

# OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer

Step-by-step to deploy OpenShift Clusters using Agent Based Installer on Compute Cloud@Customer

Version 15.0 Copyright © 2025, Oracle and/or its affiliates Public



# **Purpose statement**

This document provides step-by-step instructions to deploy Redhat OpenShift Clusters on Oracle Compute Cloud@Customer.

# **Disclaimer**

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle software license and service agreement, which has been executed and with which you agree to comply. This document and information contained herein may not be disclosed, copied, reproduced or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation and upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any features or functionality described in this document remains at the sole discretion of Oracle. Due to the nature of the product architecture, it may not be possible to safely include all features described in this document without risking significant destabilization of the code.

<sup>2</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public

# ORACLE

| Introduction                                                         | 4  |
|----------------------------------------------------------------------|----|
| Access and Considerations                                            | 5  |
| Prerequisites                                                        | 6  |
| Terraform Script Execution Part-1 (Run Script via Home Region)       | 9  |
| Terraform Script Execution Part-2 (Run Script via C3 Region)         | 10 |
| Cluster Installation                                                 | 11 |
| Prepare & Install the Openshift Master Images                        | 11 |
| Generate iso image and rootfs.img                                    | 11 |
| Start a Webserver to upload rootfs                                   | 13 |
| Create control plane instances on C3 and Master Node LB Backend Sets | 15 |
| Prepare & Add the Openshift Worker Images                            | 17 |
| Generate coreos-rawdisk.raw image and worker.ign file                | 17 |
| Upload the worker.ign file to the webserver                          | 18 |
| Create compute instances and Worker Node LB Backend Sets             | 19 |

<sup>3</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



# Introduction

In today's changing world of business IT, automation and native solutions play a crucial role in ensuring flexibility, scalability and effectiveness. As more companies embrace various Kubernetes platform as OpenShift for managing containers, the importance of deployment processes becomes clear. This guide helps to address the specific preference of using Redhat's OpenShift for Kubernetes by offering a step-by-step instructions of installing OpenShift on Compute Cloud@Customer.

OpenShift offers a variety of features, including automated installation, upgrades, and life cycle management. It also provides advanced security and monitoring, integrated storage, and CI/CD pipeline management. OpenShift is powered by Kubernetes, an open-source project that streamlines the entire application lifecycle, from development to delivery to management

This content is provided for informational purposes and self-supported guidance only. Consultancy or other assistance related to the content is not covered under the Oracle Support contract or associated service requests. If you have questions or additional needs, then please do reach out to your Oracle Sales contact directly.

4 OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



# **Access and Considerations**

Before getting into the steps for setting up OpenShift on Oracle Compute Cloud@Customer, it's important to make sure you have all the necessary prerequisites ready. This section outlines the elements needed to carry out the installation with minimal disruptions.

The prerequisites covered in this document encompass operational aspects, including:

- Access to Compute Cloud@Customer: Make sure you have an active account with the appropriate permissions to create and manage resources on Oracle Compute Cloud@Customer.
- Access to Oracle Cloud Infrastructure Region Tenancy: Make sure you have an active account in the OCI Region's Tenancy that will be connected to Compute Cloud@Customer using a Federated Identity Provider. This OCI Tenancy will be used to manage and maintain all IAM Services for Compute Cloud@ Customer.
- Access to Redhat Agent Based Installer Clusters Portal: During the step-by-step deployment process, you will be taking advantage of the Redhat Hybrid Cloud Console Portal: <a href="https://console.redhat.com/openshift/install/pull-secret">https://console.redhat.com/openshift/install/pull-secret</a>
- Access Credentials: You will need a bastion / jump host within you C3 target Compartment's Tenancy to
  connect with an external Terraform website to download and install Terraform. You will also use this Bastion
  host for OCI CLI, Running the Terraform Scripts and preparing the OpenShift Clusters.
- **Networking Considerations:** Ensure that your network setup allows for communication, which includes setting up VCN (Virtual Cloud Network) configuring subnets and managing security lists. If your C3 is disconnected, you will need to access external networks via a DRG.
- **Infrastructure Planning:** Develop a strategy outlining the resources needed capacity projections and design aspects customized to suit your organizations requirements.

By fulfilling these criteria, you will be ready to follow the instructions outlined in this paper guaranteeing a seamless and effective deployment of your Redhat OpenShift Clusters on Oracle Compute Cloud@Customer.

# **Bastion Configuration**

A Bastion Host, also referred to as a jump server, provides a server created to enable access to a private network from an external network, like the internet. For the OpenShift deployment on Oracle Compute Cloud@Customer, a bastion host is utilized to host Terraform scripts utilized to configure infrastructure and build OpenShift Clusters. It will also be utilized for reaching resources and instances within a subnet in your Compute Cloud@Customer environment.

Advantages of Using a Bastion Host are:

- Access Point: Acts as an entry point for administrators and users to connect to instances in the private network without exposing them directly to the internet.
- Offers a controlled gateway thereby reducing the vulnerability surface.
- Isolation of Critical Resources: Ensures that computing resources within the network are safeguarded and isolated from internet exposure. Helps in minimizing risks associated with attacks on systems.
- Monitoring: Centralizes access logging simplifying tracking and auditing access to resources. Can be integrated with security information and event management (SIEM) systems, for monitoring capabilities.

<sup>5</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



By implementing a bastion host, you can securely and efficiently manage access to your Oracle Compute Cloud@Customer or Private Cloud Appliance resources, ensuring that your private instances remain protected and accessible only through a secure, controlled entry point.

The installation of the OCI CLI will be revisited in the first section of this procedure:

Install OCI CLI in your bastion host. For the step-by-step and how to install OCI CLI and properly setup
the OCI CLI configuration file in your instance, refer to the following links below:
 <a href="https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm">https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm</a> and
 <a href="https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-ce-cli.html#usr-cli-obtain-cabundle.">https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-ce-cli.html#usr-cli-obtain-cabundle.</a>

# **Overview**

The installation process outlined below will involve building two hosts within the targeted compartment of the OpenShift Cluster installation.

The first instance to be installed will be a "bastion" host, within the designated compartment, and will be used to run two Terraform scripts. The first script will be used for building IAM Resources on your OCI Home Region of the C3 (2 Dynamic Groups & 1 Policy). The second Terraform Script will be for building the Infrastructure Resources on the C3 System to support the OpenShift Cluster (the OpenShift VCN, Public and Private Subnets, Load Balancers, Internet GW, NAT GW, and DNS Server). It will include all the resources needed to allow the Control Plane and Worker Nodes to function that form a cluster. The bastion will be installed in the designated OpenShift Compartment and must be configured to communicate through a designated C3 DRG Subnet or Internet GW Subnet within the C3's parent tenancy.

The second instance to be installed, will be designated as the "jumpserver". The jumpserver will be configured as a webserver to communicate to the Openshift Cluster. The jumpserver will be installed with the OpenShift Client cli for this cluster communication. The jumpserver will be installed within the OpenShift VCN built by the Terraform scripts.

Finally, three Control Plane Nodes and three Worker Nodes will be provisioned, along with configuring the external and internal Load Balancers that form the Cluster.

# **Bastion Server - Prerequisites**

In preparation to running Terraform Scripts, this section will prepare the installation of Terraform and OCI CLI onto the C3 System.

Currently Compute Cloud@Customer (C3) does not support OCI Resource Manager Stack (RMS). To run the Terraform script, a Bastion Server (or jump server) will be installed on the C3. Terraform and OCI CLI will then be loaded on to the Bastion Server for execution.

**Public IP Addresses:** You will need a minimum set of 3 Public IP Addresses in your Tenancy. Due to CIDR Rules you can configure up to a binary set of 8, 16, 32 etc – which will provide ample number of Public IP's.

**Note:** Your Compute Cloud at Customer (C3) is Federated with an OCI Home Region (such as PHX, FRA, IAD, etc). The Compute Cloud@Customer inherits IAM Policies from this OCI Home Region. Configurations will include referencing this OCI Home Region and your C3 System. It is important to work from the OCI <u>Home</u> Region that your C3 is connected to. **Be sure to understand if you have** permissions to Create Dynamic Groups in your Home Region's Tenancy. You may receive an error when running the first of two Terraform Scripts.

The following is an overview of installations and directories that will be placed on to the **bastion host** for the execution of Terraform scripts:

6 OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



# **Installation Overview**

The following procedure can be broken down into the following 3 stages.

