

Business / Technical Brief

Helidon Project

Helidon is a cloud-native, open-source framework
for writing Java microservices that run on a fast
web core powered by Netty now, and Loom later.

January 26, 2022, Version 1.1
Copyright © 2023, Oracle and/or its affiliates
Public

1 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

2 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

Table of contents

Context: Cloud-Native Microservices Applications 4
Microservices Architecture 4
Microservices Frameworks 5
Eclipse MicroProfile 5
Cloud Native Computing 7

Oracle Hatches Helidon 9
Inception and Initial Iterations 9
The Foundation is Formed 9
The Bird Flies the Nest 10

Helidon Features and Benefits 10
Open Source with Support 10
Two API Flavors for Two Programming Styles 11
Feature Richness 11
Enterprise Features 12
Integrations 13
Packaging, Footprint, and Startup Time 14
Security 15
Observability 15
Ecosystem 16
Backed by Oracle 17

Example Helidon Application Architecture with Kubernetes 17
Adoption and Innovation 18

Global Cross-Industry Adoption 18
Widespread Usage Within Oracle 18
Innovation In Step with Java 19

Fly with Helidon 19

List of images

Image 1. Helidon is Greek (Χελιδόνι) for swallow: a light, fast, agile bird. 4
Image 2. Eclipse MicroProfile 5.0 and standalone API specifications. 6
Image 3: The evolution of enterprise application development. 8
Image 4: Helidon high-level architecture. 9
Image 5: Helidon major releases, compatibilities, and contents. 10
Image 6: Helidon API flavors and programming styles. 11
Image 7: Helidon SE feature set. 12
Image 8: Helidon MP feature set. 12
Image 9: Helidon footprints and startup times by packaging option. 15

3 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

Image 10: Helidon CLI usage output. 16
Image 11: Example Helidon Application Architecture with Kubernetes 18
Image 12: Global cross-industry Helidon adoption. 18

List of tables

Table 1: Eclipse MicroProfile 5.0 API Specifications and Purposes 6
Table 2: Eclipse MicroProfile Standalone API Specifications 7

4 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

Image 1. Helidon is Greek (Χελιδόνι) for swallow: a light, fast, agile bird.

Purpose

This document provides an overview of the context, evolution, advantages, and
uptake associated with Helidon, a cloud-native, open-source framework for
writing Java microservices. It is intended to educate you about Helidon and
encourage you to select Helidon for your Java microservices projects.

Helidon will be covered completely in upcoming sections of this document. But
first, it is informative to consider the context behind Helidon’s birth, for a sharper
sense of the environment it engages in.

 User Testimonial
“When we started the
project around 2019,
we were looking at
using Java, and we
wanted to adopt a
modern approach
and microservices.
Obviously, Helidon
was designed for that.
It does what we need,
and it’s been very
good.”
Martin Hall, Helidon User
Senior Manager
Oracle Hospitality GBU

Context: Cloud-Native Microservices Applications

Powerful trends have significantly altered the trajectory of enterprise application
development in the last decade. The rise of microservices architecture,
microservices frameworks and standards, and cloud native computing set the
context for Oracle’s launch of Helidon. As important background for Helidon,
these trends are reviewed below.

Microservices Architecture

The term “microservices architecture” refers to a style of enterprise application
architecture in which an application is designed as an ensemble of small services,
each typically running in its own process, and remotely invokable usually over
HTTP1. The processes running microservices are independently deployable, and
their deployment is typically automated.

Microservices architecture emerged as an alternative to monolithic architecture,
in which all server-side logic of an application is deployed as a single executable
unit. The driving force for this evolution was independence: different parts of
applications change at different rates, so being able to deploy them separately,
instead of redeploying an entire monolith when any one part changes, is more
efficient, less complex, and less disruptive. Independent deployment also lends
to independent scaling of services according as the load on them, and
independent implementation technology and data sources as appropriate in the
organization owning the application.

 Major Trends in Enterprise
Application Development

• Microservices Architecture:
designing applications as
an ensemble of small,
independently deployed,
remotely invokable
services

• Cloud Native Computing:
designing applications to
take advantage of the
cloud delivery model, and
services offered by cloud
providers

1 https://martinfowler.com/articles/microservices.html

5 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

In short, microservices architecture has the potential to make enterprise
application development and operation more agile, less brittle, and more
productive.

