Best current practice

ORACLE

Best Current Practise
OCSBC — UCaaS security aspects
Category: Informational

February 2024, Version 1.00

OCSBC - UCaasS security aspects

Best current practice

Revision History

ORACLE

Version Author Description of Date Revision
Changes Completed
0.00 Matej Maric Initial version
1.00 Matej Maric Atcpd debug logs 09 _07_2024
captured, generic TLS
intro
Abstract

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC

21109.

The configurations provided in this document SHOULD NOT be treated as RECOMMENDED. The

information is intended to provide guidance as to the OCSBC behaviour when configurations listed in

this document are applied.

This document is intended to provide the reader with information regarding configuration of an OCSBC

to provide user authentication via several RADIUS servers.

Applicability

The details provided are relevant to physical & virtual Oracle Communications Session Border Controller

(OCSBC) instances.

OCSBC - UCaasS security aspects

Best current practice

ORACLE

Table of content

Contents

TRV 1Y Lo T 113 o /S
Y o1 o - ot O U PP STUU PRSP
F Yo To [ToF=1 o 11 L1 Y28 USSP
TADIE OF CONMEENT ...ttt sttt st e bt e bt e sb e sabe st e smteeme e e e e entees
NETWOTK FUNCEION ..t ettt sr e b et sbe e saeesabesabeemeeeneee b s
LI == oY= ol g N oo [¥ ot o] o SR
Yo 47T T T PRSP PRPRTI
T (oo [V Tt o] o ST P PP P U PR PSR
WY R UL e T e [=Ya Vo TR o] o To] fo =4V PP
SBC security configuration ODJECESuuiiiiiii e e e e e st e e e e e et nrr e e e e e e eaas
oo =T oY A1 VAol =T g) o= SR UURPRNS
End entity certificate install from SBC generated CSR.......cooiieeciiiiiiii e e e e e e

End entity certificate install from PKCS12 bundleooovuiiiiicieee e 13

QI o1 o) 1 LTSRS 14
SDES profile and media-Security POLCYcceiiiiie e e e et e e e e e e raraae s 15
TLS @and SRTP troubI@SNOO0tc...eiiiieeee e ettt e e e e s e e s b snne e 16
Successful TLS and SRTP VErifiCationcc.eoveeiiirieiieciereeee ettt e 16
FQiliNg TLS @NA SRTP CASES ..vveeiitiiieeeiiieeeeciteeecettee e eitttee e etaeeseareeeesttaeeesaaseeeesasseeesassaeesesssseesnnssaeesnnsseeans 19
ADNOIMAI TLS CASES ..eiuvtiitiriiteiieest et e st stt et st e sttt ea e et e s bt s b e b e e bt e bt e e e s b e e bt e sheeeseesmnesaeesabeenseenseeneeen 23
ADNOIMAl SRTP CASES ..cutiiiiiieeiiie ettt ettt e et s st e e see e s bt e s be e e sabeesabeeesbeeesseeesreeesreeesnnes 26

Network function

Focus of this BCP is SBC that coexist as part of UCaaS demo LAB that terminates SIP TLS connections
towards Microsoft (Direct Routing), Webex (Calling), Zoom (Phone) and Google (SipLink). SBC acts as
well as media (RTP) termination point interworking in such deployments SRTP from internet legs into
core RTP legs. As a best practice in general, security wise, we’ll be checking lab’s OCOM. Calling devices
here are UCaaS native clients and lab’s IMS registered softphones simulating PSTN.

OCSBC - UCaasS security aspects

Best current practice

ORACLE

TLS generic introduction

TLS 1.2 — This document will not revert to older TLS versions as are deprecated today and should not be
used at all.

In TLS 1.2 RSA, DH and DHE cipher suites are available.
Key exchange algh being RSA, handshake on high level looks as depicted below:

client hello - (client exposes TLS version, generates random, exposes cipher suits supported)

server hello - (server agrees on TLS version(or not), sends it's 'random’, and picks one of the cipher suits
- picks in this case RSA one)

certificates(sent by server) - server sends its certificate chain

"client key exchange", "encrypted handshake"(sent by client) - before sending this messages client
authenticates the server identity by checking the server-side CA public certificate chain against its
trusted store. If the check is done successfully the client proceeds with "client key exchange". In this
message client creates a pre-master secret and encrypts it with learned server public key(server's end-
entity certificate, nothing to do with CA public certificates)

upon receipt of "client key exchange" server should be able to decrypt it with its private key as there are
mathematical relations between its private and public key. That's the point server should learn same
pre-master that client generated

Finally, both sides create a session key as SESSION_KEY= HASH of(premaster secret, client random,
server random) and that key is used as an encryption/decryption key for traffic as of that point on

RSA cipher suits are with obvious downside:

Note above that "client random" and "server random" are per session values but they are exchanged in
clear text! Once security is compromised and one gets the server private key then the attacker has a
clear view over all historically saved sessions. This is due to the fact that server private-key exists as
variable in session key calculation while other variables in calculation are exchanged in clear text.

As requirements on security evolved we've got new DH, DHE cipher suits and main idea here was to rule
out server's private key from session-key calculation.

OCSBC - UCaasS security aspects

Best current practice

ORACLE

So still staying in TLSv1.2 but with DH and DHE cipher suits in use that handshake would look as follows:

client hello - (client exposes TLS version, generates random, exposes cipher suits supported)

server hello - (server agrees on TLS version(or not), sends it's 'random’, and picks one of the cipher suits
- picks in this case DHE one)

certificates(sent by server) - server sends its certificate chain

"server key exchange"(sent by server) - this is first message that differs compared with RSA cipher suite
in use. Here server sends its public key. Which public key? This key is part of the key-exchange process
and has nothing to do with either server's public end entity certificates nor with CA public certs. This
public key relates to DH algorithm that is pure math on how both sides may come to the same session
key without involving server's private key into the picture(will explain later low level). Also, server puts a
digital signature over this message with its private key(note there is nothing to decrypt here on client
side, just for the client to check the signature given it learned server's certificate chain)

"client key exchange" - as same with RSA client will verify server's chain of trust getting its certificates,
also, it will store the servers public key based on servers public key it will create its own public key and
send to the server. saying again here, this public key has nothing tto do with any certificate and is part of
DH key exchange process. Client sends this public key to the server

At this point both client and server have enough material to come to the same pre-master key that will
be used for session key calculation. and SESSION KEY == HASH (premaster-secret, client random, server
random)

Now, please note that as long as the final symmetric session encryption/decryption key seems to have
the same formula there are big differences. So let's uncover some facts here:

premaster secret is independent of server's private key in new calculation

with pure DH, public keys in server-key-exchange and client-key-exchange remain the same per session
that leads us potentially to the same threat as TLS had with RSA key-exchange principle. Having a piece
of static info from client and server one might decrypt all historical sessions. This is the reason pure DH
cipher suites do not exist in TLS1.3

with DHE(E stands for ephemeral) there are new public key's created per session on client and server
side client. So this is were we should be in 2024. Compromising private key with DHE is not an issue,
compromising private piece of info on client/server side that accounts in public key creation may affect
only a single TLS session but not the whole communication history!

OCSBC - UCaasS security aspects

Best current practice

ORACLE

As the next logical question is what kind of public keys I'm talking about in DH(E) as part of key exchange
process - I'll try to illustrate with a simple math. But let's go a bit lower into Materia. With TLS DH(E)
cipher suite both client and server will create private&public key pair(again, nothing to do with
certificates) and this looks in numbers like this.

server creates its private key a=5(called prime), defines a low number g=3(public piece of info) and
defines modulo number p=7 (public piece of info)

server calculates its public key as A=g”"a MOD p == 375 MOD 7 ==

server sends to client the following: A,p,g

client creates its own private key b=4 and calculates its public key as B=g"b MOD p ==81 MOD 7 ==4
client sends its public key B=7 to the server

at this point with some math both sides should calculate the same pre-master key!

Server calculation for pre-master key s=B*a MOD 7 == 1024 MOD 7 ==

Client calculation for pre-master key s=A"b MOD 7 == 625 MOD 7 ==

math behind is (g*a)*b MOD p = (g"b)*a MOD p = g*a*b MOD p

"s" here stands for pre-master secret and later along with client random and server random builds
session encryption/decryption key

In DHE a and b(as private keys) change for each TLS session and compromising one pair of keys may
uncover only one TLS session.

Moving now to TLSv1.3. RSA and Static DH ciphers are ruled out, only DHE and ECDHE(variation of DHE
whereas client and server private keys sit on an elliptic curve, and you don't want to see math for that -
principle for key-exchange is same in nutshell as for DHE) are present. List of cipher suits reduced in
TLSv1.3 to only 5 compared to 37 supported in TLSv1.2 and handshake looks as:

Client hello - looks same as with DHE in TLSv1.2 apart that client assumes key exchange algorithm that
server will pick and sends its public key (DHE materials) straight away.

Server hello - looks the same as in TLSv1.2 DHE apart that message contains here also server certificates
and server "finished message". Moreover, certificates and server finished message are sent encrypted as
server has all details already to calculate the session key

Upon receipt of server hello client will authenticate the server and generate the session keys based on
received server's public key (same math as in TLSv1.2 DHE)

OCSBC - UCaasS security aspects

Best current practice

ORACLE

In summary, with TLSv1.3 every piece of information after Client/Server Hello exchange is encrypted
with future session-key. Key exchange in TLSv1.2 came into picture only after successful client-server
authentication and in TLSv1.3 both authentication and session keys are established in the first two
handshake messages.

