
Best current practice

OCSBC - UCaaS security aspects

Best Current Practise

OCSBC – UCaaS security aspects

Category: Informational

February 2024, Version 1.00

Best current practice

OCSBC - UCaaS security aspects

Revision History
Version Author Description of

Changes
Date Revision

Completed
0.00 Matej Maric Initial version
1.00 Matej Maric Atcpd debug logs

captured, generic TLS
intro

09_07_2024

Abstract
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC
2119.

The configurations provided in this document SHOULD NOT be treated as RECOMMENDED. The
information is intended to provide guidance as to the OCSBC behaviour when configurations listed in
this document are applied.

This document is intended to provide the reader with information regarding configuration of an OCSBC
to provide user authentication via several RADIUS servers.

Applicability
The details provided are relevant to physical & virtual Oracle Communications Session Border Controller
(OCSBC) instances.

Best current practice

OCSBC - UCaaS security aspects

Table of content

Contents
Revision History .. 2

Abstract ... 2

Applicability... 2

Table of content .. 3

Network function .. 3

TLS generic introduction ... 4

Software .. 7

Introduction .. 7

LAB UCaaS demo topology .. 7

SBC security configuration objects ... 7

End entity certificate ... 7

End entity certificate install from SBC generated CSR .. 8

End entity certificate install from PKCS12 bundle .. 13

TLS profile ... 14

SDES profile and media-security policy .. 15

TLS and SRTP troubleshoot ... 16

Successful TLS and SRTP verification .. 16

Failing TLS and SRTP cases .. 19

Abnormal TLS cases .. 23

Abnormal SRTP cases .. 26

Network function
Focus of this BCP is SBC that coexist as part of UCaaS demo LAB that terminates SIP TLS connections
towards Microsoft (Direct Routing), Webex (Calling), Zoom (Phone) and Google (SipLink). SBC acts as
well as media (RTP) termination point interworking in such deployments SRTP from internet legs into
core RTP legs. As a best practice in general, security wise, we’ll be checking lab’s OCOM. Calling devices
here are UCaaS native clients and lab’s IMS registered softphones simulating PSTN.

Best current practice

OCSBC - UCaaS security aspects

TLS generic introduction

TLS 1.2 – This document will not revert to older TLS versions as are deprecated today and should not be
used at all.

In TLS 1.2 RSA, DH and DHE cipher suites are available.

Key exchange algh being RSA, handshake on high level looks as depicted below:

client hello - (client exposes TLS version, generates random, exposes cipher suits supported)

server hello - (server agrees on TLS version(or not), sends it's 'random', and picks one of the cipher suits
- picks in this case RSA one)

certificates(sent by server) - server sends its certificate chain

"client key exchange", "encrypted handshake"(sent by client) - before sending this messages client
authenticates the server identity by checking the server-side CA public certificate chain against its
trusted store. If the check is done successfully the client proceeds with "client key exchange". In this
message client creates a pre-master secret and encrypts it with learned server public key(server's end-
entity certificate, nothing to do with CA public certificates)

upon receipt of "client key exchange" server should be able to decrypt it with its private key as there are
mathematical relations between its private and public key. That's the point server should learn same
pre-master that client generated

Finally, both sides create a session key as SESSION_KEY= HASH of(premaster secret, client random,
server random) and that key is used as an encryption/decryption key for traffic as of that point on

RSA cipher suits are with obvious downside:

Note above that "client random" and "server random" are per session values but they are exchanged in
clear text! Once security is compromised and one gets the server private key then the attacker has a
clear view over all historically saved sessions. This is due to the fact that server private-key exists as
variable in session key calculation while other variables in calculation are exchanged in clear text.

As requirements on security evolved we've got new DH, DHE cipher suits and main idea here was to rule
out server's private key from session-key calculation.

Best current practice

OCSBC - UCaaS security aspects

So still staying in TLSv1.2 but with DH and DHE cipher suits in use that handshake would look as follows:

client hello - (client exposes TLS version, generates random, exposes cipher suits supported)

server hello - (server agrees on TLS version(or not), sends it's 'random', and picks one of the cipher suits
- picks in this case DHE one)

certificates(sent by server) - server sends its certificate chain

"server key exchange"(sent by server) - this is first message that differs compared with RSA cipher suite
in use. Here server sends its public key. Which public key? This key is part of the key-exchange process
and has nothing to do with either server's public end entity certificates nor with CA public certs. This
public key relates to DH algorithm that is pure math on how both sides may come to the same session
key without involving server's private key into the picture(will explain later low level). Also, server puts a
digital signature over this message with its private key(note there is nothing to decrypt here on client
side, just for the client to check the signature given it learned server's certificate chain)

"client key exchange" - as same with RSA client will verify server's chain of trust getting its certificates,
also, it will store the servers public key based on servers public key it will create its own public key and
send to the server. saying again here, this public key has nothing tto do with any certificate and is part of
DH key exchange process. Client sends this public key to the server

At this point both client and server have enough material to come to the same pre-master key that will
be used for session key calculation. and SESSION KEY == HASH (premaster-secret, client random, server
random)

Now, please note that as long as the final symmetric session encryption/decryption key seems to have
the same formula there are big differences. So let's uncover some facts here:

premaster secret is independent of server's private key in new calculation

with pure DH, public keys in server-key-exchange and client-key-exchange remain the same per session
that leads us potentially to the same threat as TLS had with RSA key-exchange principle. Having a piece
of static info from client and server one might decrypt all historical sessions. This is the reason pure DH
cipher suites do not exist in TLS1.3

with DHE(E stands for ephemeral) there are new public key's created per session on client and server
side client. So this is were we should be in 2024. Compromising private key with DHE is not an issue,
compromising private piece of info on client/server side that accounts in public key creation may affect
only a single TLS session but not the whole communication history!

