This can be done using either the Cube Designer Hierarchy Viewer or the web

UI outline editor. The data was then loaded and a representative query was run and the query

statistics noted.

The first issue found was that there was one member in a sparse dimension which contains a formula.

Sparse member formulas can have a dramatic impact on query performance if the order of the

calculation is not dealt with properly. In this case, the member is in the third of six sparse dimensions

and the formula is a variance type formula. The best practice is to calculate this type of sparse formula

after the sparse aggregations which either requires a high solve order on the member or the

dimension containing the formula member get moved after the aggregating sparse dimensions.

After correcting for the member formula, the query time was still not acceptable. The combination of

the size of the block and the number of blocks required by the query indicates that the number of

blocks needs to be reduced. The technique for reducing the number of blocks is to calculate and store

a selected group of blocks. The simplest method of this is to calculate and store one dimension.

20 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

Figure 2. Case Study #1 Observations

Case Study #2

METHODOLOGY

1. Export outline into DBX workbook because it is very easy to analyze the outline in this format.

2. If parallel script is running poorly due to index contention, modify the index cache to contain

the entire index files (*.ind) OR move the task dimension to the bottom of the outline.

SUMMARY

This case study involves a poorly performing calculation script that was utilizing the FIXPARALLEL

capabilities of the calculator. The issue was that the multi-threaded nature of parallel calculations led

to contention on the OAC Essbase index and it was causing threads to remain idle until the index

became free.

There are two ways to address this index contention. The first way is to increase the index cache so

that the entire index can fit into memory. While this does not eliminate the chance of index contention,

the index operations are faster and the thread wait time reduced.

The second way to virtually eliminate index contention is to locate the “task” dimension of the

FIXPARALLEL command at the bottom of the outline. The index is made up of 8KB pages. The pages

contain location information for each block in the database (sparse combinations). The lower in the

outline order you place the “task” dimension, the less chance that the index entries for the task

members will exist on the same index page and therefore, there will be no index contention during

processing.

Note: With proper outline sorting, the index cache does not need to be increased.

21 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

Figure 3. Case Study #2 Observations

Case Study #3

METHODOLOGY

1. Convert upper level member’s storage property to dynamic calc in all dimensions using either

Cube Designer or OAC Essbase web UI.

2. Run query and analyze ODL log.

3. Correct for the intense formula executions during the query.

4. Run query and analyze ODL log.

5. Correct for too much data required by the query.

SUMMARY

In this case study, the first dense dimension called “Custom” contained multiple formulas. When a

dense dimension contains formulas, those formulas need to be calculated after any aggregations to

improve performance. One of the formulas computed a rolling 13-month total which pulled data from

multiple dimensions. This intense formula was causing millions of formula calculations during the

query and the performance was unacceptable.

In addition to identifying formulas, the dimensions were segregated into types and the order of the

dimensions adjusted accordingly. The Location dimension was converted to dynamic upper level

calculations and it was used as the task dimension during parallel calculation.

The combination of storing a few key areas of the cube together with the new outline ordering brought

the query performance to an acceptable level.

22 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

Figure 4. Case Study #3 Observations

Case Study #4

METHODOLOGY

1. Examine the allocation calc script logic and determine a new cube shape was required.

2. Convert upper level member’s storage property to dynamic calc in all dimensions using either

Cube Designer or OAC Essbase web UI.

3. Run query and analyze ODL log.

4. Moved the stored sparse dimensions to top of the sparse list to get them included in the calc

cache.

5. Run query and analyze ODL log.

6. Moved the sparse dimensions to be after the dynamic aggregated sparse dimensions to

utilize the OAC Essbase kernel for the aggregation processing.

SUMMARY

In this case study, the requirement was to improve the performance of an allocation process for an on-

premise BSO cube. The cube was re-designed to be much smaller and faster in all aspects of cube

operations.

Changes to note:

• The block was resized.

• The outline was re-ordered.

23 WHITE PAPER / OAC Essbase Hybrid Block Storage Option Performance Tuning

• Some of the dimensions were made dynamic.

Results to note:

• The PAG and IND files got smaller.

• The query time, the restructure time and the export time improved.

Figure 5. Case Study #3 Change in Block Size

Figure 6. Case Study #3 Observations

ORACLE CORPORATION

Worldwide Headquarters

500 Oracle Parkway, Redwood Shores, CA 94065 USA

Worldwide Inquiries

TELE + 1.650.506.7000 + 1.800.ORACLE1

FAX + 1.650.506.7200

oracle.com

CONNECT WITH US

Call +1.800.ORACLE1 or visit oracle.com and cloud.oracle.com. Outside North America, find your local office at oracle.com/contact.

 blogs.oracle.com/oracle facebook.com/oracle twitter.com/oracle

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are

subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed

orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be

reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or

registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks

of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0618

https://www.oracle.com/
https://cloud.oracle.com/home
http://www.oracle.com/contact

