
Supported features for Apache Hive/Impala in ORAAH 2.8.2 i

Supported features for Apache Hive/Impala in ORAAH
2.8.2

Supported features for Apache Hive/Impala in ORAAH 2.8.2 ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Supported features for Apache Hive/Impala in ORAAH 2.8.2 iii

Contents

1 Oracle R Database Transparency Layer 1

2 Apache Hive 1

3 Apache Impala 1

4 Apache Hive/Impala with ORAAH 1

5 MLlib with Apache Hive/Impala table 3

6 MPI based analytics with Apache Hive/Impala table 4

7 orch.summary() with Apache Hive 5

8 Apache Hive with Kerberos Authentication 6

9 Apache Impala with Kerberos Authentication 6

10 Differences between Apache Hive and Apache Impala 7

11 Performance comparison between Apache Hive and Apache Impala 8

12 Known issues and limitations 9

12.1 More known issues . 9

12.1.1 Connection refused . 9

12.1.2 Hive queries are too slow . 10

12.1.3 Metastore exception on ore.connect() . 10

12.1.4 orch.lm limitation . 10

12.1.5 orch.summary errors . 11

13 Supported/Unsupported API in Apache Hive/Impala 11

14 Copyright Notice 18

Supported features for Apache Hive/Impala in ORAAH 2.8.2 1 / 18

1 Oracle R Database Transparency Layer

Oracle R Advanced Analytics for Hadoop transparency layer leverages a subset of the same interface supported by Oracle R
Enterprise. The transparency layer supports executing a select set of R functions on data.frame proxy objects that correspond to
tables in Oracle Database, Apache Hive, and Apache Impala. The overloaded R functions transparently translate the function
request to Oracle Database SQL or Apache Hive/Impala HQL/Impala SQL respectively. Functionality includes data exploration,
data preparation, and data analysis, typically prior to applying machine learning algorithms.

With the transparency layer, users avoid shifting programming paradigm or environment, can operate on data as though they were
R objects using R syntax. More importantly, the transparency layer provides scalability and performance for big data since data
does not need to be pulled to R client memory. Moreover, the user automatically takes advantage of query optimization, tables
indexes, deferred evaluation, distributed and parallel execution.

2 Apache Hive

Apache Hive is an open source Hadoop application for data warehousing, analysis and querying of large data systems. Hive
query (HiveQL query) is a SQL-like interface that is used extensively to query the contents of databases. Apache Hive has the
advantage of deploying high speed data reads and writes within the data warehouses while managing large data sets that are
distributed across multiple nodes.

HiveServer2 is a server interface that enables remote clients to submit queries to Hive and retrieve the results. It replaces
HiveServer1, which has been deprecated and will be removed in a future release of CDH. HiveServer2 is a container for the Hive
execution engine. Hive also has metastore that keeps track of all metadata of database, tables, columns and data types.

3 Apache Impala

Apache Impala is a distributed, lighting fast SQL query engine for huge data stored in Apache Hadoop cluster. It is a massively
parallel and distributed query engine that lets you analyse, transform and combine data from a variety of data sources. It is used
when there is need of low latency result. Unlike Apache Hive, it does not convert Impala SQL queries to MapReduce which has
the problem of cold start, while Impala can return the results in seconds. Impala being a real time query engine is best suited for
analytics and for data scientists to perform analytics on data stored in the Hadoop File System. However, not all SQL queries are
supported in Impala. In short, Impala SQL is a subset of HiveQL and might have a few syntactical changes.

4 Apache Hive/Impala with ORAAH

We will walk through Apache Hive/Impala using Oracle R Advanced Analytics for Hadoop (ORAAH). R users will not be
required to perform any Apache Hive/Impala query in HQL/Impala SQL and instead can perform all operations using R.

In order to work with Apache Hive/Impala tables, we need to load the ORCH library.

Load the library ORCH.
R> library(ORCH)
Loading required package: OREbase
Loading required package: OREcommon

Attaching package: ’OREbase’

The following objects are masked from package:base:

cbind, data.frame, eval, interaction, order, paste, pmax, pmin,
rbind, table

Loading required package: OREstats
Loading required package: ORCHcore

Supported features for Apache Hive/Impala in ORAAH 2.8.2 2 / 18

Loading required package: rJava
Loading required package: RJDBC
Loading required package: DBI
Oracle R Connector for Hadoop 2.8.2
Info: using native C base64 encoding implementation
Info: loaded ORCH core Java library "orch-core-2.8.2-mr1.jar"
Loading required package: ORCHstats
Loading required package: ORCHmpi

Once the ORCH library is loaded you have to create connection with Hive using ore.connect() and can verify the connection
using ore.is.connected() API.

Note
When connecting to either Apache Hive or Apache Impala, any previous open connection will be automatically closed.

Verify if Hive is connected
R> ore.is.connected(type="HIVE")
[1] FALSE

Connect with Hive
R> ore.connect(host=Sys.getenv("HIVE_SERVER"), port=Sys.getenv("HIVE_PORT"),

user=Sys.getenv("HIVE_USER"), password=Sys.getenv("HIVE_PASSWORD"),
schema=Sys.getenv("HIVE_DATABASE"), type="HIVE", all = TRUE)

Verify again if HIVE got connected now.
R> ore.is.connected(type="HIVE")
[1] TRUE

connect with Apache Impala and automatically disconnect from HIVE
R> ore.connect(host=Sys.getenv("HIVE_SERVER"), port=21050,

user=Sys.getenv("HIVE_USER"), password=Sys.getenv("HIVE_PASSWORD"),
schema=Sys.getenv("HIVE_DATABASE"), type="IMPALA", all = TRUE)

Verify if Apache Impala is connected
R> ore.is.connected(type="IMPALA")
[1] TRUE

Verification for Apache Hive must fail
R> ore.is.connected(type="HIVE")
[1] FALSE

As illustrated above, Apache Hive and Apache Impala have a similar syntax.