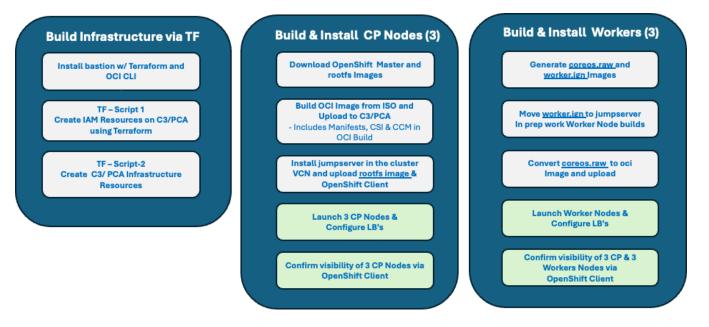



Figure-1

### **Bastion Installation**

- 1. Create a Compartment in your OCI Home Region that will be managing this deployment. Allow a few minutes for this to propagate to your C3 system.
- 2. Login to the C3 System's Console
- 3. Click on "Compute" and switch to the Compartment made in Step-1
- 4. Create an Instance
  - a. **Name:** Provide a name of your choosing (for the remaining of this procedure, we will refer to this as "bastion")
  - b. Create in Compartment: Choose a Compartment used to build your Cluster
  - c. Fault Domain: Automatically select ...
  - d. Source Image: Oracle Linux 9
  - e. **Shape:** VM.Standard.E5.Flex
  - f. **OCPUs:** 2
  - g. Memory (GBs): 16
  - h. Subnet:
    - For disconnected C3's, the VCN and Subnet chosen for VNIC attachment must have a DRG for external access
    - Choose an appropriate VCN and Subnet for external access if you are using a DRG. You
      will need to have a Proxy Server installed for the DRG. The Network Addresses of the
      Proxy will be needed in later steps in setting the /etc/environment in both the bastion
      and jumpserver hosts.
    - 3. If your Tenancy has Public Internet access, a Public Subnet with IGW can be built for access to Terraform and OCI cli downloads needed for the bastion host.
  - i. Public IP:
    - 1. Select the Radio Button
  - j. Private IP:
    - **1.** Keep (Optional)
- 7 OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public

46 6 9



- k. SSH Key: Upload or Cut and Paste the Public Key into the dialogue box
- I. Create the Instance
- m. Record the Public IP Address You will be using this to SSH into in the next step/
- 5. SSH into the **bastion** Instance using the Public IP Address
  - a. [my\_laptop ~]\$ ssh opc@<bastion\_IP\_Address>

### **Terraform Installation**

1. Download the Terraform binary AMD64 zip file onto your laptop from: <a href="https://developer.hashicorp.com/terraform/install">https://developer.hashicorp.com/terraform/install</a>

Note: The Terraform binary version will continue to be updated. Choose the latest version.

- 2. SSH into your bastion instance
  - a. [user@my\_laptop ~]\$ ssh opc@<bastion\_private\_IP\_address>
- 3. On the bastion instance, make a directory "prerequisite"
  - a. [bastion ~]\$ mkdir /home/opc/prerequisite/
- 4. Transfer the Terraform zip file from your laptop to the bastion host via secure copy, scp:
  - a. [user@ my\_laptop ~]\$ scp terraform\_1.8.3\_linux\_amd64.zip opc@<bastion\_private\_IP\_address>:/home/opc/prerequisite/
- 5. Unzip the Terraform Binary and move it to the **bin** directory
  - a. [opc@bastion ~ ./prerequisite]\$ unzip terraform\_1.8.3\_linux\_amd64.zip
  - b. [opc@bastion ~ ./prerequisite]\$ sudo mv terraform /usr/local/bin
  - c. [opc@bastion ~ ./prerequisite]\$ sudo chmod +x /usr/local/bin/terraform
  - d. Verify the Terraform installation was a success.
    - 1. [opc@bastion ~ ./prerequisite]\$ terraform version
    - 2. Note: The processor type and version number are returned

# **Installing and Configuring OCI CLI**

- 1 Install the OCI CLI
  - a. Goto: Offline Installation documentation
    - 1. **Choose**: Choose an "Oracle Linux 9 Offline" version
    - 2. **Example**: oci-cli-3.49.2-Oracle-Linux-9-Offline
  - b. Download the zip file to your local machine
  - c. Transfer from the file from your local machine to the targeted bastion server and store in the prerequisite folder:
    - [user@my\_laptop ~]\$ scp oci-cli-3.49.2-Oracle-Linux-9-Offline.zip opc@<bastion\_private\_IP\_address>:/home/opc/prerequisite/
  - d. SSH into the bastion the bastion server
    - 1. [user@my\_laptop ~]\$ ssh opc@<bastion\_private\_IP\_address>
  - e. Unzip the oci cli file:
    - 1. [opc@bastion ~ ./prerequisite]\$ unzip oci-cli-3.49.2-Oracle-Linux-9-Offline.zip
  - f. Install oci cli
    - 1. [opc@bastion ~./prerequisite]\$ cd oci-cli-installation
    - 2. [opc@bastion ~ ./prerequisite/oci-cli-installation]\$ bash install.sh --offline-install
      - 1. Return "blanks" (keep defaults) and "n" to the final question to any changes regarding paths unless there are known criteria for these file locations that need to be set.

<sup>8</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



# 6. Configure the OCI CLI

- a. [opc@bastion ~]\$ oci setup config
- **b.** [opc@bastion ~]\$ **Enter a location for your config [/home/opc/.oci/config]:** Enter (keep path)
- c. [opc@bastion ~]\$ Enter a user OCID: Enter your User OCID (Goto your C3 Console of your Home OCI Console, navigate to you Identity and obtain your OCID)
- **d.** [opc@bastion ~]\$ **Enter your Tenancy OCID**: Enter your Tenancy OCID (This can be found on the OCI Home Console in the upper right corner, Profile.)
- **e.** [opc@bastion ~]\$ **Enter a Region by index or name**: Select the Region name's representative number and enter it (for this example, we are using 58: us-ashburn-1)
- f. [opc@bastion ~]\$ Do you want to generate a new API Signing RSA key pair? Y
- g. [opc@bastion ~]\$ Enter a directory for your keys to be created [/home/opc/.oci]: Enter (keep default)
- h. [opc@bastion ~]\$ Enter a name for your key [oci\_api\_key]: Enter (keep default)
- i. [opc@bastion ~]\$ Enter a passphrase for your private key: select N/A (or choose a passphrase if desired)
  - This completes the initial configuration.
  - A directory will have been made: /home/opc/.oci
  - It will contain the following files:
    - config
    - o oci\_api\_key.pem
    - o oci\_api\_key\_public.pem
- 3. Make a Copy of your oci\_api\_key\_public.pem that you will use in your Home OCI User profile's API Kevs:
  - a. [opc@bastion ~]\$ cat oci\_api\_key\_public.pem
  - b. Cut and paste this key and save it for the next step
- 4. Navigate to your OCI Home Console's User Profile to update your User API Keys
  - a. Identity / Security
  - b. Choose Domains
  - c. Choose Default
  - d. Choose Users in left navigation
  - e. Select your User
  - f. Scroll down on left nav to "API Keys" and select
  - g. Select "Add API"
  - h. Cut and Paste the oci\_api\_key\_public.pem
  - i. Select "Add"
  - j. Copy the Configuration profile View presented (It will be used in the next step)
  - **k. Note the API key fingerprint.** This should be the same fingerprint found in the oci config file: /home/opc/.oci/config
- 5. In this section, you will be making changes to the /.oci/config file. This file provides the necessary tenancy and security keys for accessing both your Home OCI Region Tenancy as well as your C3 System
  - j. [opc@bastion ~]\$ vi ~/.oci/config
    - 1. You can use the copied file from the previous step or use the examples below)
    - 2. Change the [DEFAULT] to [home]
    - 3. Cut and paste the complete section and place beneath it. This will be the section for the C3 Region
    - 4. Change the second section from [home] to [c3]. These names can change to your choosing. They will be referenced in Terraform Scripts later in this document.
- 9 OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



### **Example provided:**

[home]

 $user = ocid1. \\ u\underline{ser.oc1..aaaaaaaaqlnen3dpgyqn6xi6hwl7vuertngidgncd7rbgt2x2ga2rmyawvya$ 

fingerprint=

key\_file=/home/opc/.oci/oci\_api\_key.pem

tenancy = ocid1. tenancy. oc1.. aaaaaaaalmx rgmsqoou26 rdybg thdwtwdwhn7km5 oq3u25 f6bdpoxihqef6 qregion = us-ashburn-1

[c3]

user=ocid1.user.oc1..aaaaaaaaqlnen3dpgyqn6xi6hwl7vuertngidgncd7rbgt2x2ga2rmyawvya

fingerprint=

key\_file=/home/opc/.oci/oci\_api\_key.pem

 $tenancy=ocid1. tenancy.oc1..aaaaaaaalmxrgmsqoou26rdybgthdwtwdwhn7km5oq3u25f6bdpoxihqef6q\\ region=ccc2.rsthybrid.oracle.com\ \#example\ region\ only.$ 

**Note:** For the **region** of your C3, simply use the URL that you log into your C3 with. Everything after "console" is your Region. Example: <a href="https://console.scasg02.us.oracle.com/">https://console.scasg02.us.oracle.com/</a>: scasg02.us.oracle.com is the Region.

