

DEPLOYING ORACLE SBC IN MICROSOFT AZURE PUBLIC CLOUD WITH ORACLE SESSION ROUTER

Technical Application Note

Disclaimer

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle.

Version History

Version	Description of Changes	Date Revision Completed
1.0	Initial Publication	10/24/2019
1.1	Added Revision Table Added Architecture Diagram	11/12/2019
1.2	Revised Implementation on SCz9.0	5/15/2022

Table of Contents

1. INTENDED AUDIENCE	
2. DOCUMENT OVERVIEW	4
3. RELATED DOCUMENTATION	
3.1 ORACLE SBC	
3.2 Oracle Session Router	
3.3 MICROSOFT AZURE	
4. CREATE AND DEPLOY ON AZURE	5
5. REQUIREMENTS	
6. ARCHITECTURE	4
6.1 DIAGRAM	
7. OCSBC & OCSR SETUP AND CONFIGURATION	
7.1 SETUP PRODUCT AND ENTITLEMENTS	
7.1.1 OCSBC Product Setup	
7.1.2 OCSBC Entitlement (feature) Setup	
7.1.4 OCSR Product Setup	
7.1.5 OCSR Entitlement (feature) Setup	
•	
8. OCSBC CONFIGURATION	
8.1 GLOBAL CONFIGURATION ELEMENTS	
8.1.1 System-Config	
8.1.2 Media Manager	
8.2 Physical Interfaces	
8.3 NETWORK INTERFACES	
8.4 REALM CONFIG	
8.5 Steering Pools	
8.6 SIP MANIPULATION	
8.7 SIP-INTERFACES	
8.8 Session Agent	18
8.9 Local-Policy	19
8.10 Save and Activate	20
9. OCSR CONFIGURATION	21
9.1 Global Configuration Elements	21
9.1.1 System Config	21
9.1.2 Sip Config	
9.2 Physical Interfaces	
9.3 Network Interfaces	
9.4 REALM CONFIG	
9.5 SIP MANIPULATION	
9.6 SIP-INTERFACES	
9.7 SESSION AGENTS	
9.8 SESSION GROUP	
9.10 SAVE AND ACTIVATE	
10. APPENDIX A	
10.1 SBC DEPLOYMENT BEHIND AZURE NAT	28
11. APPENDIX B	29
11.1 OCSR SIP MANIPULATION TO CHANGE PRIVATE IP WHEN DEPLOYED IN PUBLIC CLOUD	29

1. Intended Audience

This document is intended for use by Oracle Systems Engineers, third party Systems Integrators, and end users of the Oracle Enterprise Session Border Controller (E-SBC) and Oracle Session Router (SR). It assumes that the reader is familiar with basic operations of the Oracle Communications Enterprise Session Border Controller, Oracle Communications Session Router, and Azure Cloud Deployments.

2. Document Overview

Vendors manage public clouds using SDN. The SDN controller owns all networking aspects including vNICs, IP addresses, MAC addresses, and so forth. Without the knowledge of the SDN controller, IP addresses cannot be assigned or moved. As a result, the network either drops or ignores GARP traffic. The absence of GARP invalidates the use of traditional HA by the OCSBC in these networks, therefore requiring alternate HA functionality on the OCSBC.

OCSBC supports High Availability (HA) deployments on public clouds using the redundancy mechanisms native to those clouds. Once you configure the cloud to recognize the OCSBC, the REST client on the OCSBC subsequently makes requests to the cloud's Software Defined Networking (SDN) controller for authentication and virtual IP address (VIP) management.

In Microsoft Azure, SBC VM instances are allowed to gain access to these resources which are managed by Active Directory services through the Metadata Instance Data Service. The OCSBC leverages this to give the SBC VM instance permission to change its IP address when deployed in HA.

Due to the limitations in the Azure Cloud redundancy mechanism outlined above, the amount of time necessary for Microsoft Azure Cloud to grant permissions and move the virtual IP addresses from one VM SBC instance to another, (active to standby), is outside of what Oracle Communications considers acceptable for an OCSBC HA deployment.

Understanding the necessity for redundancy in a Unified Communication Environment, we have worked to provide a solution to help minimize the service interruption that may be caused due to the extended amount of time it takes for the Azure cloud to perform a full high availability switchover.

The purpose of this application note is to provide an alternative to HA when deploying the OCSBC in Microsoft Azure Public Cloud Infrastructure by utilizing the Oracle Communications Session Router load balancing functionality. By implementing a pair of OCSR's in front of a pair of OCSBC's in Azure, we are able to reduce the amount of production traffic each individual SBC is required to handle. When deployed, this solution will not provide a session stateful redundant pair, but does minimize the amount of traffic potentially impacted and significantly decreases the amount of time for new requests to be processed in case of a fault in the environment.