Defining microservices architecture as an ensemble of “small” services of course
begs the question of what “small” means. Microservices frameworks, including
Helidon, generally support services ranging from tiny, like “Hello World,” to logic-
rich functions that access data sources and advance workflows, for example.

Microservices Frameworks

As the microservices architectural style emerged, so did frameworks to help
practitioners implement it, naturally. The landscape of Java microservices
frameworks is crowded with many examples, dating from 2008 for a simple
RESTful services framework, to 2020 for a common implementation of Eclipse
MicroProfile specifications (discussed in the next section).

Though the landscape is crowded, it can be split into groupings of frameworks
with similar characteristics. The group at the lightest end of the spectrum, which
includes Helidon SE, supports implementing RESTful microservices without
depending on any enterprise Java standards. The group at the other, heaviest,
end of the spectrum, is made of open-source Java EE application servers that
have been enhanced to support specifications intended specifically for Java
microservices. In between these extremes there are two groups: one consisting
of alternative open-source web application frameworks, and one comprising
open-source implementations of standards, primarily the Eclipse MicroProfile
specifications. This latter group includes Helidon MP.

Eclipse MicroProfile

In June 2016 the MicroProfile initiative was announced, jointly by
representatives of vendors and user communities in the Enterprise Java space,
as a collaboration to deliver lightweight runtimes with a core set of open
standard APIs enabling development of enterprise microservices. MicroProfile
1.0 was released a few months later, based on the CDI 1.1, JAX-RS 2.0, and
JSON-P 1.0 specifications as its core, familiar to Java EE developers. The
MicroProfile initiative became an Eclipse project in December 2016, thereafter
known as Eclipse MicroProfile, with the stated mission of “optimizing Enterprise
Java for a microservices architecture.”2

Over the next six years, Eclipse MicroProfile rapidly developed and released
major versions 2.0, 3.0, 4.0, 5.0, and 6.0 of its umbrella specification, with
intervening minor versions, consistent with its founding goal of rapidly evolving
its platform.

As diagrammed in Image 2, Eclipse MicroProfile 5.0 is comprised of 13 core API
specifications which are included in the umbrella specification. In addition, there
are five standalone API specifications not yet included in the umbrella
specification.

2 https://www.eclipse.org/community/eclipse_newsletter/2017/september/article1.php

6 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

Image 2. Eclipse MicroProfile 5.0 and standalone API specifications.

Each MicroProfile 5.0 API specification’s purpose is summarized in Table 1,
ordered by the order in which they were added to the umbrella specification.

Table 1: Eclipse MicroProfile 5.0 API Specifications and Purposes

API SPECIFICATION PURPOSE

Jakarta CDI 3.0 Specifies a dependency injection mechanism with lifecycle contexts,
decorations, interceptors, and event notifications.

Jakarta JAX-RS 3.0 Specifies a set of APIs to develop web services according to the
Representational State Transfer (REST) style.

Jakarta JSON-P 2.0 Defines a framework for parsing, generating, transforming, and
querying JSON documents.

Config 3.0 Defines a system for application configuration from different
sources, with defaults and overrides from the environment.

Fault Tolerance 4.0 Defines a standard API and approach for applications to follow to
achieve fault tolerance.

JWT Authentication 2.0 Outlines a proposal for using OpenID Connect (OIDC) based JSON
Web Tokens (JWT) for Role Based Access Control (RBAC) of
microservice endpoints.

Metrics 4.0 Proposes the addition of well-known monitoring endpoints and
metrics for each process adhering to the Eclipse MicroProfile
standard.

Health 4.0 Defines a single container runtime mechanism for validating the
availability and status of a MicroProfile implementation.

OpenTracing 3.0 Defines an API and behaviors that allow services to participate in an
environment where distributed tracing is enabled.

OpenAPI 3.0 Provides a set of Java interfaces and programming models which
allow Java developers to natively produce OpenAPI v3 documents
from their JAX-RS applications.