Best current practice

OCSBC - UCaaS security aspects

As the next logical question is what kind of public keys I'm talking about in DH(E) as part of key exchange
process - I'll try to illustrate with a simple math. But let's go a bit lower into Materia. With TLS DH(E)
cipher suite both client and server will create private&public key pair(again, nothing to do with
certificates) and this looks in numbers like this.

server creates its private key a=5(called prime), defines a low number g=3(public piece of info) and
defines modulo number p=7 (public piece of info)

server calculates its public key as A=g^a MOD p == 3^5 MOD 7 == 5

server sends to client the following: A,p,g

client creates its own private key b=4 and calculates its public key as B=g^b MOD p == 81 MOD 7 ==4

client sends its public key B=7 to the server

at this point with some math both sides should calculate the same pre-master key!

Server calculation for pre-master key s=B^a MOD 7 == 1024 MOD 7 == 2

Client calculation for pre-master key s=A^b MOD 7 == 625 MOD 7 == 2

math behind is (g^a)^b MOD p = (g^b)^a MOD p = g^a^b MOD p

"s" here stands for pre-master secret and later along with client random and server random builds
session encryption/decryption key

In DHE a and b(as private keys) change for each TLS session and compromising one pair of keys may
uncover only one TLS session.

Moving now to TLSv1.3. RSA and Static DH ciphers are ruled out, only DHE and ECDHE(variation of DHE
whereas client and server private keys sit on an elliptic curve, and you don't want to see math for that -
principle for key-exchange is same in nutshell as for DHE) are present. List of cipher suits reduced in
TLSv1.3 to only 5 compared to 37 supported in TLSv1.2 and handshake looks as:

Client hello - looks same as with DHE in TLSv1.2 apart that client assumes key exchange algorithm that
server will pick and sends its public key (DHE materials) straight away.

Server hello - looks the same as in TLSv1.2 DHE apart that message contains here also server certificates
and server "finished message". Moreover, certificates and server finished message are sent encrypted as
server has all details already to calculate the session key

Upon receipt of server hello client will authenticate the server and generate the session keys based on
received server's public key (same math as in TLSv1.2 DHE)

Best current practice

OCSBC - UCaaS security aspects

In summary, with TLSv1.3 every piece of information after Client/Server Hello exchange is encrypted
with future session-key. Key exchange in TLSv1.2 came into picture only after successful client-server
authentication and in TLSv1.3 both authentication and session keys are established in the first two
handshake messages.

Software
Software SBC - SCZ920.p3

Software OCOM – 5.2

Introduction
One of the main aspects with any UCaaS deployment is security as it comes mandatory for both SIP and
RTP. Given the complexity this document will outline some of the best current practices starting to
prepare SBC for UCaaS deployment, being however applicable, to any setup that involves TLS and SRTP

LAB UCaaS demo topology

SBC security configuration objects

End entity certificate

Best current practice

OCSBC - UCaaS security aspects

Every UCaaS integration comes with mutual TLS as mandatory and preparation step one in SBC is to
build its certificate-record end-entity certificate. In a nutshell this is certificate SBC is going to use to
introduce itself during TLS handshake. With mutual TLS, SBC will present this certificate acting as server
as server certificate or it’s going to answer with this certificate acting as client upon server’s certificate
request, in mutual TLS server requires client side authentication too. At present there are two models
end-entity certificate can be created/loaded to SBC

End entity certificate install from SBC generated CSR

Generating end-entity certificate starts with certificate-record creation in SBC’s main security
configuration branch. As highlighted below and bolded red one might see parameters that are
mandatory – name, common-name(allocated SBC domain that will be protected) and optionally some
extension flags(other parameters as equally important and are to be aligned between 2 ends
terminating TLS). In this use case additional extension configured is client-auth as it comes mandatory
with mutual TLS and CSR that will be created based on certificate record will carry out a request to
support this extension. Remark here that CSR desired extension flags may be modified, removed or
added by certificate signing authority. No matter correct CSR generation, signed certificate should be
checked for all extension flags that are expected. That said it’s obvious that wrongly signed, certificate
may end up without client-auth flag that will prevent mutual TLS handshake to work. It is important in
this process to be aligned with CA on what flags signed certificate should inherit from CSR.

This model of generating end-entity certificate starts with certificate-record object out of which one
triggers CSR creation.

TEAMS_SR(certificate-record)# done
certificate-record
 name testBCP
 country US
 state MA
 locality Burlington
 organization Engineering
 unit
 common-name ucaas.com
 key-size 2048
 alternate-name
 trusted enabled
 key-usage-list digitalSignature
 keyEncipherment
 extended-key-usage-list serverAuth
 clientAuth
 key-algor rsa
 digest-algor sha256
 ecdsa-key-size p256
 cert-status-profile-list
 options
 last-modified-by admin@10.0.15.149
 last-modified-date

Best current practice

OCSBC - UCaaS security aspects

Next step is to supply certification authority with generated CSR to be signed and ported back to SBC. In
this exercise I’ll be using windows application “Simple authority” that acts as CA. Saving above output to
a file I’m loading it to CA app for signature

TEAMS_SR# generate-certificate-request testBCP
Generating Certificate Signing Request. This can take several minutes....