3. Related Documentation

3.1 Oracle SBC

- Deploying Oracle SBC in Microsoft Azure Public Cloud
- Oracle® Communications Session Border Controller Platform Preparation and Installation Guide
- Oracle® Enterprise Session Border Controller Web GUI User Guide
- Oracle® Enterprise Session Border Controller ACLI Configuration Guide
- Oracle® Enterprise Session Border Controller Release Notes

3.2 Oracle Session Router

- Installation and Platform Preparation Guide
- Configuration Guide
- ACLI Reference Guide

3.3 Microsoft Azure

- Introduction to Azure
- · Get started with Azure
- Azure security best practices and patterns

4. Create and Deploy on Azure

You can deploy the Oracle Communications Session Border Controller (OCSBC) and Oracle Communications Session Router (OCSR) on Azure public clouds. The procedure to deploy each VM SBC instance in Azure is outside the scope of this document. For detailed instructions on deploying the OCSBC and OCSR in Microsoft Azure Public Cloud, please refer to Deploying Oracle SBC in Microsoft Azure Public Cloud. This application note continues where the OSBC in Azure Deployment guide leaves off.

Please note: Both the OCSR and OCSBC use the same VHD file and deployment procedure. The product used for each VM instance will be selected through the acli command "setup product" once deployment is complete and you have access to cli through the serial console.

5. Requirements

- Three Oracle Communications VME deployments in Microsoft Azure Cloud, two for OCSBC and one for OCSR.
- If required, virtual public IP's assigned to Media interfaces for each Azure Oracle Communications VME deployed in Azure
 - For our testing, we have assigned Public VIP's to all media interfaces on both the OCSBC and OCSR.

Tip: You can utilize the search bar at the top of the Azure portal to quickly locate any element, resource ordocument during configuration and deployment of the Oracle SBC & Oracle SR in Azure Public Cloud.

6. Architecture

For the purpose of testing this deployment model, we have created three subnets in the Microsoft Azure Public Cloud, and we've deployed four Oracle Communications VME's. All network interfaces configured on the four VME's utilize addressing from these subnets. They are as follows:

OracleESBC_MGMT - 10.4.1.0/24 is being used for the management interfaces of all three VME's.

The OCSBC and OCSR Network Interfaces are being configured with the following IP addresses:

Interface Label	Azure SR	Azure SBC1	Azure SBC2
S0P0	10.4.2.40	10.4.2.20	10.4.2.30
S1P0	10.4.3.40	10.4.3.20	10.4.3.30

All 6 Network interfaces have been assigned a Public Virtual IP in Azure Cloud.

6.1 Diagram

The following is a configuration example for both the OCSBC and OCSR. This application note assumes a Peering Environment.

7. OCSBC & OCSR Setup and Configuration

7.1 Setup Product and Entitlements

After following the <u>SBC in Azure Deployment Guide</u> referenced above, you should have access to both the SBC/SR Cli through serial console and SSH, passwords have been changed from their defaults, and all media interfaces have assigned mac addresses. We can now move on to selecting the product type, and enabling the features for the three VME's you have successfully deployed.

This procedure will be run on both OCSBC and OCSR deployed in Azure Public Cloud

7.1.1 OCSBC Product Setup

While in enable mode of the ACLI, type:

- setup product
- enter [1]: to modify or add the entry
- Enter Choice: Choose [5] for Enterprise Session Border Controller
- Enter [s]: Saves your product choice

```
SRG-SBC-1# setup product
Alteration of product alone or in conjunction with entitlement
changes will not be complete until system reboot
Last Modified 2022-05-24 23:49:23
                   : Enterprise Session Border Controller
Enter 1 to modify, d' to display, 's' to save, 'q' to exit. [s]: 1
 Product
   1 - Session Border Controller
   2 - Session Router - Session Stateful
3 - Session Router - Transaction Stateful
    4 - Subscriber-Aware Load Balancer
   5 - Enterprise Session Border Controller
    6 - Peering Session Border Controller
 Enter choice
Enter 1 to modify, d' to display, 's' to save, 'q' to exit. [s]: s
save SUCCESS
SRG-SBC-1#
```