Software
Software SBC - SCZ920.p3

Software OCOM — 5.2

Introduction

One of the main aspects with any UCaaS deployment is security as it comes mandatory for both SIP and
RTP. Given the complexity this document will outline some of the best current practices starting to
prepare SBC for UCaaS deployment, being however applicable, to any setup that involves TLS and SRTP

LAB UCaaS demo topology

SBC security configuration objects

End entity certificate

OCSBC - UCaasS security aspects

Best current practice

ORACLE

Every UCaaS integration comes with mutual TLS as mandatory and preparation step one in SBC is to
build its certificate-record end-entity certificate. In a nutshell this is certificate SBC is going to use to
introduce itself during TLS handshake. With mutual TLS, SBC will present this certificate acting as server
as server certificate or it’s going to answer with this certificate acting as client upon server’s certificate
request, in mutual TLS server requires client side authentication too. At present there are two models
end-entity certificate can be created/loaded to SBC

End entity certificate install from SBC generated CSR

Generating end-entity certificate starts with certificate-record creation in SBC's main security
configuration branch. As highlighted below and bolded red one might see parameters that are
mandatory — name, common-name(allocated SBC domain that will be protected) and optionally some
extension flags(other parameters as equally important and are to be aligned between 2 ends
terminating TLS). In this use case additional extension configured is client-auth as it comes mandatory
with mutual TLS and CSR that will be created based on certificate record will carry out a request to
support this extension. Remark here that CSR desired extension flags may be modified, removed or
added by certificate signing authority. No matter correct CSR generation, signed certificate should be
checked for all extension flags that are expected. That said it’s obvious that wrongly signed, certificate
may end up without client-auth flag that will prevent mutual TLS handshake to work. It is important in
this process to be aligned with CA on what flags signed certificate should inherit from CSR.

TEAMS SR(certificate-record)# done

certificate-record
name
country us
state MA
locality Burlington
organization Engineering
unit
common-name
key-size 2048
alternate-name
trusted enabled

key-usage-list digitalSignature
keyEncipherment
extended-key-usage-list serverAuth

key-algor rsa

digest-algor sha256
ecdsa-key-size p256
cert-status-profile-list

options

last-modified-by admin@10.0.15.149
last-modified-date

This model of generating end-entity certificate starts with certificate-record object out of which one
triggers CSR creation.

OCSBC - UCaasS security aspects

Best current practice

TEAMS SR# generate-certificate-request testBCP

Generating Certificate Signing Request. This can take several minutes....

MIIC2zCCAcCMCAQAWWTELMAkKGA1UEBhMCVVMxCzAJBgNVBAgTAk1BMRMwEQYDVQQH
EwpCdXJsaWbndGOuMRQwWEgYDVQQOKEwt FomdpbmV1lcmluZ zESMBAGA1UEAxXMJIAWNh
YXMuY29tMIIBIjANBgkghkiGI9wOBAQEFAAOCAQS8AMIIBCgKCAQEAVAXT8EYHNC/J
IiA2Q3FuFMI9MDdPa+7 fnmLQq9r2nPTOBA3fOyV4 fgdvGWZMIWB4F10BrEC95pbLyg
PL3KdXI1gTkoshyOBSbo31JWosvyABwgYXpopaZfBo0aGSvOO4ptgW+GWOV3XWge
OTZKNSOVEFNGYU3ycYFpYGZIA3B520XB+bb210hDvFccS7agKo/kYas8JGSqtU88r
XZ/dFNMAew/bWY1x0jbAJERBkBsSbOAMDT IpeaT+yb6QZUY1c+BA4pjvexKy2bXza
NrkSxbMM2Ek] 6epuSPCiBwiJtwYU5D1i02VZ1ChKqd9700000InxwBHO+GYolbgE2
1a02EgesxQIDAQABODOWOWYJKoZ IhvcNAQkOMS4wLDALBgNVHQ8EBAMCBaAwWHQYD
VRO1BBYWFAYIKwYBBQUHAWEGCCsGAQUFBWMCMAOGCSgGSIb3DQEBCWUAA4IBAQCB
MAWQs1KUt8GvuanllWPFhNJAGOK9pNO85/zZzyM/Whd/fcCGjszPnnMghFmTMPTP
kHgCGfwunedQUj4hfBay7V+qtHkpRgYoA] 9pVKngZ 9xQUOQtChiQM6p/nCTunTZ2
vCZxhTiU2gQW8VtRIRxZp/vqUTrPIS6NQMAYOeys69X+mgdKshimt JE181UONEDx
wcINPGjaTxW37CMSYz2+1vvpECN2Bbmub2a9BeWOT1iGzNXwANNPPK8OPGQOPGY3aT
ASLYRVRPa4PsxgS7xISESUuUEELFW8r1gS/XYYfaz7V1BQjk29hneg5dAvVdAnDWQ10
zK510oukFQBCcC9Xgg5Xg

WARNING: Configuration changed, run "save-config" command.
TEAMS SR#

Next step is to supply certification authority with generated CSR to be signed and ported back to SBC. In
this exercise I'll be using windows application “Simple authority” that acts as CA. Saving above output to
a file I'm loading it to CA app for signature

&9 SimpleAuthority
<F|Ie View Tools Help
|
1 @R A d
B~ +) g R (

CA Certificate Details

4

St Log File Days to Ex...
Y- — g}rz
Import > Certificate from File...
Export > Identity from File... c
j BER Parse... Users from LDIF... £
; . Users from vCard...
Options... C
J
3 Certificate Signing Request...
Cc
U
] c
1
1 C

OCSBC - UCaasS security aspects

Best current practice

ORACLE

;o X

As you may note on the right hand
side CA loads the CSR and presents
Certificate Type: General Purpose data from it as we defined them in

Enter the settings for the new certificate.

certificate-record configuration
object. As to revert to previous
discussion please note a thick on

Certificate Validity: 1000 days

© Use Subject DN from request
“ H
Include extension requests from

CN=ucaas.com,O=Engineering,L=Burlington, ST=MA, C=US CSR”. This means that signing the
certificate “client-auth” extension flag
) Use custom settings for Subject DN ‘ will remain as specified in CSR

Common Name Ucaas.com
Email Address

Organisational Unit
Organisation Engineerir

Country United State

Include extension requests from CSR

Cancel (o]}

Hitting “ok” certificate is signed and content in pem format ready to be pasted back to SBC:

TEAMS SR# import-certificate try-all testBCP
IMPORTANT :
Terminate the certificate with ";" to exit

MIIDszCCApugAwIBAgIGAY2xNEfQcMAOGCSgGSIb3DQEBCWUAMGEXCZzAJBgNVBAYT
AkhSMROWEgYDVQQOKDAtNYXR1aiBNYXJpYzEgMB4GAL1UECWWXQ2VydGlmaWNhdGlv
biBBdXRob3JpdHkxGjAYBgNVBAMMEUlpbmlzdHI5IGIMIEIhZ21jMB4AXDTIOMDIx
NjAS5MTgzOVoXDTI2MTExXxMjASMTgzOVOowNTELMAKGAIUEBhMCVVMxCzAJBgNVBAGT
Ak1BMRMwEQYDVQQHEwpCdXJsaW5ndGIuMROWEgYDVQOKEwt FomdpbmVlcmluZzES
MBAGA1UEAXMJIAWNhYXMuY29tMIIBIjANBgkghkiGOwOBAQEFAAOCAQS8AMIIBCgKC
AQEAVAXT8EYHNC/JIiA2Q3FuFMI9MDdPa+7fnmLQg9r2nPTOBA3f0yV4 fgdvGWZMT
WB4F10BrEC95pbLgPL3KdXI1gTkoshyOBSbo31JWosvyABwgYXpopazZfBo0aGSvO
04ptgW+GWOV3XWgeoTZKNS9vVENGYU3ycYFpYGZIA3B520XB+bb210hDvFccS7agKk
0/kYas8JGSqtU88rXZ/dFNMAew/bWY1x0jbAJERBkBsb0AMDT IpeaT+yb6QzUY1c
+BA4pjvcxKy2bXzaNrkSxbMM2Ek) 6epuSPCjBwiJtwYU5D102VZ1CbKgqJI97QQ000
InxwBHO+GYolbgE2iaO2EgesxQIDAQABo3kwdzAfBgNVHSMEGDAWGBTomkZwyHuUA
cxUwIRCAGEUWH4GrKTAJBgNVHRMEAJAAMASGA1UdDWQEAWIFoDAJBgNVHQ4EFgQU
wisMIJDgwhxgjripa5jxJIsY¥70dowHQYDVRO1BBYWFAYIKwYBBQUHAWEGCCSGAQUF
BwMCMAOGCSQGSIb3DQEBCWUAA4IBAQAAL Q4 4CXkLaRwVEM] fdPvOySipOe+XNxk
VBQJVKyi2SfCLsXpKO1F8VD2KuR2ue90/GBYBOGyVD0a6xCpIl434uVGxsUG2ubO
UtDtRWOIPNzYTpI/eeEoqVVTrORgHI8aPYVLWE6kym3N3ejS3fF+Lu/M77ULlXiSg
EXdnGkUoADrD6tYi0FSE6rLBgWyr2pPORr+H30UHN] r45y1R6CX00p80STY z6TR2
1Cm5gnxcyDHNryaD3ZdtI/7CV1Xigq4IToVmwrTDIpxgfSoIQlnLHfgAg Hlp+wHx
QVr5d12QPqaMuCO0TinKb5WkM51i 9 fuNFwUj0GV2 fuPIBk3wY/F60cC