-----BEGIN CERTIFICATE REQUEST-----
MIIC2zCCAcMCAQAwWTELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAk1BMRMwEQYDVQQH
EwpCdXJsaW5ndG9uMRQwEgYDVQQKEwtFbmdpbmVlcmluZzESMBAGA1UEAxMJdWNh
YXMuY29tMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAvAxT8EyHnC/J
IiA2Q3FuFM9MDdPa+7fnmLQq9r2nPTOBA3fOyV4fgdvGWZMJWB4F1OBrEC95pbLg
PL3KdXI1gTkoshyOBSbo31JWosvyABwgYXpopaZfBo0aGSvOO4ptgW+GW0V3XWge
oTZKNS9vFNGYU3ycYFpYGZIA3B52OXB+bb2l0hDvFccS7aqKo/kYas8JGSqtU88r
XZ/dFNMAew/bWYlxojbAJERBkBsb0AMDTIpeaT+yb6QZUYlc+BA4pjvcxKy2bXza
NrkSxbMM2Ekj6epuSPCjBwiJtwYU5Dio2VZlCbKqJ97QQOo0InxwBHO+GYolbqE2
iaO2EqesxQIDAQABoD0wOwYJKoZIhvcNAQkOMS4wLDALBgNVHQ8EBAMCBaAwHQYD
VR0lBBYwFAYIKwYBBQUHAwEGCCsGAQUFBwMCMA0GCSqGSIb3DQEBCwUAA4IBAQCB
MAwQs1KUt8GvuanllWPFhNJAGOK9pNO85/zZzyM/Whd/fcCGjszPnnMghFmTMPTP
kHgCGfwunedQUj4hfBay7V+qtHkpRgYoAj9pVKnqZ9xQU0QtChiQM6p/nCTunTZ2
vCZxhTiU2gQW8VtRlRxZp/vqUTrPJS6NQMAy0eys69X+mq4KshimtjE181UONEDx
wcINPGjaTxW37CMSYz2+1vvpECN2Bbmub2a9BeWOTiGzNXwANNPPK8OPGQpGY3aT
ASLYRvRPa4PsxgS7xI5E5uuEELFW8r1qS/XYYfaz7VlBQjk29hneq5dAVdnDWQ10
zK51oukFQBCcC9Xqq5Xg
-----END CERTIFICATE REQUEST-----

WARNING: Configuration changed, run "save-config" command.
TEAMS_SR#

Best current practice

OCSBC - UCaaS security aspects

Hitting “ok” certificate is signed and content in pem format ready to be pasted back to SBC:

As you may note on the right hand
side CA loads the CSR and presents
data from it as we defined them in
certificate-record configuration
object. As to revert to previous
discussion please note a thick on
“Include extension requests from
CSR”. This means that signing the
certificate “client-auth” extension flag
will remain as specified in CSR

TEAMS_SR# import-certificate try-all testBCP
IMPORTANT:
 Terminate the certificate with ";" to exit.......
-----BEGIN CERTIFICATE-----
MIIDszCCApugAwIBAgIGAY2xNfQcMA0GCSqGSIb3DQEBCwUAMGExCzAJBgNVBAYT
AkhSMRQwEgYDVQQKDAtNYXRlaiBNYXJpYzEgMB4GA1UECwwXQ2VydGlmaWNhdGlv
biBBdXRob3JpdHkxGjAYBgNVBAMMEU1pbmlzdHJ5IG9mIE1hZ2ljMB4XDTI0MDIx
NjA5MTgzOVoXDTI2MTExMjA5MTgzOVowWTELMAkGA1UEBhMCVVMxCzAJBgNVBAgT
Ak1BMRMwEQYDVQQHEwpCdXJsaW5ndG9uMRQwEgYDVQQKEwtFbmdpbmVlcmluZzES
MBAGA1UEAxMJdWNhYXMuY29tMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKC
AQEAvAxT8EyHnC/JIiA2Q3FuFM9MDdPa+7fnmLQq9r2nPTOBA3fOyV4fgdvGWZMJ
WB4F1OBrEC95pbLgPL3KdXI1gTkoshyOBSbo31JWosvyABwgYXpopaZfBo0aGSvO
O4ptgW+GW0V3XWgeoTZKNS9vFNGYU3ycYFpYGZIA3B52OXB+bb2l0hDvFccS7aqK
o/kYas8JGSqtU88rXZ/dFNMAew/bWYlxojbAJERBkBsb0AMDTIpeaT+yb6QZUYlc
+BA4pjvcxKy2bXzaNrkSxbMM2Ekj6epuSPCjBwiJtwYU5Dio2VZlCbKqJ97QQOo0
InxwBHO+GYolbqE2iaO2EqesxQIDAQABo3kwdzAfBgNVHSMEGDAWgBTomkZwyHuA
cxUwIRcA6EUWH4GrKTAJBgNVHRMEAjAAMAsGA1UdDwQEAwIFoDAdBgNVHQ4EFgQU
wfsMIJDqwhxgjripa5jxJsY7OdowHQYDVR0lBBYwFAYIKwYBBQUHAwEGCCsGAQUF
BwMCMA0GCSqGSIb3DQEBCwUAA4IBAQAAiqQ44CXkLaRwVEmjfdPvOySip0e+XNxk
VBQJVKyi2SfCLsXpK0lF8VD2KuR2ue90/GBYBOGyVD0a6xCpIl434uVGxsUG2ubO
UtDtRW0IPnzYTpI/eeEoqVVTr9RqH98aPYvLWf6kym3N3ejS3fF+Lu/M77UlXiSg
EXdnGkUoADrD6tYi0FsE6rLBgWyr2pPORr+H30UHNjr45y1R6CXo0p8OSTYz6TR2
lCm5gnxcyDHNryaD3ZdtI/7CV1Xiq4IToVmwrTDJpxgfSoIQ1nLHfgAgjHlp+wHx
QVr5dl2QPqaMuC0TinKb5WkM5i9fuNFwUj0GV2fuPIBk3wY/F6Oc
-----END CERTIFICATE-----