7. For the next step, you will need a Certificate Authority Bundle. The instructions are provided in the link below. The details have already been provided starting with Step 7a.

Reference Doc: <a href="https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user-usr-ce-cli.html#usr-cli-obtain-cabundle">https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user-usr-ce-cli.html#usr-cli-obtain-cabundle</a>

- a. Type into your browser: <a href="https://iaas.<your\_C3\_domain>/cachain">https://iaas.<your\_C3\_domain>/cachain</a>
- b. Copy/Cut this output for the next step to paste

**Note**: Your C3 "Domain" is the same as the "Region" in the oci config file and noted as an example on the previous step.

- 8. Create the c3.pem file
  - a. Create a file under the /home/opc/.oci directory and name it "c3.pem"
  - b. [opc@bastion /home/opc/.oci~]\$ vi c3.pem
    - 1. Paste the Cert File from the previous step and save.
- 9. Create the oci\_cli\_rc file
  - a. [opc@bastion/home/opc/.oci~]\$ vi oci\_cli\_rc
  - b. Cut and paste and update with your tenancy id:

[home]
tenancy=<your tenancy ocid>
[c3]
tenancy=<your tenancy ocid>
cert-bundle=/home/opc/.oci/c3.pem

- 10. Check the CLI access on the OCI Home Region
  - a. [bastion /home/opc/.oci]\$ oci os ns get --profile home

<sup>10</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright @ 2025, Oracle and/or its affiliates / Public



```
{
  "data": "axpu7uokzjmj"
}
```

**Note:** The data output may vary upon your object storage namespace title.

- 11. Next, modify the firewall for CLI access to C3
  - a. [bastion /home/opc/.oci]\$ sudo systemctl stop firewalld
  - b. [bastion /home/opc/.oci]\$ sudo rm -f /etc/firewalld/direct.xml
  - c. [bastion /home/opc/.oci]\$ sudo systemctl start firewalld
- 12. Confirm CLI access on C3
  - a. [bastion /home/opc/.oci]\$ oci os ns get --profile c3
    {
     "data": "axpu7uokzjmj"
    }
- 9. Set up a proxy on your bastion host before running the terraform script for systems that do not have direct internet access
  - a. [bastion /home/opc/.oci]\$ sudo vi /etc/environment
  - b. Edit the following examples for http\_proxy, https\_proxy and no\_proxy into the /etc/environment file.

### Example:

```
http_proxy=http://www-proxy.<your_domain>.com:80
https_proxy=http://www-proxy.<your_domain>.com:80
no_proxy=localhost,127.0.0.1,1,2,3,4,5,6,7,8,9,0,.<your_domain>.com,.ie.oracle.com,.oracle.com
```

**Note:** You will need to contact your system administrator for proxy and port settings for your environment.

- 10. When the /etc/environment file is saved, ensure to set the source to /etc/environment
  - a. [bastion /home/opc/.oci]\$ source /etc/environment

# **Terraform Script Execution – Part 1 (Run Script via Home region)**

Two Terraform scripts will be run on the bastion server created in previous steps. This first script will be to create the needed Two Dynamic Groups (one for control plane, one for compute nodes), Policies for the Dynamic Groups and Tags for the Control and Worker Nodes. The second script will be to create infrastructure resources on C3.

- 1. SSH into the Bastion Server created in previous steps
  - a. [user@my\_laptop ~]\$ ssh opc@<bastion\_Private\_IP\_Address>
- 2. Make a directory, "openshift"
  - a. [opc@bastion /home/opc]\$ mkdir openshift
- 3. Make a directory, "createResourceOnHomeRegion" in the openshift directory
  - a. [opc@bastion /home/opc/openshift]\$ mkdir createResourceOnHomeRegion

<sup>11</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



- 4. Copy the two files, <u>createInfraResources.tf</u>, and <u>terraform.tfvars</u> from the following github repo as files into the directory, createResourceOnHomeRegion.
  - a. <a href="https://github.com/oracle-quickstart/oci-openshift/tree/c3-la/edge/c3">https://github.com/oracle-quickstart/oci-openshift/tree/c3-la/edge/c3</a> pca into the directory, createResourceOnHomeRegion.
  - b. Replace the variables in **terraform.tfvars**
  - c. Replace the default values of "compartment\_ocid", "cluster\_name" and "home\_region\_profile\_name" (found during OCI CLI Configuration)

**Note-1:** For the **home\_region\_profile\_name**, this is simply the designation you had provided in the oci-cli config file. In this example we designated it [pca]. You are free to designate any name you like.

- 5. Before launching the TF scripts, determine if you have tenancy privileges to create Dynamic Groups for specific compartment. **If you do not, please see Step-7 before applying Terraform Scripts**
- 6. Apply the Terraform Script:
  - a. Ensure your Network source is set:
    - 1. [Bastion createResourceOnC3]\$ source /etc/environment
  - b. Ensure your C3 Certification location is set
    - 1. [Bastion createResourceOnC3]\$ export
       custom\_cert\_location=/home/opc/.oci/c3.pem
  - c. custom\_cert\_location=/home/opc/.oci/c3.pem
  - d. [Bastion createResourceOnHomeRegion~]\$ terraform init
  - e. [Bastion createResourceOnHomeRegion~]\$ terraform plan
  - f. [Bastion createResourceOnHomeRegion~]\$ terraform apply

**Note1:** If you receive an error during the "terraform init" step, "Error: Failed to query available provider packages", simply exit the bastion and ssh again into it.

**Note2:** If you received an error, showing a Dynamic Group error, you will need to contact your sysadmin to make the following **changes on your behalf shown in Step7.** 

- 7. If you do not have administrative rights to the tenancy in your home region to create Dynamic Groups and Policies. This provisioning will be done manually and at **the tenancy** level by an Admin:
  - a. Create a Dynamic Group: "<your-cluster-name>\_compute\_nodes"
    - On the Left Nav, navigate to Identity and Security and choose Domains and the choose
      Default
    - 2. On the Left Nav, choose Dynamic Groups and Create a Dynamic Group with the name above.
    - 3. In the Matching Rules section, copy the following.
    - 4. Replace the \${var.compartment\_ocid}, in Rule-1, with the target compartment ocid
    - 5. Replace the \${var.cluster\_name}, in Rule-2, with the target compartment cluster name
    - Rule 1:
      - instance.compartment.id = '\${var.compartment\_ocid}'
    - Rule-2:
      - tag.openshift- \${var.cluster\_name}.instance-role.value='compute'
- 12 OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



- b. Create another Dynamic Group: "<your-cluster-name>\_control\_plane\_nodes>"
  - 1. In the Matching Rules section, copy the following.
  - 2. Replace the \${var.compartment ocid} in Rule-1 with the target compartment ocid
  - 3. Replace the \${var.cluster\_name} in Rule-2 with the target compartment cluster name
    - Rule 1:
      - <u>instance.compartment.id</u>= '\${var.compartment\_ocid}'
    - Rule-2:
      - tag.openshift- \${var.cluster\_name}.instance-role.value='compute'
- c. **Create a Policy** for the control plane nodes in your compartment and name it : "<your-cluster-name>\_control\_plane\_nodes>".
  - 1. In the Policy Builder, using manual editor, copy the following section below and replace the
    - \${oci\_identity\_dynamic\_group.openshift\_control\_plane\_nodes.name}
      with the control plane DG name created in the previous step.
  - 2. Replace the
     \${oci\_identity\_dynamic\_group.openshift\_control\_plane\_nodes.name}
     with the target compartment's cluster name
  - 1. Allow dynamic-group \${oci\_identity\_dynamic\_group.openshift\_control\_plane\_nodes.name} to **manage volume-family** in compartment id \${var.compartment\_ocid}
  - 2. Allow dynamic-group \${oci\_identity\_dynamic\_group.openshift\_control\_plane\_nodes.name} to **manage instance-family** in compartment id \${var.compartment\_ocid}
  - 3. Allow dynamic-group \${oci\_identity\_dynamic\_group.openshift\_control\_plane\_nodes.name} to **manage security-lists** in compartment id \${var.compartment\_ocid}
  - 4. Allow dynamic-group \${oci\_identity\_dynamic\_group.openshift\_control\_plane\_nodes.name} to **use virtual-network-family** in compartment id \${var.compartment\_ocid}
  - 5. Allow dynamic-group \${oci\_identity\_dynamic\_group.openshift\_control\_plane\_nodes.name} to **manage load-balancers** in compartment id \${var.compartment\_ocid}
- d. Comment out lines 79-107 in the createldentityResources.tf script
  - This will include:
    - 1 resource "oci\_identity\_dynamic\_group" "openshift\_control\_plane\_nodes"
    - 2 resource "oci\_identity\_policy" "openshift\_control\_plane\_nodes"
    - 3 resource "oci\_identity\_dynamic\_group" "openshift\_compute\_nodes"

# **Terraform Script Execution – Part 2 ("Run Script via C3 Region")**

In this section, we will create all the infrastructure resources (LB's, VCN's, Instances, etc) on the C3 System.