OCSBC - UCaasS security aspects

Best current practice

ORACLE

Only precise verification of what has been ported back after save&activate we get executing “show
security certificate-record detail/brief”

certificate-record: testBCP
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 1708075119644 (0x18dbl35f4lc)
Signature Algorithm: sha256WithRSAEncryption
Issuer:
C=HR
O=Matej Maric
OU=Certification Authority
CN=Ministry of Magic
Validity
Not Before: Feb 16 09:18:39
Not After : Nov 12 09:18:39
Subject:
C=US
ST=MA
L=Burlington
O=Engineering
CN=ucaas.com
X509v3 extensions:
X509v3 Authority Key Identifier:

keyid:E8:9A:46:70:C8:7B:80:73:15:30:21:17:00:E8:45:16:1F:81:AB:2
)

X509v3 Basic Constraints:

CA:FALSE
X509v3 Key Usage:

Digital Signature, Key Encipherment
X509v3 Subject Key Identifier:

Cl:FB:0C:20:90:EA:C2:1C:60:8E:B8:A9:6B:98:F1:26:C6:3B:39:DA
X509v3 Extended Key Usage:
TLS Web Server Authentication, TLS Web Client
Authentication

Exchanging certificates in TLS handshake one must provide a full signing chain and not only signed
certificate. For this reason we need to load in SBC also public certificate of authority that signed our CSR.
For this purpose we will create another certificate-record as outlined below. Very important remark
here is that there is a big difference between certificate record created to build end-entity certificate
and the one we built below to load CA public certificate. First one was associated with unique private
key given the CSR creation and only signed cert matching the private key is suitable to be loaded back.
Latter one below is not associated with any private key and SBC will load there any CA public certificate
overwriting default SBC certificate-record content. CA public(root and intermediates) certificates are
public and can be easily fetched from internet.

OCSBC - UCaasS security aspects

Best current practice

ORACLE

TEAMS_ SR (certificate-record)# done

certificate-record
name MinistryOfMagic
country Uus
state MA
locality Burlington
organization Engineering
unit
common-name bcp.test
key-size 2048
alternate-name
trusted enabled
key-usage-1list digitalSignature

keyEncipherment

extended-key-usage-1list serverAuth
key-algor rsa
digest-algor sha256
ecdsa-key-size p256
cert-status-profile-list

As said content above is irrelevant loading the CA public certs and | will just load my CA Root certificate
over this certificate-record. To emphasize that this step must be repeated in case there are intermediate
certificates in CA signing chain.

TEAMS SR# import-certificate try-all MinistryOfMagic
IMPORTANT :
Please enter the certificate in the PEM format.
Terminate the certificate with ";" to exit
BEGIN CERTIFICATE -
MIIDojCCAOqgAWIBAgIGAXkS3zzpMAOGCSgGSIb3DQEBCWUAMGEXCZAJBgNVBAYT
AkhSMROWEgYDVQQKDAtNYXR1aiBNYXJpYzEgMBAGAL1UECWWXQ2VydGlmaWNhdGlv
biBBdXRob3JpdHkxGjAYBgNVBAMMEUlpbmlzdHI5IGIMIEIhZ21jMBAXDTIXMDQyY
NzEwMJgxMFoXDTMxMDQyODEWMjgyMlowY TELMAKkGA1UEBhMCSFIxFDASBgNVBAOM
C01hdGVgIElhcml jMSAwWHgYDVQQLDBADZXJ0aWZpY2F0aW9uIEF1dGhveml0eTEa
MBgGA1lUEAWWRTW1luaXNOcnkgb2YgTWEFnaWMwggEiMAOGCSgGSIb3DQEBAQUAA4LIRB
DwAWggEKAOIBAQDJISsSPHH3PIBBJIWt /fz+6WWZrGmJ 7TW4AWyjujxD85yD/FJdDatz2v
Tbdk+s00p8sbcZt3bNNulNUEL861S3yMjkTnC51pStVislWOyNISkgRv7pEZR516
5BaEJg48J8puBwB5gY1JhZZjruGkhTo7RiYGxjv40jp8tfFavVPt7c7t6YOmaPbP+34
zGrGzGVWEHAWTDGY8EbUTWnZbg2YUUAVsniUDPn9ohyqm/YoW+JZBQ2a9JyJA8uu
weijgD71Znewx1gzGYs018zgbcs//VC1lxbHaDiiStUCjwGtsGiUDACk80I7v3yJC
N+81YgifFOWy40ACGOMUENzQKaYEzDxecOn/AgMBAAG] YDBeMB8GA1UdIwWQYMBaA
FOiaRnDIed4BzFTAhFwDORRY fgaspMAwWGA1UJEWQFMAMBAf8wDgYDVROPAQH/BAQD
AgGGMBOGA1UdDgQWBBTomkZwyHUACXUwWIRCAGEUWH4GrKTANBgkghkiG9wOBAQSFE
AAOCAQEAffURW2IxwwssBtmkjItDFEytAwPpyez2a+g8el0i6Huzu/i/Kbj3YnzJ
1BDH5mCYwaqgs 9L+WpRswFSCVMmM4hFaB5L4UOR30omznLIXgP+TvgzqU8o0H8XVirB
BmyUQ40QWs frzsmIQAXPuyVEsuhdpNPc30jOLhluyOO0ZseOylviWpoaVmKLpkRS8+b
ewx2gOwKMpgxD61F+Q9cXShbtLVIL2h6fjvaWBeQMVxK88cQ07zaBiKNXRIPLJ/+U
VIAkgagYKp6/R3Uh+1G2Mz1mhyZMZN/+gx0OA12D51GYLLg+nVBbtpgSQBo6mZEfA
zfGhEnDtAQ9sYmcNtkSKAScgA==

Certificate imported successfully....
WARNING: Configuration changed, run "save-config" command.

OCSBC - UCaasS security aspects

Best current practice

ORACLE

Proper verification kicks in again with “show security certificate-record detail/brief”. It will expose
details of newly loaded CA public certificate. Please note below that content of this record has nothing
to do anymore with default configuration we have put in public CA certificate-record object.

certificate-record: MinistryOfMagic
Certificate:
Data:
Version: 3
Serial Number: 1619519290601 (0x17912df3ce9)
Signature Algorithm: sha256WithRSAEncryption

Issuer:
C=HR
O=Matej Maric
OU=Certification Authority
CN=Ministry of Magic

Validity
Not Before: Apr 27 10:28:10 2021 GMT
Not After : Apr 28 10:28:23 2031 GMT

Subject:
C=HR
O=Matej Maric
OU=Certification Authority
CN=Ministry of Magic

X509v3 extensions:
X509v3 Authority Key Identifier:

keyid:E8:9A:46:70:C8:7B:80:73:15:30:21:17:00:E8:45:16:1F:81:AB:29

X509v3 Basic Constraints:
CA:TRUE

X509v3 Key Usage: critical
Digital Signature, Certificate Sign, CRL Sign

X509v3 Subject Key Identifier:
E8:9A:46:70:C8:7B:80:73:15:30:21:17:00:E8:45:16:1F:81:AB:29

End entity certificate install from PKCS12 bundle

PKCS12 is a bundle that consists of private key and signed certificate material. In other word it’s
elsewhere generated end-entity certificate that SBC supports. In this approach there is no need for CSR
generation in SBC as SBC is going to load signed certificate and associate with the private key being part
of the same bundle. Also there is no need to create certificate-record object as it’s going to be
automatically created by SBC upon loading the p12 file.

In practice this means that our customers may be supplied by their security team with a file typically
carrying .pfx or p12 extension. Such file needs to be put in /opt folder before attempted to be loaded to
SBC. Only issue detected in field trying to upload pkcs12 form is in the way bundle was created and if

OCSBC - UCaasS security aspects

Best current practice

ORACLE

SBC prompts an error trying to load such a bundle it could be pkcs12 has to be re-created(openssl) as
outlined below

openssl pkcs12 -in <filename>.pfx -nocerts -out key.pem (extracts private key from bundle)
openssl pkcs12 -in <filename>.pfx -clcerts -nokeys -out cert.pem (extracts signed cert from bundle)

With these two outputs we will re-create pkcs12 bundle using PBE-SHA1-3DES as it is only one SBC today
supports.

openssl pkcs12 -keypbe PBE-SHA1-3DES -certpbe PBE-SHA1-3DES -export -out msft2023.p12 -

inkey key.pem -in cert.pem

At this point msft2023.p12 should be properly formatted and ready to be ported into SBC.

TEAMS SR# import-certificate pkcsl2 testBCP msft2023.pl2
Can not import pkcsl2 with existing record

TEAMS SR# import-certificate pkcsl2 BCPPKCS12 msft2023
The specified certificate-record: (BCPPKCS12) does not
exist.

Creating one...

Enter Import Password:

Importing ee: BCPPKCS12

Certificate(s) imported successfully....

WARNING:
Configuration changed, run 'save-config' and
'activate-config' commands to commit the changes.

TEAMS SR#

Please note that certificate initially created with CSR in SBC may be also exported from SBC in pkcs12
form and loaded to multiple SBCs. This however depends on exact customer deployment and may have
security implication given it is same private key re-used in multiple devices. This will not be discussed
deeper as part of this BCP.