Best current practice

OCSBC - UCaaS security aspects

Only precise verification of what has been ported back after save&activate we get executing “show
security certificate-record detail/brief”

Exchanging certificates in TLS handshake one must provide a full signing chain and not only signed
certificate. For this reason we need to load in SBC also public certificate of authority that signed our CSR.
For this purpose we will create another certificate-record as outlined below. Very important remark
here is that there is a big difference between certificate record created to build end-entity certificate
and the one we built below to load CA public certificate. First one was associated with unique private
key given the CSR creation and only signed cert matching the private key is suitable to be loaded back.
Latter one below is not associated with any private key and SBC will load there any CA public certificate
overwriting default SBC certificate-record content. CA public(root and intermediates) certificates are
public and can be easily fetched from internet.

certificate-record: testBCP
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1708075119644 (0x18db135f41c)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer:
 C=HR
 O=Matej Maric
 OU=Certification Authority
 CN=Ministry of Magic
 Validity
 Not Before: Feb 16 09:18:39 2024 GMT
 Not After : Nov 12 09:18:39 2026 GMT
 Subject:
 C=US
 ST=MA
 L=Burlington
 O=Engineering
 CN=ucaas.com
 X509v3 extensions:
 X509v3 Authority Key Identifier:

keyid:E8:9A:46:70:C8:7B:80:73:15:30:21:17:00:E8:45:16:1F:81:AB:2
9

 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 Key Usage:
 Digital Signature, Key Encipherment
 X509v3 Subject Key Identifier:

C1:FB:0C:20:90:EA:C2:1C:60:8E:B8:A9:6B:98:F1:26:C6:3B:39:DA
 X509v3 Extended Key Usage:
 TLS Web Server Authentication, TLS Web Client
Authentication

Best current practice

OCSBC - UCaaS security aspects

As said content above is irrelevant loading the CA public certs and I will just load my CA Root certificate
over this certificate-record. To emphasize that this step must be repeated in case there are intermediate
certificates in CA signing chain.

TEAMS_SR(certificate-record)# done
certificate-record
 name MinistryOfMagic
 country US
 state MA
 locality Burlington
 organization Engineering
 unit
 common-name bcp.test
 key-size 2048
 alternate-name
 trusted enabled
 key-usage-list digitalSignature
 keyEncipherment
 extended-key-usage-list serverAuth
 key-algor rsa
 digest-algor sha256
 ecdsa-key-size p256
 cert-status-profile-list

TEAMS_SR# import-certificate try-all MinistryOfMagic
IMPORTANT:
 Please enter the certificate in the PEM format.
 Terminate the certificate with ";" to exit.......
-----BEGIN CERTIFICATE-----
MIIDojCCAoqgAwIBAgIGAXkS3zzpMA0GCSqGSIb3DQEBCwUAMGExCzAJBgNVBAYT
AkhSMRQwEgYDVQQKDAtNYXRlaiBNYXJpYzEgMB4GA1UECwwXQ2VydGlmaWNhdGlv
biBBdXRob3JpdHkxGjAYBgNVBAMMEU1pbmlzdHJ5IG9mIE1hZ2ljMB4XDTIxMDQy
NzEwMjgxMFoXDTMxMDQyODEwMjgyM1owYTELMAkGA1UEBhMCSFIxFDASBgNVBAoM
C01hdGVqIE1hcmljMSAwHgYDVQQLDBdDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTEa
MBgGA1UEAwwRTWluaXN0cnkgb2YgTWFnaWMwggEiMA0GCSqGSIb3DQEBAQUAA4IB
DwAwggEKAoIBAQDJSsPHH3PjBBJWt/fz+6WWZrGmJ7W4WyjujxD85yD/FJDatZ2v
Tbdk+sOop8sbcZt3bNNulNUfL861S3yMjkTnC5lpStVjs1W9yNJSkgRv7pEZR5i6
5BaEJg48J8puBwB5qY1JhZZjruGkhTo7RiYGxjv40jp8tfFaVPt7c7t6YOmaP+34
zGrGzGvWEH4WTDGY8EbUTWnZbg2YUUAVsniUDPn9ohyqm/YoW+JZBQ2a9JyJA8uu
weijgD7lZnewxlqzGYs018zqbcs//VClxbHaDiiStUCjwGtsGiUDdCk8OI7v3yJC
N+8lYgifFOWy4oACGOMUfNzQKaYEzDxecOn/AgMBAAGjYDBeMB8GA1UdIwQYMBaA
FOiaRnDIe4BzFTAhFwDoRRYfgaspMAwGA1UdEwQFMAMBAf8wDgYDVR0PAQH/BAQD
AgGGMB0GA1UdDgQWBBTomkZwyHuAcxUwIRcA6EUWH4GrKTANBgkqhkiG9w0BAQsF
AAOCAQEAffURW2IxwwssBtmkjItDFEytAwPpyez2a+g8e10i6Huzu/i/Kbj3YnZJ
lBDH5mCYwaqs9L+WpRswFSCVMm4hFaB5L4UOR3omznLJXgP+TvqzqU8o0H8XVirB
BmyUQ4QWsfrzsmIQAXPuyVfsuhdpNPc3ojOLhluyOOZse0y1vWpoaVmKLpkRS8+b
ewx2gOwKMpqxD6iF+Q9cXSbtLVIL2h6fjvaWBeQMVxK88cQO7zaBiKNXRIPLJ/+U
VIAkqagYKp6/R3Uh+1G2Mz1mhyZMZN/+qxOAl2D5lGYLLq+nVBbtpgSQBo6mZEfA
5Mk75zfGhEnDtAQ9sYmcNtkSKA5cqA==
-----END CERTIFICATE-----
Certificate imported successfully....
WARNING: Configuration changed, run "save-config" command.