Once connected to Apache Hive, we can create a table in Hive using R.

Drop a table called "iris_hive" if it exists
R> ore.drop("iris_hive")

List the existing Hive tables. The table "iris_hive" should not be listed
R> ore.ls()
character(0)

Creating an Apache Hive table iris_hive from a local R data.frame called iris.
Because the local data.frame contains variable names with "." they are
automatically renamed to make them Apache Hive compatible.
R> ore.create(iris, table = "iris_hive")
Warning message:
In ore.create(iris, table = "iris_hive") :

column names modified by "ore.make.names" function
R> ore.ls()

Supported features for Apache Hive/Impala in ORAAH 2.8.2 3 / 18

[1] "iris_hive"

Will return TRUE if Apache Hive table exists
R> ore.exists("iris_hive")
[1] TRUE

iris_hive must be a ore.frame
R> class(iris_hive)
[1] "ore.frame"
attr(,"package")
[1] "OREbase"

We can also create Apache Impala tables in a similar way. Since, Apache Hive and Apache Impala share the same Metastore,
"iris_hive" table can also be accessed through an Apache Impala connection.

Once Apache Hive/Impala table is created we can perform multiple operations on it.

To get details on all columns of the HIVE table
R> summary(iris_hive)

sepal_length sepal_width petal_length petal_width species
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 Length:150
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 Class :ore.character
Median :5.800 Median :3.000 Median :4.350 Median :1.300 Mode :character
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Get number of rows present in HIVE table
R> nrow(iris_hive)
[1] 150
Get number of columns present in HIVE table
R> ncol(iris_hive)
[1] 5

Using head() to check the top 6 records of HIVE table
R> head(iris_hive)

sepal_length sepal_width petal_length petal_width species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

Important
If you have an Apache Hive table to be created from a huge R data.frame object using ore.create() API, then
your HiveServer2 must be present on the same machine. A workaround can be to load the data using beeline to a
Apache Hive table first, outside of ORAAH.

5 MLlib with Apache Hive/Impala table

You can also run Spark-based machine learning algorithms from ORAAH against data stored in Apache Hive/Impala, and the
ML computation is fast because of the in-memory nature of Spark. A Spark connection using spark.connect() API is
required for the processing to work.

Connect to Spark on YARN in client mode.

Supported features for Apache Hive/Impala in ORAAH 2.8.2 4 / 18

R> spark.connect(master=’yarn’, spark.submit.deployMode=’client’)
Info: memory is set to 2G
Info: active HDFS namenode is cfclbv3870.us2.oraclecloud.com
Info: loaded configuration from ’spark-default.conf’

Verify the Spark connection.
R> spark.connected()
[1] TRUE

We will use a Dataset "Kyphosis" from the R package "rpart".
R> library(rpart)
R> ore.drop("data")

Creating a Hive or Impala table.
R> ore.create(kyphosis, "data")

Running a Spark MLlib Random Forest algorithm on Apache Hive/Impala table.
We are trying to estimate Absence or Presence of Kyphosis based on 2 other variables.
Running an ORAAH Spark-based Logistic Regression algorithm on Hive/Impala table.
R> model1 <- orch.glm2(formula = Number ~ Age, data = data, verbose = FALSE)

Running a Spark MLlib Random Forest algorithm on Hive/Impala table.
R> model2 <- orch.ml.random.forest(formula = Kyphosis ~ Number + Age, data = data,

nTrees=20, type=’classification’, verbose = FALSE)

Write new predictions, using the same "data" as new data for this example.
R> pred <- predict(model1, newdata = data, supplemental = c("Kyphosis", "Age"),

verbose = FALSE)
R> pred_glm2_in_hdfs <- hdfs.write(pred, outPath = "pred_glm2", overwrite = TRUE)
R>
R> pred2 <- predict(model2, newdata = data, supplemental = c("Kyphosis", "Age"),

verbose = FALSE)
R> pred_rf_in_hdfs <- hdfs.write(pred2, outPath = "pred_rf", overwrite = TRUE)

6 MPI based analytics with Apache Hive/Impala table

In ORAAH 2.8.2 we have introduced a new package ORCHmpi. This new package has distributed MPI-backed algorithms which
run over the Apache Spark framework.

ORCHmpi needs MPI libraries made available to ORAAH either by making MPI available system-wide, or by setting ORCH
related environment variables on the client node. For more information on setting up MPI, check help(ORCH_MPI_LIBS)
and help(ORCH_MPI_MPIEXEC). If MPI is configured properly, orch.mpiAvailable() and orch.scalapackAva
ilable() functions will return TRUE.

MPI has a message-passing programming model. That means distributed jobs must be able to start all MPI workers and load
all their data before they can start exchanging messages, and have synchronous lifecycle. For the complete list of new functions
made available in ORCHmpi see "Change List" document.

ORAAH’s new MPI-based algorithms can run on top of Apache Hive/Impala tables as well.