7.1.2 OCSBC Entitlement (feature) Setup

While in enable mode of the ACLI, type

- setup entitlements
- enter [1]: to modify or add system session capacity
- Session Capacity: (this value will vary based on individual requirements)
- Enter [2]: to enabled advanced feature set
- Advanced : enabled
- Enter [s]: Saves your session capacity and enables Advanced feature set on the OCSBC
- show features: verify the session capacity and feature set through the ACLI

```
Entitlements for Enterprise Session Border Controller
Last Modified: 2022-03-29 03:54:06

1: Session Capacity : 512000
2: Advanced : enabled
3: STIR/SHAKEN Client ::
4: Admin Security ::
5: Data Integrity (FIPS 140-2) ::
6: Transcode Codec AMR ::
7: Transcode Codec AMR Capacity ::
9: Transcode Codec AMR Capacity ::
10: Transcode Codec AMRWB ::
11: Transcode Codec AMRWB ::
12: Transcode Codec EVS ::
13: Transcode Codec EVS ::
13: Transcode Codec EVS ::
14: Transcode Codec STIK Capacity ::
15: Transcode Codec STIK Capacity ::
16: Transcode Codec STIK Capacity ::
17: Transcode Codec EVS ::
18: Transcode Codec STIK Capacity ::
19: Transcode Codec STIK Capacity ::
10: Transcode Codec STIK Capacity ::
10: Transcode Codec STIK Capacity ::
11: Transcode Codec STIK Capacity ::
12: Transcode Codec STIK Capacity ::
13: Transcode Codec STIK Capacity ::
14: Transcode Codec STIK Capacity ::
15: Transcode Codec STIK Capacity ::
16: Transcode Codec STIK Capacity ::
17: Transcode Codec STIK Capacity ::
18: Transcode Codec STIK Capacity ::
18: Transcode Codec STIK Capacity ::
19: Transcode Codec STIK Capacity ::
19: Transcode Codec STIK Capacity ::
10: Transcode Codec STIK Capacity ::
11: Transcode Codec STIK Capacity ::
12: Transcode Codec STIK Capacity ::
13: Transcode Codec STIK Capacity ::
14: Transcode Codec STIK Capacity ::
15: Transcode Codec STIK Capacity ::
16: Transcode Codec STIK Capacity ::
17: Transcode Codec STIK Capacity ::
18: Transcode Codec STIK Capacity ::
19: Transcode Codec STIK Capacity ::
19: Transcode Codec STIK Capacity ::
10: Trans
```

Note: You may also enable additional security features and transcodable codec capacity through entitlements, but that is outside the scope of this document.

7.1.3 OCSBC Web Server Config

To enable access the OCSBC GUI to complete the configuration and setup, you will need to enable the web server config through the ACLI.

ACLI Path: config t→system→http-server

- select: to select the configuration object
- done: to complete the changes made to the configuration object
- Back out of configuration mode, and save and activate the config

```
SRG-SBC-1(configure) # system
SRG-SBC-1(http-server) # sel
  name=webServerInstance
selection: 1
SRG-SBC-1(http-server)# done
ttp-server
                                             webServerInstance
                                             enabled
      ip-address
       http-state
       http-port
       HTTP-strict-transport-security-policy
       https-state
                                             disabled
       https-port
       http-interface-list
                                             REST, GUI
       http-file-upload-size
       tls-profile
       auth-profile
                                             admin@73.69.242.156
       last-modified-by
       last-modified-date
                                             2022-05-24 23:53:59
```

Note: Configuring access to the OCSBC GUI via secure HTTP is outside the scope of this document. For additional details on how to configure, please refer to the Configuration Guide, accessible from the <u>Related Documents</u> section of this guide.

You will now be able to open a web browser, enter the public IP address (or optional DNS label name if configured) of the management interface and access the GUI on each OCSBC deployed.

7.1.4 OCSR Product Setup

- setup product
- enter [1]: to modify or add the entry
- Enter Choice: Choose [2] for Session Router Session Stateful
- Enter [s]: Saves your product choice

```
SRG-SR# setup product
WARNING:
Alteration of product alone or in conjunction with entitlement
changes will not be complete until system reboot
Last Modified 2022-03-29 21:06:40
                : Session Router - Session Stateful
Enter 1 to modify, d' to display, 's' to save, 'q' to exit. [s]: 1
  Product
   1 - Session Border Controller
   2 - Session Router - Session Stateful
   3 - Session Router - Transaction Stateful
    4 - Subscriber-Aware Load Balancer
   5 - Enterprise Session Border Controller
   6 - Peering Session Border Controller
  Enter choice
Enter 1 to modify, d' to display, 's' to save, 'q' to exit. [s]: s
save SUCCESS
SRG-SR#
```