REST Client 3.0 Provides a type-safe mechanism for invoking RESTful services.

8

MicroProfile 5.0

Jakarta
JAX-RS 3.0

Jakarta
JSON-P 2.0

Jakarta
CDI 3.0

Config 3.0

Fault
Tolerance

4.0

JWT
Authentication

2.0
Health 4.0Metrics 4.0

Open
Tracing 3.0

Open API
3.0

= Updated
= No change from last release (MicroProfile 4.1)

= New

Rest Client
3.0

Jakarta
JSON-B 2.0

Standalone

Context
Propagation

1.3

Reactive
Streams

Operators 2.0

Outside umbrella

Reactive
Messaging

2.0

GraphQL 1.1

LRA 1.0

Jakarta
Annotations

2.0

MicroProfile 5.0 (Dec 7th 2021)

7 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

Jakarta Annotations 2.0 Defines a collection of annotations representing common
semantics enabling a declarative style of programming.

Jakarta JSON-B 2.0 Defines a binding framework for converting Java objects to and
from JSON documents.

Each standalone specification’s purpose is summarized in Table 2, ordered by
the order in which they appear in Image 2 above.

Table 2: Eclipse MicroProfile Standalone API Specifications

API SPECIFICATION PURPOSE

Reactive Messaging 2.0 Delivers a way to build microservice systems promoting
location transparency and temporal decoupling, enforcing
asynchronous communication between different parts of a
system.

Reactive Streams Operators 2.0 Defines an API for manipulating Reactive Streams,
providing operators such as map, filter, flatMap, in a similar
fashion to the java.util.stream API introduced in Java 8.

Context Propagation 1.3 Introduces APIs for propagating contexts across units of
work that are thread-agnostic.

GraphQL 1.1 Provides a "code-first" set of APIs that enable users to
quickly develop portable GraphQL-based applications in
Java.

LRA 1.0 Introduces annotations and APIs for services to coordinate
long running activities while maintaining loose coupling and
guaranteeing a globally consistent outcome without
needing to lock data.

In addition to the mission, rapid specification development, umbrella
specification, and API specifications, Eclipse MicroProfile provides a process for
certifying an implementation’s compatibility with a specification, using a
Technology Compatibility Kit.

Cloud Native Computing

After microservices architecture, frameworks, and standards, the rise of cloud
native computing within the last decade is the other major trend setting the
context for Oracle’s launch of Helidon.

Of course, cloud native computing assumes cloud computing – a megatrend in
enterprise application development not separately summarized in this
document. Suffice it to say that over the last two decades, cloud computing has
emerged as a compelling model of information technology ownership:
essentially renting computing capacity, and infrastructure and software services,
from cloud providers instead of owning the same infrastructure and software in
an organization’s own data center.

Cloud native computing refers to the concept of building and running
applications to take advantage of the capabilities offered by the cloud computing
model – and the services offered by cloud providers. Cloud native applications
are designed and built to exploit the scale, elasticity, resiliency, and flexibility the

8 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

cloud provides, and the services available. The Cloud Native Computing
Foundation, founded in 2015, defines the term this way:

Cloud native technologies empower organizations to build and run
scalable applications in modern, dynamic environments such as public,
private, and hybrid clouds. Containers, service meshes, microservices,
immutable infrastructure, and declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient,
manageable, and observable. Combined with robust automation, they
allow engineers to make high-impact changes frequently and
predictably with minimal toil.

Cloud provider services empower modern application development using
technologies such as Docker, Kubernetes, microservices, serverless functions,
streaming, and a wide variety of ancillary application services (like authorization
and storage, to name just two). DevOps services covering the entire software
development lifecycle from planning to coding to production operations
monitoring are part of cloud providers’ services suites.

Cloud native applications are programs designed for a cloud computing
architecture. They have many benefits including independence, resilience,
agility, automation, observability, and availability. Cloud native applications are
built with independent services packaged in self-contained lightweight
containers that are portable, scalable, isolated from infrastructure, and
deployable into container runtime engines based on Kubernetes. Cloud native
applications are often delivered using a DevOps pipeline that includes
continuous integration and continuous delivery (CI/CD) toolchains, which are
important for automating building, testing, and deployment.