Create table ’data’ from iris data set.
R> ore.create(iris, "data")
R> ore.sync()
R> ore.attach()

Create orch.elm model from Apache Hive/Impala table.
R> model <- orch.elm(formula = Species ~ . - 1, data = data, zScoreX = TRUE,

l = 10, lambda = 1e-12)
R> summary(model)
R> cfs <- coef(model)

Supported features for Apache Hive/Impala in ORAAH 2.8.2 5 / 18

R> names(cfs)

Collect coefficient matrix in R.
R> as.matrix(cfs$Beta)

Predict new observations.
R> predOut <- predict(model, newdata = data, supplemental = "Species")
R> predOut$show()
+----------+----------+
| Species| predict|
+----------+----------+
virginica	virginica
setosa	setosa
versicolor	versicolor
versicolor	versicolor
setosa	setosa
virginica	versicolor
setosa	setosa
virginica	virginica
versicolor	versicolor
versicolor	virginica
setosa	setosa
versicolor	versicolor
versicolor	versicolor
versicolor	versicolor
virginica	virginica
setosa	setosa
setosa	setosa
versicolor	versicolor
setosa	setosa
setosa	setosa
+----------+----------+
only showing top 20 rows

7 orch.summary() with Apache Hive

New for ORAAH in release 2.8.2 is a function that generates descriptive statistics for ore.frame objects within flexible row
aggregations. Currently, this is only supported for Apache Hive. To check the complete list of available statistical functions,
check help(orch.summary).

Create Apache Hive table.
R> ore.create(cars, "cars1")

Run orch.summary statistics.
R> orch.summary(cars1, c("speed"))

freq n mean min max
1 50 50 15.4 4 25
Warning message:
ORE object has no unique key - using random order

R> orch.summary(cars1, c("speed"), stat= c("CSS"))
freq css

1 50 1370
Warning message:
ORE object has no unique key - using random order

R> orch.summary(cars1, c("speed"), stat= c("USS"))
freq uss

1 50 13228

Supported features for Apache Hive/Impala in ORAAH 2.8.2 6 / 18

Warning message:
ORE object has no unique key - using random order

R> orch.summary(cars1, c("speed"), stat= c("MAX"))
freq max

1 50 25
Warning message:
ORE object has no unique key - using random order

R> orch.summary(cars1, c("speed"), stat= c("MIN"))
freq min

1 50 4
Warning message:
ORE object has no unique key - using random order

R> orch.summary(cars1, c("speed"), stat= c("AVG"))
freq avg

1 50 15.4
Warning message:
ORE object has no unique key - using random order

8 Apache Hive with Kerberos Authentication

If you are connecting to Apache Hiveserver2 on a Hadoop cluster with Kerberos authentication enabled, then use the parameter
principal to specify the Kerberos server principal for the host where Hiveserver2 is running. In addition, if Apache Hiveserver2
has SSL mode enabled, then use parameters such as ssl ="true" and sslTrustStore to specify the path to the client’s
truststore file. Use trustStorePassword to specify the password for the truststore.

There are many other configuration parameters of Apache HiveServer2 and Apache Impala server. See the Apache Hive docu-
mentation for the various modes and the parameters needed to connect in those modes.

Note that you need to get the sslTrustStore, trustStorePassword, principal and ssl parameter values from your cluster administra-
tor.

Apache Hive with Kerberos authentication
R> ore.connect(user="user", password="password", host="localhost", port=10000,

type="HIVE", schema="default", principal="hive/LOCALHOST@DEV.EXAMPLE.COM")
R> ore.ls()
R> ore.disconnect()

Apache Hive with Kerberos authentication with SSL enabled
R> ore.connect(user="user", password="password", host="hive_server_host_name",

port=10000, type="HIVE", schema="default", ssl="true",
sslTrustStore="path_for_secure_shared_truststore_file",
trustStorePassword="truststore_password",
principal="hive/LOCALHOST@DEV.EXAMPLE.COM")

R> ore.ls()
R> ore.disconnect()

9 Apache Impala with Kerberos Authentication

If you are connecting to Impala with Kerberos authentication enabled, then you need to use a different set of parameters specific
to Apache Impala. Using similar parameters as Apache Hive connection with Kerberos will hinder a successful connection.

Apache Impala with Kerberos authentication, requires to use parameters such as AuthMech ="1" to indicate Kerberos au-
thentication. Use KrbRealm ="realm.example.com" and KrbHostFQDN ="Kerberos_host_name" to specify

Supported features for Apache Hive/Impala in ORAAH 2.8.2 7 / 18

the realm and Kerberos Host FQDN (Fully Qualified Domain Name). Use KrbServiceName ="impala" to specify the
Kerberos service name for Apache Impala.

Similar to Apache Hive, you need to get the KrbRealm, KrbHostFQDN, KrbServiceName and ssl parameter values from your
administrator.

Apache Impala with Kerberos authentication
R> ore.connect(host = "localhost", port = 21050, AuthMech = "1",

KrbRealm="DEV.EXAMPLE.COM",
KrbHostFQDN="krb_host_name",
KrbServiceName="impala", type="IMPALA")

R> ore.ls()
R> ore.disconnect()

Apache Impala with Kerberos authentication with SSL enabled
R> ore.connect(host="localhost", port=21050, AuthMech="1",

KrbRealm="DEV.EXAMPLE.COM",
KrbHostFQDN="krb_host_name",
KrbServiceName="impala", ssl="1",
sslTrustStore="path_for_secure_shared_truststore_file",
trustStorePassword="truststore_password",
type="IMPALA")

R> ore.ls()
R> ore.disconnect()

10 Differences between Apache Hive and Apache Impala

1. Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed
storage and queried using SQL syntax developed by Facebook while Apache Impala is an open source, native analytics
database for Apache Hadoop developed by Cloudera.

2. Apache Hive is a batch execution engine based Hadoop MapReduce by default. Apache Impala works more like a Mas-
sively Parallel Processing(MPP) database. Apache Hive translates the SQL query to Map reduce jobs. Apache Impala
responds quickly through in-memory massive parallel processing.