7.1.5 OCSR Entitlement (feature) Setup

While in enable mode of the ACLI, type

- setup entitlements
- enter [1]: to modify or add system session capacity
- Session Capacity: (this value will vary based on individual requirements)
- Enter [2]: to enabled accounting config (optional)
- Enter [3]: to enabled Load Balancing
- Load Balancing: enabled
- Enter [s]: Saves your session capacity and enables Advanced feature set on the OCSBC
- show features: verify the session capacity and feature set through the ACLI

```
-SR# setup entitlements
Entitlements for Session Router - Session Stateful
ast Modified: 2022-04-06 03:57:18
1 : Session Capacity
                                      : 500
      Accounting
                                      : enabled
      Load Balancing
                                       : enabled
     Policy Server
   ANSSI R226 Compliance
 Session Capacity (0-512000)
                                      : 500
Enter 1 - 6 to modify, d' to display, 's' to save, 'q' to exit. [s]: 2
                                      : enabled
Inter 1 - 6 to modify, d' to display, 's' to save, 'q' to exit. [s]: 3
   Load Balancing (enabled/disabled) : enabled
Enter 1 - 6 to modify, d' to display, 's' to save, 'q' to exit. [s]: s
SAVE SUCCEEDED
SRG-SR#
SRG-SR#
SRG-SR# show features
       High Availability, ENUM, NSEP RPH, DoS
RG-SR#
```

Note: You may also enable additional security and platform features through entitlements, but those are outside the scope of this document.

The Oracle Communications Session Router does not have an embedded GUI for configuration or management, so there is no web-server-config element that requires enablement on this product.

8. OCSBC Configuration

There are two options available to configure the Oracle Communications Session Border Controller. One is by accessing the ACLI through either SSH or Console. The other is through the OCSBC GUI, accessible via a web browser. For the purposes of this guide, we will be using the OCSBC Web GUI to configure the system.

Once you access the OCSBC GUI via a web browser, at the top, you will see a configuration tab. Click on that tab to access the configuration menu, on the left hand side.

8.1 Global Configuration Elements

8.1.1 System-Config

Path: system-config

The global system config must be enabled by accessing it, and clicking OK, but there are no mandatory configuration changes in this element. Those outlined below are optional.

- Hostname:
- Location:
- When Finished, click the [OK] tab at the bottom of the screen

8.1.2 Media Manager

Path: media-manager → media-manager

There are no required configuration changes to this element, but it must be enabled in order for the SBC to handle media. To enable it, you must access the global element and click "OK" tab at the bottom of the screen:

8.1.3 Sip-Config

Path: session-router→sip-config

- Under Options, click add
- Configuration dialog box pops up, add "max-udp-length=0" click OK
- Click OK tab at the bottom of the screen

8.2 Physical Interfaces

Configure two network interfaces on each OCSBC being deployed, S0P0 and S1P0

Path: system→phy-interface

- At the top of the screen, click Add
- Name: S0P0
- Operation Type: Media (drop down box)
- Click OK at the bottom

To add a second physical interface, at the top, click Add

Name: S1P0

• Operation Type: Media (drop down box)

Slot: [1]

Click OK at the bottom of the screen

8.3 Network Interfaces

Configure two network interfaces on each SBC being deployed, S0P0:0 and S1P0:0

Path: system→network-interface

• Name: SOP0 (drop down box)

IP address: (private IP address assigned to S0P0 interface)

Netmask: (netmask for the assigned network)

Gateway: (gateway for the network)

• Click OK at the bottom of the screen

To add the second network-interface, click Add at the top of the screen

- Name: S1P0 (drop down box)
- IP Address: (private ip address assigned to S1P0 interface)
- Netmask: (netmask for the assigned network)
- Gateway: (gateway for the network)
- Click OK at the bottom of the screen

8.4 Realm Config

Configure two realms, Access and Core, each assigned to one of the network interfaces configured in prior step.

Path: media-manager→realm-config

- Identifier: Access
- Network Interfaces: Click Add, in pop up dialog, choose S0P0:0 from drop down
- Mm in Realm: Check box
- Access control trust level: (Recommendation is High for Peering Environment)
- Click OK at the bottom

To add the second realm to the config, click Add at the top of the screen

• Identifier: Core

Network Interfaces: Click Add, in pop up dialog, choose S1P0:0 from drop down

Mm in Realm: Check box

Access control trust level: Select high from drop down box

Click OK at the bottom

8.5 Steering Pools

Configure two steering pools, one per realm. These are the UDP port ranges the sbc uses for media. Please verify when configuring these port ranges, the Network Security Groups configured and assigned to your network interfaces allow traffic on these ports.

Path: media-manger→steering-pool

IP address: (ip used to send and receive media) (in this example, 10.4.2.20)

Start Port: 20000End Port: 39999

• Realm ID: Access (selected from drop down menu)

Click OK at the bottom

Add a second Steering pool for the Core Realm. Start by Clicking Add at the top of the screen.