TLS profile

Getting done with certificate creation with need to assign certificate-records properly in tls-profile
configuration element. Such tls-profile is later assigned to sip-interface configuration object

OCSBC - UCaasS security aspects

Best current practice

ORACLE

TEAMS SR# sho configuration tls-profile
tls-profile
name TEAMS
end-entity-certificate teams2023
trusted-ca-certificates GoDaddyCA
Baltimore

DigiCertRootG2
cipher-list ALL

verify-depth 10
mutual-authenticate enabled
tls-version tlsvl2
options

cert-status-check disabled
cert-status-profile-list

ignore-dead-responder disabled
allow-self-signed-cert disabled

Highlighting here that mutual-authenticate parameter, in UCaaS use case, must be enabled otherwise
SBC as a server will not request client certificate in TLS handshake and acting as client it will fail to send
its certificate upon server’s request. Whilst end-entity parameter looks clear on how to be configured
trusted-ca-certificates must consist of the local CA chain. In other words there we must specify all
intermediates and root CA of local certificate as the whole chain must be presented in TLS handshake.
Also, there we must specify roof top Root CA of remote party, certificate record of remote party CA shall
be created in same fashion as for local CA, please refer to chapter “End entity certificate” public CA certs
loading paragraphs.

SDES profile and media-security policy

Configuring two additional configuration objects in SBC we should cover SRTP negotiation and
termination on legs where SRTP is mandatory, typically only legs towards UCaaS vendor. Below the
sample configuration whereas media-sec-profile gets attached to UCaaS realms.

sdes-profile
name SDES
crypto-list AES CM 128 HMAC SHA1l 80
AES 256 _CM HMAC SHAL 80
lifetime 31
media-sec-policy
name SRTP
inbound

profile

mode

protocol
outbound

profile

mode

protocol

We should be now all set to test our application.

OCSBC - UCaasS security aspects

Best current practice

ORACLE

TLS and SRTP troubleshoot

In order to verify TLS connection against remote agents works fine same steps might be followed as for
any other TCP/UDP agents. SA configured to be SIP OPTIONS pinged will appear in status active in case
OPTIONS are successfully replied and if SIP OPTIONS are successfully replied it means underlying
transport TLS handshake went well too. Sipmsg.log may give insights in sip message details as well as
calls might be checked in OCOM supplied with data from embedded probe(SBC acts as a probe). SBC
sends decrypted data to OCOM mediation engine. Calls are then easily readable in form of ladder

diagrams.

Successful TLS and SRTP verification

DEMOSBC-5# sho security tls stats

TLS Stats

active connections

successful connects 11
successful accepts 722
shutdown sent : 719
shutdown received : 708
connection close 0 719

bytes sent : 14088279
bytes received : 15812552
write error 01
protocol is shutdown HE

wrong version number HE

cipher suite ECDHE_ECDSA WITH AES 128 GCM SHA256 : 7
cipher suite ECDHE _RSA WITH AES 256 GCM_SHA384 : 726
protocol version TLS 1.2 : 733

Successful TLS session-agent verification from CLI:

OCSBC - UCaasS security aspects

TLS security stats will expose
overall number of active and
closed TLS connections along with
per chipper and tls version stats.

Best current practice

ORACLE

Inbound Outbound Latency -- JUED:S
Session Agent Active Rate ConEx Active Rate ConEx Avg Max Burst

DEMOSBC-5# sho sipd agents
13:00:34-45 (recent)

OPTIONS sip:us0Ol.sipconnect.bcld.webex.com:5062;transport=tls SIP/2.0
10.0.16.8:5069;branch=z9hG4bK593evh005gcnpeqOubb0

Call-ID: d1985b0a6708e7dd8£97¢c757e5106e£9060000c060@10.0.16.8

To: sip:ping@usOl.sipconnect.bcld.webex.com

From: <sip:ping@10.0.16.8>;tag=1d36b8bb31b6f620d790a594a1f0b86£000c060

Max-Forwards: 70

CSeqg: 1548 OPTIONS

Route: <sip:139.177.65.147:5062;transport=tls;lr>

Content-Length: 0

Contact: <si ping@google.oraclecgbupoc.co.uk:5069; transport=tls>

Feb 16 13:00:12.097
SIP/2.0 200 OK

10.0.16.8:5069;received=129.213.136.120;branch=z9hG4bK593evh005gcnpeqg0ubb0
From:<sip:ping@10.0.16.8>;tag=1d36b8bb31b6f620d790a594a1f0b86£000c060
To:<sip:ping@us0l.sipconnect.bcld.webex.com>;tag=2018048526-1708088412090
Call-ID:d1985b0a6708e7dd8£97¢c757e5106e£9060000c060@10.0.16.8
CSeq:1548 OPTIONS
Allow:ACK,BYE, CANCEL, INVITE, INFO, OPTIONS, REGISTER, MESSAGE, PUBLISH

Successful TLS call verification in OCOM:

SR-TEAMS UCaa$ SBC SP-Core-Network

Message 1 X

FROM:
T0:
CSEQ: 1 INVITE

CALL-ID: f72c7fa3f62e5b07907dff753fbe9772

- 5 s9pug
I VIA: 52.114.132.46:5061;branch=z9hG4bK514c95ce

CONTACT:

OCSBC - UCaasS security aspects

Best current practice

ORACLE

SRTP is negotiated within SIP TLS encrypted connection with SDP exchange. SRTP session is considered
successful if there is a match in crypto list algorithms between 2 parties.

[1]INVITE

H »
Message 1 X

+-0.302 ms

‘_ X-MS-MediaPath: test.sbclcustl.customers.oraclecgbupos

v=0
o=- 105260 @ IN IP4 127.0.0.1
s=session
c=IN IP4 52.113.221.44
b=CT: 10000000
=0 0
m=audio 51438 RTP/SAVP 104 9 103 111 18 0 8 97 101 13'
c=IN 1P4 52.115.2721.44
a=rtcp:51439
a=ice-ufrag:hBc3
a=ice-pwd:1EzdOHP+/gqY9Grf5PYrIV3Y
a=rtcp-mux
a=candidate:1 1 UDP 2130706431 52.113.221.44 51438 ty} [6] 100 Trying
a=candidate:1 2 UDP 2130705918 52.113.221.44 51439 ty
a=candidate:2 1 tcp-act 2121006078 52.113.221.44 4915
a=candidate:2 2 tcp-act 2121006078 52.113.221.44 4915!;
a=label:main-audio s [7]INVITE
a=mid:l
| a=crypto:1 AES_CM_128 HMAC_SHA1_80 inline:ex4Y2wFKSv5I |

a=sendrecv

a=rtpmap:104 SILK/16000 s [8]100 ﬁyh\g

s [3]INVITE

s [4]100 Trying

s [S5]INVITE

Upon a successful SRTP call established SRTP security associations may be displayed in CLI:

OCSBC - UCaasS security aspects

Best current practice

ORACLE

DEMOSBC-5# sho security srtp sad SOP0:0 detail

WARNING:
finish.
Are you

SRTP security-association-database for interface

This action might affect system performance and take a

sure [y/n]?: vy

long time to

'SOP0:0"':

Displaying SA's that match the following criteria -

Inbound:

direction
src-addr-prefix
src-port
dst-addr-prefix
dst-port
trans-proto

destination-address
destination-port
vlan-id

mode

encr-algo

auth-algo
auth-tag-length

mki

mki length

roll over count

Outbound:

destination-address
destination-port
vlan-id

mode

encr-algo

auth-algo
auth-tag-length

mki

roll over count

: both
any
any
any
any
ALL

10.0.16.8
10014

0]

srtp
aes-128-ctr
hmac-shal
80

NULL

0]

0]

52.115.179.82
49800

0]

srtp
aes-128-ctr
hmac-shal

80

NULL

0]

DEMOSBC-5# sho security srtp sessions

13:23:23-153

Capacity=3500

SRTP Session Statistics

SRTP

Active

Sessions

Lifetime
Total PerMax
114 65

-- Period
High Total

Failing TLS and SRTP cases

Failures in TLS handshake may be observed in log.atcpd on debug log level but it’s probably the easiest
to troubleshoot setting up packet-trace local in SBC and viewing captured data in wireshark as most of

failures pop up in a stage we still may see traffic in clear. TLS handshake may fail for couple of reasons,
highlighting common ones in UCaa$ environment:

OCSBC - UCaasS security aspects

Best current practice

ORACLE

- TLS version mismatch
- TLS cipher suite mismatch
- Certificate record issues

TLS 1.2 and 1.3 are commonly used today and 1.0 and 1.1 became deprecated. It’s client that starts TLS
handshake with “Client Hello” and indicates its TLS version and cipher suite support. If connection
terminates without “Server Hello” then either TLS version or cipher suit does not match server side.