3. MapReduce is a batch processing engine so by design Apache Hive, which relies on MapReduce is a heavy engine based
on a high-latency execution framework. It is possible to run HIVE on Spark, although it might not be recommended for
extremely large Jobs. MapReduce Jobs have overheads and are typically slow. Apache Impala on the other hand does not
translate a SQL query into another processing framework like map/shuffle/reduce operations, so it does not suffer from
latency issues. Apache Impala is designed for SQL query execution and not as a general purpose distributed processing
system like MapReduce. Given that, in many cases it is able to deliver much better performance for the same SQL query.

4. Apache Hive is excellent for long running ETL jobs for which fault tolerance is required. For example, if any of your Data
Nodes fails while your query is running, the output will still be produced since the MapReduce framework is fault tolerant.
That’s not the case with Apache Impala, in which a failed query needs to be rerun.

5. Unlike Apache Hive, Apache Impala does not have an extensive support for the SQL language. ORAAH’s support for
Apache Impala APIs mimic exactly the ones for for Apache Hive, so from the R user’s perspective most commands would
be the same. You can refer to "Unsupported functions in Hive/Impala" column under "Supported/Unsupported APIs in
Apache Hive/Impala" section.

6. If you are running Spark MlLib-based algorithm or ORAAH’s MPI-based models, it is recommended to use Apache Hive
connection to pass the data to the algorithms instead of Apache Impala, since this interface is proven to work better for the
machine learning algorithms when they need to bring the data into Spark from disk.

7. The orch.summary() function has a better performance than a regular summary() function call, and currently it is
only supported with the Apache Hive transparency layer.

Supported features for Apache Hive/Impala in ORAAH 2.8.2 8 / 18

11 Performance comparison between Apache Hive and Apache Impala

We performed identical tests on the airline data set known as ONTIME data with a range of 100k to 100m records on both Apache
Hive and Apache Impala. These tests were performed on a kerberized BDCS cluster having 5 Nodes, with 32 OCPUs, 48 TB of
Storage and 256 GB of RAM on each Node. It is easy to notice the improvement of Apache Impala over Apache Hive. It is also
easy to see that the MapReduce engine has a large latency, since it takes almost the same time to count the small iris data set as
it takes a 100k or 1mi record table, explained by the overhead of the engine to get any query started.

Connect to Apache Hive
R> ore.connect(type=’HIVE’,host=’xxxxxxxx’,

ssl=’true’, sslTrustStore=’/opt/cloudera/security/jks/testbdcs.truststore’,
trustStorePassword=’xxxxxxxxxxx’,
principal=’hive/xxxxxxx@BDACLOUDSERVICE.ORACLE.COM’,
all=TRUE)

R> ore.ls()
[1] "iris_hive" "ontime_100k" "ontime_100m" "ontime_10m" "ontime_1m"

R> system.time({siz <- dim(iris_hive);print(siz) })
[1] 150 5
user system elapsed
0.025 0.000 24.356

R> system.time({siz <- dim(ontime_100k);print(siz) })
[1] 100000 29
user system elapsed
0.033 0.000 26.405

R> system.time({siz <- dim(ontime_1m);print(siz) })
[1] 1000000 29
user system elapsed
0.036 0.000 26.419

R> system.time({siz <- dim(ontime_10m);print(siz) })
[1] 1.0e+07 2.9e+01
user system elapsed
0.034 0.002 29.468

R> system.time({siz <- dim(ontime_100m);print(siz) })
[1] 1.0e+08 2.9e+01
user system elapsed
0.031 0.008 34.575

Connect to Apache Impala
R> ore.connect(type=’IMPALA’, port=’21050’,

AuthMech=’1’, KrbRealm=’BDACLOUDSERVICE.ORACLE.COM’,
KrbHostFQDN=’xxxxxxxx’, KrbServiceName=’impala’,
all=TRUE)

R> ore.ls()
[1] "iris_hive" "ontime_100k" "ontime_100m" "ontime_10m" "ontime_1m"

R> system.time({siz <- dim(iris_hive);print(siz) })
[1] 150 5
user system elapsed
0.099 0.016 0.198

R> system.time({siz <- dim(ontime_100k);print(siz) })
[1] 100000 29
user system elapsed
0.030 0.008 0.102

R> system.time({siz <- dim(ontime_1m);print(siz) })

Supported features for Apache Hive/Impala in ORAAH 2.8.2 9 / 18

[1] 1000000 29
user system elapsed
0.042 0.005 0.248

R> system.time({siz <- dim(ontime_10m);print(siz) })
[1] 1.0e+07 2.9e+01
user system elapsed
0.052 0.010 0.657

R> system.time({siz <- dim(ontime_100m);print(siz) })
[1] 1.0e+08 2.9e+01
user system elapsed
0.063 0.019 1.461

12 Known issues and limitations

As of ORAAH release 2.8.2, the following known issues and limitations apply:

1. If ore.connect() to an Apache Impala Service is returning a "ClassNotFound" exception, you might need to set
IMPALA_HOME and IMPALA_JAR environment variables, usually done in the configuration file /usr/lib64/R/etc/
Renviron.site or /usr/lib64/R/etc/RBDAprofiles/Renviron.site (for BDA/BDCS/BDCC).

2. Connecting to an Apache Impala service under kerberos requires different options than the kerberos options required by
Apache Hive, as illustrated above in the connections of the "Performance Comparison" section.