- 1. SSH into the Bastion image from your laptop
  - a. [my\_laptop ~]\$ ssh opc@<bastion\_Private\_IP\_Address>
- 2. Export the C3 Certificate location. 2a provides an example of the path and pem file name only. If you followed this installation procedure, you can cut and paste it into your command line.

<sup>13</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright @ 2025, Oracle and/or its affiliates / Public



- a. [opc@bastion ~] export custom\_cert\_location=/home/opc/.oci/c3.pem
- **3.** Check that the variable is set properly
  - a. [opc@bastion ~] echo \$custom\_cert\_location

**Note-1:** During the execution of the next TF script, and see an x509 Cert issue, copy the above command in 2a and re-run the scripts. Ensure that you are NOT logged into the bastion with two ssh sessions.

- a. Make a directory **"createResourceOnC3"** and copy following two files into the directory: <a href="https://github.com/oracle-quickstart/oci-openshift/tree/c3-la/edge/c3">https://github.com/oracle-quickstart/oci-openshift/tree/c3-la/edge/c3</a> pca [Bastion /home/opc/openshift]\$ mkdir createResourceOnC3
- b. Make a file for each respective file from the above github link:
  - 1. createInfraResources.tf
  - 2. terraform.tfvars
- c. Update all the variables in the C3 Region's terraform.tfvars file

- Note-1: The C3 or PCA region is the FQDN of the console you logged into. Following are two examples:
  - (1) C3 Lab Console: console.scasg03.us.oracle.com. Region = scasg03.us.oracle.com
  - (2) PCA Lab Console: console.scasg02.us.oracle.com Region = scasg02.us.oracle.com

### Note-2:

- Keep image\_id\_manually\_created\_on\_PCA : to the default value (no edits).
- Change the **create\_openshift\_instance\_pools**: to false

### Note-3: Compute Shapes

- (1) For C3, insert and use (for both Control Plane & Compute): VM.PCAStandard.E5.Flex
- (2) For PCA, insert and use (for both Control Plane & Compute): VM.PCAStandard1.Flex
- 3. Ensure your Network source is set:
  - a. [Bastion createResourceOnC3]\$ source /etc/environment
- 4. Ensure your C3 Certification location is set
  - a. [Bastion createResourceOnC3]\$ export
     custom\_cert\_location=/home/opc/.oci/c3.pem
- 5. Apply the Terraform Script

```
[Bastion createResourceOnC3]$ terraform init
[Bastion createResourceOnC3]$ terraform plan
[Bastion createResourceOnC3]$ terraform apply
```

<sup>14</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



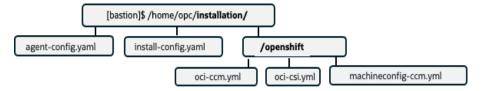
**Note:** If "terraform init" causes the following error: "**Error**: Failed to query available provider packages", exit the bastion host and ssh back in.

5. **Save the Terraform output in the same directory**, as it will be used it in later steps when building the Master CP Images in the Cluster Installation section. Below is a generic example:

```
useInstancePrincipals: true
compartment: <compartment-ocid>
vcn: <vcn-ocid>
loadBalancer:
   subnet1: <subnet-ocid>
   securityListManagementMode: Frontend
   securityLists:
        <subnet-ocid>: <security-ocid>
rateLimiter:
   rateLimitQPSRead: 20.0
   rateLimitDucketRead: 5
   rateLimitDucketWrite: 5
```

# **Cluster Installation**

In this section, you will prepare OpenShift images, create master/worker nodes accordingly and verify the installation.


### Install Master Nodes

# **Prepare the Openshift Master Images**

# Generate iso image and rootfs.img

In this section you will be copying files from github into a created installation directory.

Important: The construct of this directory, subdirectory and files will need to reflect the structure below:



- 1. You will need the contents in <a href="https://github.com/oracle-quickstart/oci-openshift/tree/c3-la/edge/c3\_pca">https://github.com/oracle-quickstart/oci-openshift/tree/c3-la/edge/c3\_pca</a> directory under the <a href="mailto:agentBasedInstallation">agentBasedInstallation</a> folder
  - a. You will be copy and pasting then editing 4 files.
    - i. <u>agent-config.yaml</u>
    - ii. <u>install-config.yaml</u>
    - iii. oci-ccm.yml
    - iv. <u>oci-csi.yml</u>

<sup>15</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



- v. machineconfig-ccm.yml DOES NOT require any edits
- 2. Create the installation directory:
  - a. [opc@bastion /home/opc]\$ mkdir installation
- 3. Config the files agent-config.yaml and install-config.yaml in the installation directory shown above.
  - a. For the installation, you can use the default configuration copied from the repo. Just replace some values.
- 4. Create the file **agent-config.yaml**, under the /home/opc/**installation** directory
  - a. [opc@bastion /home/opc/installation]\$ vi agent-config.yaml
  - b. Replace the metadata: **name** and **namespace** with the cluster name.

```
apiVersion: v1alpha1
metadata:

name: <replace with the OpenShift cluster name>
namespace: <replace with the OpenShift cluster name>
rendezvousIP: 10.0.16.20 # or replace with custom value of your configuration
bootArtifactsBaseURL: <a href="http://10.0.0.5">http://10.0.0.5</a> # or replace with custom value of your configuration
```

- 5. Create the file **install-config.yaml**, under the /home/opc/**installation** directory
  - a. [opc@bastion/home/opc/installation]\$ vi install-config.yaml
  - b. Replace the **install-config.yaml** section of the install-config.yaml, with the following:
    - i. Metadata. name:
    - **ii. baseDomain:** this should match the "zone\_dns" naming in the createResourceOnC3 terraform.tfvars file.
    - iii. **sshKey:** Specify your SSH public key.
    - iv. **pullSecret:** The pull secret that you need for authenticate purposes when downloading container images for OpenShift Container Platform components and services, such as <a href="Quay.io">Quay.io</a>. See <a href="Install OpenShift Container Platform 4">Install OpenShift Container Platform 4</a> from the Red Hat Hybrid Cloud Console.
    - proxy information: replace with contents found in the previously configured
      /etc/environment customized for your environment, while retaining the IP Address of
      10.0.0.0/16 (or the custom machine Network CIDR intended to use)

### metadata:

```
name: <replace with the OpenShift cluster name>
baseDomain: <replace with the name of cluster's DNS zone>
sshKey: '<replace with your publish ssh key>'
pullSecret: '<replace with your pull secret key generated from RH>'
proxy:
  httpProxy: http://www-proxy.us.oracle.com:80
httpsProxy: http://www-proxy.us.oracle.com:80
```

<sup>16</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



```
noProxy:
```


localhost, 127.0.0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, .us.oracle.com, .ie.oracle.com, .oraclecorp.com, 10.0.0/16

**shh key:** Ensure that this is the ssh key used when building the jump-host instance. **proxy:** 

You will need to have consulted your Network admin for proper /etc/environment settings in previous steps. See Reference document in the following step for more information.