Screenshot below is packet trace local presentation where TLS was attempted from SBC simulating only
TLS1.0 version support, remote are MSFT TLS session agents:

4. 70 TREQeEnrEFE IS QAQAQE
N [tep.stream eq 6
No. lime Source Destination Protocol Length Info

36 13.145395 10.0.16.25 52.114.132.46 66 8292 » 5861 [ACK] Seq=1 Ack=1 Win=262144
37 13.146699 10.0.16.25 52.114.132.46 TLSv1 161 Client Hello
38 13.148169 52.114.132.36 10.9.16.25 73 Alert (Level: Fatal, Description: Protocc

66 8292 - 5061 [ACK] Seq=96 Ack=9 Win=262144

10.0.16.25 52.114.132.46

40 13.150222

10.0.16.25 TcP 66 5061 » 8292 [ACK] Seq=9 Ack=97 Win=41945¢

42 13.152108 52.114.132.46

> Frame 38: 73 bytes on wire (584 bits), 73 bytes captured (584 bits) 2000 02 09
> Ethernet II, Src: Oracle_77:75:¢9 (80:00:17:77:75:¢9), Dst: 02:00:17:02:66:8d (82:00:17:02:66:8d) L:a} 69 3b
> Internet Protocol Version 4, Src: 52.114.132.46, Dst: 1€.0.16.25 Eff :g :i
> Transmission Control Protocol, Src Port: 5061, Dst Port: 8292, Seq: 1, Ack: 96, Len: 7 aala 29 85

v Transport Layer Securi D
v TLSvl Record Layeri Alert (Level: Fatal, Description: Protocol Version>

Content Type: Alel
Version: TLS 1.8 (@x@301)
Length: 2
v Alert Message
Level: Fatal (2)
Description: Protocol Version (7@)

In such a case, as mentioned earlier server side will answer “client hello” message straight with error
before issuing “server hello” message. This guides us to check and correct tls-profile with proper TLS
version and cipher suite supported by both parties. Log.atcpd the will reflect this failure as printed
below:

Jul 914:15:27.930 [SERVICE] (0) TLS Handshake: client <<< TLS 1.0 Alert[length 0002], fatal protocol_version
Jul 914:15:27.930 [SERVICE] (0) <tlsengine.cpp:1549> SSL3 alert read:fatal:protocol version

Jul 9 14:15:27.930 [SERVICE] (0) <tlsengine.cpp:1567> SSL_connect:error in error

OCSBC - UCaasS security aspects

Best current practice

ORAC

Jul 914:15:27.930 [SERVICE] (0) <tlsengine.cpp:4237> TLSEngine::TLSMachineDOControl, appData_m =0, n =

Jul 914:15:27.930 [MINOR] (0) SSL_accept failed, fatal alert sent

LeE

Jul 914:15:27.930 [MINOR] (0) OpenSSL Error:error:1409442E:SSL routines:ssI3_read_bytes:tlsv1 alert protocol

version:ssl/record/rec_layer_s3.c:1551:SSL alert number 70

Jul 9 14:15:27.930 [SERVICE] (0) <tlsengine.cpp:4357> TLSEngine::TLSMachineDOControl, appData_m = 0, retCode=32

Jul 9 14:15:27.930 [MINOR] (0) ServiceSocketProxyAdapter TCP:10.0.16.25:34348->52.114.75.24:5061 CheckAndRecvTLS, TLS

Recv failed retCode: 32:TLS engine accept/connect failed on fd -1

Jul 914:15:27.930 [SERVICE] (0) <ServiceSocketProxyAdapter.cpp:1894> ServiceSocketProxyAdapter::Disconnect(void)

(0x81bc3400)

Sorting out version and cipher suite there are certificates to be exchanged. Post “server hello” it is
server presenting its certificate chain. Below failure simulation occurs when | remove public CA of

remote party from tls-profile trusted-ca-certificate:

48 14.866583 10.0.16.25 52.114.75.24 Tcp 66 8232 > 5061 [ACK] Seq=1 Ack=1 Win=262144 Len=0 TSva
41 14.867565 10.0.16.25 52.114.75.24 TLSv1.2 225 Client Hello

45 14.948858 52.114.75.24 10.0.16.25 TCcP 1514 5061 - 8232 [ACK] Seq=1 Ack=16@ Win=419456@ Len=144
46 14.948872 52.114.75.24 10.0.16.25 TcP 1514 5061 - 8232 [ACK] Seq=1449 Ack=160 Win=4194560 Len=
47 14.948874 52.114.75.24 10.0.16.25 TCcP 1514 5061 > 8232 [ACK] Seq=2897 Ack=160 Win=419456@ Len=
48 14.948875 52.114.75.24 16.0.16.25 TLSV1.2 221 Server He

66 8232

I 49 14,951 ‘
66 5061 - 8.

50 15. 931798 52.114.75.24

e, Server Key Exchange, Cer

4|
61 Wl -4194569 Len:

> subjectPublicKeyInfo
> extensions: 12 items 9924
> algorithmIdentifier (sha384WithRSAEncryption) s
Padding: @ 40
encrypted [truncated]: ©928c977c3e4d2e2fb233697c232beecdacaf72364930a328d172dc4eedf761fe1728059d4c2a7287¢ee...
Certificate Length: 1456
v Certificate [truncated]: 308205ac308204942003020102021005196526449a5e3d1a38748f5dcfebcc300d06092a864886170d01...
v signedCertificate
version: v3 (2)
serialNumber: @x@5196526449a5e3d1a38748f5dcfebcc
> signature (sha384WithRSAEncryption)
v issuer: rdnSequence ()
rdnSequence: 4 items I(J.d at-commonName=DigiCert Global Root GZ.I:.d at-organizationalUnitName=www.digic..
> validity
> subject: rdnSequence ()
> subjectPublicKeyInfo
> extensions: 8 items

02 00 17 02 66 8d 00 ot
00 cf f6 9c 40 00 76 ot
10 19 13 ¢5 20 28 aa 5!
40 01 4d dd @0 00 o1 o:
ca 63 ca 3b 45 f4 34 f
a0 28 87 d4 e5 54 06 6!
17 f5 63 d3 4b bd 46 8!
la d3 48 86 f5 of c6 -
2c fo 9d a9 3a 8e ad 8¢
db do 48 48 2f 1b 76 ai
a4 89 2b 91 eb 95 20 4¢
dl d4 1d 8b ed od @0 o«
04 08 05 08 06 04 01 o!
©3 02 02 06 01 06 @3 o

In this exchange TLS handshake goes further. SBC sends “client hello”, as a server MSFT answers with

”

“server hello

certificates”. Straight upon receiving remote certificate chain SBC terminates TCP

connection sending FIN. SBC was not able to verify remote certificate chain trust. From the server

certificate message is obvious who signed their certificate and this issue gets fixed by addi

OCSBC - UCaasS security aspects

ng again

Best current practice

ORACLE

“DigiCert Global Root G2” back to “trusted-ca-certificate” list of corresponding TLS profile. It may be
very well this certificate was not even loaded to SBC so this has to be done as step one. Log.atcpd will
reflect this situation as:

Jul 9 14:32:28.538 [SERVICE] (2) TLS Handshake: client >>> TLS 1.2 Alert[length 0002], fatal unknown_ca

Jul 914:32:28.538 [SERVICE] (2) <tlsengine.cpp:1549> SSL3 alert write:fatal:unknown CA

Jul 9 14:32:28.539 [SERVICE] (2) <tlsengine.cpp:1567> SSL_connect:error in error

Jul 9 14:32:28.539 [SERVICE] (2) <tlsengine.cpp:4237> TLSEngine::TLSMachineDOControl, appData_m =0, n = -1
Jul 9 14:32:28.539 [SERVICE] (2) <tlsengine.cpp:5018> encrypted packet sent:

Jul 9 14:32:28.539 [SERVICE] (2) 15 03 03 00 02 02 30 length: 7

Jul 914:32:28.539 [ATCP] (2) <AtcpSocket.cpp:894> virtual int AtcpSocket::Send(const void*, size_t) bytes to send=7
fd=1071279

Jul 914:32:28.539 [ATCP] (2) <clog.cpp:98> atcpGetControlMblk: ALLOCED mBlk at 0x2f2769d0
Jul 914:32:28.539 [ATCP] (2) <clog.cpp:98> (mData:0x2dbb2828, mFlags=0,mNext:(nil),len=23)

Jul 914:32:28.539 [ATCP] (2) <AtcpSocket.cpp:878> int AtcpSocket::sendOnePacket(mBlk*, int, const void*, int) add crsld=0 to
acme header for fd=1071279

Jul 9 14:32:28.539 [ATCP] (2) <AtcpServicePipe.cpp:1400> Asock::Send phy,vlan=0,0 cookie=0x0x171

Jul 914:32:28.539 [ATCP] (2) <AtcpServicePipe.cpp:1757> virtual int AtcpServicePipe::TransmitData(const void*, uint32_t)
putting on transport queue, cookie=0x0x171

Jul 9 14:32:28.539 [SERVICE] (2) <Commands.h:410> add command AtcoDataCommand 0x8539¢790(2) on Transport queue # 2
Jul 9 14:32:28.539 [SERVICE] (2) <tlsengine.cpp:5047> TLSEngine::FlushNetworkBIO nFD:-1, fromBIO:7, numWrite:7, writePos:7

Jul 914:32:28.539 [MINOR] (2) SSL_accept failed, fatal alert sent

In next simulation TLS handshake will go even more further, here I’'m simulating SBC sending incomplete
chain with expectation that MSFT will terminate TLS handshake. To simulate this | will remove one
intermediate (that signed the local cert) from “trusted-ca-certificate” list.