3. On a kerberized cluster, passing an Apache Impala table as input into any of the Spark-based machine learning algorithms
might fail. In this case, a simple workaround is to switch to an Apache Hive connection and use the same table as input
to the Spark-based machine learning algorithms. This is possible since both Apache Hive and Apache Impala share a
common Metastore.

4. Using HDFS data after invoking hdfs.fromHive() on an Apache Hive table, might cause Spark based analytics to
fail if the NA identifier in the table data files is not "NA". Such failure can be resolved by setting the correct value for
"na.strings" in the HDFS metadata manually by using hdfs.meta(). For example, if the table iris_tab has "NULL"
as its NA identifer value then you can set the metadata as: hdfs.meta(iris_hdfs, na.strings ="NULL"),
where iris_hdfs is an hdfs.id object created by iris_hdfs <- hdfs.fromHive(iris_tab). After setting the
correct metadata you should have no problems using data from HDFS with Spark based analytics.

12.1 More known issues

12.1.1 Connection refused

When connecting to Hive/Impala from R in ORAAH using the connection string (or similar):

R> ore.connect(host = Sys.getenv("HIVE_SERVER"), port = Sys.getenv("HIVE_PORT"),
user = Sys.getenv("HIVE_USER"), password = Sys.getenv("HIVE_PASSWORD"),
schema = Sys.getenv("HIVE_DATABASE"), type = "HIVE", all = TRUE)

You might encounter the following error:

Could not open client transport with JDBC Uri: jdbc:hive2://localhost:656/default:
java.net.ConnectException: Connection refused (Connection refused)

HiveServer2 service should be running and listening to the specified port, if not you will hit this issue as ORAAH will try to
connect to HiveServer2 port via the Hive JDBC protocol. There are three possible problems:

1. HiveServer2 might not be running at all on the target server. Try to check if it’s there by running $ ps -ef | grep
"Hive" command.

Supported features for Apache Hive/Impala in ORAAH 2.8.2 10 / 18

2. HiveServer2 might be running on a different port. Normally, you should see the port, which is used by the HiveServer2 in
"ps" command output (see above) and it will be a part of HiveServer2 startup command line, if not, then it’s most likely
the default port 10000.

3. HiveServer2 port might be blocked by a firewall. Check your firewall settings and make sure it’s not blocking connections
to Apache Hive. You might temporary disable your firewall if order to test connectivity and make sure it’s indeed the
firewall that causing the issue.

4. For a secured (kerberized) cluster, there is a need for a principal parameter in ore.connect() to connect to hive server
like principal="hive/HiveServer2Host@YOUR-REALM.COM".

12.1.2 Hive queries are too slow

If you notice that Apache Hive connection and simple Hive queries take long durations to finish remember that HiveServer2
allocates threads for each established connection. Hence, there is a potential performance issue resulting from a large number of
threads due to a large number of concurrent connections to Apache Hive. You can try to mitigate this problem in the following
ways:

1. Close the R sessions, which are idle and have been connected to hive to increase the performance.

2. Try to restart HiveServer2 service completely.

12.1.3 Metastore exception on ore.connect()

When connecting to Hive/Impala using ore.connect() from R in ORAAH you might see a Metastore related exception:

java.sql.SQLException: Unable to open a test connection to the given database.
JDBC url = jdbc:mysql://10.0.1.31:3306/metastore?createDatabaseIfNotExist=true,
username = hive. Terminating connection pool (set lazyInit to true if you expect
to start your database after your app).
Original Exception: ------ com.mysql.jdbc.exceptions.jdbc4.CommunicationsException:
Communications link failure
Possible cause ...

Any exceptions related to metastore connection, requires a first check that metastore service is running on the specified port, with
$ ps -ef | grep "HiveMetaStore".

12.1.4 orch.lm limitation

The orch.lm call

R> fm <- as.formula("sum_total_consumption ~ src_connection_point_id*(max_temp + min_temp + ←↩
weekend)")

R> lmC2 <- orch.lm(fm, dat)

results in the MR job failure with this error in mappers:

Error in diag(a) : no method for coercing this S4 class to a vector
Calls: source ... <Anonymous> -> SolveWithShift -> <Anonymous> -> diag
Execution halted

This happens only when the number of factor levels/categorical values in any of the columns participating in formula ["sum_total_consumption
~ src_connection_point_id*(max_temp + min_temp + weekend)"], of the dataset, is higher than 500, which increases the size of
model matrix in mappers. Above factor level limitation is for Hive and Impala. This is also applicable for oracleDB.

Simple workaround is to use orch.lm2 instead of orch.lm

> lmC2 <- orch.lm2(fm, dat)
OBX INFO: processed 1 factor variables, 3.516 sec
OBX INFO: created Distributed Model Matrix (99 blocks) 3.038 sec
ORAAH LM: elapsed time 3.145 sec

Supported features for Apache Hive/Impala in ORAAH 2.8.2 11 / 18

12.1.5 orch.summary errors

orch.summary might fail when the number of classes specified is too large and the available cluster resources for Hive are not
sufficient. In some rare cases Hive server may fail to release memory resources for the last failed query, which will result is all
subsequent queries to fail.

R> orch.summary(ontime_s_table, var = c("arrdelay", "depdelay", "month", "distance"),
+ class = c("month2","dayofmonth2", "uniquecarrier", "cancellationcode", "origin", " ←↩

diverted", "tailnum", "dest"),
+ stats = c("t", "median"), order = c("type", "class"))
Error: HIVE command failed with: ’FAILED: Execution Error, return code 2 from org.apache. ←↩

hadoop.hive.ql.exec.mr.MapRedTask)’

This is a known Apache Hive issue and will be fixed in Hive in future releases. When this happens try to reconnect to Apache
Hive or restart HiveServer2 if reconnection does not help.