Best current practice

OCSBC - UCaaS security aspects

Proper verification kicks in again with “show security certificate-record detail/brief”. It will expose
details of newly loaded CA public certificate. Please note below that content of this record has nothing
to do anymore with default configuration we have put in public CA certificate-record object.

End entity certificate install from PKCS12 bundle

PKCS12 is a bundle that consists of private key and signed certificate material. In other word it’s
elsewhere generated end-entity certificate that SBC supports. In this approach there is no need for CSR
generation in SBC as SBC is going to load signed certificate and associate with the private key being part
of the same bundle. Also there is no need to create certificate-record object as it’s going to be
automatically created by SBC upon loading the p12 file.

In practice this means that our customers may be supplied by their security team with a file typically
carrying .pfx or p12 extension. Such file needs to be put in /opt folder before attempted to be loaded to
SBC. Only issue detected in field trying to upload pkcs12 form is in the way bundle was created and if

certificate-record: MinistryOfMagic
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1619519290601 (0x17912df3ce9)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer:
 C=HR
 O=Matej Maric
 OU=Certification Authority
 CN=Ministry of Magic
 Validity
 Not Before: Apr 27 10:28:10 2021 GMT
 Not After : Apr 28 10:28:23 2031 GMT
 Subject:
 C=HR
 O=Matej Maric
 OU=Certification Authority
 CN=Ministry of Magic
 X509v3 extensions:
 X509v3 Authority Key Identifier:
 keyid:E8:9A:46:70:C8:7B:80:73:15:30:21:17:00:E8:45:16:1F:81:AB:29

 X509v3 Basic Constraints:
 CA:TRUE
 X509v3 Key Usage: critical
 Digital Signature, Certificate Sign, CRL Sign
 X509v3 Subject Key Identifier:
 E8:9A:46:70:C8:7B:80:73:15:30:21:17:00:E8:45:16:1F:81:AB:29

Best current practice

OCSBC - UCaaS security aspects

SBC prompts an error trying to load such a bundle it could be pkcs12 has to be re-created(openssl) as
outlined below

openssl pkcs12 -in <filename>.pfx -nocerts -out key.pem (extracts private key from bundle)
openssl pkcs12 -in <filename>.pfx -clcerts -nokeys -out cert.pem (extracts signed cert from bundle)

With these two outputs we will re-create pkcs12 bundle using PBE-SHA1-3DES as it is only one SBC today
supports.
 openssl pkcs12 -keypbe PBE-SHA1-3DES -certpbe PBE-SHA1-3DES -export -out msft2023.p12 -
inkey key.pem -in cert.pem

At this point msft2023.p12 should be properly formatted and ready to be ported into SBC.

Please note that certificate initially created with CSR in SBC may be also exported from SBC in pkcs12
form and loaded to multiple SBCs. This however depends on exact customer deployment and may have
security implication given it is same private key re-used in multiple devices. This will not be discussed
deeper as part of this BCP.

TLS profile
Getting done with certificate creation with need to assign certificate-records properly in tls-profile
configuration element. Such tls-profile is later assigned to sip-interface configuration object

TEAMS_SR# import-certificate pkcs12 testBCP msft2023.p12
Can not import pkcs12 with existing record
TEAMS_SR# import-certificate pkcs12 BCPPKCS12 msft2023
The specified certificate-record: (BCPPKCS12) does not
exist.
Creating one...
Enter Import Password:
Importing ee: BCPPKCS12
Certificate(s) imported successfully....

--
WARNING:
Configuration changed, run 'save-config' and
'activate-config' commands to commit the changes.
--
TEAMS_SR#

Best current practice

OCSBC - UCaaS security aspects

Highlighting here that mutual-authenticate parameter, in UCaaS use case, must be enabled otherwise
SBC as a server will not request client certificate in TLS handshake and acting as client it will fail to send
its certificate upon server’s request. Whilst end-entity parameter looks clear on how to be configured
trusted-ca-certificates must consist of the local CA chain. In other words there we must specify all
intermediates and root CA of local certificate as the whole chain must be presented in TLS handshake.
Also, there we must specify roof top Root CA of remote party, certificate record of remote party CA shall
be created in same fashion as for local CA, please refer to chapter “End entity certificate” public CA certs
loading paragraphs.