Cloud native architecture concerns the design of applications or services that
were made specifically to exist in the cloud, rather than in a more traditional on-
premises infrastructure. Microservices are the core of cloud native application
architecture.

Image 3: The evolution of enterprise application development.

9 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

Image 3 above depicts these broad evolutionary trends in enterprise application
development that set the context for Oracle launching Helidon.

Oracle Hatches Helidon

Inception and Initial Iterations

Recognizing the rising trends of microservices architecture and cloud-native
computing, a team at Oracle incepted a new project in 2014 for Java
microservices support, from scratch, which would eventually become Helidon.
Over three early iterations the concept simplified from a platform to a runtime
with a micro-kernel and modules, to a framework for writing cloud native Java
microservices. In fact, the name for the latter concept, before Helidon, was J4C -
Java for Cloud – reflecting a focus on cloud-based deployments of microservice
applications built with a simple, small, and light set of supporting components
that could be used in Java SE applications.

The Foundation is Formed

In 2017 the J4C team concluded the core of its cloud-native microservices
project should consist of a fast reactive web server, a configuration capability,
and a security system. Netty was chosen as the core server for its speed. This
set of features formed the foundation of J4C, which would become Helidon SE.

Meanwhile, the Eclipse MicroProfile project had recently been proposed and
progressing. The J4C team recognized that adding MicroProfile support would
provide a path for Java EE developers familiar with specifications like CDI, JAX-
RS, and JPA to venture into microservices architecture with an Oracle-backed
project. Adding MicroProfile support to J4C amounted to a simple step of
layering MicroProfile API support on top of the J4C foundation. The initial
implementation of this enhancement was accomplished in 2018, and Helidon
MP was born. The resulting high-level architecture depicted in Image 4, of
Helidon MP layered on Helidon SE, has remained stable ever since.

Image 4: Helidon high-level architecture.

Helidon Architecture

Copyright © 2019 Oracle and/or its affiliates.

Helidon MP

Helidon SE

Extensions

10 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

The Bird Flies the Nest

After a carefully considered project naming process, J4C was renamed Helidon,
and the project was released to the world in September 2018, as open-source
software hosted on GitHub with a dedicated project website and presence on
many web media properties.3

By this time, several Oracle product teams had incorporated Helidon for
implementing microservices in their products, providing valuable vetting and
feedback. A rich roadmap was defined, determining the direction of the project
including publicizing it on the conference circuit. Principals from the Helidon
team became contributors to the Eclipse MicroProfile project, and Oracle joined
the Eclipse MicroProfile Working Group.

Since then, Helidon has seen a series of releases, reflecting specification
revisions, integrating cloud services and other software, and generally adding
enhancements to the project and its ecosystem. Image 5 below tabulates those
releases and their compatibilities and contents.

Image 5: Helidon major releases, compatibilities, and contents.

The next section’s coverage of Helidon features and benefits is based on the
most recent release in the series, Helidon 3.x, while the following section’s
coverage of innovation by Helidon is based largely on Helidon 4.x.

Helidon Features and Benefits

Open Source with Support

Helidon is open-source software, licensed with Apache License, Version 2.0. Its
codebase is kept in GitHub. Its artifacts are published to Maven Central. This
makes it easy for users to inspect, modify, and contribute to its source code. The
Apache license makes it easy for organizations to adopt Helidon from a licensing
perspective. Publishing artifacts to Maven Central makes it easy and natural for
developers and operators to pull Helidon binaries into development
environments and CI/CD pipelines. In short, Helidon is intentionally aligned with
modern mainstream development practices to make it as easy as possible to
adopt and use.

11 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

And yet, enterprise-grade support is also available for Helidon. Oracle offers
cost-competitive commercial support for Helidon, for customers serious about
support SLAs for their production operations. So, customers can get the best of
both worlds: seamless incorporation of Helidon into DevOps practices and third-
party product approvals, and award-winning customer support for high-scale
mission-critical production applications.