OCSBC - UCaasS security aspects

Best current practice

ORACLE

23 1.059616 10.0.16.25 52.120.73.220 TLSv1.2 225 Client Hello

24 1.066721 52.120.73.220 10.0.16.25 TCP 1514 5061 - 8350 [ACK] Seq=1 Ack=160 Win=12582912
25 1.066736 52.120.73.220 10.0.16.25 TCP 1514 5061 - 8350 [ACK] Seq=1449 Ack=16@ Win=125829
26 1.066741 52.120.73.220 10.9.16.25 TCP 1514 5061 - 8350 [ACK] Seq=2897 Ack=16@ Win=125829
27 1.066743 52.120.73.220 10.9.16.25 TLSv1.2 222 Server Hello, Certificate, Server Key Exchang
28 1.075840 10.0.16.25 52.120.73.220 TCP 1494 8350 > 5061 [ACK] Seq=160 Ack=4501 Win=262144
29 1.075972 10.0.16.25 52.120.73.220 TLSv1.2 815 Certificate, Client Key Exchange, Certificate
30 1.081973 52.120.73.220 10.0.16.25 TCP 66 5061 > 8350 [ACK] Seq=4501 Ack=2337 Win=12582
31 1.084460 52.120.73.220 10.0.16.25 TLSv1.2 117 Change Cipher Spec, Encrypted Handshake Messa

32 1.087333

10.0.16.25

52.120.73.220

TLSv1.2

796 Application Data

34 1.095938 10.0.16.25 52.120.73.220 TCP
36 1.102709

52.120.73.220 10.0.16.25 TCP

Certificate Length: 1735
v Certificate [truncated]: 308206c3308205aba®0302010202084ddeeealébsa342b300d06092a864886170d01010b05003081b431...
v signedCertificate

00 00 17 77 75 !
©3 21 00 00 00 o
49 dc 20 9e 13 c!
. 0032 80 00 99 78 00 O
version: v3 (2) 0040 b7 94 FI3]
serialNumber: ©x4dd@@eal6bda342b B2 44 81 5d 88 b

> signature (sha256WithRSAEncryption) [CI-Mll3a 90 b5 dd da d
v issuer: rdnSequence (©) :L7(-A30 od 86 @9 2a g
7

O ®

. = e : [LEEMS2 01 01 00 26
.[?runcated]rdnSequence. 6 items (id-at commonNam}_Go Daddy Secure Certificate Authority I G2,id-at-o.. PO -2 43 52 3a 83
> val%dlty [-E-A50 f8 1f

In a screenshot above TLS handshake goes further and SBC as client verifies server side certificate
successfully. Upon server request it also sends its certificate in frame 29. However as it sends
incomplete data, only signed cert with no intermediates server will consider it incomplete and terminate
TCP connection with FIN. Action point here is to verify that SBC side full chain is loaded to SBC.

SRTP application layer negotiation failure happens post TLS is up and usually reflects as human readable
session termination with SIP 488 “Not acceptable here” replied back to sender’s SIP INVITE. Both parties
should agree on supported ciphers and sdes-profile should be tuned accordingly.

Abnormal TLS cases

It may happen for whatever reasons that application layer logs in SBC cannot be checked and there is no
OCOM in place while we have healthy indication that underlying TLS and SRTP are all fine. With recent
9.2 feature SBC may log TLSv1.2 and TLSv1.3 pre-master and master secret for a TLS connection that
helps decrypting traces in wireshark.

In my next example | have healthy TLS session-agent indication but my calls are failing. There is no
sipmsg.log available nor OCOM in place. An option to go with is following:

- Setup packet-trace local on desired network-interface
- Configure system-config parameter log-tls-key

OCSBC - UCaasS security aspects

Best current practice

ORACLE

- Attempt the failing call and collect the pcap from /opt/traces(note that pcap may be from
elsewhere in network)

- Fetch the pre-master and master key from /opt/logs. File is called tlskey.log

- Attempt to decrypt messages in wireshark

In wireshark one needs to go TLS protocol preferences and target the file fetched from SBC as looks
below:

TACACS+

TALI
TAPA RSA keys list Edit...

Transport Layer Security

TCAP TLS debug file
TCP

TCPCL Browse...
TCPENCAP

TCPROS
TDMoE Reassemble TLS Application Data spanning multiple TLS records

Reassemble TLS records spanning multiple TCP segments

TDMoP () Message Authentication Code (MAC), ignore "mac failed"
TDS

TeamSpeak?2
TECMP (Pre)-Master-Secret log filename
TELNET

Teredo

TETRA

TFP

TFTP

Thread

Thrift

Tibia

TIME

TIPC I
TiVoConnect

TLS

TNS
|

Pre-Shared Key

C:\Users\MMARIC\Downloads\tIskey.log Browse...

Only step remaining is a right click on TLS packet under inspection and use “decode as” choosing SIP
given packets may be reassembled.

TLS packets became visible as raw data:

OCSBC - UCaasS security aspects

Best current practice

79 35.643412
80 35.643532
81 35.789147
82 35.799119
v 83 35.801736
84 35.939254
85 35.977999
86 36.119366
87 36.170046

ORACLE

10.0.16.8 95.168.120.27 TLSV1.2
10.0.16.8 95.168.120.27 TLSV1.2
95.168.120.27 10.0.16.8 TcP
95.168.120.27 10.0.16.8 TLSV1.2
10.0.16.8 95.168.120.27 TLSV1.2
95.168.120.27 5.0.16.8 |SIP
10.0.16.8 95.168.120.27 SIP
95.168.120.27 10.0.16.8 SIP
10.0.16.8 95.168.120.27 SIP

1422 Server Hello
1007 Certificate, Server Key Exchange, Server Hello Done
56 56705 - 5063 [ACK] Seq=338 Ack=2322 Win=131872 Len=0
180 Client Key Exchange, Change Clpher Spec, Flnlshed
L

288 oS i

.co.uk | (1 bindi

1117 Request: REGISTER sip:volte.oraclecgbupoc.co.uk
863 Status: 200 OK (REGISTER) (1 binding) |

(1 binding

o> Frame 84: 816 bytes on wire (6528 bits), 816 bytes captured (6528 bits)
> Ethernet II, Src: Oracle_77:75:c9 (00:00:17:77:75:c9), Dst: Oracle_02:f3:dd (00:00:17:02:f3:dd)

> Internet Protocol Version 4, Src:

95.168.120.27, Dst: 10.0.16.8

3 issi 1, Src Port: 56705, Dst Port: 5063, Seq: 464, Ack: 2548, Len: 762
Transport Layer Security

< TLSV1.2 Record Layer: Application Data Protocol: Session Initiation Protocol

Content Type: Application Data (23)
Version: TLS 1.2 (@x@303)
Length: 757

Encrypted Application Data [truncated]: d779e5d6lbdbbeb3cee94911db2b305603622b3b87eee60f7549cff5ed00dc21e9611909d4b652F

g Initiation Protocol]
| Session Initiation Protocol (REGISTER)

00 17 @2 f3 dd @@ @@ 17 77
22 aa 94 40 00 78 06 63 76
08 dd 81 13 c7 e9 be 61 7d
ff 44 9f @@ @0 17 @3 @3 02
be b3 ce e9 49 11 db 2b 30
e6 of 75 49 cf f5 ed @0 dc
52 f6 c7 fb 1a 66 dc 9c 4f
16 ©1 48 66 89 b3 c4 6 91
6f 60 8b 58 b2 cd fa ae @a
3¢ 19 c2 71 c8 f4 @@ db 7c
2f a7 5b a8 a@ 39 6b 47 7
87 a9 60 df le @e 3a 72 da
8f 10 24 d7 34 b 92 42 da
7f 55 63 82 fa cb 5e a0 ac
4f 82 50 43 b5 b5 49 a5 c6
b8 3b al 11 7f 1c ef 2f 99
4m 11 3R 7e a7 79 A A9 A7

At point we’d normally see just encrypted application data now we have a full view over decrypted
content. Furthermore reason of the call failure can be further explored:

87 36.170046
91 36.351089
104 40.089278
105 40.099479
106 40.281077
107 40.282016
108 40.419248
109 40.518781
198 83.399394

e PAEMMES N MM R AR YA T S A BUMPY s WM\ v

10.0.16.8 95.168.120.27 SIP 863 Status: 200 OK (REGISTER) (1 binding)

95.168.120.27 10.0.16.8 TCP 56 56705 > 5063 [ACK] Seq=2289 Ack=3975 Win=131872 Len=0
95.168.120.27 10.0.16.8 SIP/SDP 1149 Requestip:+17813131633@v01te.oracle:gbupoc.ct
10.0.16.8 95.168.120.27 SIP 460 Status: 100 Trying

95.168.120.27 10.0.16.8 TCP 56 56705 -, 23384 Ack=4381 Win=130560 Len=0
10.0.16.8 SIP 553 Status:| 464 Not Found |

95.168.120.27 10.0.16.8 sIP 484 Request? 31033@volte.oraclecgbupoc.co.ul
10.0.16.8 95.168.120.27 TCP 60 5063 - 56705 [ACK] Seq=4880 Ack=3814 Win=262144 Len=0
95.168.120.27 10.0.16.8 SIP 1117 Request: REGISTER sip:volte.oraclecgbupoc.co.uk (1 bit

O, Frame 107: 553 bytes on wire (4424 bits), 553 bytes captured (4424 bits)
> Ethernet II, Src: Oracle_02:f3:dd (00:00:17:02:f3:dd), Dst: Oracle_77:75:c9 (©0:00:17:77:75:¢9)
> Internet Protocol Version 4, Src: 10.0.16.8, Dst: 95.168.120.27