13 Supported/Unsupported API in Apache Hive/Impala

The following table lists the set of Apache Hive/Impala functions supported and not supported in ORAAH 2.8.2 yet.

Table 1: List of APIs supported/unsupported in Apache Hive/Impala

Sr.
no.

Category Supported
Functions in
Hive

Unsupported
Functions in
Hive

Supported
Functions in
Impala

Unsupported
Functions in
Impala

Supported ORE
function
(Oracle)

1 ore.
character

nchar, tolower,
toupper,
casefold, chartr,
gsub, substr,
substring

grepl, sub nchar, tolower,
toupper,
casefold, chartr,
gsub, substr,
substring

grepl, sub nchar, tolower,
toupper,
casefold, chartr,
gsub, substr,
substring, grepl,
sub

2 ore.logical <, >, ==, <=,
>=, !, xor, ifelse,
and, or

Nil <, >, ==, <=,
>=, !, xor, ifelse,
and, or

Nil logic, !, xor,
ifelse

3 Apache
Hive/Impala
Specific

ore.hiveOptions,
ore.showHiveOptions

Nil ore.impalaOptions,
ore.showImpalaOptions

Nil Not ORE
specific

4 ore.factor is.factor,
as.factor,
as.vector, levels,
nlevels

summary is.factor,
as.factor,
as.vector, levels,
nlevels,

summary levels, nlevels,
is.factor,
as.factor,
as.vector,
summary

5 ore.date,
ore.
datetime,
ore.
difftime

ore.mday,
ore.month,
ore.year,
ore.hour,
ore.minute,
ore.second

Arith, summary,
trunc, coerce

ore.mday,
ore.month,
ore.year,
ore.hour,
ore.minute,
ore.second

summary Arith, trunc,
coerce,
as.vector,
as.character,
as.ore.character,
ore.year,
ore.month,
ore.mday,
ore.hour,
ore.minute,
ore.second,
summary

Supported features for Apache Hive/Impala in ORAAH 2.8.2 12 / 18

Table 1: (continued)

6 ore.vector show, length, c,
is.vector,
as.vector,
as.character,
as.numeric,
as.numeric,
as.integer,
as.logical, [, [<-
, head, tail, I,
Compare,
ore.recode,
is.na, %in%,
unique, sort,
table, paste, by,
tapply

coerce,
summary, pmin,
pmax, ore.hash,
split, rank,
order,
interaction

show, length, c,
is.vector,
as.vector,
as.character,
as.numeric,
as.numeric,
as.integer,
as.logical, [, [<-
, head, tail, I,
Compare,
ore.recode,
is.na, %in%,
unique, sort,
table, paste, by,
tapply

coerce,
summary, pmin,
pmax, ore.hash,
split, rank,
order,
interaction

show, length, c,
is.vector,
as.vector,
as.character,
as.numeric,
as.integer,
as.logical,
coerce, [, [<-,
head, tail, I,
Compare,
summary, pmin,
pmax,
ore.recode,
ore.hash, is.na,
%in%, unique,
split, sort, rank,
order, table,
paste,
interaction,
tapply, by

7 ore.number +, -, *, ˆ, %%,
%/% , /, is.finite,
is.infinite,
is.nan, Math,
log, round,
zapsmall, logb,
summary, mean,
log10, log2,
log1p, acos,
asin, atan, exp,
expm1, cos, sin,
tan, abs, sign,
sqrt, ceiling,
floor, trunc

cut, diff, pmin,
pmax, atan2,
factorial,
lfactorial,
tabulate,
besselI,
besselK,
besselJ, besselY,
cosh, sinh, tanh

+, -, *, ˆ, %%,
%/%, /, is.finite,
is.infinite,
is.nan, Math,
log, round,
zapsmall, logb,
summary, mean,
log10, log2,
log1p, acos,
asin, atan, exp,
expm1, cos, sin,
tan, abs, sign,
sqrt, ceiling,
floor, trunc,
cosh, sinh, tanh

summary, cut,
diff, pmin,
pmax,atan2,
factorial,
lfactorial,
tabulate,
besselI,
besselK,
besselJ, besselY

Arith, cut, diff,
is.finite,
is.infinite,
is.nan, pmin,
pmax, Math,
log, round,
zapsmall, atan2,
logb, factorial,
lfactorial,
summary, mean,
tabulate,
besselI,
besselK,
besselJ, besselY

Supported features for Apache Hive/Impala in ORAAH 2.8.2 13 / 18

Table 1: (continued)

8 Methods ore.is.connected,
ore.connect,
ore.disconnect,
ore.sync,
ore.attach,
ore.detach,
ore.ls,
ore.exists,
ore.get, ore.rm,
ore.exec,
ore.drop,
ore.pull,
ore.push,
ore.const,
is.ore.vector,
is.ore.logical,
is.ore.integer,
is.ore.numeric,
is.ore.character,
is.ore.factor,
is.ore.date,
is.ore.datetime,
is.ore.frame,
is.ore.matrix,is.ore,
as.ore.vector

ore.make.names,
is.ore.difftime

ore.is.connected,
ore.connect,
ore.disconnect,
ore.sync,
ore.attach,
ore.detach,
ore.ls,
ore.exists,
ore.get, ore.rm,
ore.exec,
ore.drop,
ore.pull,
ore.push,
ore.const,
is.ore.vector,
is.ore.logical,
is.ore.integer,
is.ore.numeric,
is.ore.character,
is.ore.factor,
is.ore.date,
is.ore.datetime,
is.ore.frame,
is.ore.matrix,is.ore,
as.ore.vector

ore.attach for
partitioned
tables is not
supported,
is.ore.difftime

ore.is.connected,
ore.connect,
ore.disconnect,
ore.sync,
ore.attach,
ore.detach,
ore.ls,
ore.exists,
ore.get, ore.rm,
ore.exec,
ore.make.names,
ore.drop,
ore.pull,
ore.push,
ore.const,
is.ore.vector,
is.ore.logical,
is.ore.integer,
is.ore.numeric,
is.ore.character,
is.ore.factor,
is.ore.date,
is.ore.datetime,
is.ore.difftime,
is.ore.frame,
is.ore.matrix,
is.ore,
as.ore.vector