- 6. Next, we will be making changes to the files to be located under the /home/opc/installation/**openshift** directory
  - a. Identical changes will be made to both the oci-ccm.yml and oci-csi.yml files.
  - b. No changes will be required for the **machine-config.yml** that will be installed in this same directory.
  - c. Remember, the placement of these files within the directory structure is important.
  - d. Once the **openshift-install** script is run, all the files within the installation directory will be consumed and no longer be present.
  - e. The content you will need for changes in both these files can be found in the following sections pasted below.
  - f. Open another terminal window and ssh into your bastion to obtain this needed information:

<sup>17</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



- g. Create a file under /home/opc/installation/openshift for the first file: oci-ccm.yml
  - i. [opc@bastion ~ ./installation]\$ mkdir openshift
  - ii. [opc@bastion ~ ./installation/openshift]\$ vi oci-ccm.yml
  - iii. Copy the respective file contents found on github into this new file
  - iv. Make updates to the #oci-ccm-04-cloud-controller-manager-config.yaml with the **output** saved after running the terraform script on **C3**. Starting at line 193....

```
# oci-ccm-04-cloud-controller-manager-config.yaml
apiVersion: v1
kind: Secret
metadata:
  creationTimestamp: null
 name: oci-cloud-controller-manager
  namespace: oci-cloud-controller-manager
stringData:
  cloud-provider.yaml: |
    useInstancePrincipals: true
    compartment: $COMPARTMENT ID
    vcn: $OCP VCN ID
    loadBalancer:
      subnet1: $OCP SUBNET ID
      securityListManagementMode: Frontend
      securityLists:
        $OCP SUBNET ID: $OPC SEC LIST ID
    rateLimiter:
      rateLimitQPSRead: 20.0
      rateLimitBucketRead: 5
      rateLimitQPSWrite: 20.0
      rateLimitBucketWrite: 5
```

v. Next, **staying in the same oci-ccm.yml**, update the # oci-ccm-C3-cert.yaml with your c3.pem found in your /home/opc/.oci/c3.pem file. Save the file after this update.

<sup>18</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



# Important Note: The formatting of this pem within the two yml files are sensitive to justification.

- To replicate the formatting required for the oci-ccm.yml & oci-csi.yml, use the following command on your pem file:
  - [opc@test-ssh.oci]\$sed 's/^/ /' foo.pem
  - where "foo.pem" is the name of your pem file
  - the spaced between the two forward slashes is equal to 4 spaces
    - this is equal to the justification in the two files
- The above command will create an output to cut and paste to place in both the ociccm.yml & oci-csi.yml files
- h. Repeat the previous 2 updates for the **oci-csi.yml file**, starting at line 20.
  - i. [opc@bastion ~ installation/openshift]\$ vi oci-csi.yml
  - ii. Copy the oci-csi.yml into the editor
  - iii. Within the **oci-csi.yml file**, update the **# oci-csi-01-config.yaml** with the same content/process found above in 4.a.iii
  - iv. Within the **oci-csi.yml file**, update the **# oci-csi-C3-cert.yaml** with the same content/process found above in 4.a.iv
  - v. Save and Quit
- i. Create the final file, machineconfig-ccm.yml, under the same openshift directory
  - i. [opc@ bastion ~ installation/openshift]\$ vi machineconfig-ccm.yml
  - ii. Save and Quit (Note: This file requires no modifications.)
- 7. Download openshift-install binary in <installation-directory> directory.
  - a. Download OpenShift Install with following command, or download the version on demand from link in (b) that follows: <a href="https://mirror.openshift.com/pub/openshift-v4/clients/ocp/4.15.21/openshift-install-linux.tar.gz">https://mirror.openshift.com/pub/openshift-v4/clients/ocp/4.15.21/openshift-install-linux.tar.gz</a>
  - b. [opc@ bastion ~./installation]\$ wget <a href="https://mirror.openshift.com/pub/openshift-v4/clients/ocp/4.15.21/openshift-install-linux.tar.gz">https://mirror.openshift.com/pub/openshift-v4/clients/ocp/4.15.21/openshift-install-linux.tar.gz</a>
  - c. Extract the openshift installation:
    - i. [opc@ bastion ~./installation]\$ tar -xvf openshift-install-linux.tar.gz
- 8. Run command "./openshift-install agent create image --log-level debug" under the **installation-directory**>. The command completes the following actions below.
  - a. [opc@ bastion ./installation]\$ ./openshift-install agent create image --log-level debug

146 6 6

<sup>19</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



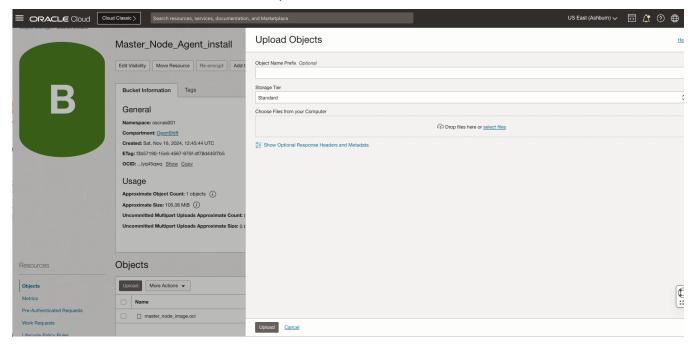
- b. You will observe the install has consumed the previously configured files and has introduced the changes below:
  - Created a subdirectory, ./<installation-directory>/auth directory, and places kubeadminpassword and kubeconfig files in the subdirectory.
  - 2. Created a **rendezvousIP** file based on the IP address that you specified in the agent-config.yaml configuration file.
  - 3. Created an .iso image file
  - 4. Created a subdirectory, ./<installation-directory>/boot-artifacts directory, and places a rootfs image file in it.

**Important Note:** In the boot-artifacts directory, you will find the agent.x86\_64-rootfs.img. This file will need to be transferred to the **/var/www/html** when starting a webserver on your jump host, which will be built in the steps below.

- 9. Create a subdirectory ./<installation-directory>/prepareImage, place the .iso image file in this subdirectory and then run following commands to convert the .iso file to an .oci file
  - a. [opc@ bastion ~./ installation]\$ mkdir prepareImage
  - b. [opc@ bastion ~./ installation/]\$ mv <file\_name>.iso ./prepareImage
- 10. Convert image iso to qcow2
  - a. [opc@ bastion ~ ./prepareImage]\$ brew install qemu
  - b. [opc@ bastion ~ /prepareImage]\$ qemu-img convert -O qcow2 <file\_name>.iso output.QCOW2

Note: We need to set firmware as "UEFI" and launch mode as "PARAVIRTUALIZED" for the openshift image, before we import it on C3. Following are specific steps.

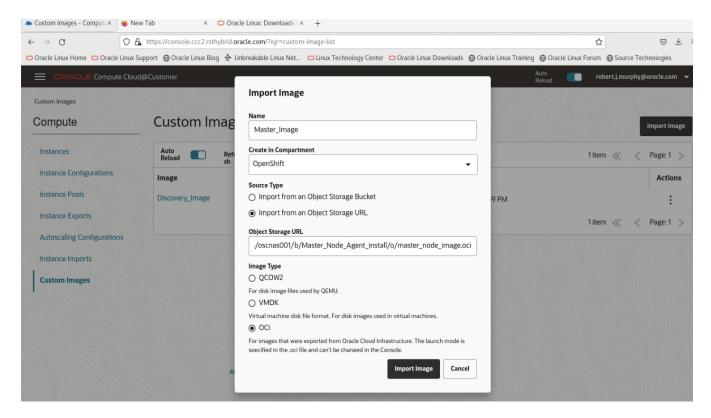
- 11. Create image\_metadata.json as follows
  - [opc@ bastion ~ prepareImage]\$ vi image\_metadata.json
  - Paste the following contents into the editor, save and quit


```
"version": 2,
"externalLaunchOptions": {
   "firmware": "UEFI_64",
   "networkType": "PARAVIRTUALIZED",
   "bootVolumeType": "PARAVIRTUALIZED",
   "remoteDataVolumeType": "PARAVIRTUALIZED",
   "localDataVolumeType": "PARAVIRTUALIZED",
   "launchOptionsSource": "PARAVIRTUALIZED",
   "pvAttachmentVersion": 1,
   "pvEncryptionInTransitEnabled": false,
   "consistentVolumeNamingEnabled": false
},
   "imageCapabilityData": null,
   "imageCapsFormatVersion": null,
   "operatingSystem": "Custom",
Shift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 19
```

20 OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



```
"operatingSystemVersion": "Custom"
}
```


- 12. Tar the output.QCOW image and metadata.json to create an oci image
  - a. [opc@ bastion ~ prepareImage]\$ tar cf master\_node\_image.oci image\_metadata.json output.QCOW2
- 13. Upload the "master\_node\_image.oci" to the OCI Home Region bucket, and generate the Pre-Authenticated Request(PAR) URL
  - a. Upload the "master\_node\_image.oci" to OCI bucket.
  - b. Select the hotdog (dot) menu next to it and **Create Pre-Authenticated Request** for the object, allowing object reads and extending the expiration date to your needs. Copy the PAR URL and keep it. We will use it in the next step.