SDES profile and media-security policy

Configuring two additional configuration objects in SBC we should cover SRTP negotiation and
termination on legs where SRTP is mandatory, typically only legs towards UCaaS vendor. Below the
sample configuration whereas media-sec-profile gets attached to UCaaS realms.

We should be now all set to test our application.

TEAMS_SR# sho configuration tls-profile
tls-profile
 name TEAMS
 end-entity-certificate teams2023
 trusted-ca-certificates GoDaddyCA
 Baltimore
 DigiCertRootG2
 cipher-list ALL
 verify-depth 10
 mutual-authenticate enabled
 tls-version tlsv12
 options
 cert-status-check disabled
 cert-status-profile-list
 ignore-dead-responder disabled
 allow-self-signed-cert disabled

sdes-profile
 name SDES
 crypto-list AES_CM_128_HMAC_SHA1_80
 AES_256_CM_HMAC_SHA1_80
 lifetime 31
media-sec-policy
 name SRTP
 inbound
 profile SDES
 mode srtp
 protocol sdes
 outbound
 profile SDES
 mode srtp
 protocol sdes

Best current practice

OCSBC - UCaaS security aspects

TLS and SRTP troubleshoot

In order to verify TLS connection against remote agents works fine same steps might be followed as for
any other TCP/UDP agents. SA configured to be SIP OPTIONS pinged will appear in status active in case
OPTIONS are successfully replied and if SIP OPTIONS are successfully replied it means underlying
transport TLS handshake went well too. Sipmsg.log may give insights in sip message details as well as
calls might be checked in OCOM supplied with data from embedded probe(SBC acts as a probe). SBC
sends decrypted data to OCOM mediation engine. Calls are then easily readable in form of ladder
diagrams.

Successful TLS and SRTP verification

TLS security stats will expose
overall number of active and
closed TLS connections along with
per chipper and tls version stats.

Successful TLS session-agent verification from CLI:

DEMOSBC-5# sho security tls stats

------------------------- TLS Stats ---------------------

active connections : 14
successful connects : 11
successful accepts : 722
shutdown sent : 719
shutdown received : 708
connection close : 719
bytes sent : 14088279
bytes received : 15812552
write error : 1
protocol is shutdown : 1
wrong version number : 1
cipher suite ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 : 7
cipher suite ECDHE_RSA_WITH_AES_256_GCM_SHA384 : 726
protocol version TLS 1.2 : 733

Best current practice

OCSBC - UCaaS security aspects

Successful TLS call verification in OCOM:

DEMOSBC-5# sho sipd agents
13:00:34-45 (recent)
 ------ Inbound ------ ----- Outbound ------ -- Latency -- Max
Session Agent Active Rate ConEx Active Rate ConEx Avg Max Burst

us01.sipconnect.bcld.webex.com
 I 0 0.0 0 0 0.0 0 0.038 0.043 0

OPTIONS sip:us01.sipconnect.bcld.webex.com:5062;transport=tls SIP/2.0
Via: SIP/2.0/TLS 10.0.16.8:5069;branch=z9hG4bK593evh005gcnpeq0ubb0
Call-ID: d1985b0a6708e7dd8f97c757e5106ef9060000c060@10.0.16.8
To: sip:ping@us01.sipconnect.bcld.webex.com
From: <sip:ping@10.0.16.8>;tag=1d36b8bb31b6f620d790a594a1f0b86f000c060
Max-Forwards: 70
CSeq: 1548 OPTIONS
Route: <sip:139.177.65.147:5062;transport=tls;lr>
Content-Length: 0
Contact: <sip::ping@google.oraclecgbupoc.co.uk:5069;transport=tls>
--
Feb 16 13:00:12.097 On 10.0.16.8:9238 received from 139.177.65.147:5062
SIP/2.0 200 OK
Via:SIP/2.0/TLS 10.0.16.8:5069;received=129.213.136.120;branch=z9hG4bK593evh005gcnpeq0ubb0
From:<sip:ping@10.0.16.8>;tag=1d36b8bb31b6f620d790a594a1f0b86f000c060
To:<sip:ping@us01.sipconnect.bcld.webex.com>;tag=2018048526-1708088412090
Call-ID:d1985b0a6708e7dd8f97c757e5106ef9060000c060@10.0.16.8
CSeq:1548 OPTIONS
Allow:ACK,BYE,CANCEL,INVITE,INFO,OPTIONS,REGISTER,MESSAGE,PUBLISH

Best current practice

OCSBC - UCaaS security aspects

SRTP is negotiated within SIP TLS encrypted connection with SDP exchange. SRTP session is considered
successful if there is a match in crypto list algorithms between 2 parties.

Upon a successful SRTP call established SRTP security associations may be displayed in CLI:

Best current practice

OCSBC - UCaaS security aspects

Failing TLS and SRTP cases

Failures in TLS handshake may be observed in log.atcpd on debug log level but it’s probably the easiest
to troubleshoot setting up packet-trace local in SBC and viewing captured data in wireshark as most of
failures pop up in a stage we still may see traffic in clear. TLS handshake may fail for couple of reasons,
highlighting common ones in UCaaS environment:

DEMOSBC-5# sho security srtp sad S0P0:0 detail
WARNING: This action might affect system performance and take a long time to
finish.
Are you sure [y/n]?: y
SRTP security-association-database for interface 'S0P0:0':
Displaying SA's that match the following criteria -
 direction : both
 src-addr-prefix : any
 src-port : any
 dst-addr-prefix : any
 dst-port : any
 trans-proto : ALL