9 More Methods as.ore.logical,
as.ore.integer,
as.ore.numeric,
as.ore.character,
as.ore.factor,
as.ore.date,
as.ore.datetime,
as.ore.frame,
as.ore.matrix,
ore.create

as.ore.difftime as.ore.logical,
as.ore.integer,
as.ore.numeric,
as.ore.character,
as.ore.factor,
as.ore.date,
as.ore.datetime,
as.ore.frame,
as.ore.matrix,
ore.create

as.ore.difftime as.ore.logical,
as.ore.integer,
as.ore.numeric,
as.ore.character,
as.ore.factor,
as.ore.date,
as.ore.datetime,
as.ore.difftime,
as.ore.frame,
as.ore.matrix,
as.ore,
ore.create

Supported features for Apache Hive/Impala in ORAAH 2.8.2 14 / 18

Table 1: (continued)

10 ore.frame show, attach, [,
$, $<-, [[, [[<-,
head, tail,
length, nrow,
ncol, NROW,
NCOL, dim,
names, names
<-, colnames,
colnames <-,
merge, as.list,
unlist, summary,
rbind, cbind,
data.frame,
as.data.frame,
as.env, eval,
Arith, Compare,
Logic, !, xor,
is.na, is.finite,
is.infinite,
is.nan, Math,
log, round, logb,
rownSums,
colSums,
rowMeans,
colMeans,
unique, by

dimnames,
row.names,
row.names <-,
subset, with,
within,
transform, scale,
max.cols,
interaction, split

show, attach, [,
$, $<-, [[, [[<-,
head, tail,
length, nrow,
ncol, NROW,
NCOL, dim,
names, names
<-, colnames,
colnames <-,
merge, as.list,
unlist, summary,
rbind, cbind,
data.frame,
as.data.frame,
as.env, eval,
Arith, Compare,
Logic, !, xor,
is.na, is.finite,
is.infinite,
is.nan, Math,
log, round, logb,
colSums,
rowMeans,
colMeans,
unique, by

ore.frame for a
partitioned
table, with,
dimnames,
row.names,
row.names <-,
subset within,
transform, scale,
max.cols,
interaction, split

show, attach, [,
$, $<-, [[, [[<-,
head, tail,
length, nrow,
ncol, NROW,
NCOL, dim,
names, names
<-, colnames,
colnames <-,
dimnames,
row.names,
row.names <-,
merge, as.list,
unlist, summary,
rbind, cbind,
data.frame,
as.data.frame,
as.env, eval,
subset, with,
within,
transform,
Arith, Compare,
Logic, !, xor,
is.na, is.finite,
is.infinite,
is.nan, Math,
log, round, logb,
summary,
rowSums,
colSums,
rowMeans,
colMeans, scale,
max.col,
interaction,
split, unique, by

Supported features for Apache Hive/Impala in ORAAH 2.8.2 15 / 18

Table 1: (continued)

11 ore.matrix Nil show, is.matrix,
as.matrix, [,
nrow, ncol,
NROW, NCOL,
dim, rownames,
rownames <-,
colnames,
colnames <-,
dimnames,
dimnames <-, t,
Arith, Math,
log, round,
atan2, logb,
summary, mean,
tabulate,
besselI,
besselK,
besselJ, besselY,
%*%,
crossprod,
tcrossprod,
rowSums,
colSums,
rowMeans,
colMeans, scale,
max.col, solve,
backsolve,
forwardsolve

Nil show, is.matrix,
as.matrix, [,
nrow, ncol,
NROW, NCOL,
dim, rownames,
rownames <-,
colnames,
colnames <-,
dimnames,
dimnames <-, t,
Arith, Math,
log, round,
atan2, logb,
summary, mean,
tabulate,
besselI,
besselK,
besselJ, besselY,
%*%,
crossprod,
tcrossprod,
rowSums,
colSums,
rowMeans,
colMeans, scale,
max.col, solve,
backsolve,
forwardsolve

show, is.matrix,
as.matrix, [,
nrow, ncol,
NROW, NCOL,
dim, rownames,
rownames <-,
colnames,
colnames <-,
dimnames,
dimnames <-, t,
Arith, Math,
log, round,
atan2, logb,
summary, mean,
tabulate,
besselI,
besselK,
besselJ, besselY,
%*%,
crossprod,
tcrossprod,
rowSums,
colSums,
rowMeans,
colMeans, scale,
max.col, solve,
backsolve,
forwardsolve

12 OREstats Nil aggregate, ave,
binom.test,
chisq.test,
complete.cases,
cor, cov, dbeta,
dbinom,
dcauchy, dchisq,
dexp, df,
dgamma,
dgeom, dlnorm,
dlogis,
dnbinom,
dnorm, dpois,
dsignrank, dt,
dunif, dweibull,
factanal,
fivenum,
get_all_vars,
IQR, ks.test,
mad, median,
model.frame,
model.matrix,
na.omit, pbeta,
pbinom,
pcauchy, pchisq,
pexp, pf,
pgamma