- 11. Import master node image on C3 portal.
  - a. Login to your C3 System
  - b. Click Compute → select your compartment → click custom images
  - c. Click import image → give it a name → Source Type choose "Import from an Object Storage URL" → Paste the PAR URL we generated in previous step in the "Object Storage URL" → Image type select "OCI" → Launch Mode select "Paravirtualized Mode" → click import image → make sure the image states become available; we will use it later.

<sup>21</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public





# Start a web server to upload rootfs

If your C3 System is in a disconnected environment, you need to upload the rootfs manually for booting the iso image, i.e., start a preferred web server, such as any Hypertext Transfer Protocol daemon (httpd), to upload rootfs to the location stated in the bootArtifactsBaseURL parameter in the agent-config.yaml configuration file. (More background info refers to Step8 in the 20.2.3 part of RH)

doc <a href="https://docs.redhat.com/en/documentation/openshift">https://docs.redhat.com/en/documentation/openshift</a> container platform/4.15/html/installing/installing-on-oci#creating-config-files-cluster-install-oci\_installing-oci-agent-based-installer)

If you used the default config files copied from the repo in the previous steps, you can follow steps below.

- 1. Create an instance on C3 console, in your openshift test compartment
  - a. Navigate to Compute/Instances and click on Create Instance
    - 1. **Name:** jumphost
    - 2. Create in Compartment: Use the pull-down menu to choose your compartment
    - 3. Fault Domain: Leave to default (auto select)
    - Source Image / Source Type: Oracle Linux 9
    - 5. **Shape:** VM.Standard.E5.Flex
    - 6. **OCPU's:** 2
    - 7. **Memory:** 16
    - 8. Boot Volume: Click radio and leave at Default
    - **9. Subnet: VCN =** cluster\_name, **Subnet:** Public
- 22 OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



- 10. Public IP Address: Click radio button, Assign Public IP Address
- **11. Assign Private IP:** 10.0.0.5
  - Assign the Private IP as 10.0.0.5. This value should match the bootArtifactsBaseURL in the <a href="https://github.com/oracle-quickstart/oci-openshift/tree/c3-la/edge/c3">https://github.com/oracle-quickstart/oci-openshift/tree/c3-la/edge/c3</a>
- 12. Upload your ssh key
- 13. Create the instance
- 2. SSH into the newly created "jump-host" on C3 and run following command to setup the webserver.
- 3. Set up system-wide proxy by adding three lines in environment file.
  - a. [opc@jump-host ~]\$ sudo vi /etc/environment
  - b. If you have implemented a DRG into your design, you will need to set-up specific for the proxy server being used in conjunction with your DRG. Below is an example:

### Example:

```
http_proxy=http://www-proxy.us.oracle.com:80
https_proxy=http://www-proxy.us.oracle.com:80
no_proxy=localhost,127.0.0.1,1,2,3,4,5,6,7,8,9,0,.us.oracle.com,.ie.oracle.com,.oracle.com
```

Note: As in previously setting up the bastion host, you will need to create the proper settings for your specific environment.

- c. Set your systemwide variables
  - i. [opc@jump-host ~]\$ source /etc/environment
- 3. Install webserver and tar
  - a. [opc@jump-host ~]\$ sudo dnf -y install httpd tar
  - b. [opc@jump-host ~]\$ sudo systemctl enable --now httpd.service
  - c. [opc@jump-host ~]\$ sudo firewall-cmd --add-service=http --permanent
  - d. [opc@jump-host ~]\$ sudo firewall-cmd --add-port=80/tcp --permanent
  - e. [opc@jump-host ~]\$ sudo firewall-cmd --reload
  - f. [opc@jump-host ~]\$ sudo setenforce 0
- 4. Check the webservers serving directory.
  - a. [opc@jump-host ~]\$ sudo grep -i documentroot /etc/httpd/conf/httpd.conf
  - b. From the output of 4a, verify the DocumentRoot:
- 23 OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



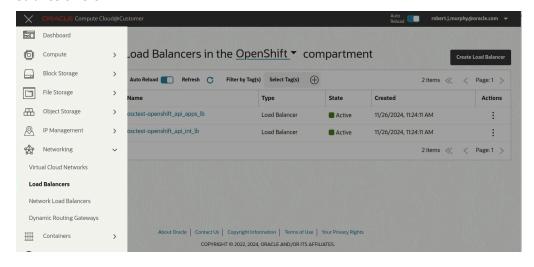
DocumentRoot "/var/www/html"

- # access content that does not live under the DocumentRoot.
- 5. Upload rootfs file from the machine which has the openshift installation. This was completed in previous steps: (/home/opc/installation/boot-artifacts/agent.x86\_64-rootfs.img to the jump-host.)
  - a. [opc@bastion ~]\$ scp agent.x86\_64-rootfs.img opc@<jump-host-public-ip>:/home/opc
- 6. Move the rootfs file to webservers serving directory.
  - a. [opc@jump-host ~]\$ sudo mv agent.x86\_64-rootfs.img /var/www/html
- 7. Download and Install OpenShift OC client
  - a. [opc@jump-host ~]\$ wget <a href="https://mirror.openshift.com/pub/openshift-v4/clients/ocp/4.15.21/openshift-client-linux.tar.gz">https://mirror.openshift.com/pub/openshift-v4/clients/ocp/4.15.21/openshift-client-linux.tar.gz</a>
  - b. [opc@jump-host ~]\$ tar -xvf openshift-client-linux.tar.gz
  - c. [opc@jump-host ~]\$ sudo mv oc /usr/local/bin/.

# Create control plane instances on C3 and Master Node LB Backend Sets

- 1. Navigate to the Compute service, then select Instances
- 2. Select Create instance.
- 3. Enter a Name for the instance.
- 4. Select the compartment that the OpenShift cluster is being created in.
- 5. In the Image and shape section, select Change image and choose My images.
- 6. Select Custom images. Ensure the Compartment is set to the compartment where your custom image is stored.
- 7. Select the checkbox beside the name of the master node image we imported on C3 in the previous step, then click Select image.
- 8. Select Change shape.
- 9. In the Browse all shapes panel, choose a shape and ensure that the **Number of OCPUs value is 4** or more, and the **Amount of Memory (GB) value is 16 or more**.
- 10. Click Select shape to continue.
- 11. In the Boot volume section, select Specify a custom boot volume size and **only specify the boot volume size of 1024, and keep VPU as default.** See <u>Block Volume Performance</u> for information on volume performance units (VPUs)
- 12. **Choose the VCN** that you specified when editing the oci-ccm.yml file. This VCN should also be referenced in the cidr value of the machineNetwork parameter in the install-config.yaml file.
- 13. For the Subnet, choose Select existing subnet, then choose the private subnet for the VCN
- 14. **First master node only:** In the Primary VNIC IP addresses section, select Manually assign private IPv4 address. In the IPv4 address field, **enter the rendezvous IP address**. For extra master nodes, and for all worker nodes, skip this step.

| Private IP |  |  |
|------------|--|--|
| 10.0.16.20 |  |  |


24 OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



- 15. In the Add SSH keys section, select Paste public keys and enter the public key from the SSH key pair discussed in <u>Prerequisites</u>.
- In the Network Security Group section, select Enable Network Security Group and select NSG as clustercontrolplane-nsg
- 17. Click Show advanced options to add a tag to the instance. Using the defined tag option, specify the openshift\_tags namespace and the instance\_role tag. Then assign control\_plane as the tag value



- 18. Select Create to provision the compute instance.
- 19. Repeat Steps 1-18 above for the remaining two CP Nodes.
- 20. Add backend sets in LB for master nodes:
  - a. After creation of 3 master nodes, you need to add backend sets in Load Balancers.
    - 1. Login to your C3 System
    - 2. Click Networking → click Load Balancers → select your compartment. You should see two load balancers here.