- IP Address: (ip used to send and receive media) (in this example, 10.4.3.20)
- Start Port: 20000End Port: 39999
- Realm ID: Core (selected from drop down menu)
- Click OK at the bottom

8.6 Sip Manipulation

The following sip manipulation forces the OCSBC to respond locally to Sip OPTIONS ping being sent by the OCSR.

Path: session-router→sip-manipulation

- Name: RespondOptions
- CfgRules: Add (dropdown), select header-rule

Under header rule configuration

- Name: Resond2Options
- Header-Name: From
- Action: Reject
- Methods: Click Add, then enter OPTIONS
- New value: 200 OK
- Click OK at the bottom
- Click Back at the bottom

8.7 Sip-Interfaces

Sip interfaces is what the SBC uses to send and receiving signaling packets. Configure one per realm.

Path: session-router→sip-interface

- Realm ID: Access (selected from drop down)
- Spl Options: HeaderNatPublicSipIfIp=<PublicIP>,HeaderNatPrivateSipIfIp=<PrivateIP>
- Sip Ports: Click Add

For more information on the necessity of the above Spl Option when deploying the SBC in a public cloud or behind a NAT, please see <u>Appendix A</u>

- The following parameters are found under the Sip Port configuration
 - Address: IP address used to send and receive signaling packets
 - · Port: Source and Destination Port for signaling
 - Transport Protocol: Transport used for signaling
 - Allow Anonymous: Agents Only
 - Click OK at the bottom to get back to Sip Interface Config
 - Hit Back at the bottom of the screen

Add a second sip interface for the core realm, makes the necessary changes to allow the "Core" side of the SBC to handle signaling traffic.

8.8 Session Agent

Session-agents are config elements, which are trusted agents who can send/receive traffic from the SBC with direct access to trusted data path. Configure two session agents, one for interface on the OCSR's and other for going towards sip-trunk.

Path: session-router→session-agent

- Hostname: Hostname given to this session agent, can be unique string, or match the configured IP address
- IP address:
- Port Number:
- Transport: Select from Drop down
- Realm ID:

Follow the same procedure to create one more session agent for interface configured on the Oracle Session Router. For the purposes of this example config, the required configuration fields will have the following information populated:

OCSR & Sip Interface	Hostname	IP Address	Realm ID
SRG-SR, Private	10.4.3.40	10.4.3.40	Core

Note: You may need to configure additional session agents, depending on your environments requirements and next hop routing

8.9 Local-Policy

Local policy config allows the SBC to route calls from one end of the network to the other based on routing criteria. Create two local polices to route sip traffic from Access realm to Core realm, and from Core realm to Access Realm.

To configure local-policy, Navigate to Session-Router->local-policy **Path: session-router->local-policy**

To route the calls from SR side to SBC side, Use the below local-policy.

To route the calls from the SBC side to SR side, Use the below local-policy.

8.10 Save and Activate

At this point, we have completed the OCSBC basic configuration. On the top left of the screen, click Save, then Activate.

Now proceed with setting up and configuring a second OCSBC required for this deployment model!

9. OCSR Configuration

Oracle Communications Session Router provides high-performance SIP routing with scalable routing policies that increase overall network capacity and reduce costs. It plays a central role in Oracle's open session routing (OSR) architecture and helps customers build a scalable, next-generation signaling core for SIP-based services

In this deployment, the OCSR will be utilized to distribute SIP traffic evenly to multiple OCSBC's. This traffic distribution decreases the amount of production traffic a single OCSBC is required to handle, thus eliminating the impact in the event of a service disruption.

As mentioned previously in this application note, the Oracle Communication Session Router does not have a GUI we can utilize for configuration like the Oracle Communications Session Border Controller, so we must configure this device through the ACLI interface, which can be access via a SSH remote session, or through the Azure serial console.

As we go through the steps to configure the OCSR, please remember that each element needs to be "selected" in the ACLI for additions or changes to be made. This is accomplished by typing "select" after entering the object by following the ACLI path outlined at the beginning of each element heading below.

9.1 Global Configuration Elements

9.1.1 System Config

ACLI Path: config t→system→system-config

The system configuration element must be enabled, although there are no necessary changes required. It's enabled by selecting it, and then issuing a "done".

```
SRG-SR(configure) # system system-config
SRG-SR(system-config) # sel
SRG-SR(system-config) # done
system-config
                                                 SRG-SR
       hostname
       description
       location
                                                 AzureCloud
       mib-system-contact
       mib-system-name
       mib-system-location
       acp-tls-profile
       snmp-enabled
                                                 enabled
       enable-snmp-auth-traps
                                                 disabled
        enable-snmp-syslog-notify
                                                 disabled
        enable-snmp-monitor-traps
                                                 disabled
        enable-snmp-tls-srtp-traps
                                                 disabled
                                                 disabled
        enable-env-monitor-traps
        enable-mblk tracking
                                                 disabled
       enable-12-miss-report
                                                 enabled
       snmp-syslog-his-table-length
       snmp-syslog-level
                                                 WARNING
       system-log-level
                                                 WARNING
        process-log-level
```

9.1.2 Sip Config

ACLI Path: config t→session-router→sip-config

Similar to the system config above, this must be enabled by selecting it, and issuing the "done" command. There are no required configuration changes from the default values.