Inbound:
 destination-address : 10.0.16.8
 destination-port : 10014
 vlan-id : 0
 mode : srtp
 encr-algo : aes-128-ctr
 auth-algo : hmac-sha1
 auth-tag-length : 80
 mki : NULL
 mki length : 0
 roll over count : 0

Outbound:
 destination-address : 52.115.179.82
 destination-port : 49800
 vlan-id : 0
 mode : srtp
 encr-algo : aes-128-ctr
 auth-algo : hmac-sha1
 auth-tag-length : 80
 mki : NULL
 roll over count : 0

DEMOSBC-5# sho security srtp sessions
13:23:23-153 Capacity=3500
SRTP Session Statistics -- Period -- -------- Lifetime --------
 Active High Total Total PerMax High
SRTP Sessions 2 2 0 114 65 4

Best current practice

OCSBC - UCaaS security aspects

- TLS version mismatch
- TLS cipher suite mismatch
- Certificate record issues

TLS 1.2 and 1.3 are commonly used today and 1.0 and 1.1 became deprecated. It’s client that starts TLS
handshake with “Client Hello” and indicates its TLS version and cipher suite support. If connection
terminates without “Server Hello” then either TLS version or cipher suit does not match server side.

Screenshot below is packet trace local presentation where TLS was attempted from SBC simulating only
TLS1.0 version support, remote are MSFT TLS session agents:

In such a case, as mentioned earlier server side will answer “client hello” message straight with error
before issuing “server hello” message. This guides us to check and correct tls-profile with proper TLS
version and cipher suite supported by both parties. Log.atcpd the will reflect this failure as printed
below:

Jul 9 14:15:27.930 [SERVICE] (0) TLS Handshake: client <<< TLS 1.0 Alert[length 0002], fatal protocol_version

Jul 9 14:15:27.930 [SERVICE] (0) <tlsengine.cpp:1549> SSL3 alert read:fatal:protocol version

Jul 9 14:15:27.930 [SERVICE] (0) <tlsengine.cpp:1567> SSL_connect:error in error

Best current practice

OCSBC - UCaaS security aspects

Jul 9 14:15:27.930 [SERVICE] (0) <tlsengine.cpp:4237> TLSEngine::TLSMachineDOControl, appData_m = 0, n = -1

Jul 9 14:15:27.930 [MINOR] (0) SSL_accept failed, fatal alert sent

Jul 9 14:15:27.930 [MINOR] (0) OpenSSL Error:error:1409442E:SSL routines:ssl3_read_bytes:tlsv1 alert protocol
version:ssl/record/rec_layer_s3.c:1551:SSL alert number 70

Jul 9 14:15:27.930 [SERVICE] (0) <tlsengine.cpp:4357> TLSEngine::TLSMachineDOControl, appData_m = 0, retCode=32

Jul 9 14:15:27.930 [MINOR] (0) ServiceSocketProxyAdapter TCP:10.0.16.25:34348->52.114.75.24:5061 CheckAndRecvTLS, TLS
Recv failed retCode: 32:TLS engine accept/connect failed on fd -1

Jul 9 14:15:27.930 [SERVICE] (0) <ServiceSocketProxyAdapter.cpp:1894> ServiceSocketProxyAdapter::Disconnect(void)
(0x81bc3400)

Sorting out version and cipher suite there are certificates to be exchanged. Post “server hello” it is
server presenting its certificate chain. Below failure simulation occurs when I remove public CA of
remote party from tls-profile trusted-ca-certificate:

In this exchange TLS handshake goes further. SBC sends “client hello”, as a server MSFT answers with
“server hello” “certificates”. Straight upon receiving remote certificate chain SBC terminates TCP
connection sending FIN. SBC was not able to verify remote certificate chain trust. From the server
certificate message is obvious who signed their certificate and this issue gets fixed by adding again

Best current practice

OCSBC - UCaaS security aspects

“DigiCert Global Root G2” back to “trusted-ca-certificate” list of corresponding TLS profile. It may be
very well this certificate was not even loaded to SBC so this has to be done as step one. Log.atcpd will
reflect this situation as:

Jul 9 14:32:28.538 [SERVICE] (2) TLS Handshake: client >>> TLS 1.2 Alert[length 0002], fatal unknown_ca

Jul 9 14:32:28.538 [SERVICE] (2) <tlsengine.cpp:1549> SSL3 alert write:fatal:unknown CA

Jul 9 14:32:28.539 [SERVICE] (2) <tlsengine.cpp:1567> SSL_connect:error in error

Jul 9 14:32:28.539 [SERVICE] (2) <tlsengine.cpp:4237> TLSEngine::TLSMachineDOControl, appData_m = 0, n = -1

Jul 9 14:32:28.539 [SERVICE] (2) <tlsengine.cpp:5018> encrypted packet sent:

Jul 9 14:32:28.539 [SERVICE] (2) 15 03 03 00 02 02 30 length: 7

Jul 9 14:32:28.539 [ATCP] (2) <AtcpSocket.cpp:894> virtual int AtcpSocket::Send(const void*, size_t) bytes to send=7
fd=1071279

Jul 9 14:32:28.539 [ATCP] (2) <clog.cpp:98> atcpGetControlMblk: ALLOCED mBlk at 0x2f2769d0

Jul 9 14:32:28.539 [ATCP] (2) <clog.cpp:98> (mData:0x2dbb2828,mFlags=0,mNext:(nil),len=23)