Transport Layer Security

v TLSv1.2 Record Layer: Application Data Protocol: Session Initiation Protocol

en: 499

Content Type: Application Data (23)
Version: TLS 1.2 (@x@3@3)
Length: 494

Encrypted Appllcatlon Data [truncated] d9680abfee6ded143d32571dcbbe23cc2bf5900ccbfofeb90473a64883c4488bca595b2565baed

ession Initiation Protocol]
Session Initiation Protocol (464)

00 00 17 77 75 c9 @@ ee
02 1b 47 10 00 00 40 06
78 1b 13 c7 dd 81 45 2c
80 00 60 fd @0 @0 17 @3
6d ed 14 3d 32 57 1d cb
bf of eb 90 47 3a 64 88
Sb ae d8 @a 3d 92 69 89
bf @b @9 b8 @1 29 a7 5b
88 04 a7 21 76 96 29 82
63 f5 71 44 36 06 81 e8
81 9b 3f 31 41 1c 37 6@
94 63 12 @0 7e 05 fc 9b
f4 23 b7 6e 25 7c @b 34
d9 29 4f 75 9b 79 39 56
a7 db 6e 15 31 8b b3 @1

67 25 6d @d eb 47 9a Sa
%a A7 a7 hf Q0 hd 78 77

NOORONOD WA WTO®N DK

As an outcome, RC of the call failure, seems to be in routing and SBC may be checked for the proper call
routing configuration fine tuning.

For sake of completeness worth exposing for the case above what the TLS cipher suit negotiated was:

OCSBC - UCaasS security aspects

Best current practice

10.0.16.8

77 35.632577

78 35.639100 95.168.120.27
79 35.643412 10.0.16.8

80 35.643532 10.0.16.8

81 35.789147
82 35.799119
83 35.801736

95.168.120.27
95.168.120.27
10.0.16.8

ORACLE

95.168.120.27
10.0.16.8
95.168.120.27
95.168.120.27
10.0.16.8
10.0.16.8
95.168.120.27

TcP 60 [TCP Window Update] 5063 - 56705 [ACK] Seq=1 Ack

TLSv1.2 9 ent_Hellg (SNI=volte.oraclecgbupoc.co.uk)
TLSv1.2 | 1422 Server Hello

TLSvl.2 1007 Certificate, Server Key Exchange, Server Hello D
{EP: 56 56705 > 5063 [ACK] Seq=338 Ack=2322 Win=131072 L
TLSvi.2 180 Client Key Exchange, Change Cipher Spec, Finishe
TLSv1.2 280 New Session Ticket, Change Cipher Spec, Finished

v TLSv1.2 Record Layer: Handshake Protocol: Server Hello

Content Type: Handshake (22)

Version: TLS 1.2 (@x@3e3)

Length: 65

v Handshake Protocol: Server Hello

Handshake Type: Server Hello (2)
Length: 61
Version: TLS 1.2 (@x@3e3)

> Random: 82d3d4a6ead4bd@30363e03986812e98aa3e96b7d0c34dbaad5lde637485344al

Session ID Length: @

Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (@xc@3@)

Compression Method: null (@)
Extensions Length: 21

> Extension: renegotiation_info (len=1)
Extension: ec_point_formats (len=4)

5 Fytencinn: <ecsinn tirket (len=A)

Abnormal SRTP cases

00 00 17 77 75 c9 ©
©5 80 11 10 ©0 e0 4
78 1b 13 ¢7 dd 81 4
80 00 a5 01 00 e0 1
03 82 d3 d4 a6 ea 4
8a a3 e9 6b 7d oc 3:
al 00 co 30 00 00 1
©3 00 01 02 00 23 o
6b @b 00 07 67 00 ©
82 02 9c a0 03 @2
30 @d 06 @9 2a 86
61 31 ob 30 @9 @6
30 12 06 ©3 55 04
61 72 69 63 31 20
65 72 74 69 66 69
68 6f 72 69 74 79
11 4d 69 6e 69 73
69 63 30 le 17 ©d
34 34 53 17 ed 32

WUWNWOWOOR®

There is no similar equivalent in SBC or in wireshark that would allow us to decrypt SRTP easy. However,
below an example how SRTP stream fetched on network level may be decrypted with open source tool

srtp-decrypt.

GitHub - gteissier/srtp-decrypt: Deciphers SRTP packets

Project was compiled on testing Oracle linux machine.

Attempting to decrypt SRTP assumption is that we had successful TLS handshake and that we have a
view over a SIP call in clear to grab crypto key, also we need network layer of SRTP capture itself(.pcap).
It may be challenging to isolate proper RTP stream from wireshark but once isolated single stream
direction has to be saved as an input for srtp-decrypt application. Procedure looks as below:

Isolating proper RTP stream, filtering and saving to file:

OCSBC - UCaasS security aspects

Best current practice

| ®

XE] e

2EE Y

=3

]| QT

ORACLE

=10.0.16.8 &8 udp.srcport==10096 && ip.dst==52.115.146.41 && udp.dstport==51169 && rtp.ssrc==0x1019d) or sip.CSeq.method == INVITE

‘ Wireshark - RTP Streams - SOP0_0_00000_20240221123448.pcap

s

s

S

- o X ?8888@sip.pstnhul
Source /:ddress Source Port Destination Address Destination Port SSRC Start Time Duration Payload Packets Lost
10.0.16.8 10096 52.115.146.41 51169 0x1019e 26.754107 0.00 g729 1 0 (0.0%)
10.0.16.8 10096 52.115.146.41 51169 0x1019d 14.923851 11.63 g729 582 0 (0.0%) ‘: |
10.0.16.8 10096 52.115.146.41 51169 0x1019b 14.823582 0.02 g729 2 0(0.0%) |
10.0.16.8 10096 52.115.146.41 51169 0x10199 14.603874 0.15 g729 8 0(0.0%) | {7345-mbi57qj3dh
10.0.16.8 10096 52.115.146.41 51169 0x10197 14.513785 0.00 g729 | 0 (0.0%)
l 10.0.16.8 10096 52.115.146.41 51169 0x10196 14193628 0.26 g729 14 0 (0.0%)
10.0.16.8 10096 52.115.146.41 51169 0x10194 14.103715 0.02 g729 2 0(0.0%) | |, Seq=597, Time:
10.0.16.8 10096 52.115.146.41 51169 0x10192 12.173519 1.85 g729 85 0 (0.0%) , Seq=598, Time:
10.0.16.8 10096 52.115.146.41 51169 0x10190 12.104022 0.02 g729 2 0(0.0%) | I Sea=599. Time:
: 52.115.14641 51169 10.0.16.8 10096 0xf991de97 13.927540 1172 g729 587 0(0.0%) | [— !
> Connection Infon) @0 00 17 77 7
> Time Description 10 streams, 1 selected, 582 total packets. Right-click for more options. gi gg ig Zz :
Session Attribut L . § .
, Media Descriptio () Limit to display filter () Time of Da gg gg ;g ig g
> Media Attribute Find Reverse |v Analyze |v [Prepare Filter‘ P Play Streams |+ Copy ~ Export Zatvori Pomoé od @a 46 52 4
> Media Attribute — 31 37 38 38 3
> Media Attribute (a): rtpmap:1@1 telephone-event/8000 —[gzg Z‘: Ei gg Zi 2

One may verify first that trying to play streams we hear only crackling noise. Afterwards hitting “prepare
filter” wireshark will filter the single RTP stream direction for which single crypto applies. Such file has to

be saved as below

A S0P0_0_00000_20240221123448.pcap

File Edit View Go
Open
Open Recent

Merge...

Capture Analyze

Ctrl+O

Import from Hex Dump...

Close

Save

Save As...

File Set

Ctrl+W

Ctrl+S
Ctrl+Shift+S

Export Specified Packets...

Export Packet Dissections

Export Packet Bytes...
Export PDUs to File...
Strip Headers...

»

Ctrl+Shift+X

Export TLS Session Keys...

Export Objects

Print...

Ctrl+P

»

Help

p.dst==52.115.146.41 && udp.dstport==51169 && rtp.ssrc==0x1019d)

Destination

52.
52.
52%
527
52.
52.
52%
52%
52.
52.
52.
52

115.
1157
aA5%
a15%
115.
115.
415°
2255
115.
115.
115.
1355

146
146
146
146
146
146
146
146
146
146
146
146

.41
.41
.41
.41
.41
.41
.41
.41
.41
.41
.41
.41

Protocol Length Info

SRTP 84 PT=ITU-T G.7
SRTP 84 PT=ITU-T G.7
SRTP 84 PT=ITU-T G.7
SRTP 84 PT=ITU-T G.7
SRTP 84 PT=ITU-T G.7
SRTP 84 PT=ITU-T G.7
SRTP 84 PT=ITU-T G.7
SRTP 84 PT=ITU-T G.7
SRTP 84 PT=ITU-T G.7
SRTP 84 PT=ITU-T G.7
SRTP 84 PT=ITU-T G.7
SRTP 84 PT=ITU-T G.7

Statistics Telephony = Wireless Tools
EFs=S =S aaaE
me Source

.923851 10.0.16.8
.943731 10.0.16.8
.973798 10.0.16.8
.993657 10.0.16.8
.013643 10.0.16.8
.033899 10.0.16.8
.053863 10.0.16.8
.074924 10.0.16.8
.093592 10.0.16.8
.113628 10.0.16.8
.134081 10.0.16.8
.143702 10.0.16.8
s), 84 bytes captured (672 bits)

100:17:02:f3:dd), Dst: Oracle_77:75:c9 (0@
.0.16.8, Dst: 52.115.146.41

96, Dst Port: 51169

100:17:77:75:¢9)

Once we have afiltered .pcap remaining is to grab 40bytes BASE64 crypto string that consists of master

key and salt.