We do however recommend assigning a value to the home realm ID, so if you have pre planned your realm identifiers, you can enter at this time. If not, you can enter a value in this parameter at any time in the future.

The home realm ID will be the realm the SBC uses to source a packet if there are no other options available through other configuration elements.

```
SRG-SR# show running-config sip-config
sip-config
        state
                                                  enabled
        operation-mode
                                                  dialog
        dialog-transparency
                                                  enabled
        home-realm-id
                                                  Core
        egress-realm-id
        auto-realm-id
        nat-mode
                                                  None
        registrar-domain
        registrar-host
        registrar-port
        register-service-route
                                                  always
        init-timer
                                                  500
                                                  4000
        max-timer
```

9.2 Physical Interfaces

Configure two Physical Interfaces on each OCSR being setup

ACLI Path: config t→system→phy-interface

- Name
- Operation Type
- Slot
- Port

```
SRG-SR# show running-config phy-interface
ohv-interface
       name
       operation-type
                                                 Media
       port
       virtual-mac
       admin-state
                                                 enabled
                                                  enabled
       auto-negotiation
       duplex-mode
       speed
       wancom-health-score
       overload-protection
                                                  disable
```

```
name
                                          M10
                                          Media
operation-type
port
virtual-mac
admin-state
                                          enabled
                                          enabled
auto-negotiation
duplex-mode
                                          FULL
speed
wancom-health-score
overload-protection
                                          disabled
```

9.3 Network Interfaces

Configure two network interfaces, each associated with a physical interface already configured.

- Name
- Sub-port-id
- IP-address
- netmask
- gateway

```
SR# sh running-config network-interface
etwork-interface
                                                                      name
                                               MOO
      name
                                                                      sub-port-id
      sub-port-id
                                                                      description
      description
                                                                      hostname
      hostname
                                                                      ip-address
                                                                                                                 10.4.3.40
                                               10.4.2.40
      ip-address
                                                                      pri-utility-addr
      pri-utility-addr
                                                                      sec-utility-addr
      sec-utility-addr
                                               255.255.255.0
                                                                      netmask
                                                                                                                 255.255.255.0
      netmask
      gateway
                                                                      gateway
```

9.4 Realm Config

Configure two realms, Access and Core, each assigned to one of the network interfaces configured in prior step.

Navigate to realm-config under media-manager and configure a realm as shown below. ACLI Path: config t->media-manger->realm-config

In the below case, Realm name is given as Access & Core. Please set the Access Control Trust Level as high for these realms.

```
ealm-config
ealm-config
                                                                                                            Core
                                                                 identifier
      identifier
                                                Access
                                                                 description
      description
                                                                 addr-prefix
      addr-prefix
                                                0.0.0.0
                                                                 network-interfaces
                                                                                                           M10:0.4
      network-interfaces
                                                M00:0.4
                                                                 media-realm-list
      media-realm-list
                                                                 mm-in-realm
                                                                                                           enabled
      mm-in-realm
                                                enabled
                                                                 mm-in-network
                                                                                                            enabled
      mm-in-network
                                                enabled
                                                                                                            enabled
                                                                 mm-same-ip
                                                enabled
      mm-same-ip
                                                                  mm-in-system
                                                                                                            enabled
      mm-in-system
                                               enabled
                                                                 bw-cac-non-mm
                                                                                                           disabled
                                                disabled
      bw-cac-non-mm
                                                                 msm-release
                                                                                                           disabled
       msm-release
                                                disabled
```

9.5 Sip Manipulation

The default behavior of the OCSR is to proxy, or route all Sip request to their configured next hop. This includes Options Request, which are widely used to monitor the reachability of next hop sip stacks. To force the OCSR to respond locally to OPTIONS requests it is receiving from session agents, we must implement the following sip manipulation. Once this manipulation is configured, it needs to be assigned as the in-manipulation ID to either session agents or sip interfaces.