Jul 9 14:32:28.539 [ATCP] (2) <AtcpSocket.cpp:878> int AtcpSocket::sendOnePacket(mBlk*, int, const void*, int) add crsId=0 to
acme header for fd=1071279

Jul 9 14:32:28.539 [ATCP] (2) <AtcpServicePipe.cpp:1400> Asock::Send phy,vlan=0,0 cookie=0x0x171

Jul 9 14:32:28.539 [ATCP] (2) <AtcpServicePipe.cpp:1757> virtual int AtcpServicePipe::TransmitData(const void*, uint32_t)
putting on transport queue, cookie=0x0x171

Jul 9 14:32:28.539 [SERVICE] (2) <Commands.h:410> add command AtcpDataCommand 0x8539c790(2) on Transport queue # 2

Jul 9 14:32:28.539 [SERVICE] (2) <tlsengine.cpp:5047> TLSEngine::FlushNetworkBIO nFD:-1, fromBIO:7, numWrite:7, writePos:7

Jul 9 14:32:28.539 [MINOR] (2) SSL_accept failed, fatal alert sent

In next simulation TLS handshake will go even more further, here I’m simulating SBC sending incomplete
chain with expectation that MSFT will terminate TLS handshake. To simulate this I will remove one
intermediate (that signed the local cert) from “trusted-ca-certificate” list.

Best current practice

OCSBC - UCaaS security aspects

In a screenshot above TLS handshake goes further and SBC as client verifies server side certificate
successfully. Upon server request it also sends its certificate in frame 29. However as it sends
incomplete data, only signed cert with no intermediates server will consider it incomplete and terminate
TCP connection with FIN. Action point here is to verify that SBC side full chain is loaded to SBC.

SRTP application layer negotiation failure happens post TLS is up and usually reflects as human readable
session termination with SIP 488 “Not acceptable here” replied back to sender’s SIP INVITE. Both parties
should agree on supported ciphers and sdes-profile should be tuned accordingly.

Abnormal TLS cases

It may happen for whatever reasons that application layer logs in SBC cannot be checked and there is no
OCOM in place while we have healthy indication that underlying TLS and SRTP are all fine. With recent
9.2 feature SBC may log TLSv1.2 and TLSv1.3 pre-master and master secret for a TLS connection that
helps decrypting traces in wireshark.

In my next example I have healthy TLS session-agent indication but my calls are failing. There is no
sipmsg.log available nor OCOM in place. An option to go with is following:

- Setup packet-trace local on desired network-interface
- Configure system-config parameter log-tls-key

Best current practice

OCSBC - UCaaS security aspects

- Attempt the failing call and collect the pcap from /opt/traces(note that pcap may be from
elsewhere in network)

- Fetch the pre-master and master key from /opt/logs. File is called tlskey.log
- Attempt to decrypt messages in wireshark

In wireshark one needs to go TLS protocol preferences and target the file fetched from SBC as looks
below:

Only step remaining is a right click on TLS packet under inspection and use “decode as” choosing SIP
given packets may be reassembled.

TLS packets became visible as raw data:

Best current practice

OCSBC - UCaaS security aspects

At point we’d normally see just encrypted application data now we have a full view over decrypted
content. Furthermore reason of the call failure can be further explored:

As an outcome, RC of the call failure, seems to be in routing and SBC may be checked for the proper call
routing configuration fine tuning.

For sake of completeness worth exposing for the case above what the TLS cipher suit negotiated was:

Best current practice

OCSBC - UCaaS security aspects

Abnormal SRTP cases

There is no similar equivalent in SBC or in wireshark that would allow us to decrypt SRTP easy. However,
below an example how SRTP stream fetched on network level may be decrypted with open source tool
srtp-decrypt.

GitHub - gteissier/srtp-decrypt: Deciphers SRTP packets

Project was compiled on testing Oracle linux machine.

Attempting to decrypt SRTP assumption is that we had successful TLS handshake and that we have a
view over a SIP call in clear to grab crypto key, also we need network layer of SRTP capture itself(.pcap).
It may be challenging to isolate proper RTP stream from wireshark but once isolated single stream
direction has to be saved as an input for srtp-decrypt application. Procedure looks as below:

Isolating proper RTP stream, filtering and saving to file:

Best current practice

OCSBC - UCaaS security aspects

One may verify first that trying to play streams we hear only crackling noise. Afterwards hitting “prepare
filter” wireshark will filter the single RTP stream direction for which single crypto applies. Such file has to
be saved as below

Once we have a filtered .pcap remaining is to grab 40bytes BASE64 crypto string that consists of master
key and salt.

Best current practice

OCSBC - UCaaS security aspects

As of that point we are ready for decryption. Available options within a tool are total frame offset before
the payload and srtp authentication tag length(defaults are assumed that equal 42bytes and 10bytes for
latter mentioned srtp auth tag).

Application takes SRTP .pcap as an input and provides application level decrypted hex stream (only RTP
content without lower layers). Output form is not an issue as hex dump can be easily imported to
wireshark adding fake lower layers:

Best current practice

OCSBC - UCaaS security aspects

Best current practice

OCSBC - UCaaS security aspects

By putting a thick on IP header and UDP we insert fake destination/source IP and port. Hitting import
wireshark displays our decrypted SRTP stream

Best current practice

OCSBC - UCaaS security aspects

Attempting to play the stream this time it will audible in G729