OCSBC - UCaasS security aspects

Best current practice

- ORACLE

‘ (ip-src==10.0.16.8 && udp.srcport==10096 && ip.dst==52.115.146.41 && udp.dstport==51169 && rtp.ssrc==0x1019d) or sip.CSeq.method == INVITE

Jo. Time Source Destination Protocol Length Info
51 11.937629 10.9.17.35 10.0.16.8 SIP 1052 Status: 180 Ringing |
54 12.049802 10.0.17.35 10.0.16.8 SIP/SDP 291 Status: 183 Session Progress |
248 14.019724 10.0.17.35 10.0.16.8 SIP/SDP 423 Status: 200 OK (INVITE) |
317 14.432313 10.0.17.35 10.0.16.8 SIP/SDP 415 Request: INVITE sip:+38516637345-mbi57qj3dhrig@1e.o
320 14.440273 10.9.16.8 10.0.17.35 SIP 541 Status: 100 Trying |
394 14.922286 10.0.16.8 10.0.17.35 SIP/SDP 1302 Status: 200 OK (INVITE) |
395 14.923851 10.0.16.8 52.115.146.41 SRTP 84 PT=ITU-T G.729, SSRC=0x1019D, Seq=597, Time=6595060
398 14.943731 10.0.16.8 52.115.146.41 SRTP 84 PT=ITU-T G.729, SSRC=0x1019D, Seq=598, Time=6595220
405 14.973798 10.0.16.8 52.115.146.41 SRTP 84 PT=ITU-T G.729, SSRC=0x1019D, Seq=599, Time=6595380
408 14.993657 10.0.16.8 52.115.146.41 SRTP 84 PT=ITU-T G.729, SSRC=0x1019D, Seq=600, Time=6595540
410 15.013643 10.0.16.8 52.115.146.41 SRTP 84 PT=ITU-T G.729, SSRC=0x1019D, Seq=601, Time=6595700
i 415 15.033899 10.0.16.8 52.115.146.41 SRTP 84 PT=ITU-T G.729. SSRC=0x1019D. Seq=602, Time=6595860
Media Attribute (a): label:main-audio 30 30 30 ed fa 61 3d
Media Attribute (a): mid:1 36 2d 3§ 36 ed ea 61
Med::La Attr%bute (a): enfryption:rejected gi gz ;a Zi ;3 :: ZZ
Media Attribute (a): ptime:20 72 65 6a 65 63 74 65
Media Attribute (a): sendrecv 65 3a 32 30 ©d Qa 61

v Media Attribute (a): crypto:1 AES_CM_128 HMAC_SHA1_8@ inline DouZNzwgaCaAIj35dRZaS7Td17fUSBDHKkkYJhI* 2431
Media Attribute Fieldname: crypto
tag: 1

Frunta enitar AEQ CM 198 HMAC CHA1 20

As of that point we are ready for decryption. Available options within a tool are total frame offset before
the payload and srtp authentication tag length(defaults are assumed that equal 42bytes and 10bytes for
latter mentioned srtp auth tag).

Application takes SRTP .pcap as an input and provides application level decrypted hex stream (only RTP
content without lower layers). Output form is not an issue as hex dump can be easily imported to
wireshark adding fake lower layers:

OCSBC - UCaasS security aspects

Best current practice

ORACLE

M srtpdecrypt.pcap
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Open Ctrl+O E?i: =@ @ §

Open Recent »

Merge... me Source Destination

Import from Hex Dump... 780967 52.115.180.107 10.0.16.8

Close Ctrl+W 800971 52.115.180.107 10.0.16.8
821998 52.115.180.107 10.0.16.8

Save Ctrl+S 840995 52.115.180.107 10.0.16.8

Save As... Ctrl+Shift+S 860973 52.115.180.107 10.0.16.8 o
882061 52.115.180.107 10.0.16.8

File Set * 91259 52.115.180.107 10.0.16.8

Biport Sperified Packersl 921246 52.115.180.107 10.0.16.8

o 941281 52.115.180.107 10.0.16.8

Expottbac s Des=ea i > 960254 52.115.1860.167 |10.0.16.8

Export Packet Bytes... Ctrl+Shift+X |980907 52.115.180.107 10.0.16.8

Export PDUs to File... 000948 52.115.180.107 10.0.16.8

Strip Headers... ;

Export TLS Session Keys...

Meemact Nhinada S o o

OCSBC - UCaasS security aspects

Best current practice

M Wireshark - Import From Hex Dump X

File: C:/Users/MMARIC/Downloads/new_G729_decrypted.txt

Hex Dump Regular Expression

Offsets: @ Hexadecimal
O Decimal
O Octal
O None

Direction indication: [

ASCII identification: ()

Timestamp format: %H:%M:%S.%f (No format will be applied)

Encapsulation

Encapsulation Type: Ethernet v

(O No dummy header
(O Ethernet Ethertype (hex):

Oor Protocol (dec): IP version: IPv4 v
Source address: Tl
Destination address: 2.2.2.2

O upP Source port: 10000

O 1CP Destination port: 20000

O scrp Tag:

O SCTP (Data) PPI:

ExportPDU Dissector data

By putting a thick on IP header and UDP we insert fake destination/source IP and port. Hitting import
wireshark displays our decrypted SRTP stream

OCSBC - UCaasS security aspects

Best current practice

M import39MS)2.pcapng

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

ORACLE

AN 20 =NREAesEFes=Eaaaqr
LI |App|y a display filter ... <Ctrl-/>
No. Time Source Destination Protocol Length Info
3 0.000002000 1.1.1.1 2.2.2.2 RTP 74 PT=ITU-T G.729, SSRC=0x1019D, Seq=599, Time=6"
4 ©.000003000 dandnas 252022 RTP 74 PT=ITU-T G.729, SSRC=0x1019D, Seq=600, Time=6:!
5 0.000004000 1.1.1.1 202.2.2 RTP 74 PT=ITU-T G.729, SSRC=0x1019D, Seq=601, Time=6"
6 ©0.000005000 1.1.1.1 2.2.2.2 RTP 74 PT=ITU-T G.729, SSRC=0x1019D, Seq=602, Time=6:
7 ©.000006000 1.1.1.1 2.2.2.2 RTP 74 PT=ITU-T G.729, SSRC=0x1019D, Seq=603, Time=6"
8 ©.000007000 1.1.1.1 2:.2.2.2 RTP 74 PT=ITU-T G.729, SSRC=0x1019D, Seq=604, Time=6"
9 ©.000008000 1.1.1.1 2.2.2.2 RTP 74 PT=ITU-T G.729, SSRC=0x1019D, Seq=605, Time=6"
10/ 0.000009000 1.1.1.1 2.2.2.2 RTP 74 PT=ITU-T G.729, SSRC=0x1019D, Seq=606, Time=6"
11 ©.000010000 1.1.1.1 202.2.2 RTP 74 PT=ITU-T G.729, SSRC=0x1019D, Seq=607, Time=6!
12 @.000011000 1.1.1.1 2.2.2.2 RTP 74 PT=ITU-T G.729, SSRC=0x1019D, Seq=608, Time=6:

..0. = Padding: False 0000 20 52 45 43 56 00 20
...8 = Extension: False 0010 @@ 3c 12 34 0o ee ff
_ : . . sz . 0020 02 02 27 10 4e 20 00
.... 0000 = Contrlt')utlng source identifiers count: @ 0038 a7 94 00 01 01 9d FE
@... = Marker: False PYICIl /S ab 40 a0 00 fa c
Payload type: ITU-T G.729 (18)
Sequence number: 606
[Extended sequence number: 66142]
Timestamp: 6596500
Synchronization Source identifier: ©x0001019d (65949)
Payload: 781680a000fac20007d678ab40ak@0fac20007d6
Attempting to play the stream this time it will audible in G729
M import39MSJ2.pcapng = O X
V QLR 1REI Q&= S5 Eaa aE
Q ‘Wileshalk RTP Streams - import39MSJ2.pcapng - (m] X m &
No.
Sourcegddress Source Port Destination Address Destination Port SSRC ~ Start Time Duration Payload Packets Lost Mirl =599, Time=65953¢ I
1111 10000 2222 20000 0x1019d 0000000 000 g729 582 0(0.0%) 00 ‘=59°» Time=65955¢
=601, Time=65957¢
=602, Time=65958¢
M Wireshark - RTP Player = (m] X
O litter Drops
& Wrong Timestamps
- A Inserted Silence
_
1 streams, 1 sel [F__ »-—— }’ﬁﬁ "
(J Limittod
F
[Extende
Timestam|
Synchron : L L . z
Payload:. 0 25 5 75 10 125
[— Play Source Address Source Port Destination Address Destination Port ~ SSRC Setup?rame Packets Time Span(s) SR(Hz) PR (Hz) Payloads
" vw - .l
Q F Payload L 1114 10000 2222 20000 0x0001019d RTP 1 582 0.00 - 0.00 (0... 8000 48000 g729
R

OCSBC - UCaasS security aspects