ACLI Path: config t→session-router→sip-manipulation

- Name
- Header-rule
 - Name
 - Header-name
 - Action
 - Methods
 - New-value

```
p-manipulation
                                               RespondOPTIONS
     name
     description
      split-headers
      join-headers
     header-rule
                                                       Respond20PTIONS
              name
             header-name
                                                        from
              action
                                                        reject
              comparison-type
                                                        case-sensitive
              msg-type
                                                        any
              methods
                                                        OPTIONS
              match-value
                                                        "200 OK"
              new-value
```

Your setup may require an additional sip manipulation to be applied as an out manipulation if the OCSR has Azure Public VIP's assigned to public facing interfaces. If this is a requirement in your environment, please refer to Appendix B.

9.6 Sip-Interfaces

Sip interfaces is what the SBC uses to send and receiving signaling packets. Configure one per realm.

Path: session-router→sip-interface

- Realm ID
- Trans-expire
- Sip-port
 - Address
 - Next-hop
 - Port
 - Transport protocol
 - Allow-anonymous

```
sip-interface
                                                  enabled
        state
        realm-id
                                                  Core
       description
        sip-port
                                                          10.4.3.40
                address
                port
                                                          5060
                transport-protocol
                                                          UDP
                allow-anonymous
                                                          agents-only
                multi-home-addrs
                ims-aka-profile
        carriers
        trans-expire
                                                  4
```

```
enabled
state
                                         Access
realm-id
description
sip-port
        address
                                                 10.4.2.40
        port
                                                  5060
                                                 UDP
        transport-protocol
        allow-anonymous
        multi-home-addrs
        ims-aka-profile
carriers
trans-expire
initial-inv-trans-expire
invite-expire
session-max-life-limit
max-redirect-contacts
proxy-mode
redirect-action
contact-mode
                                         none
nat-traversal
                                         none
nat-interval
                                         3600
tcp-nat-interval
                                         disabled
registration-caching
min-reg-expire
                                         600
registration-interval
                                         3600
route-to-registrar
                                         disabled
secured-network
                                         disabled
teluri-scheme
                                         disabled
uri-fqdn-domain
options
spl-options
trust-mode
max-nat-interval
                                         3600
nat-int-increment
nat-test-increment
sip-dynamic-hnt
                                         disabled
                                         401,407
stop-recurse
port-map-start
port-map-end
in-manipulationid
                                         AccessContact
out-manipulationid
```

The trans expire value has been changed from its default value of 0 (32 seconds), to 4 seconds. This value is used for timers B, D, F, H and J as defined in RFC 3261. This is the amount of time the OCSR will wait for a response for a sip request it has generated. Decreasing this value, in combination with other configured parameters, allows us to significantly reduce the amount of time it takes for the OCSR to detect a possible fault with the next hop route, allowing it to quickly recurse to the next best routing option.

9.7 Session Agents

In the test setup, we have configured three session agents. The two of which session agents correspond with configured interface on the OCSBC's and one is pointing towards public element. Additional session agents may be required for connections to public elements.

Pay close attention to the ping method, ping interval, and ping send mode configurations on the session agents configured for the OCSBC's. These configuration parameters, along with the trans expire value discussed above, work in conjunction to constantly monitor the health of the OCSBC sip stack.

ACLI Path: config t→session-router→session-agent

- Hostname
- IP address
- Realm ID
- Port
- Transport-protocol
- Ping-method
- Ping-interval
- Ping-send-mode
- In-manipulationid

```
        session-agent
        SRG-SBC-1

        ip-address
        10.4.3.20

        realm-id
        Core

        ping-method
        OPTIONS

        ping-interval
        3

        ping-send-mode
        continuous

        in-manipulationid
        RespondOPTIONS
```

```
        session-agent
        SRG-SBC-2

        hostname
        SRG-SBC-2

        ip-address
        10.4.3.30

        realm-id
        Core

        ping-method
        OPTIONS

        ping-interval
        3

        ping-send-mode
        continuous

        in-manipulationid
        RespondOPTIONS
```

```
        session-agent
        public-element

        hostname
        public-element

        ip-address
        14.14.50.50

        port
        5065

        realm-id
        Access
```

9.8 Session Group

Configure one session groups on OCSR. This is the load balancing functionality that allows traffic to be distributed evenly to each of the session agents (OCSBC's) configured in group. This also allows the SR to recurse if there is no response from the next hop.

ACLI Path: config t→session-router→session-group

- Group-name
- Strategy
- Dest (for multiple destinations, surround the entries with ", with a space in between...i.e "SRG-SBC-1 SRG-SBC-2"
- Sag-recursion

```
session-group
                                                  CoreSBCGrp
        group-name
        description
                                                  enabled
        state
        app-protocol
                                                  SIP
                                                  RoundRobin
        strategy
                                                  SRG-SBC-1
        dest
                                                  SRG-SBC-2
        trunk-group
                                                  disabled
        sag-recursion
                                                  401,407
        stop-sag-recurse
```

9.9 Local-Policy

Local policy configuration on the OCSR will route all incoming traffic to the already configured session group.