Two API Flavors for Two Programming Styles

Helidon offers two API flavors: Helidon SE, and Helidon MP. Both are fun to
program in, but each caters to a different style of programming:

• Helidon SE is pure reactive Java: no annotations, no dependency
injection, no blocking code. It is as small and light and fast as possible.

• Helidon MP implements Eclipse MicroProfile, using CDI (including
extensions) for inversion of control, JAX-RS annotations for RESTful
services, and imperative coding. Those characteristics are comfortable
and familiar to experienced enterprise Java programmers.

The “Hello World” code samples in Image 6 illustrate the differences between the
programming styles supported by Helidon SE and Helidon MP. By offering two
distinct API flavors, Helidon accommodates different preferences in
programming styles within the same microservices framework.

Image 6: Helidon API flavors and programming styles.

Feature Richness

Both API flavors, Helidon SE and Helidon MP, offer a rich and similar set of
features, like configuration and metrics and security, as examples. In Helidon
MP, the APIs for the features are specified by a standards body, whereas in
Helidon SE they are not. Image 7 depicts the feature set available in Helidon SE,
while Image 8 depicts the feature set available in Helidon MP. In both cases, the
set of features available is complete enough to cover every aspect of the needs
of modern microservices applications.

3 https://medium.com/helidon/helidon-takes-flight-fb7e9e390e9c

12 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

Image 7: Helidon SE feature set.

Image 8: Helidon MP feature set.

Enterprise Features

Helidon intentionally includes many features required by industrial-strength
enterprise applications – even when they are now architected with microservices.
Among these features are support for data access, messaging, and transactions,
with integrations to existing Oracle products in each category.

For data access, Helidon SE includes a DBClient, and Helidon MP includes
persistence features. Helidon SE’s DBClient provides a unified, reactive API for
working with databases in a non-blocking way, supporting both JDBC-accessible
databases and MongoDB. Helidon MP’s persistence features include
DataSources with JDBC connection pools, Java Persistence API (JPA) integration,
and Java Transaction API (JTA) integration. Oracle Autonomous Database is
supported by the data access features in both Helidon API flavors.

For messaging, both Helidon SE and Helidon MP support reactive messaging,
with connectors for JMS (including Oracle WebLogic JMS), Kafka, and Oracle AQ.

13 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

Transaction support in Helidon MP includes support for MicroProfile Long-
Running Actions (LRA) and Oracle MicroTx Free, in addition to support for the
Java Transaction API. LRA facilitates implementations of the Saga pattern
amongst microservices: sequences of local transactions, with compensating
transactions in case of local transaction failure. Oracle MicroTx Free is a free
transaction manager for microservices that supports multiple transaction
protocols including LRA.

Integrations

Helidon integrates with many other technologies that are useful in the
implementation of microservices applications, for example:

• Oracle Coherence and Coherence Community Edition, the leading in-
memory data grid, which can serve as a distributed cache or system of
record for stateful microservices

• The Oracle Cloud Infrastructure (OCI) SDK for Java, for using a wide
variety of OCI services from within Helidon applications

• Oracle WebLogic Server (WLS), including

o Bi-directional REST service invocations

o Helidon-to-WLS SOAP web service invocations

o Helidon consumption and production of messages on WLS-
hosted JMS destinations

o Single sign-on between Helidon and WLS -hosted services
using Oracle Identity Cloud Service

o Distributed transaction coordination between Helidon and WLS
-hosted resources using Oracle MicroTx Free

• Messaging Connectors for JMS, Kafka, and Oracle AQ, to allow Helidon
applications to consume and produce messages with those providers

• HashiCorp Vault for accessing securely stored tokens, passwords, API
keys, PKI certificates, and other secrets

• Micrometer Metrics, for monitoring Helidon applications using
Micrometer

• Neo4j, for using a graph database from within Helidon applications

The Coherence and OCI SDK integrations merit further information. When using
Coherence with Helidon MP, the following integration points are available:

• Coherence can be bootstrapped into Helidon MP applications via CDI, so
that Helidon-based REST and gRPC services can access Coherence data
when they’re ready to take requests