Nil aggregate, ave,
binom.test,
chisq.test,
complete.cases,
cor, cov, dbeta,
dbinom,
dcauchy, dchisq,
dexp, df,
dgamma,
dgeom, dlnorm,
dlogis,
dnbinom,
dnorm, dpois,
dsignrank, dt,
dunif, dweibull,
factanal,
fivenum,
get_all_vars,
IQR, ks.test,
mad, median,
model.frame,
model.matrix,
na.omit, pbeta,
pbinom,
pcauchy, pchisq,
pexp, pf,
pgamma

aggregate, ave,
binom.test,
chisq.test,
complete.cases,
cor, cov, dbeta,
dbinom,
dcauchy, dchisq,
dexp, df,
dgamma,
dgeom, dlnorm,
dlogis,
dnbinom,
dnorm, dpois,
dsignrank, dt,
dunif, dweibull,
factanal,
fivenum,
get_all_vars,
IQR, ks.test,
mad, median,
model.frame,
model.matrix,
na.omit, pbeta,
pbinom,
pcauchy, pchisq,
pexp, pf,
pgamma

Supported features for Apache Hive/Impala in ORAAH 2.8.2 16 / 18

Table 1: (continued)

13 OREstats
contd.

Nil pgeom, plnorm,
plogis,
pnbinom,
pnorm, ppois,
psignrank, pt,
punif, pweibull,
qbeta, qbinom,
qcauchy, qchisq,
qexp, qf,
qgamma,
qgeom, qlnorm,
qlogis,
qnbinom,
qnorm, qpois,
qsignrank, qt,
qunif, qweibull,
prcomp,
princomp,
prop.test,
quantile,
reordersd, svd,
t.test, terms, var,
var.test,
wilcox.test,
ore.rollmax,
ore.rollmin,
ore.rollsum,
ore.rollmean,
ore.rollsd,
ore.rollvar,
complete.cases,
ore.getXlevels,
ore.getXnlevels

Nil pgeom, plnorm,
plogis,
pnbinom,
pnorm, ppois,
psignrank, pt,
punif, pweibull,
qbeta, qbinom,
qcauchy, qchisq,
qexp, qf,
qgamma,
qgeom, qlnorm,
qlogis,
qnbinom,
qnorm, qpois,
qsignrank, qt,
qunif, qweibull,
prcomp,
princomp,
prop.test,
quantile,
reordersd, svd,
t.test, terms, var,
var.test,
wilcox.test,
ore.rollmax,
ore.rollmin,
ore.rollsum,
ore.rollmean,
ore.rollsd,
ore.rollvar,
complete.cases,
ore.getXlevels,
ore.getXnlevels

pgeom, plnorm,
plogis,
pnbinom,
pnorm, ppois,
psignrank, pt,
punif, pweibull,
qbeta, qbinom,
qcauchy, qchisq,
qexp, qf,
qgamma,
qgeom, qlnorm,
qlogis,
qnbinom,
qnorm, qpois,
qsignrank, qt,
qunif, qweibull,
prcomp,
princomp,
prop.test,
quantile,
reordersd, svd,
t.test, terms, var,
var.test,
wilcox.test,
ore.rollmax,
ore.rollmin,
ore.rollsum,
ore.rollmean,
ore.rollsd,
ore.rollvar,
complete.cases,
ore.getXlevels,
ore.getXnlevels

Supported features for Apache Hive/Impala in ORAAH 2.8.2 17 / 18

Table 1: (continued)

14 orch.
summary

N, FREQ,
COUNT, CNT,
NMISS,
MEAN, AVG,
MIN, MAX,
CSS, USS, CV,
SUM,
SUMWGT,
RANGE,
STDDEV, STD,
STDERR,
STDMEAN,
VARIANCE,
VAR,
KURTOSIS,
KURT,
SKEWNESS,
SKEW,
LOCCOUNT<,
LOC<,
LOCCOUNT>,
LOC>,
LOCCOUNT!,
LOC!,
LOCCOUNT,
LOC, P0, P1,
P5, P10, P25,
Q1, P50, Q2,
Median, P75,
Q3, P90, P95,
P99, P100,
QRANGE, IQR,
MODE, LCLM,
RCLM, CLM,
T, PROBT, PRT

CVMP, CVMT NA Not supported
for Apache
Impala

Not ORE
specific

15 Partitioned table Partitioned table
can be created
in Apache Hive

NA NA Not supported
in Apache
Impala

Not ORE
specific

16 hdfs.
toHive,
hdfs.
fromHive

Supported NA Supported NA Not ORE
specific

17 Unsupported
data type

Binary, Array,
Map, Struct,
uniontype

Binary, Array,
Map, Struct,
uniontype

Supported features for Apache Hive/Impala in ORAAH 2.8.2 18 / 18

14 Copyright Notice

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only,
and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to
any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of
merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and
no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron
logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
0116

	Oracle R Database Transparency Layer
	Apache Hive
	Apache Impala
	Apache Hive/Impala with ORAAH
	MLlib with Apache Hive/Impala table
	MPI based analytics with Apache Hive/Impala table
	orch.summary() with Apache Hive
	Apache Hive with Kerberos Authentication
	Apache Impala with Kerberos Authentication
	Differences between Apache Hive and Apache Impala
	Performance comparison between Apache Hive and Apache Impala
	Known issues and limitations
	More known issues
	Connection refused
	Hive queries are too slow
	Metastore exception on ore.connect()
	orch.lm limitation
	orch.summary errors

	Supported/Unsupported API in Apache Hive/Impala
	Copyright Notice