- a. Click the "<cluster-name>-openshift\_api\_apps\_lb"
  - → click **Backend Sets (3)** (on left nav)
  - → click "openshift\_cluster\_api\_backend"
  - → click Create Backend
    - → click IP Addresses
  - → IP Address 1 Only: type in the private rendezvous IP address and the port 6443 (same as provisioned during instance launch)

<sup>25</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



- → click Add IP Addresses twice
- → **IP Address 2 & 3**: type in the private IP addresses of the other two master nodes and the port **6443**.
- b. Click the "<cluster-name>-openshift\_api\_int\_lb"
  - → click Backend sets.
  - → click "openshift\_cluster\_api\_backend"
    - → click Create Backend
    - → click IP Addresses
    - → type in the private rendezvous IP address and the port 6443
    - $\rightarrow$  click Add IP Addresses twice  $\rightarrow$  type in the private IP addresses of the other two master nodes and the port **6443**.
  - → click "openshift\_cluster\_infra-mcs"
    - → click Create Backend
    - → click IP Addresses
    - → type in the private rendezvous IP address and the port 22623
    - → click Add IP Addresses twice
    - $\rightarrow$  type in the private IP addresses of the other two master nodes and the port **22623**.
  - → click "openshift\_cluster\_infra-mcs\_2"
    - → click Create Backend
    - → click IP Addresses
    - → type in the private rendezvous IP address andthe port 22624
    - → click Add IP Addresses twice
    - $\rightarrow$  type in the private IP addresses of the other two master nodes and the port **22624**.
- 21. There should be 3 master nodes that are running in the cluster. SSH into the jump host and run the following commands to **verify** the cluster installation.
- 22. Copy and paste the kubeconfig file from the ./<installation-directory>/auth directory to the jump-host instance,and export it as env variable KUBECONFIG
  - a. [opc@jump-host ~]\$ cd ~
- 23. Set up system-wide proxy by adding three lines in environment file. Append the server domain in the no\_proxy.
  - a. As an example, the server in kubeconfig file
     is "server: https://api.osctest.osctest.rsthybrid.oracle.com:6443", capture the suffix "osctest.osctest.rsthybrid.oracle.com:6443" and append it in the no\_proxy config.
  - b. Make the following changes to the /etc/environment
    - 1. [jump-host ~]\$ sudo vi /etc/environment
- 26 OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public

146 6 60

### ORACLE

- http proxy=http://10.61.2.219:3128
- https proxy= http://10.61.2.219:3128
- no\_proxy=localhost, 127.0.0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, .rsthybrid.oracle.com,
   .osctest.osctest.rsthybrid.oracle.com:6443 Add this to no proxy.
  - c. Set the source path
    - 1. [jump-host ~]\$ source /etc/environment

Please Note: The installation will take some time, please check periodically until you see the outputs that follow.

You may notice that CP's ROLES here include "worker", which is incorrect. We will fix it in a later step, after adding compute (worker) nodes to the cluster.

- d. Query the node status using the openshift client installed
  - 1. [jump-host ~]\$ oc get nodes

| NAME | STATUS | ROLES                         | AGE   | VERSION          |
|------|--------|-------------------------------|-------|------------------|
| cp1  | Ready  | control-plane, master, worker | 5m19s | v1.28.11+add48d0 |
| cp2  | Ready  | control-plane, master, worker | 20m   | v1.28.11+add48d0 |
| ср3  | Ready  | control-plane, master, worker | 21m   | v1.28.11+add48d0 |

## If you see these error messages, it may mean that the installation is still in progress.

e. [opc@jump-host ~]\$ oc get nodes -A

```
E0910 00:01:19.245859 180079 memcache.go:265] couldn't get current server API group list:

Get "https://api.jzabtest2.jzabtest2.c3.dfosterdev.com:6443/api?timeout=32s": EOF
```

e. [opc@jump-host~]\$ oc get nodes

Unable to connect to the server: EOF

# Add worker nodes

# **Prepare the Openshift worker image**

# Generate coreos-rawdisk.raw image and worker.ign file

- 1. SSH into the "jump-host" instance. Run this script <a href="https://github.com/davidc-dev/oci-ocp-disconnected-tweaks/blob/main/00-extract-ignition-create-worker-image.sh">https://github.com/davidc-dev/oci-ocp-disconnected-tweaks/blob/main/00-extract-ignition-create-worker-image.sh</a>
- 2. This script will generate two files, "coreos-rawdisk.raw" and "worker.ign".
- 3. Copy and paste script to jump host instance and add the permission to execute the file
  - a. [opc@jump-host ~]\$ vi 00-extract-ignition-create-worker-image.sh
    - 1. Copy and paste the content from the file referenced
    - 2. Save and Quit
  - b. [opc@jump-host ~]\$ chmod +x 00-extract-ignition-create-worker-image.sh

<sup>27</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



**Note**: <server IP or hostname> is the bootArtifactsBaseURL parameter in the agent-config.yaml configuration file. **If you are using the default config file copied from the github repo, you can use 10.0.0.5.** 

- 3. Define the Webserver IP Address. <server IP or hostname> is the bootArtifactsBaseURL parameter in the agent-config.yaml configuration file. If you are using the default config file copied from the github repo, you can use 10.0.0.5.
- 4. [opc@jump-host ~]\$ WEBSERVER=<server IP or hostname>
- 5. [opc@jump-host ~]\$ ./00-extract-ignition-create-worker-image.sh \$WEBSERVER
  - a. Two images have been built:
    - i. (1) coreos-rawdisk.raw and
    - ii. (2) worker.ign files.
  - b. The coreos-rawdisk.raw file will be converted to a worker image in oci format then uploaded to your Home OCI Bucket Storage to be fetched by your C3 system with a PAR. In order to upload the worker oci image to OCI Bucket Storage, you will need to move it to your PC/MAC. The coreos-rawdisk.raw is a large file and will take up to 30m for each transfer. Plan your time accordingly.
  - c. The worker.ign file will be moved to the webservers html file in later steps
- 6. [opc@jump-host ~]\$ WEBSERVER=<server IP or hostname>
- 7. [opc@jump-host ~]\$ ./00-extract-ignition-create-worker-image.sh \$WEBSERVER
- 8. Convert the **coreos-rawdisk.raw** file to worker\_node\_image.oci file and upload the image to a bucket and create a pre-authenticated URL. Then import the custom image by the URL. (Same procedure as for the master node image. You can refer to Step 6.7.8 in the "Generate iso image and rootfs.img section".) Note, the custom image is large (~ 2.4GB), so importing will take some time.
- 9. Convert image raw to qcow2
  - a. [opc@jump-host ~]\$ brew install qemu
  - b. [opc@jump-host ~]\$ qemu-img convert -O qcow2 coreos-rawdisk.raw output.QCOW2
- 10. We need to set firmware as "UEFI" and launch mode as "PARAVIRTUALIZED" **for** the openshift image, before we **import** it on C3. Following are specific steps.
  - a. create image\_metadata.json as follows
  - b. [opc@jump-host ~]\$ vi image\_metadata.json
  - c. Cut and paste the following, save and quit

```
"version": 2,
"externalLaunchOptions": {
    "firmware": "UEFI_64",
    "networkType": "PARAVIRTUALIZED",
    "bootVolumeType": "PARAVIRTUALIZED",
    "remoteDataVolumeType": "PARAVIRTUALIZED",
    "localDataVolumeType": "PARAVIRTUALIZED",
    "launchOptionsSource": "PARAVIRTUALIZED",
    "pvAttachmentVersion": 1,
    "pvEncryptionInTransitEnabled": false,
```

28 OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public

146 6 6



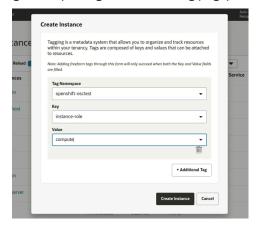
```
"consistentVolumeNamingEnabled": false
},
"imageCapabilityData": null,
"imageCapsFormatVersion": null,
"operatingSystem": "Custom",
"operatingSystemVersion": "Custom"
}
```

- 9. Tar the two files to build an .oci image
  - a. [opc@jump-host ~]\$ tar cf worker\_node\_image.oci image\_metadata.json output.QCOW2
- 10. Upload the **worker\_node\_image.oci** image to a OCI Home Region bucket and then transfer the image to C3, in similar fashion as was done for the Master Node Image

# Upload the worker.ign file to the web server

The worker ign file needs to be copied to the webserver serving directory (same place the rootfs is from the original installation.).