• Coherence resources like NamedMaps or NamedTopics can be injected
into Helidon MP microservices via CDI; CDI-managed objects like
EventInterceptors or CacheStores can be injected into Coherence; and
CDI observers can handle Coherence-generated events

• All Coherence metrics are available via standard Helidon metrics
endpoints

14 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

• Coherence can be configured using MicroProfile Config, and Coherence
can act as a MicroProfile ConfigSource

• Coherence tracing spans are automatically included in Helidon spans

When using the OCI SDK with Helidon, more that 100 OCI service APIs are
supported, in both blocking and reactive interaction styles. The Helidon OCI
support includes integration with OCI observability features. Each OCI service
has its own client provided by the OCI SDK, and using the client in a Helidon
application only requires adding a dependency on it to the application’s pom file,
then injecting the client into a Helidon service. Configuration and authorization
of the OCI client can be done with Java properties files.

These integrations allow Helidon applications to leverage and benefit from the
functionality of a wide variety of software typically needed in high-scale mission-
critical enterprise applications.

Packaging, Footprint, and Startup Time

It has been a Helidon design goal from the beginning to be small, light, and fast –
as measured by disk and memory footprint, and by Helidon JVM startup time. In
relation to this goal, Helidon supports three different packaging methods for
Helidon-based applications:

1. Helidon applications can be packaged as an executable jar file, with
dependencies in a contained /libs directory, launched with a JVM in the
container or environment.

2. Helidon applications can be packaged as a JLink runtime image,
resulting in a customized Java runtime that is smaller and faster to start
than an executable jar file; or

3. Helidon applications can be packaged as a GraalVM native image – a
native executable with the smallest possible footprint and fastest start
time.

In all three options, the Helidon application is a self-contained Java SE
application running in its own dedicated JVM (or native executable), which can
be containerized in a Docker image. Helidon provides tooling for all three
options to make them easy to use.

Due to Helidon’s design goal of being small, light, and fast, all three packaging
options yield excellent footprints and startup times in comparison to
heavyweight application servers. But the choice of packaging option further
differentiates those measures for the same application, as graphed in Image 9.

15 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

Image 9: Helidon footprints and startup times by packaging option.

Security

Helidon has built-in support in both API flavors for multiple security features,
including authentication, authorization, outbound identity propagation, and
auditing. Seven different security providers are supported, including Open ID
Connect, and Oracle Identity Cloud Service. Helidon’s OCI integration
automatically picks up OCI credentials from the environment for authenticating
to OCI. Encrypting configuration secrets is part of Helidon’s security feature set,
as is JEP-290 deserialization filtering.

In addition to the security features built into Helidon’s feature set, Helidon is also
developed under the umbrella of Oracle’s security policies. The Helidon
development team routinely applies Oracle’s security policies and procedures to
ensure that published Helidon artifacts are safe and up to date.

Observability

Monitoring and diagnosing the production operation of modern distributed
enterprise applications is challenging. Helidon meets that challenge with a set of
features specifically intended to provide thorough observability of a Helidon-
based microservices application. Included in that feature set are the following
capabilities:

• Logging – Helidon provides support for multiple logging frameworks:
Java Util Logging (JUL), SLF4J, and Log4j, including Mapped Diagnostic
Contexts (MDC). Helidon even provides an MDC implementation for use
with JUL, since it does not contain one out of the box.

• Metrics - the Helidon metrics subsystem provides a unified way for
Helidon servers to export monitoring data to management agents, and a
unified Java API to register and update metrics to expose telemetry from
their services.

• Tracing - Helidon includes support for distributed tracing through its
own API, backed by either the OpenTelemetry API, or by OpenTracing
API. Tracing is integrated with WebServer, gRPC Server, and Security.

16 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

• Health Checks – both Helidon SE and Helidon MP provide functionality
for implementing application health checks, including liveness and
readiness probes used by Kubernetes. Helidon ships with built-in health
checks for common inquiries such as heap utilization and deadlock
detection.

Ecosystem

Finally, in terms of features and benefits, Helidon has an ecosystem around its
Java APIs and artifacts, comprised of useful tools, IDE support, rich
documentation, training courses and certification, very active blog publication,
ubiquitous social media presence, and public communication channels to its
development team.