ACLI Path: config t→session-router→local-policy

- From-address
- To-address
- Source-realm
- Policy-attribute
 - Next-hop
 - realm

To route the calls from SR side to SBC side, Use the below local-policy.

To route the calls from SBC side to SR side, Use the below local-policy.

```
local-policy
from-address
to-address
source-realm
policy-attribute
next-hop
realm
public-element
Access
```

9.10 Save and Activate

At this point, the OCSR configuration is completed. Back out of configuration mode, and perform a save/activate

```
KG-5K# save-config
checking configuration
Save-Config received, processing.
save-config waiting 120000 ms for request to finish
Request to 'SAVE-CONFIG' has Finished,
Save complete
Currently active and saved configurations do not match!
To sync & activate, run 'activate-config' or 'reboot activate'.
SRG-SR#
SRG-SR#
SRG-SR# activate-config
Activate-Config received, processing.
activate-config waiting 120000 ms for request to finish
Request to 'ACTIVATE-CONFIG' has Finished,
Activate Complete
SRG-SR#
```

10. Appendix A

10.1 SBC Deployment behind Azure NAT

This SPL-configuration is necessary for SBC deployed in Cloud Environments.

Use the Support for SBC behind NAT SPL plug-in for deploying the Oracle® Enterprise Session Border Controller (E-SBC) on the private network side of a Network Address Translation (NAT) device. The Support for SBC behind NAT SPL plug-in changes information in SIP messages to hide the end point located inside the private network. The specific information that the Support for SBC Behind NAT SPL plug-in changes depends on the direction of the call, for example, from the NAT device to the E-SBC or from the E-SBC to the NAT device. Configure the Support for SBC behind NAT SPL plug-in for each SIP interface that is connected to a NAT device. One public-private address pair is required for each SIP interface that uses the SPL plug-in, as follows.

- The private IP address must be the same as the SIP Interface IP address.
- The public IP address must be the public IP address of the NAT device. (Azure Public VIP assigned to Network Interface)

To configure SBC behind NAT SPL Plug, using the GUI:

Path: session-router->sip-interface->spl-options

HeaderNatPublicSipIfIp=<Azure Public VIP >,HeaderNatPrivateSipIfIp=<private sip interface IP>

11. Appendix B

11.1 OCSR Sip Manipulation to Change Private IP when deployed in Public Cloud

The Oracle Communications Session Router does not have support for the SPL Option outlined in <u>Appendix A</u> above. For this reason, it may be necessary to add an additional sip manipulation to the OCSR configuration to change the private IP addresses in Sip Messages to the assigned Azure Public VIP. This will allow the OCSR to communicate with session agents and endpoints located in the public realm.

The example below is changing the host uri in the Contact Header to the Azure public VIP assigned to the Network Interface as well as Via part.

This would be applied as an out-manipulation ID on the session agent, realm or sip-interface facing a public network.

ACLI Path: config t→session-router→sip-manipulation

- Name
- Header-rule
 - Name
 - Header-name
 - Action
 - Element-rule
 - Name
 - Type
 - Action
 - Match-value
 - New-value

```
-manipulation
                                               AccessContact
    description
    split-headers
    join-headers
    header-rule
            name
                                                       ChangeContactIP
            header-name
                                                       Contact
            action
                                                       manipulate
             comparison-type
                                                       case-sensitive
            msg-type
                                                       any
                                                       INVITE
             methods
             match-value
             new-value
             element-rule
                     name
                                                                ContactHost
                     parameter-name
                     type
                                                                uri-host
                     action
                                                                replace
                     match-val-type
                                                                any
                     comparison-type
                                                                case-sensitive
                     match-value
                                                               20.96,24.103
                     new-value
    header-rule
            name
                                                       changeVIA
                                                                   <Azure Public VIP>
             header-name
                                                       Via
             action
                                                       manipulate
                                                       pattern-rule
             comparison-type
             msg-type
                                                       request
                                                       Invite
             methods
             match-value
                                                        (SIP/2.0/UDP) (.*) (;.*)
                                                       $1+" 20.96.24.103:5060"+$3
             new-value
```


CONNECT WITH US

oracle.com

Oracle Corporation, World Headquarters 500 Oracle Parkway

Redwood Shores, CA 94065, USA

Worldwide Inquiries

Phone: +1.650.506.7000 Fax: +1.650.506.7200

Integrated Cloud Applications & Platform Services

Copyright © 2021, Oracle and/or its affiliates. All rights reserved. This document is provided *for* information purposes only, and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0615