- 1. Move the ign file to webservers serving directory.
  - a. [opc@jump-host ~]\$ sudo mv worker.ign /var/www/html
- 2. Verify the ign file is in the serving directory alongside the previously moved file, agent.x86\_64-rootfs.img, for the Control Plane Master Nodes:
  - a. [opc@jump-host ~]\$ ls /var/www/html/agent.x86\_64-rootfs.img worker.ign


# Create compute instances and Worker Node LB Backend Sets

- 1. Navigate to the Compute service, then select Instances
- 2. Select Create instance.
- 3. Enter a Name for the instance.
- 4. Select the compartment that the OpenShift cluster is being created in.
- 5. In the Image and shape section, select Change image and choose My images.
- 6. Select Custom images. Ensure the Compartment is set to the compartment where your custom image is stored.
- 7. Select the checkbox beside the name of the **worker node image** we imported on C3 in the previous step, then click Select image.
- 8. Select Change shape.
- 9. Click Select shape to continue.
- 10. In the Browse all shapes panel, choose a shape and ensure that the **Number of OCPUs value is 4 or more,** and the Amount of Memory (GB) value is 16 or more.
- 11. In the Boot volume section, select Specify a custom boot volume size and **only specify the boot volume size of 100, and keep VPU as default (10 VPUs).** See <u>Block Volume Performance</u> for information on volume performance units (VPUs)

<sup>29</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



- 12. Choose the VCN that you specified when editing the oci-ccm.yml file. This VCN should also be referenced in the cidr value of the machineNetwork parameter in the install-config.yaml file.
- 13. For the Subnet, choose Select existing subnet, then **choose the private subnet for the VCN**.
- **14. First** master node only: In the **Primary VNIC IP addresses** section, select Manually assign private IPv4 address. In the IPv4 address field, **enter the rendezvous IP address**. For extra master nodes, **and for worker** nodes, skip this step.
- 15. In the Add SSH keys section, select Paste public keys and enter the public key from the SSH key pair discussed in <u>Prerequisites</u>.
- **16.** In the **Network Security Group** section, select **Enable Network Security Group** and select NSG as **cluster-compute-nsg**
- 17. Click Show advanced options to add a tag to the instance. Using the defined tag option, specify the **openshift\_tags namespace** (ie: <openshift-cluster\_name>) and **the instance\_role** tag. Then assign **compute** as the tag value. (See figure on following page)



- 18. Select Create to provision the compute instance.
- 19. Repeat Steps 1-18 for the other two worker nodes
- 20. After the creation of 3 worker nodes, you need to add backend sets in Load Balancers.
- 21. Add backend sets in LB for worker nodes:
  - a. Login to your C3 System
  - b. Click Networking → click Load Balancers → select your compartment. You should see two load balancers here. Click the "<cluster-name>-openshift\_api\_apps\_lb" → click Backend sets.
  - c. Click "**openshift\_cluster\_ingress\_http"** → click Create Backend → click IP Addresses → click Add IP Addresses twice → type in the private IP addresses of all the worker nodes and the port **80**.
  - d. Click "openshift\_cluster\_ingress\_https" → click Create Backend → click IP Addresses → click Add IP Addresses twice → type in the private IP addresses of all the worker nodes and the port 443.
- 22. There should be 3 worker nodes now configured with Backend Sets along with 3 Control Plane nodes in the previous sections.
- 23. Verify all Control Plane nodes and all Worker Nodes are running
  - a. Copy and paste the kubeconfig file from the ./<installation-directory>/auth directory to the jump-host instance, and export it as env variable KUBECONFIG.
    - 1. [opc@jump-host ~] \$ export KUBECONFIG=~/auth/kubeconfig
  - b. If you're worker nodes to not provide a status, you will need to run the following two tasks
- 30 OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



- 1. [opc@jump-host ~]\$ oc get csr | grep Pending
- c. A list of "kubernetes.io/kube-apiserver-client-kubelet" will be provided
  - 1. You will need to execute the following command for each output from the last request where csr-wr9ff is an example of one of the output lines
    - 1. [opc@jump-host ~]\$ oc adm certificate approve <a href="mailto:csr-wr9ff">csr-wr9ff</a>
- d. [jump-host ~]\$ oc get nodes -A

| NAME    | STATUS | ROLES                         | AGE   | VERSION          |
|---------|--------|-------------------------------|-------|------------------|
| cp1     | Ready  | control-plane, master, worker | 3h1m  | v1.28.11+add48d0 |
| cp2     | Ready  | control-plane, master, worker | 3h16m | v1.28.11+add48d0 |
| ср3     | Ready  | control-plane, master, worker | 3h17m | v1.28.11+add48d0 |
| worker1 | Ready  | worker                        | 10m   | v1.28.11+add48d0 |
| worker2 | Ready  | worker                        | 4m50s | v1.28.11+add48d0 |
| worker3 | Ready  | worker                        | 2m49s | v1.28.11+add48d0 |

**Note:** The installation will take some time. Perhaps up to 10 minutes to provide worker status.

- 24. You may notice that CP's ROLES here include "worker", which is incorrect. We will fix it now refers to the instruction in the link <a href="https://github.com/davidc-dev/oci-ocp-disconnected-tweaks/blob/main/README.md#2-node-role-issues">https://github.com/davidc-dev/oci-ocp-disconnected-tweaks/blob/main/README.md#2-node-role-issues</a>.
  - a. [opc@jump-host~]\$
     oc patch scheduler cluster --type merge p '{"spec":{"mastersSchedulable":false}}'scheduler.config.openshift.io/cluster patched
     oc rollout -n openshift-image-registry restart deploy/image-registry
     oc rollout -n openshift-image-registry restart deploy/image-registry
     oc rollout -n openshift-monitoring restart statefulset/alertmanager-main
     oc rollout -n openshift-monitoring restart statefulset/prometheus-k8s
     oc rollout -n openshift-monitoring restart deployment/Grafana
     oc rollout -n openshift-monitoring restart deployment/kube-state-metrics
     oc rollout -n openshift-monitoring restart deployment/telemeter-client
     oc rollout -n openshift-monitoring restart deployment/thanos-querier

# Output:

```
deployment.apps/router-default restarted

Error from server (NotFound): deployments.apps "image-registry" not found
statefulset.apps/alertmanager-main restarted
statefulset.apps/prometheus-k8s restarted

Error from server (NotFound): deployments.apps "grafana" not found
deployment.apps/kube-state-metrics restarted
deployment.apps/telemeter-client restarted
deployment.apps/thanos-querier restarted
```

<sup>31</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public



- 25. Verify the ROLES of the CP nodes have been correctly fixed, i.e., the "Worker" role has been removed. All the CP and worker nodes show as Ready.
  - a. [opc@jump-host ~]\$ oc get nodes -A

| NAME    | STATUS | ROLES                 | AGE   | VERSION          |
|---------|--------|-----------------------|-------|------------------|
| cp1     | Ready  | control-plane, master | 3h5m  | v1.28.11+add48d0 |
| cp2     | Ready  | control-plane, master | 3h21m | v1.28.11+add48d0 |
| ср3     | Ready  | control-plane, master | 3h21m | v1.28.11+add48d0 |
| worker1 | Ready  | worker                | 14m   | v1.28.11+add48d0 |
| worker2 | Ready  | worker                | 9m21s | v1.28.11+add48d0 |
| worker3 | Ready  | worker                | 7m20s | v1.28.11+add48d0 |

- 26. **If you do not see your all you Worker Nodes come up,** complete the following procedure under paragraph 4:
  - a. <a href="https://github.com/davidc-dev/oci-ocp-disconnected-tweaks/blob/main/README.md#2-node-role-issues">https://github.com/davidc-dev/oci-ocp-disconnected-tweaks/blob/main/README.md#2-node-role-issues</a>

# References

- 1. <a href="https://docs.oracle.com/en-us/iaas/Content/openshift-on-oci/agent-installer.htm">https://docs.oracle.com/en-us/iaas/Content/openshift-on-oci/agent-installer.htm</a>
- 2. <a href="https://github.com/davidc-dev/oci-ocp-disconnected-tweaks">https://github.com/davidc-dev/oci-ocp-disconnected-tweaks</a>
- 3. <a href="https://docs.redhat.com/en/documentation/openshift\_container\_platform/4.15/html/installing/installing-on-oci#installing-oci-agent-based-installer">https://docs.redhat.com/en/documentation/openshift\_container\_platform/4.15/html/installing/installing-on-oci#installing-oci-agent-based-installer</a>

### Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

**ⓑ** blogs.oracle.com **ऻ** facebook.com/oracle **ऻ** twitter.com/oracle

Copyright © 2025, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Author: Anderson Souza, Amardeep Dhillon

146 6 6

<sup>32</sup> OpenShift Cluster Setup with Agent Based Installer on Compute Cloud@Customer / Version 15.0 Copyright © 2025, Oracle and/or its affiliates / Public