One of the useful tools in the ecosystem is the Helidon CLI. The CLI runs in a
shell and allows users to generate and build Helidon applications, add features to
them, and print information about them.

The CLI includes a project starter command, helidon init, that walks users
through a selection interview to bootstrap an application, pulling from a rich set
of application building blocks or archetypes. Upon completing the interview,
source code for the application, with components selected in the interview, is
generated into a project directory structure. Then another simple CLI command
builds the application specified. The set of archetypes is available via direct
command line arguments if additional customization or options are needed.

The CLI also features a “development loop” command, wherein it monitors for
changed project source files, and rebuilds and restarts the application upon
detecting one, enabling a tight edit-compile-run-test loop while developing
Helidon-based services. Image 10 shows the usage output for the CLI when run
with no parameters.

Image 10: Helidon CLI usage output.

Another useful tool in the ecosystem is the project starter UI on the Helidon
project website. This UI generates a Helidon project directory structure and
initial set of files to jump-start a Helidon application development effort. It
allows users to select a Helidon API flavor, application archetype (from the same

17 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

rich set utilized by the CLI), and JSON library, and allows users to customize
generated Maven coordinates and package names. It then downloads an archive
containing a generated starter project, all from an easy-to-use web UI.

The ecosystem also includes IDE support for Helidon. There is a Helidon plugin
for IntelliJ IDEA, and a Visual Studio Code extension for Helidon.

Oracle University offers training and certification for Helidon, with a course
called Helidon Microservices Developer, and a corresponding certification called
Oracle Certified Professional Helidon Microservices Developer.

Backed by Oracle

Though it is an open-source project, Helidon is backed by the strength of Oracle.
Oracle personnel make up the core Helidon project team, which has been stable
since Helidon’s beginning.

Oracle offers cost-competitive commercial support for Helidon, for customers
serious about support SLAs for their production operations.

Helidon is strategic technology at Oracle – one of the products within Oracle
considered critical to success in delivering solutions. It is widely adopted within
Oracle by applications and industry vertical solutions, as highlighted next.

Because of Helidon, Oracle is a member of the Eclipse MicroProfile Working
Group, and senior Helidon development managers sit on the Eclipse MicroProfile
Steering Committee.

In short, Helidon is here to stay at Oracle, and in the microservices framework
landscape.

Taken together, all these Helidon features and benefits have led to eager and
growing adoption of Helidon as presented next.

Example Helidon Application Architecture with Kubernetes

Image 11 below depicts a generic typical Helidon application architecture with
containerized Helidon services orchestrated with Kubernetes. This example is
taken from an actual Helidon-based system at a customer outside Oracle, who
use Oracle Verrazzano Enterprise Container Platform to run Helidon-based
microservices in a Kubernetes environment.

This system has web applications running on mobile devices or laptop
computers acting as clients of Helidon-based microservices running in
Kubernetes and accessing data sources in the enterprise. An Istio service mesh
is used for traffic ingress and service discovery. Kubernetes ecosystem tooling –
Prometheus and Grafana – are used to monitor the metrics exposed by the
Helidon application, and Jaeger is used as a distributed tracing UI. The Helidon-
based services in the system integrate with a variety of external systems in the
customer’s environment for security, communication, and other functions. And
in the devops activity, popular tooling is used to create containers with the
application, and continuously integrate and deploy the application.

This example can likely serve as a template, or reference architecture, for many a
Helidon-based microservices application.

18 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

Image 11: Example Helidon Application Architecture with Kubernetes

Adoption and Innovation

In the few years since Helidon became available, it has earned extensive
adoption both within Oracle amongst product teams, and externally to Oracle
amongst organizations throughout the world.

Global Cross-Industry Adoption

It is always fascinating to observe how a technology product is used across
industries and geographies in the world, and Helidon is no exception. Image 12
below provides a sampling of Helidon usage globally, from governments to
telecommunications companies to financial services firms and more.

Image 12: Global cross-industry Helidon adoption.

Widespread Usage Within Oracle

Oracle is where Helidon was born, and Oracle product teams were first to vet
Helidon for industrial-strength usage. Helidon held up to these teams’
requirements for utility and quality in a microservices framework, and
consequently has earned widespread usage within Oracle. Many of these

19 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

examples have been written up and published as Helidon success stories,
available for the public to read and review:

• A Helidon Flight: Oracle Hospitality Integration Platform

• Oracle CX Industry Framework: A Helidon Flight (with Aerobatic Stunts!)

• Flying in Formation: Helidon and WebLogic Integration in Oracle
Communications Order and Service Management

Innovation In Step with Java

Starting with two API flavors for two programming styles, Helidon has been an
innovator in the microservices framework space. And Helidon is taking that
habit to the next level in its 4.0 release, by leveraging virtual threads in Java 19
(part of Project Loom). Developed in close collaboration with the Java team at
Oracle, a new web server named Helidon Níma will debut in Helidon 4.0,
replacing Netty with an HTTP server based on virtual threads.

Níma is more than a web server. It’s a complete service framework, on which
additional servers like gRPC will be built, that is optimized for virtual threads. All
the bits in previous Helidon servers that were optimized to presume that threads
were heavyweight and should only be created sparingly, are removed. The Níma
API is optimized and streamlined to take advantage of this new reality. This
allows users to write code looking like it might block, without worrying that it will
block: the platform thread underlying the virtual thread running the user code
will continue executing other virtual threads. The overhead of the virtual threads
is orders of magnitude lower than that of platform threads.

Virtual threads allow for game-changing breakthrough performance with
imperative-style code. Performance testing of Helidon Níma has shown that
simple imperative code can achieve the throughput of reactive code when using
virtual threads. This will deliver tremendous productivity benefits to teams
developing microservices applications, as they will no longer have to content
with the complexity, unreadability, and difficulty of debugging reactive code.
Instead, they can write simple imperative-style code, and still get the scalability
of reactive code.

Fly with Helidon

Thank you for investing the time and attention to read about the context,
evolution, advantages, and uptake of Helidon. It is an innovative and proven
cloud-native, open-source framework for writing Java microservices, that is sure
to see increasing adoption and functionality as time goes on.

With its support for Eclipse MicroProfile, Helidon is an excellent choice for
migrating Java EE applications to a microservices architecture. Helidon is also an
excellent choice for greenfield development, with the option of familiar Jakarta
EE APIs, or lightweight reactive APIs. And Helidon supports services of all sizes,
ranging from the tiniest that just return a constant, to logic-rich functions that
access data sources and advance workflows.

Helidon is a great framework that you can begin using today. Your team can
quickly be productive – you can begin your applications immediately using the

20 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

starter archetypes. You can develop them locally and deploy them into on-
premises or cloud environments. When you are ready to move your application
into production and you need the full assurance of Oracle backing, you can
obtain cost-competitive commercial support, training, and expert services.

Please give Helidon serious consideration for your next microservices project. If
history is any indication, it’s possible yours might become the next Helidon
success story!

In the meantime, here are the resources you can used to get started, and to
follow the evolution of Helidon. Its development team would be happy to hear
from you any time!

• Project website: https://helidon.io

• Medium publication: https://medium.com/helidon

• GitHub repository: https://github.com/helidon-io/helidon

• Public Slack workspace: https://slack.helidon.io/

• Twitter account: https://twitter.com/helidon_project

• Mastodon account: https://mastodon.social/@helidon

• YouTube channel

• Stack Overflow tag: https://stackoverflow.com/tags/helidon

21 White Paper / Helidon Project / Version 1.1

 Copyright © 2023, Oracle and/or its affiliates / Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2023, Oracle and/or its affiliates. All rights reserved. This document is
provided for information purposes only, and the contents hereof are subject to change
without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied
warranties and conditions of merchantability or fitness for a particular purpose. We
specifically disclaim any liability with respect to this document, and no contractual
obligations are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group. 0120

Author: Randy Stafford

.

	Table of contents:
	Fly with Helidon:
	Image 12 Global crossindustry Helidon adoption:
	1 httpsmartinfowlercomarticlesmicroserviceshtml:
	2 httpswwweclipseorgcommunityeclipsenewsletter2017septemberarticle1php:

