
Oracle R Advanced Analytics for Hadoop 2.8.2
May 15, 2020

hadoop.exec Executes mapReduce functions written in R on Hadoop cluster.

Description

Invokes the Hadoop engine and sends mapper and reducer R functions for execution. If the input
data does not reside in HDFS then copies the data into HDFS first. Prepares the user’s mapRe-
duce scripts for execution in the distributed Hadoop environment, invokes Hadoop engine, while
monitoring its log for errors and failures.

Usage

hadoop.exec(dfs.id, out.name = NULL, mapper = NULL,
reducer = NULL, combiner = NULL, export = NULL,
init = NULL, final = NULL, job.name = NULL,
config = NULL, cleanup = FALSE, overwrite = FALSE,
attach = TRUE, tmp.result = FALSE)

Arguments

dfs.id HDFS object identifier of the input data. This is a special ORCH object returned
by hdfs.attach and other functions. It represents either a directory in HDFS, or is
a string with an HDFS-compliant path relative to the current working directory.

out.name Output HDFS directory name or HDFS object identifier of the output data. Note
that the output directory must not exist when the Hadoop job is submitted, else
the job fails. If the output directory is not specified, a temporary directory is
created in HDFS "/tmp".

mapper Optional mapper function written in the R language. The function must accept
two values: "key" and "value". The names of the arguments do not matter.
Prototype is: mapper = function(k,v) . If the mapper function is not specified or
is NULL, then a reduce-only job is executed.

combiner Optional combiner function written in the R language. The function must accept
two values: "key" and "value". The names of the arguments do not matter.
Prototype is: combiner = function(k,v) .

reducer Optional reducer function written in the R language. The function must accept
two values: "key" and "value". The names of the arguments do not matter.
Prototype is: reducer = function(k,v) . If a reducer function is not specified or is
NULL, then map-only job is executed.

1

2 hadoop.exec

export Exported R objects. This argument copies the specified R objects from the user’s
R session into the server running mapReduce R scripts. The object or its clone
is thus made visible to the mapReduce jobs during execution. See orch.export
and examples for more details.

init Optional job initialization function. This function is called once before any
user’s mapReduce functions are invoked. It enables the user to do initial prepa-
ration, initialization, or memory allocation as required for the mapReduce al-
gorithm. The function does not accept any arguments. Prototype is: init =
function().

final Optional job finalization function. This function is called once after all the user’s
mapReduce functions have completed. It enables the user to do final data pro-
cessing or memory de-allocation as required by the mapReduce algorithm. In
addition keys and vales can be output in the final function (see orch.keyvals).
The function does not accept any arguments. Prototype is: final = function().

job.name Optional name of this mapReduce job. By default Hadoop’s job ID is the job
name. Tip: always provide a meaningful name in order to make it easier to
locate the job in the Hadoop run logs.

config Optional mapReduce advanced configuration class. This argument allows the
user to fine-tune various aspects of the mapReduce job in order to achieve better
performance or to change the behavior of the ORCH mapReduce driver. This
argument is an instance of the "mapred.config" class and therefore it has this
format: config = new("mapred.config", param1, param2,...).

cleanup If TRUE, runs a cleanup procedure after the mapReduce job finishes succesfully.
The cleanup removes all empty "part" files and all Hadoop log files.

overwrite Allows overwriting of HDFS objects with the same name. By default overwrite
is disabled data safety.

attach Enable or disable automatic attachment of the result of the Hadoop job. If dis-
abled then the returned HDFS object identifier points to the HDFS directory
without ORCH metadata.

tmp.result if TRUE, the mapReduce job result is not final, is not intended to be returned to
the user, and will not be used between R sessions. The result will be temporary
and will be removed beyond this R session. This option disables writing ORCH
metadata to HDFS and keeps the data cached in the memory only.

Details

This function provides core functionality for Hadoop MapReduce execution. It does not provide
any data management and conversion facilities and requires that data is already present in HDFS
before execution. Input can only be an HDFS object and results are stored back to HDFS only.
Unlike hadoop.run, this function never converts the results back into the original input data formats.

This function differs in design from hadoop.run. Its purpose is optimization of multi-stage mapRe-
duce jobs when output of this job is not the final result and becomes input for the next stage.
It bypasses data conversion and management procedures and therefore lowers overhead for cases
when these are not required by an R workflow.

Value

Resulting HDFS object identifier if everything worked correctly. If execution fails for any reason,
returns NULL.

hadoop.jobs 3

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hadoop.run mapred.config orch.dryrun orch.debug orch.keyval orch.keyvals hdfs.put hdfs.push hdfs.upload

Examples

Filter cars with with "dist" > 30 and "speed" > 14 in mapper
and get mean "speed" and "dist" in reducer.

Put cars data in HDFS
cars.dfs <- hdfs.put(cars)
x <- hadoop.exec(

cars.dfs,
mapper = function(key, val) {

for (i in 1:nrow(val)) {
x <- val[i,]
if (x$dist > 30 && x$speed > 14) {

orch.keyval(key[i], x)
}

}
},
reducer = function(key, vals) {

orch.keyval(key, c(mean(vals$speed), mean(vals$dist)))
},
config = new("mapred.config",

map.tasks = 1,
reduce.tasks = 1
)

)

Get result in R
res <- hdfs.get(x)
print(res)
Cleanup
hdfs.rm(cars.dfs)

hadoop.jobs Enables the user to inspect the Hadoop cluster load.

Description

Enables the user to inspect the Hadoop cluster load.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

4 hadoop.run

Usage

hadoop.jobs(verbose = FALSE)

Arguments

verbose If FALSE then returns a limited set of information about running jobs:

• JobId: Hadoop job name as specified by a user.
• State: Job state, normally "RUNNING".
• StartTime: When the job was started.
• UserName: Job owner name.
• Priority: Job priority.

If TRUE, then returns all job attributes as they are returned by the presently
running version of Hadoop. This also means that attributes and their names can
differ depending on the Hadoop version.

Value

List of running jobs and their attributes as a data.frame object. Refer to verbose for more infor-
mation about the returned value content.

hadoop.run Executes mapReduce functions written in R on Hadoop cluster.

Description

Invokes the Hadoop engine and sends data to mapper and reducer R functions for execution. If the
input data does not reside in HDFS, then hadoop.run first copies the data into HDFS. It prepares the
user’s mapReduce scripts for execution in the distributed Hadoop environment. It then invokes the
Hadoop engine and monitors the Hadoop log for errors and failures. If execution was successful, it
then reads data back from HDFS into R memory (if input data was in-memory R object), or pushes
it back to Oracle Database or Hive depending on where original data is located.

Usage

hadoop.run(data, out.name = NULL, mapper = NULL,
reducer = NULL, combiner = NULL, export = NULL,
init = NULL, final = NULL, job.name = NULL,
config = NULL, cleanup = FALSE, overwrite = FALSE)

Arguments

data Input data object. The object type may be one of the following:

• ORCH HDFS object identifier This is a special ORCH object returned by
hdfs.attach and other functions accessing HDFS. It represents a directory in
HDFS. Alternatively it can be a string with HDFS-compliant directory path
relative to the current working directory.

• Oracle R Enterprise frame ore.frame Both RDBMS and HIVE tables/views
exposed as ore.frame objects are accepted.

• Object of R class "data.frame"

hadoop.run 5

• Object of R class "matrix"
• Object of R class "list"
• Object of R class "vector"

out.name Output HDFS directory name or an HDFS object identifier of the output data.
Note that the output directory must not exist when the Hadoop job is submit-
ted otherwise the job fails. If the output directory is not specified a temporary
directory is created in HDFS "/tmp".

mapper Optional mapper function written in the R language. The function must accept
two values: "key" and "value". The names of the arguments do not matter.
Prototype is: mapper = function(k,v). If mapper function is not specified or is
NULL, then a reduce-only job is executed.

combiner Optional combiner function written in the R language. The function must accept
two values: "key" and "value". The names of the arguments do not matter.
Prototype is: reducer = function(k,v) . The combiner function gets executed
on the same host as each mapper. It receives the same data as the reducer, but
receives the date from each local individual mapper. Its output is the same as the
mapper output and is fed to next reduce stage. Note that combiner is ignored if
it is specified without a reducer.

reducer Optional reducer function written in the R language. The function must accept
two values: "key" and "value". The names of the arguments do not matter.
Prototype is: reducer = function(k,v) . If the reducer function is not specified or
is NULL, then a map-only job is executed.

export Exported R objects. This argument allows the user to copy some client-side
R objects (i.e. from user’s R session) into the server side running mapReduce
R jobs that is to the Hadoop cluster side, so that the objects are available to
the mapReduce jobs during execution. See orch.export and examples for more
details.

init Optional job initialization function. Called once before any user’s mapReduce
functions to do any initial preparation, initialization, or memory allocation re-
quired for map or reduce functions logic. The function does not accept any
arguments. Prototype is: init = function().

final Optional job finalization function. Called once after all user’s mapReduce func-
tions and enables final data processing, or memory de-allocation required by
mapReduce logic. It also permits output of keyValues (See orch.keyvals). The
function does not accept any arguments. Prototype is: final = function().

job.name Optional name of this mapReduce job. By default Hadoop’s job ID is the job
name. You should always give some meaningful name to make it easier to locate
your job in the Hadoop run logs. Note that if this argument is used, it overrides
job.name in config.

config Optional mapReduce advanced configuration class. This argument lets you fine-
tune various aspects of the mapReduce job to achieve better performance or
to change behavior of the ORCH mapReduce driver. This argument is an in-
stance of the "mapred.config" class, and therefore has this format: config =
new("mapred.config", param1, param2,...).

cleanup Run a cleanup procedure after the mapReduce job finishes successfully. Re-
moves all empty "part" files and all Hadoop log files.

overwrite Overwrites HDFS objects with the same name. By default, overwrite is disabled
for data safety.

6 hadoop.run

Value

The results are in the same format as input data. For example, the results for HDFS input data are
kept in HDFS, and the results for ore.frame input data are copied into the connected database. If
during execution any error or failure prevents successful output of the result, returns the error or
failure.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hadoop.exec mapred.config orch.dryrun orch.debug orch.keyval orch.keyvals hdfs.put hdfs.push
hdfs.upload

Examples

Filter cars with with "dist" > 30 and "speed" > 14 in mapper
and get mean "speed" and "dist" in reducer.

Use cars dataset from R memory
x <- hadoop.run(

cars,
mapper = function(key, val) {

for (i in 1:nrow(val)) {
x <- val[i,]
if (x$dist > 30 && x$speed > 14) {

orch.keyval(key[i], x)
}

}
},
reducer = function(key, vals) {

orch.keyval(key, c(mean(vals$speed), mean(vals$dist)))
},
config = new("mapred.config",

map.tasks = 1,
reduce.tasks = 1
)

)

See Result
print(x)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.attach 7

hdfs.attach Brings an HDFS object into ORCH environment.

Description

Attaches "unmanaged" HDFS files in a directory to the ORCH framework by loading the metadata
that describes the contents of the file (number, types and names of data columns in the files in the
directory). It does this if the metadata is already present. If not, it discovers the metadata of the file
by intelligent sampling of file contents. If successful, the function returns the HDFS object identifier
of the HDFS attached directory, else NULL if metadata for the files in the HDFS directory could
not be determined.

Usage

hdfs.attach(dfs.name, key.sep = .orch.env$key.sep,
value.sep = .orch.env$val.sep, key = NULL,
force = FALSE, trim = FALSE, data.frame = FALSE,
na.strings = NULL, silent = FALSE, header = FALSE)

Arguments

dfs.name HDFS directory name or HDFS path relative to the current working directory.
Alternatively, you can re-attach an HDFS object identifier returned by hdfs.attach()
from a prior invocation (See force argument).

key.sep Key field separator character. The character "\t" is system default. If the key
separator is specified incorrectly, then key field is concatenated with the first
value field and there will be no key identified. The key separator can have the
same value as value separator.

value.sep Value field separator character. The character "," is system default. If value sep-
arator is specified incorrectly then all value fields will be concatenated together.
The value separator can have the same value as key separator.

key Key column inde, NULL = auto-detect. The key column in HDFS has to be the
first one but it can be mapped to any column in the original data. This value
controls key column position in a data.frame when ORCH reads or samples the
data.

force TRUE to overwrite HDFS object metadata. If the HDFS object was previously
attached and has metadata stored alongside already, then this arguments allows
you to re-attach it.

trim TRUE to ignore tailing empty fields. If you suspect that the HDFS data has
empty tailing columns, such as "„," then this option can detect and exclude such
redundant columns for the data description in metadata and in the data structure.

data.frame If TRUE enforces the class of the attached HDFS data to be "data.frame". Other-
wise the class is automatically recognized as "vector", "matrix", or "data.frame".

na.strings Character vector with strings that represent NA values in the attached dataset. If
this argument is not specified then "NA" and "" strings are treated as NA values
by default.

silent Do not print information messages to the console. Do not print the final attach
summary at the end of the run.

header TRUE to indicate the header is present. If the HDFS object contains a header
then this option should be passed as TRUE, default value is FALSE.

8 hdfs.attach

Details

By default, data files in HDFS are not usable in ORCH until they are attached and until ORCH
knows the structure of data in the files. Note that to use files in ORCH the user must first place them
in a separate HDFS directory. The path to the directory should be specified as input to hdfs.attach().
If the data does not have ORCH metadata stored with it then ORCH samples portions of the data
from the file(s) in this directory, parses them and determines the data structure. ORCH then gen-
erates a special metadata object that contains the discovered structure with ORCH-specific system
data and stores it alongside the original data in a new file called __ORCHMETA__.

If data has non-standard format (non-comma delimited) delimiters must be specified as a "hint" via
argument key.sep and value.sep. ORCH creates the HDFS object’s metadata with the user
specified delimiters stored it. The content of the HDFS object attached is not changed in any way. If
you specify incorrect set of delimiters, then the attach may fail. If you do not specify the delimiters
then the current defaults ("\t" for key delimiter and "," for values delimiter) are used.

hdfs.attach() creates a new __ORCHMETA__ file (if not already present) in the same directory from
where files are loaded into ORCH environment. This file contains metadata for the data files.

Value

HDFS object identifier if the HDFS data was attached successfully, otherwise NULL if a transfer
or data structure recognition error occurred.

Note

Use this function to attach a text file to your R environment, just as you might attach a data.frame.
Oracle R Connector for Hadoop does not support processing of attached non-structured files. Nonethe-
less, you can attach a non-structured file, download it to your local computer, and use it as needed.
Alternatively, you can attach the file for use as input to a Hadoop application.

Due to inherent limitations of the Hadoop command-line interface, the function performance may
drop when attaching large HDFS files with long records. When size of one record is larger then
1KB then sampling falls back to streaming larger parts of HDFS files in order to retrieve several full
records with valid structure. If the input data contains many invalid or incomplete records, then the
function may try to resample larger portions of the input dataset in order to discover the structure.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.exists hdfs.ls hdfs.put hdfs.get hdfs.describe hdfs.meta

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.cache 9

Examples

Upload cars to HDFS
dfs1 <- hdfs.put(cars, dfs.name="cars_w_meta")

Write cars data to localfile
tmpf <- tempfile(tmpdir='/tmp')
write.csv(cars, row.names=F, file=tmpf)

dfs2 <- hdfs.upload(tmpf, dfs.id="cars_wo_meta", header=TRUE,
attach=FALSE)

Meta data exists
cars.dfs1 <- hdfs.attach(dfs1)
head(hdfs.get(cars.dfs1))

Meta data missing so Sampling will be done
cars.dfs2 <- hdfs.attach(dfs2)
head(hdfs.get(cars.dfs2))

Cleanup
hdfs.rm(cars.dfs1)
hdfs.rm(cars.dfs2)

hdfs.cache Controls ORCH HDFS cache behavior.

Description

Allows you to fine-tune behavior of the ORCH HDFS cache system. Normally, this function is not
necessary because the system is pre-configured with the best options for most run environments.

Usage

hdfs.cache(onoff, disable = NULL, enable = NULL,
ttl = NULL, ctl = NULL)

Arguments

onoff Globally disable or enables HDFS caching. If not specified then will not change
the current cache settings do not change, which allows the user to set fine-tuning
options.

disable Disable caching of one specific HDFS object. This can be an HDFS object
identifier or HDFS-compliant path(s) as a character vector. The option must
be set when an external change of the HDFS object by another user or third
party process is expected. Note that this argument does not recursively disables
caching of child directories.

enable Cache a previously disabled HDFS object. This can be an HDFS object identifier
or HDFS-compliant path(s) as a character vector. To enable the caching of all
HDFS objects specify "*". Note that this argument does not recursively enable
caching child directories.

10 hdfs.cd

ttl Sets the Time-To-Live (TTL) configuration parameter of the cache in seconds.
Each cached entry can live up to the specified time after which it is automatically
deleted. A -1 setting reverts the value to the default.

ctl Sets the Clicks-To-Live (CTL) configuration parameter of the cache as the num-
ber of access attempts. Each cached entry can be accessed the set number of
times. After exceeding this number it is automatically deleted. A -1 setting
reverts the value to the default.

Value

Always return the current state of the HDFS cache. If the onoff argument is specified, then the
function returns it invisibly.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.sync

hdfs.cd Changes current HDFS working directory.

Description

ORCH supports the notion of current working directory in HDFS. Every HDFS path when used
with the ORCH function, is considered to be relative to the current working directory. Upon ORCH
startup the current working directory is automatically set to the user’s home in HDFS, which is
"<root>/user/<user>". HDFS user name is the same as client’s OS user name. The HDFS root is
normally "/" but can be changed via hdfs.setroot.

Usage

hdfs.cd(dfs.path)

Arguments

dfs.path The new HDFS path is considered absolute if it starts with a "/". It is rela-
tive to the user’s home directory if it starts with "~". Otherwise the path is
treated relative to the current path. See the function description for more details.
The absolute path always uses the current ORCH root as a reference point (See
hdfs.root).

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.cd 11

Details

The ORCH current working directory is similar to the Unix shell notation for a working directory
and accepts the path with a number of special symbols. ORCH HDFS path compiler walks through
the user’s path and denotes each special character into a sub-path converting it into an absolute
HDFS path.

Like a Unix shell, ORCH allows three different types of HDFS paths:

• relative: If the HDFS path starts with a resource name (file or directory) or from a ".", then
this path is treated as relative and is appended to the current working directory to form the
absolute HDFS path.

• absolute: If the HDFS path starts with a divider ("/" symbol) then this path is treated as
absolute and is appended to the current HDFS root (see hdfs.root) to form the absolute HDFS
path.

• home: If the HDFS path starts with a home shortcut ("~" symbol) then this path is treated as
relative to the user’s home directory and is appended to the HDFS user’s home (<root>/user/<user>)
to form the absolute HDFS path.

Like a Unix shell, ORCH allows use of special strings in an HDFS path:

• / Parent and child directory and/or file divider. Directory and file names may not contain "/"
symbol.

• . Identifies child directory, must be used as a single token between parent and child dividers
(the "/" symbol). Directory and file names can contain the "." symbol but in conjunction with
other characters only. E.g. you can not name an HDFS file ".". Path "a/./b" is equivalent to
"a/b".

• .. Identifies a parent directory. This must be used as a single token between parent and
child dividers (the "/" symbol). Directory and file names can contain the ".." symbol but in
conjunction with other characters only i.e. you cannot name an HDFS file "..". Path "a/b/../c"
is equivalent to "a/c".

• ~ Identifies user’s home directory and can be used only as the very first symbol of an HDFS
path. Directory and file names can include "~" symbol without any limitation, e.g. you can
name an HDFS file as "~". Path "~/a" is equivalent to "/user/<user>/a".

Value

Current absolute HDFS path if the directory is set successfully. NULL is returned if a non-existent
path is specified in dfs.path.

Note

Hadoop has no notion of "current working directory". This concept is entirely implemented and
supported by ORCH only. ORCH closely follows Unix shell cd/pwd commands design to make
navigation and access to HDFS resources easier for an R user.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

12 hdfs.cleanInput

See Also

hdfs.root hdfs.pwd hdfs.ls

hdfs.cleanInput Clean ORCH HDFS objects

Description

This function is used to clean ORCH HDFS objects by either removing bad/invalid values or re-
placing them with default values.

Usage

hdfs.cleanInput(input, config = NULL, tmpdir = "/tmp",
replace = TRUE, replace.val = NULL)

Arguments

input ORCH HDFS identifier representing the input HDFS file to be cleaned

config The mapred.config parameter used in hadoop.run. The default is NULL.

tmpdir Character string specifying the HDFS directory path to store temporary results.
These results are removed after the end of the function execution. The default is
"/tmp".

replace Logical value to indicate if value replacement operation is to be performed. De-
fault is TRUE. When FALSE, record removal is performed.

replace.val When replace = TRUE, the user can specify the default values in replace.val
for replacement. This is a data.frame object with column names corresponding
to the scalar data types supported in ORCH. See examples for usage of this func-
tion. For default value of replace.val (NULL), replace.val uses: data.frame("numeric"=0,
"integer"=0, "logical" =FALSE, "character" = "",
"factor" = as.factor(""))

When replace = FALSE, this argument is ignored.

Details

In ORCH, if for any data point in the input as.<columntype>(data) generates NA, it is considered to
be dirty/invalid.

This function returns a cleaned ORCH HDFS object obtained by either replacing the invalid val-
ues (replace = TRUE) or removing corrupt records (replace = FALSE). After the end of
the function execution, the following statistics are displayed to show the impact of the cleaning
operation:

1. Number of cells replaced when replace = TRUE

2. Number of rows removed when replace = FALSE

3. Precentage of cells replaced when replace = TRUE

4. Percentage of rows removed when replace = FALSE

5. Total number of input rows

hdfs.cp 13

Using cleaned input data before processing might result in significant performance improvements
over data containing NA/missing values. It has been frequently observed that ORCH map-reduce
jobs run at least 6-7 times faster on clean input data than on the unclean version of the same data.
Note, all the performance improvements are based on the assumption that the execution time of the
map-reduce job is not dominated by the user’s map and reduce R scripts.

Value

ORCH HDFS identifier representing the cleaned ouput

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

See Also

orch.fromHive orch.sample

Examples

create a data.frame with some invalid values
tmp1 <- data.frame(c1=c(1,2,3,4,5,6), c2=c(1,2,3,NA,NA,6))
move the data.frame into HDFS
x11 <- hdfs.put(tmp1)
clean the input by replacement of NAs with 0
y11 <- hdfs.cleanInput(x11)
print the cleaned output
print(hdfs.get(y11))
clean the input by removing the records with NA
y12 <- hdfs.cleanInput(x11, replace = FALSE)
print the cleaned output
print(hdfs.get(y12))
create a data.frame with some invalid values
tmp2 <- data.frame(c1=c(1,NA,NA,4,5,6),

c2=c("abc","def","efg",NA,NA,"xyz"), stringsAsFactors=FALSE)
move the data.frame into HDFS
x21 <- hdfs.put(tmp2)
clean the input by replacing numeric NAs with -1
and character NAs with "abc"
y21 <- hdfs.cleanInput(x21, replace.val = data.frame(numeric=-1, character="abc",

stringsAsFactors=FALSE))
print the cleaned output
print(hdfs.get(y21))

hdfs.cp Copies HDFS directories and files.

14 hdfs.cp

Description

Copies an existing HDFS file or directory located at dfs.src path relative to the current working
directory to the location specified by dfs.dst, the HDFS destination directory. If the destination
directory already exists then the source object is copied there preserving its original name. If the
destination directory does not exist then the source file or directory is copied under the new directory
name. This function is equivalent to "hadoop fs -cp" shell command.

Usage

hdfs.cp(dfs.src, dfs.dst, overwrite = FALSE,
force = FALSE)

Arguments

dfs.src HDFS source file or directory name in the current working directory, or its rel-
ative path, or an absolute HDFS-compliant path. See hdfs.cd for more details
about the HDFS path specification.

dfs.dst HDFS destination file or directory name in the current working directory, or its
relative path, or, an absolute HDFS-compliant path.

overwrite Enable replacing of the HDFS directory and/or file if it already exists. By de-
fault, replacing is disabled.

force Set this argument to TRUE to disable the confirmation prompt when copying a
source that contains a wildcard(*) in it. Also disable HDFS I/O check errors,
and do not return a result.

Value

TRUE if the file or directory is copied successfully, FALSE if there is an error. In case of fail-
ure, the HDFS state may not be consistent, the destination data may be partially deleted (only if
overwrite == TRUE) and only a portion of the source data may be copied. If force is set to
TRUE then the function returns the result invisibly.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.mv hdfs.rmdir hdfs.mkdir

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.cwd 15

hdfs.cwd Returns current working HDFS relative path.

Description

ORCH support a notion of current working directory in HDFS. Every HDFS path when used with
an ORCH function is considered to be relative to the current working directory. Upon ORCH
startup the current working directory is automatically set to the user’s home in HDFS, which is
"<root>/user/<user>". The HDFS user name is the same as the clients OS user name. HDFS root is
normally "/", but can be changed via hdfs.setroot.

Usage

hdfs.cwd()

Value

Current working HDFS relative path or NULL if HDFS is not functional or not connected. The
returned path will not include the current HDFS root (see hdfs.root) and will be reative to this root
path.

Note

Hadoop has no notion of "current working directory". This concept is entirely implemented and
supported by ORCH only. ORCH closely follows the Unix shell cd/pwd commands design in order
to provide familiar forms for navigation and access to HDFS

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.pwd hdfs.cd hdfs.root hdfs.ls

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

16 hdfs.delim

hdfs.delim Gets or sets default key and value fields separators.

Description

Returns the currently configured value or sets a new value of the system wide default key separator
and values separator. The key separator is used in HDFS text based files to separate key field from
value fields. The value separator is used in HDFS text based files to separate individual value fields
from each other. Examples of input data that use the key and/or value separator are:

• key<key.sep>value1<value.sep>value2...- Data with a key and N values.

• <key.sep>value1<value.sep>value2...- Data with an empty key and N values.

• value1<value.sep>value2...- Data without a key and N values.

• key<key.sep>value- Data with a key and 1 value.

• value- Data without a key and 1 value.

• key- Data with a key and no values.

Usage

hdfs.delim(key.sep, value.sep)

Arguments

key.sep Optional. A new key separator value to set. Must be one character. If not
specified then the function will only return the current value set.

value.sep Optional. A new value separator value to set. Must be one character. If not
specified then the function will only return the current value set.

Details

Keep in mind that the key/value separators can be altered at the time of the data write to HDFS for
each specific object. The key/value separators are stored in the HDFS object’s metadata and default
system-wide settings are not used when reading this object back from HDFS into ORCH. These
default settings are used only when user does not specify the key/value separators explicitly in the
function call for the following operations:

• Writing a new dataset to HDFS.

• Attaching existing HDFS data which does not have any metadata.

• Attaching existing HDFS data with metadata missing key/value separators.

Value

Currently configured system-wide key and value separators are a vector of two character values.
Upon ORCH startup the key separator is set the tabulation character "\t" and the values separator is
set to the comma character ",".

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

hdfs.describe 17

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.keysep hdfs.valuesep

hdfs.describe Describes known characteristics of an HDFS object.

Description

Returns a data.frame with extensive description of an HDFS object’s attributes. If the object does
not exist or has no metadata attached (i.e., hdfs.attach was not executed on the directory) then NULL
is returned. The resulting data frame will have two columns: NAME - (name of the characteristic),
and VALUE - (its value).

Usage

hdfs.describe(dfs.id)

Arguments

dfs.id HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS. It represents a directory in HDFS. Alterna-
tively, the user can pass a string with an HDFS-compliant directory path relative
to the current working directory.

Details

Reported ORCH metadata characteristics are:

• path: Absolute HDFS path to the described object.

• origin: description of the HDFS object origin.

• class: R class corresponding to HDFS data, e.g. data.frame.

• types: list of data type names for each column.

• names: vector of known column names.

• dim: number of rows (or -1 if unknown) and columns.

• categorized: TRUE if "factor" columns are stored as indexes.

• has.key: TRUE if the data has key column.

• key.column: index and name of a column containing keys.

• empty.key: TRUE if the data has "" key.

• has.rownames: TRUE if rownames are stored with data.

• key.sep: delimiter used as a separator between key and values.

• value.sep: delimiter used as a separator between values.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

18 hdfs.dim

• quoted: quoting symbol used when parsing fields or FALSE.

• pristine: TRUE if data has no invalid fields.

• trimmed: TRUE if number of columns in data can be less than "dim".

"Pristine" attribute defines the data as:

• a) Every row has the same number of columns.

• b) All missing values are represented either as "NA" or "".

• c) There are no non numeric values in numeric columns.

"Trimmed" attribute defines the data as:

• a) Number of "physical" columns stored in HDFS files is larger than the logical one stored in
metadata.

• b) Columns are "hidden" in the logical view from user’s perspective. ORCH will ignore
"hidden" columns.

• c) "Hidden" columns contain no data i.e., then are blank strings("") in the HDFS files.

Value

A data frame containing the description, or NULL if the HDFS object does not exist or does not
have any ORCH metadata associated with.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.meta hdfs.attach hdfs.levels

hdfs.dim Returns number of rows and columns of an HDFS object.

Description

Equivalent to R’s dim() function for HDFS objects. Dimensions are typically stored in ORCH
metadata alongside an HDFS object, which enables the function to return known values directly. If
the dimensions are unknown, then this function tries to identify them. It downloads the dataset to
the client’s R memory if the file is small enough or executes a mapReduce job for large datasets.
After the function counts the number of rows and columns, it updates the ORCH metadata for this
HDFS object to preserve the discovered values. Then it does not need to repeat the same counting
process the next time the function is invoked.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.download 19

Usage

hdfs.dim(dfs.id, force = FALSE)

Arguments

dfs.id HDFS object identifier to inspect. This is a special ORCH object returned by
hdfs.attach and other functions that access HDFS, which represents an HDFS
directory. Alternatively, it can be a string with an HDFS-compliant directory
path relative to the current working directory.

force Controls whether a mapReduce job (whose task is to determine dimensions)
runs without confirmation. This parameter must be set to TRUE if your R script
invokes hadoop.run and is run in batch mode, with unattended execution.
Otherwise, the progress is paused for user confirmation. force implicitly en-
ables silent execution.

Value

Vector c(rows, columns). If any of the values is unknown for any reason (job failure, unrecognized
format, etc.), then it will have value NA.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.nrow hdfs.ncol hdfs.meta

hdfs.download Downloads an HDFS file or directory to the local file system.

Description

This is the simplest and fastest possible way to transfer data from HDFS to a local storage. This
function copies HDFS directory’s dfs.id part-files into one local file specified by filename
combining all data files into one. All files that do not contain data, such as ORCH metadata,
Hadoop’s system files "_SUCCESS", ".checksum" and other known files that do not contain data
are ignored unless all argument is set to TRUE.

Usage

hdfs.download(dfs.id, filename = NULL, dfs.file = NULL,
all = FALSE, overwrite = FALSE)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

20 hdfs.download

Arguments

dfs.id HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS. It either represents a directory in HDFS or
is a string with an HDFS-compliant directory path relative to the current working
directory.

filename Optional local file path and name which will receive content of the dfs.id
HDFS directory.

dfs.file HDFS file name(s) to download. If not specified or if NULL then all data files
from dfs.id directory are downloaded in bulk. The user can specify one of
several files to download as a character vector.

all Download all files including system (e.g. starting with "_", "."). Be aware that
this may corrupt the data structure by embedding ORCH metadata and Hadoop’s
system data into data files.

overwrite If TRUE the local files having same names get overwritten. Otherwise an error
is reported.

Value

If the operation finished successfully, this is the local file name of the downloaded data. NULL is
returned if an error occurred.

Attention

Use this function with caution, since it brings the entire contents of an HDFS directory into your
local file system. Since an HDFS directory may store vast amounts of data, you may exhaust your
hard drive.

Warning

Specifying download files list in dfs.file argument may significantly downgrade the function
performance because each file is then downloaded separately instead of in-bulk directory download.

Note

Data files do not need to be named according to Hadoop’s mapReduce convention "part-(m-)?(r-
)?[0-9]5" in order to be picked up by the download function. Every file in the directory with a
name that does not start with "_" or "." is considered a data file and will be picked up (unless all
argument is set to TRUE). The downloaded data is formatted as-is in HDFS.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.upload hdfs.put hdfs.get

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.exists 21

hdfs.exists Checks if an HDFS object exists.

Description

Confirms the validity of the HDFS object identifier dfs.id, or the existence of an HDFS directory
path that is specified as a string in dfs.id argument. If the HDFS object exists, then it can
be safely used with any of the ORCH public API functions which access HDFS data, such as
hadoop.run, hdfs.get, etcetera.

Usage

hdfs.exists(dfs.id)

Arguments

dfs.id HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS. Al-
ternatively it can be a string with HDFS-compliant directory path relative to the
current working directory.

Details

HDFS data may be referenced concurrently by several HDFS object identifiers in ORCH. If one
of the objects is deleted with hdfs.rm, or it’s directory is removed with hdfs.rmdir, or the referred
HDFS resource gets (re)moved outside of ORCH by a third party process,then the HDFS object
identifiers may become invalid and may refer to non-existing HDFS data. This is one example of a
situation where it is necessary to pre-check the validity of the HDFS object using hdfs.exists.

Value

TRUE if data exists and valid, FALSE if data does not exists or if there is a failure.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.attach hdfs.rm hdfs.rmdir hdfs.ls

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

22 hdfs.fromHive

hdfs.fromHive Converts an Apache Hive or Apache Impala table to a dfs identifier in
ORCH.

Description

This function converts an ORE-HIVE or ORE-IMPALA table represented by an ore.frame ob-
ject to an HDFS object compatible with ORCH APIs. It converts an ore.frame that points to
a Apache Hive or Apache Impala table into a HDFS identifier used by ORCH. The function will
convert the table metadata into ORCH metadata and, if needed, may materialize Apache Hive or
Apache Impala query into a physical HDFS dataset.

Usage

hdfs.fromHive(table, out.table = NULL, overwrite = FALSE)

Arguments

table An ore.frame object or a character string representing an Apache Hive or an
Apache Impala table.

out.table Optional table name for the staging table. See the function description for more
details. If this argument is not specified, then a temporary Apache Hive or
Apache Impala table will be created to hold the staged data.

overwrite Overwrite the ORCH metadata. If ORCH metadata file already exists in the
HDFS directory pointed by table, it is not overwritten when overwrite =
FALSE.

Details

Currently, only non-partitioned Apache Hive and Apache Impala tables are supported for conver-
sion. Partitioned tables are stored as a collection of sub-directories which does not correspond to
the ORCH data storage model. Therefore, using a partitioned table as input would result in an error.

Value

Returns the HDFS object representing the input ORE-HIVE or ORE-IMPALA table. This HDFS
object is consumable by ORCH.

Attention

An Apache Hive or Apache Impala staging table is created if the table object does not represent a
physical table (e.g. transformed ore.frames, views, etcetera). The user can optionally pass in a name
using outtabname for the staging table (if created) to be used as an ORE-HIVE or ORE-IMPALA
table for further processing.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

hdfs.fromRData 23

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.toHive

Examples

Put the cars dataset into HDFS.
ore.create(cars, table="cars1")

Create the dfs.id object from the HIVE table.
z <- hdfs.fromHive(cars1)

hdfs.* functions can be used on this object
print(hdfs.get(z))

Remove created Hive tables.
ore.drop(table="cars1")
hdfs.exists(z)

hdfs.fromRData Converts an HDFS binary object into plain HDFS text object.

Description

This function executes a mapReduce job that consumes an HDFS directory containing the special
ORCH binary format, which was already attached to ORCH (see hdfs.attach) and outputs the same
data contained in the binary format, but in plain text file format.

Usage

hdfs.fromRData(dfs.id, out.name = NULL,
overwrite = FALSE, parts = NULL, key.sep = NULL,
value.sep = NULL, silent = FALSE)

Arguments

dfs.id HDFS object identifier of the input data to be converted. This is a special ORCH
object returned by hdfs.attach and other functions which represents a directory
in HDFS. It can instead be a string with HDFS-compliant path relative to the
current working directory.

out.name Output HDFS directory name or an HDFS object identifier of the output con-
verted plain text data. Note that the output directory must not exist otherwise
the function will fail. See overwrite for more details. If the output directory
is not specified, a temporary directory is created in HDFS "/tmp".

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

24 hdfs.get

overwrite Allows overwriting of the output HDFS directory if it already exists with the
same name. By default overwrite is disabled for the safety of data manipulations.

parts Number of desired output "part" files. This option directly controls the size of
each "part" file which will approximately equal to the total output size / number
of "part" files. The function will try to satisfy the specified requirement but
does not guarantee it due to the Hadoop jobs execution restrictions and input
file format limitations. If parts is not specified, the function relies on Hadoop’s
default behavior and will generate a part file for each input part file.

key.sep Key field separator character. If not specified then the original separator (the
one used in text data prior to binary conversion) stored in the input HDFS ob-
ject metadata is used. If the original separator is not available, then the default
ORCH global key separator is used ("\t" by default).

value.sep Value fields separator character. If not specified then the original separator (the
one used in text data prior to binary conversion) stored in the input HDFS ob-
ject metadata is used. If the original separator is not available, then the default
ORCH global value separator is used ("," by default).

silent Do not print information messages to console. Do not print the final attach
summary at the end of the run.

Details

The binary format is readable by ORCH Hadoop jobs only and gives the advantage of fastest achiev-
able data read and write throughput in ORCH R mapReduce jobs. Data can be loaded directly into
R memory in the mapper or the reducer without any parsing or conversion of text into R objects.

Value

HDFS object identifier if data was successfully converted to the plain text format, otherwise NULL
(if any conversion error occurs).

Note

Output of the function is always pristine by definition because the ORCH binary format can contain
only pristine data.

See Also

hdfs.toRData

hdfs.get Copies data from HDFS into R in-memory object.

Description

Copies data from HDFS into an R in-memory object. Reads ORCH metadata with all meta files
(such as levels data) and restores all attributes, including column names, data types, row names,
factor levels, etcetera. If the data originated from the R environment, i.e., data was put in HDFS
using hdfs.put, then these attributes are available. Otherwise, if data originated from another source
and was automatically attached via hdfs.attach, then generic reverse-engineered object attributes
like "val1", "val2" for columns names and default data type "data.frame" are assigned. Users can
also update the metadata using hdfs.meta in order to avoid generic column names.

hdfs.get 25

Usage

hdfs.get(dfs.id)

Arguments

dfs.id HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS. It either represents a directory in HDFS,
or, is a string with an HDFS-compliant directory path relative to the current
working directory.

Value

A data.frame object in memory in the local R environment containing the imported dataset, or
NULL if the operation has failed.

Note

If the HDFS file contents can comfortably fit into an in-memory R data frame object, then use
hdfs.get(). Otherwise you must fetch the HDFS files into local file system and then read chunks of
the file into memory as desired. See hdfs.download for more details.

Key and value separators specification is not required when calling this function because it is stored
together with the data itself and is retrieved automatically from its ORCH metadata.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.put hdfs.download hdfs.upload hdfs.meta hdfs.describe

Examples

x <- hdfs.put(cars)
y <- hdfs.get(x)
all(y == cars)
all(names(y) == names(cars))

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

26 hdfs.head

hdfs.head Reads unformatted head of an HDFS object.

Description

Returns the first n rows of the specified HDFS file without any parsing. If the HDFS object con-
tains many part-files, then the function retrieves the head portion or the whole file from the first
(lexicographically sorted by name) part-file. If the number of lines retrieved is less than n then head
portion of the next file is appended.

Usage

hdfs.head(dfs.id, n = 0L)

Arguments

dfs.id HDFS object identifier that indicates where to get heading data. This is a special
ORCH object returned by hdfs.attach or other functions accessing HDFS. This
object either represents a directory in HDFS, or, is a string whose value is an
HDFS-compliant directory path relative to the current working directory.

n Number of rows to return. Must be >= 0. If 0 is specified (default value) then
the function returns a default head portion of the first part-file which will give
the fastest possible execution time. The default size is the whole part file if small
enough (<=100KB) or, an arbitrary head portion if it’s too large (>100KB).

Details

Function performance degradation is a result of two factors - the number of part files in the input
HDFS directory (e.g. HDFS object) and the size of each part file. Performance degradation is
approximately linear, with the increase in the number of HDFS data files and the size increase of
each data file. However, after reaching approximately 100KB, further file size increase will not
significantly affect the runtime.

Value

Character vector of the specified length n. The length can be less than n if the specified number of
lines can not be retrieved for some reason. NULL is returned if the object does not exist or an error
has occurred. If the HDFS directory has no non-empty data files then a 0-size character vector will
be returned.

Note

The function is designed for behavior that is close to that of the Unix shell "head" utility, but inherits
the limitations of Hadoop’s HDFS API. There is no equivalent command in Hadoop command line
interface.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

hdfs.id 27

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.tail hdfs.sample hdfs.get hdfs.download

hdfs.id Creates a new ORCH HDFS object identifier.

Description

Converts an HDFS string path to R "dfs.id" objects. If dfs.x is malformed and contains an invalid
HDFS path, or the specified HDFS path does not exist (except if force is TRUE) then returns
NULL.

Usage

hdfs.id(dfs.x, absolute = FALSE, force = FALSE)

Arguments

dfs.x HDFS relative or absolute path as a string. If the HDFS object identifier is pro-
vided, then the function merely checks for its existence (if force is FALSE).

absolute TRUE if dfs.x is an absolute HDF path and must be preserved as-is. Use
FALSE (default mode) to treat dfs.x as a reative path and append to the current
working directory (see hdfs.cd and hdfs.pwd for more details).

force When TRUE, do not perform existence check. Default is FALSE (perform exis-
tence check).

Details

This function is equivalent to hdfs.attach, but does no metadata discovery or generation if the HDFS
directory has never been attached before. It also allows you to create identifier for an (as yet) non-
existent HDFS object.

Value

ORCH HDFS object identifier which points to an HDFS object if there are no errors. Returns NULL
if dfs.x does not contain a valid HDFS path, or, if the path does not exist (except when force
== TRUE).

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

28 hdfs.keysep

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.attach hdfs.exists

Examples

Not run:
hdfs.id("/tmp/bad_path") # returns NULL and error
hdfs.id("/tmp/bad_path", force=T) # returns HDFS object

End(Not run)

hdfs.keysep Gets or sets default key field separator.

Description

This function can be used to either return the currently configured system wide default key separator
or can be used to set the system wide default key separator to a new value. The key separator is
used in HDFS text based files to separate key field from value fields. Examples of input data that
use the key separator are:

• key<key.sep>value1,value2...- With key data type.
• <key.sep>value1,value2...- Empty key data types.
• value1,value2...- Key-less data type.
• key- Key-only, no separator used.

Usage

hdfs.keysep(key.sep)

Arguments

key.sep Optionally a new key separator value to set. Must be a single character. If not
specified then the function returns the current value set.

Details

Keep in mind that the key separator can be specified explicitly at the time of writing data to HDFS
for each specific object. The key separator is stored in HDFS object’s metadata and the default
system-wide value when this object is read back from HDFS in to ORCH. This system-wide default
value is employed only when the user does not specify the key separator explicitly in the function
call for the following operations:

• Writing a new dataset to HDFS.
• Attaching existing HDFS data which does not have any metadata.
• Attaching existing HDFS data with metadata missing key separator.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.levels 29

Value

Currently configured system-wide key separator. Upon ORCH startup it is set to a tabulation char-
acter "\t".

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.valuesep hdfs.delim

hdfs.levels Reads or writes ORCH levels metadata for an HDFS object.

Description

ORCH levels metadata contains the definition of the distinct levels of each categorical/factor column
in the HDFS object. The levels metadata is stored separately in a metadata file other than the main
metadata file (which is stored in __ORCHMETA__). This is to minimize the file size and prevent
potential bloating.

Usage

hdfs.levels(dfs.id, ..., overwrite = FALSE)

Arguments

dfs.id HDFS object identifier. This is a special ORCH object returned by hdfs.attach
or other functions manipulating HDFS. it can represent a directory in HDFS.
Alternatively, the user can pass a string with an HDFS-compliant directory path
relative to the current working directory.

... List of attributes and values to read or to write:

• none: Get list of all levels available.
• column_name=value[, ...]: Write levels for one or several columns.
• "column_name"[,...]: Read levels for one or several columns.

overwrite If a column already has levels written as a sidecar file in HDFS, then an attempt
to write it again will fail. Setting this parameter to TRUE allows overwriting the
existing levels.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

30 hdfs.levels

Details

This function allows the user to read or write ORCH levels metadata for an HDFS bject from a
client R program or from within a running mapReduce R job. Each column of the HDFS object can
have "levels" data attached to it. The levels identify unique values that are used within (and can be
used only within) this column. At the same time, a column can contain factor indexes or original
values. This allows uniform factorization of the column data in distributed mapReduce jobs that
receive only part of the original dataset.

Value

List of levels, if column levels to write are not specified in "...", or, only column names to read
without values are specified in "...". If only one column name to read is specified in "...", then the
function returns only its value without wrapping the value into a list. Otherwise if all levels were
written successfully, then the function returns TRUE. It returns FALSE if any level write has failed.
See examples.

Note

If column(s) levels are specified as "name=levels" in [...] parameters, then the function writes given
levels into an HDFS object alongside the main data as a sidecar file. If no column levels to write
are given in [...], or only column names without actual level values are specified in [...], then the
function reads them from HDFS and returns a list of attached levels.

The "..." parameter can be specified using a vector or CSV string. In all cases, it is an instruction to
get one or several column levels. All styles can be mixed and interchanged as needed:

• c("column_name"[,"column_name"[,...]])

• "column_name[,column_name[,...]]"

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.meta hdfs.describe hdfs.attach

Examples

Not run:
hdfs.levels(x) # return list of all levels.
hdfs.levels(x, "speed") # return levels of "speed" column.
hdfs.levels(x, "speed", "dist") # return levels for two columns.
hdfs.levels(x, speed=c(1,2,3)) # writes levels for one column.
hdfs.levels(x, speed=c(1,2,3), dist=c(4,5,6)) # writes levels for two columns.

End(Not run)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.ls 31

hdfs.ls Lists files and directories.

Description

Returns a vector with names of all HDFS directories and files located at the current working di-
rectory. If needed, the list can specify the HDFS path to a directory. The function will list data
and system files without any differentiation. This function is equivalent to the "hadoop fs -ls" shell
command.

Usage

hdfs.ls(dfs.path = ".", pattern = NULL)

Arguments

dfs.path Optional. The path is relative to the current working path or absolute HDFS-
compliant path. If not specified, then the list of all objects at the current working
path is returned. See hdfs.cd for more details about HDFS path specification.

pattern Optional. A regular expression pattern for filtering of returned file names. For
example pattern="^[^_]" will filter out all "_*" files.

Value

R character vector of all (or filtered by pattern) HDFS file and directory names located at the cur-
rent working directory or at the HDFS path specified by dfs.path argument. NULL is returned
in the case of an invalid HDFS path or any other error.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.cd hdfs.pwd hdfs.root

Examples

cat("Running hdfs.ls() example.\n")

Copy "cars" dataset into HDFS directory.
dfsCars <- hdfs.put(cars, dfs.name="cars_example")

List all objects in the current working directory.
hdfs.ls()
List all files in the HDFS directory with "cars" data.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

32 hdfs.meta

hdfs.ls(dfsCars)
List only data files in the HDFS directory with "cars" data.
hdfs.ls(dfsCars, pattern="[^._].*")

Remove "cars" dataset from HDFS.
hdfs.rm(dfsCars, force=T, notrash=T)

hdfs.meta Retrieves or updates ORCH metadata for an HDFS object.

Description

Retrieves or updates ORCH metadata for an HDFS object. ORCH metadata describes the content of
HDFS data files and allows ORCH to correctly read and parse HDFS raw part-files into R structured
objects like data.frame or matrix.

Usage

hdfs.meta(dfs.id, ..., force = FALSE, silent = FALSE)

Arguments

dfs.id HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS. It represents a directory in HDFS. Alterna-
tively, the user can pass a string with an HDFS-compliant directory path relative
to the current working directory.

... List of attributes and values to updated or to retrieve:

• none: Get list of all attributes
• attr_name=value[, ...]: set one or several attributes
• "attr_name"[,...]: get one or several attributes

force if TRUE do not check for invalid or unknown attributes. This allows the user to
set or retrieve custom attributes that do belong to ORCH.

Details

ORCH metadata keeps the following attributes:

• kvs: Reserved for ORCH.

• types: Vector of type names for each column.

• names: Vector of column names.

• class: R class corresponding to HDFS data.

• keyi: Index of a column containing keys.

• rownamei: Index of a column containing row names.

• key.sep: Symbol used as a separator between key and values.

• value.sep: Symbol used as a separator between values.

• origin: Description of HDFS object origin.

• dim: Number of rows (or -1 if unknown) and columns.

• pristine: TRUE if data is known to be valid and not have NA values.

hdfs.meta 33

• quote: Quoting symbol used for parsing data.

• categorized: TRUE if "factor" columns are stored as indexes.

• trim: TRUE if number of columns in data is less than "dim".

• rdata: TRUE the HDFS is stored as binary RData.

• split: number of records in one binary chunk.

• na.strings: strings that should be treated as NA values.

Value

List of attributes if user attributes to set are not specified in "...", or only names of attributes to
retrieve without values are specified in "...". If only one attribute to retrieve is specified in "...", then
the function returns only its unlisted value. Otherwise, it returns TRUE if all attributes were set. It
returns FALSE if an attribute was not set. See examples.

Note

If no attributes to update are given in ... then returns a list of stored meta attributes. If any
attributes are specified as "name=value" in ... parameter then updates given attributes in HDFS
object metadata.

The "..." parameter can be specified using a vector or CSV string. In all cases it means "Get one or
several attributes". All styles can be mixed and interchanged as needed:

• c("attr_name"[,"attr_name"[,...]])

• "attr_name[,attr_name[,...]]"

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.describe hdfs.attach hdfs.levels

Examples

Not run:
Examples of hdfs.meta invokations.
hdfs.meta(x) # return list of attributes.
hdfs.meta(x, "keyi") # return one attribute value.
hdfs.meta(x, "key.sep", "value.sep") # return 2 attribute values.
hdfs.meta(x, pristine=TRUE) # sets "orch.pristine" to TRUE in HDFS.
hdfs.meta(x, bad_attr=TRUE) # error, unknown attribute.
hdfs.meta(x, custorm_attr=TRUE, force=TRUE) # ok, attribute allowed.

End(Not run)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

34 hdfs.mkdir

hdfs.mkdir Creates a new HDFS directory.

Description

Creates a new HDFS sub-directory in the current working directory, or, if dfs.name includes path
then relative to the current working directory. The newly created directory is empty. This function
is equivalent to the "hadoop fs -mkdir" shell command.

Usage

hdfs.mkdir(dfs.name, overwrite = FALSE, cd = FALSE)

Arguments

dfs.name Name of the new directory to create. The name can include an HDFS path
relative to the current working HDFS directory.

overwrite If TRUE, then will delete all the data in existing directory with the same name.
The default value is FALSE.

cd If TRUE then automatically sets the newly created directory as the current work-
ing directory. The default value is FALSE. See hdfs.cd for more information.

Value

A new HDFS directory absolute path as a string, or, NULL if the new directory was not created.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.rmdir hdfs.cd

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.mv 35

hdfs.mv Moves HDFS directories and files.

Description

Moves an existing HDFS file or directory located at dfs.src path relative to the current working
directory to the HDFS directory specified by dfs.dst. If the destination directory already exists,
then the source object is moved there, preserving its original name. If the destination directory does
not exist then the source file or directory is renamed and optionally moved there. This function is
equivalent to the "hadoop fs -mv" shell command.

Usage

hdfs.mv(dfs.src, dfs.dst, overwrite = FALSE,
force = FALSE)

Arguments

dfs.src HDFS source file or directory name in the current working directory, or its rel-
ative path, or an absolute HDFS-compliant path. See hdfs.cd for more details
about HDFS path specification.

dfs.dst HDFS destination file or directory name in the current working directory, or its
relative path, or an absolute HDFS-compliant path.

overwrite Enable replacing of HDFS directory and/or file if it already exists. By default
overwriting is disabled.

force If TRUE, then disable confirmation of ’*’ moving, does not perform HDFS I/O
check errors, and do not return the result.

Value

TRUE if file was moved successfully, FALSE if there was an error. In case of failure HDFS state
may not be consistent. The destination data may be partially deleted and only a portion of the source
data may be moved. If force is set to TRUE then the function returns the result invisibly.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.cp hdfs.rmdir hdfs.mkdir

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

36 hdfs.ncol

hdfs.ncol Returns number of columns of an HDFS object.

Description

See hdfs.dim for detailed description of its functionality and parameters. This function is a shortcut
for hdfs.dim()[2].

Usage

hdfs.ncol(dfs.id, force = FALSE)

Arguments

dfs.id HDFS object identifier to inspect. This is a special ORCH object returned by
hdfs.attach and other functions accessing HDFS. It either represents a directory
in HDFS, or, is a string with an HDFS-compliant directory path relative to the
current working directory.

force Do not ask confirmation for running a mapReduce job. This parameter must
be set to TRUE if a script is intended to be run in a batch mode, e.g., as an
unattended execution. The force argument implicitly enables silent execution.

Value

Number of columns as an integer value. If the value is unknown and can not be computed, NA is
returned.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.dim hdfs.nrow hdfs.meta

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.nrow 37

hdfs.nrow Returns number of rows of an HDFS object.

Description

See hdfs.dim for detailed description of its functionality and parameters. This function is a shortcut
for hdfs.dim()[1].

Usage

hdfs.nrow(dfs.id, force = FALSE)

Arguments

dfs.id HDFS object identifier to inspect. This is a special ORCH object returned by
hdfs.attach and other functions accessing HDFS. It either represents a directory
in HDFS, or, is a string with an HDFS-compliant directory path relative to the
current working directory.

force Do not ask confirmation for running a mapReduce job. This parameter must
be set to TRUE if a script is intended to be run in a batch mode, e.g., as an
unattended execution. The force argument implicitly enables silent execution.

Value

Number of rows as an integer value. If the value is unknown and can not be computed, NA is
returned.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.dim hdfs.ncol hdfs.meta

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

38 hdfs.parts

hdfs.parts Counts the number of data files in HDFS object.

Description

Lists and returns the number of partitions in the HDFS object denoted by dfs.id. Normally data
files are named as "part-12345" but any file name can be used. Files with names starting with "_"
or "." are excluded unless all argument is TRUE, as they normally hold system information and
ORCH metadata.

Usage

hdfs.parts(dfs.id, all = FALSE, nonzero = FALSE)

Arguments

dfs.id HDFS object identifier to inspect. This is a special ORCH object returned by
hdfs.attach and other functions accessing HDFS. It represents a directory in
HDFS. Alternatively it can be a string with an HDFS-compliant directory path
relative to the current working directory.

all Count all files of the specified HDFS object including system and ORCH meta-
data files. The default is FALSE.

nonzero Count in only non-empty data files. The default is FALSE.

Details

If the HDFS object has no data files then 0 is returned. This indicates that the object exists in the
HDFS file system but its directory is empty. If an HDFS object does not exist, NULL is returned
to indicate that the object is invalid. Note that the object may contain a number of empty data files
and while it has no data (is empty) the number of data files returned will still be > 0.

Value

Number of data files the HDFS object is divided into (normally they are named as "part-12345").
If HDFS object has no data files then 0 will be returned. If HDFS object does not exist then the
function returns NULL.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.size hdfs.ls

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.pull 39

hdfs.pull Copies data from HDFS to RDBMS.

Description

The input object is a HDFS object identifier. The function returns the name of a new table containing
loaded data from HDFS. The name of the table is the same as the name of the HDFS object’s
directory unless redefined by the db.name argument. The data is pulled by underlying drivers (see
details about driver argument) and starts a number of mapreduce jobs. These jobs read data from
HDFS in parallel and push data to the database table.

Usage

hdfs.pull(dfs.id, db.name = NULL, overwrite = FALSE,
sep = .orch.env$val.sep, driver = NULL)

Arguments

dfs.id HDFS object identifier. The HDFS path exported to the database can be speci-
fied as either an absolute path or as a path relative (to the current work directory
in HDFS.)

db.name Optional database table name. If not specified, then the HDFS object name (its
HDFS directory name) is used as a target database table name

overwrite If TRUE, removes an existing database table, otherwise if the table already ex-
ists, the export fails with an error. The default is FALSE.

sep Optional HDFS value fields separator. Use this argument only when exporting
an HDFS directory that was never attached and does not have attached ORAAH
metadata.

driver Choose the RDBMS to HDFS data transfer driver. the default is selected when
an RDBMS connection is established via orch.connect. You can choose a dif-
ferent driver for the data transfer. Available drivers are: "sqoop", "olh".

Details

If orch.connect was invoked in secure mode, then, this API prompts the user to enter the database
password. The password is held encrypted in memory and transferred to an on-disk configuration
file for use by Sqoop or other data transfer driver. This is the way Sqoop/OLH is invoked in general
in batch mode as well. If orch.connect is invoked in non-secure mode (i.e. secure = FALSE),
then the password entered earlier would have been kept encrypted in memory and transferred to
the Sqoop/OLH configuration file on disk. The configuration file is destroyed automatically once
Sqoop/OLH has read it. This is possible because the configuration file is a temporarily-unlinked
file.

Value

Exported database table name that can be used in ore.sync to attach the table to the Oracle R Enter-
prise framework. NULL is returned if any errors are encountered.

40 hdfs.push

Attention

Due to Sqoop/OLH limitations HDFS files without a key or with the key delimiter equal to the
value delimiter can be imported from HDFS to RDBMS. Otherwise hdfs.pull will fail, preventing
any attempts at import.

Attention

There have been several bugs identified in Sqoop 1.4.1 that can cause this interface to fail as it relies
on Sqoop functionality internally. Bugs have been filed against Sqoop. Depending on the version
of the Sqoop installed in your environment the function may fail.

Note

Data transfer is executed synchronously and large datasets can appear to "hang" your R console for
a while. A number of information messages will be reported to the user while the import procedure
is running.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.connect hdfs.push hdfs.put hdfs.get

hdfs.push Copies data from RDBMS to HDFS.

Description

The input object [x] can be of "ore.frame" type, or the Database table name (optionally including
schema), or a full SQL query.The function returns an HDFS object identifier which can be used in
further HDFS/Hadoop function calls. Pushing of data is done by one of the underlying drivers (see
details about [driver] argument). This starts a number of mapReduce jobs that will pull data
out of the database in parallel and store it into a set of files in the HDFS directory identified by
[dfs.name].

Usage

hdfs.push(x, key = NULL, dfs.name = NULL, sep = ",",
overwrite = FALSE, split.by = NULL, driver = NULL)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.push 41

Arguments

x An object of type "ore.frame" representing a table or a SQL query and managed
by Oracle R Enterprise (for more information see ore.frame). This can also
be a character object of length 1 that contains a table name (optionally with
schema name) or a full SQL statement.

key Optionally specifies the key column. It may be specified as column name or as
column numeric index. If key == 0, then empty-key HDFS data is generated
meaning that the key column will contain "" strings.

dfs.name Optional custom name to assign the imported HDFS object. If not specified then
a temporary HDFS object will be generated. This object is deleted at the end of
R session.

overwrite Allows overwriting of the target HDFS object with the same name. Only applies
when [dfs.name] is specified.

split.by Optionally specifies the column to use for data partitioning. This can greatly
improve performance of data import from RDBMS if partitions are uniformly
distributed.

driver Choose the RDBMS to HDFS data transfer driver, the default one is selected
when an RDBMS connection is established via orch.connect. This allows
you to use a different driver for the data transfer. Available drivers are: "sqoop"
and "olh".

Details

If orch.connect is invoked in secure mode, then this API prompts the user to enter the database
password. The password is held encrypted in memory and transferred to an on-disk configuration
file for use by Sqoop or another transport driver. This is also, in general, the way Sqoop is in-
voked in a batch mode. If orch.connect was invoked in [secure] = FALSE mode, then
the password entered earlier would have been kept encrypted in memory and transferred to Sqoop
configuration file on disk. The configuration file is destroyed automatically once Sqoop has read it.
The configuration file is a temporary-unlinked file on Linux.

Value

HDFS object identifier if data was successfully exported or NULL if a transfer error has occurred.

Attention

There have been several bugs identified in Sqoop 1.4.1 that can cause this interface to fail as it relies
on Sqoop functionality internally. Bugs have been filed against Sqoop. Depending on the version
of the Sqoop installed in your environment the function may fail.

Note

Data transfer is executed synchronously and large datasets can "hang" R environment for a while. A
number of information messages will be reported to the user while the import procedure is running.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

42 hdfs.put

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.connect hdfs.pull hdfs.put hdfs.get

hdfs.put Copies data from R in-memory object into HDFS.

Description

Copies data from R in-memory object (data.frame, matrix, vector or list) into the HDFS file system.
All data attributes such as column names, data types, etcetera are stored as ORCH metadata along
side the data itself in HDFS.

Usage

hdfs.put(data, key = NULL, dfs.name = NULL,
overwrite = FALSE, rownames = FALSE,
categorize = FALSE, key.sep = .orch.env$key.sep,
value.sep = .orch.env$val.sep,
digits = .orch.env$digits,
scientific = .orch.env$scientific)

Arguments

x A data.frame (or other supported data type) to export into HDFS.

key Name or index of the column which represent the key value. NULL value (or
-1) indicates key-less data (e.g. rows will contain only values "val1,val2"), ""
value (or 0) indicated empty-key data (e.g. rows will contain values and empty
key "\tval1,val2").

dfs.name Custom name to assign the HDFS object (optional). If not specified, then a
unique temporary name is generated for HDFS object. Temporary HDFS files
are removed at the end of R session.

overwrite Allows overwriting of HDFS objects with the same name. By default overwrite
is disabled for safety of data.

rownames Enables storing of row names as a data column in HDFS alongside with the data
itself if TRUE. Row names are stored as a special last data column and transpar-
ently restored by ORCH framework when reading data back from HDFS.

categorize Store "factor" columns as indexes. This also triggers a mechanism of storing
"levels" as a meta sidecar file alongside the data itself. For more details see
hdfs.levels.

key.sep Key field separator character, The, "\t" character is the default. For uniform
separators, set it to the same value as value.sep. The key separator is stored
in ORCH metadata.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.pwd 43

value.sep Value fields separator character, "," default. For uniform separators set it to the
same value as key.sep. Key separator is stored in ORCH metadata.

digits How many significant digits are to be used for numeric and complex data. The
default, uses orch.options("digits"). Enough decimal places will be used so that
the smallest (in magnitude) number has this many significant digits.

scientific Logical specifying whether elements of a real or complex vector should be en-
coded in scientific format. By default uses orch.options("scientific").

Value

HDFS object identifier if data was successfully transferred into HDFS file system, otherwise NULL
if any transfer error occurs.

Note

You can use hdfs.put instead of hdfs.push to copy data from ore.frame objects, such as database
tables, to HDFS. The table must be small enough to fit in R memory; otherwise, the function fails.
The hdfs.put function first reads all table data into local R memory and then transfers it to HDFS.
For a small table, this function can be faster than hdfs.push because it does not use Sqoop and thus
does not have the overhead incurred by hdfs.push.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.get hdfs.download hdfs.upload hdfs.meta hdfs.levels hdfs.describe

Examples

x <- hdfs.put(cars)
y <- hdfs.get(x)
all(y == cars)
all(names(y) == names(cars))

hdfs.pwd Returns present working HDFS absolute path.

Description

ORCH supports a notion of current working directory in HDFS. Every HDFS path when used with
an ORCH function is considered to be relative to the current working directory. Upon ORCH
startup the current working directory is automatically set to the user’s home in HDFS, which is
"<root>/user/<user>". The HDFS user name is the same as the client’s OS user name. HDFS root
is normally "/", but can be changed via hdfs.setroot.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

44 hdfs.rmdir

Usage

hdfs.pwd()

Value

Present working HDFS absolute path including the HDFS root (see hdfs.root) or NULL if HDFS is
not functional or not connected.

Note

Hadoop has no notion of "current working directory". This concept is entirely implemented and
supported by ORCH only. ORCH closely follows the design of the Unix shell, cd and pwd com-
mands to make navigation and access to HDFS resources easier for an R user.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.cwd hdfs.cd hdfs.root hdfs.ls

hdfs.rmdir Removes an HDFS directory.

Description

Deletes an existing directory and all its files and sub-directories in HDFS relative to the current
working directory. All data and metadata objects stored in or associated with this directory are
deleted. As a result, all associated HDFS object identifiers will also be invalidated. Any ORCH
operations using these invalid identifiers will result in failure.

Usage

hdfs.rmdir(dfs.name, force = FALSE, notrash = FALSE)

Arguments

dfs.name HDFS-compliant directory path relative to the current working directory. Alter-
natively, it can be an HDFS object identifier to be deleted.

force If TRUE, disables confirmation of ’*’ deletion, does not run HDFS I/O check
errors, and does not return the result.

notrash HDFS has a feature to move deleted data to a trash bin. In order to disable
this feature and permanently delete an HDFS object set this argument to TRUE.
Setting the argument to TRUE if an object is deleted from a mapReduce object
due to Hadoop job restrictions.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.rm 45

Value

TRUE if data was successfully deleted or FALSE if any error was detected. In case of failure, the
HDFS state may not be consistent, the data may not be deleted, or only a portion of the data may
be deleted. If force is set to TRUE, the function returns the result invisibly.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.rm hdfs.mkdir hdfs.exists hdfs.ls

hdfs.rm Removes an HDFS object including all its data.

Description

Removes all data associated with the specified HDFS object identifier from HDFS including ORCH
metadata. This invalidates all HDFS object identifiers pointing to this HDFS data folder. Any
ORCH operations using these invalid identifiers will result in failures. This function is equivalent
to the "hadoop fs -rmr" shell command.

Usage

hdfs.rm(dfs.id, force = FALSE, notrash = FALSE)

Arguments

dfs.id HDFS object identifier of the data to be deleted. This is a special ORCH object
returned by hdfs.attach and other functions accessing HDFS. It either represents
a directory in HDFS or, is a string with an HDFS-compliant directory path rela-
tive to the current working directory.

force Set this argument to TRUE to disable confirmation of ’*’ deletion, do not per-
form HDFS I/O check errors, and do not return result.

notrash HDFS has a feature to move deleted data to a trash bin. In order to disable
this feature and permanently delete an HDFS object set this argument to TRUE.
Setting it to TRUE is required if an object is deleted from a mapReduce object
due to Hadoop job restrictions.

Value

TRUE if data was successfully deleted or FALSE if any error was detected. In the event of a failure
HDFS state is not consistent. The data may not be deleted, or only a portion of the data may be
deleted. If force is set to TRUE then the function returns the result invisibly.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

46 hdfs.root

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.rmdir hdfs.exists hdfs.ls

hdfs.root Gets (or sets) ORCH HDFS root directory.

Description

ORCH allows users to set a custom HDFS root directory which is different from default "/". This
allows the creation of an isolated working space for an ORCH user. If Hadoop is running in stan-
dalone mode (normally used to setup a test environment), this function can be used to map HDFS
into one of the local folders.

Usage

hdfs.root(dfs.path)

Arguments

dfs.path Optional new HDFS root absolute path. If specified then the function sets the
new root before returning its values.

Details

Any absolute HDFS path in ORCH is always relative to the current HDFS root, For example, ORCH
path "/a/b" when HDFS root in ORCH is set to "/tmp/hdfs". This actually results in accessing
"/tmp/hdfs/a/b", the absolute path in HDFS. The user is not allowed access to any location above
the HDFS root path. ORCH will error out if such attempt is detected.

Upon startup, ORCH sets HDFS root to "/" if Hadoop is running in distributed or pseudo-distributed
mode. If hadoop is running in standalone mode, the function sets HDFS root to "/tmp/hdfs".

Value

HDFS root directory currently configured in ORCH or NULL if HDFS is not connected or not
functional.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.sample 47

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.setroot hdfs.pwd hdfs.cd

hdfs.sample Samples data in HDFS and returns the sample as an R in-memory
object.

Description

Copies the specified number of arbitrary records (or lines) from an HDFS directory into an R
in-memory object of the type identified by ORCH metadata for this HDFS object. All original R
data attributes like column names, data types, etcetra, are restored if they are specified in the ORCH
metadata. Otherwise, the generic, automatically generated attributes produced by hdfs.attach will
be assigned. For example, attributes may have column names like "val1", "val2", or as defined by
the user (possibly via hdfs.meta).

Usage

hdfs.sample(dfs.id, n = -1000L, level = 5)

Arguments

dfs.id HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS. It either represents a directory in HDFS or,
is a string with HDFS-compliant directory path relative to the current working
directory.

n Number of records (or lines) to sample, default is 1000. It is not guaranteed that
the result will contain exactly this number of lines. Specifying n=0 will return
0 records and should be used to retrieve data structure attributes, such as the
columns names of a data.frame. Specifying a negative value means "at least",
For example, n=-1000L will try to retrive 1000 records or more.

level The number of HDFS part files to sample. Higher numbers assures better and
closer to normal distribution, but this linearly slows down the response time of
the function.

Details

The function is similar to hdfs.get but obtains only a subset of rows (or lines) from an HDFS
directory. Although named "sample", this function does not obtain a truly random sample, where
all rows are equally likely to be selected. hdfs.sample allows a user to obtain a data subset that can
be loaded into R’s memory for viewing or manipulation. Usage of this function instead of hdfs.get
is advised when the HDFS files are too large to fit in R memory.

A Key/value separator is not required for this function, because it is stored alongside the data itself
and is retrieved automatically from its ORCH metadata. This also means that the HDFS directory

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

48 hdfs.setroot

must be attached at least once (via hdfs.attach) before using this function, so the metadata will be
generated if needed.

Value

A data.frame object in memory in the local R environment containing the sampled dataset, or NULL
if the operation fails.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.get hdfs.download hdfs.pull

hdfs.setroot Sets new HDFS root directory in ORCH.

Description

Sets a new HDFS root directory. This feature is specific to ORCH only and does not change
Hadoop’s HDFS behavior in any way. All HDFS paths and operations within the ORCH infras-
tructure are relative to the current HDFS root and the user cannot change current working directory
above its root. For more details see hdfs.root.

Usage

hdfs.setroot(dfs.path)

Arguments

dfs.path An absolute path in the HDFS file system to be set as current HDFS root. If this
argument is not provided then the user’s HDFS home directory will be used as
the root (also set by default at ORCH startup).

Value

Current HDFS root path or NULL if there was an error and root was not set to the new value. This
can happen if the dfs.path path is invalid or does not exist in the HDFS file system.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.size 49

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.root hdfs.pwd hdfs.cd

hdfs.size Returns total size of an HDFS object in bytes.

Description

Inspects the specified HDFS object and returns the total size of all its data files in bytes or in
human-readable form if the units argument is specified. Non-existent HDFS objects will report
size NULL without any error.

Usage

hdfs.size(dfs.id, units = NULL)

Arguments

dfs.id HDFS object identifier to inspect. This is a special ORCH object returned by
hdfs.attach and other functions accessing HDFS. It either represents a directory
in HDFS or, is a string with an HDFS-compliant directory path relative to the
current working directory.

units If specified then the output value is converted into a human-readable form. The
units argument can have any of the following values: "KB", "MB", "GB",
"TB", or "PB".

Value

Total size of the HDFS object in "unit" bytes, or 0, if the object exists in HDFS but does not have
any data. NULL if object does not exist in HDFS.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.parts hdfs.ls

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm
www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

50 hdfs.sync

hdfs.sync Synchronizes ORCH HDFS cache with the Hadoop HDFS file system.

Description

ORCH maintains its own cached mini-snapshot of HDFS in order to minimize requests to HDFS
APIs and to improve response of ORCH functions. In case where the ORCH cache is out of sync
with current HDFS state, this function can be used to reset the ORCH cache and force the re-caching
of HDFS mini-snapshot.

Usage

hdfs.sync(dfs.id)

Arguments

dfs.id HDFS object identifier with which the cache must be synchronized. If this ar-
gument is not specified, then the entire HDFS cache is reset. This is a special
ORCH object that represents either a directory in HDFS, or a string with an
HDFS-compliant path relative to the current working directory.

Details

Currently, only ORCH metadata stored alongside with an HDFS object is cached. This improves
response time of most of the HDFS access API functions.

Value

None.

Attention

This function must be used when an external change of the HDFS object by another user or third
party process is expected to modify its content.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.cache

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.tail 51

Examples

Metadata is cached on write:
x <- hdfs.put(cars)
~0s, metadata is read from the cache:
system.time(hdfs.meta(x))
Delete cache for this object only:
hdfs.sync(x)
~2.5s, metadata is read from HDFS and cached:
system.time(hdfs.meta(x))
~0s, metadata is read from the cache:
system.time(hdfs.meta(x))

hdfs.tail Reads unformatted tail of an HDFS object.

Description

Reads the last n lines of the specified HDFS object and returns it, without applying parsing or
formatting. Due to HDFS design restrictions, the tail is concatenated from the tails of each part file
of the HDFS object, not the real n last lines of an HDFS file. This function is euiqvalent to "hadoop
fs -tail" shell command.

Usage

hdfs.tail(dfs.id, n = 0L)

Arguments

dfs.id HDFS object identifier to get the tail. This is a special ORCH object returned
by hdfs.attach and other functions accessing HDFS It represents a directory in
HDFS. Alternatively it can be a string with an HDFS-compliant directory path
relative to the current working directory.

n Number of tail lines to return. Must be >= 0. If 0 is specified (default value) then
will return a default tail portion of one last part-file. This provides the fastest
possible execution time. The default size is defined by Hadoop’s default "-tail"
command size and normally equals 1KB of the total "raw" data.

Details

The user should know that HDFS is a streaming file system, designed and optimized for streaming
data from the beginning of a file to its end. Returning a tail portion of an HDFS file is not a
common operation and in certain conditions cannot be performed. In such cases, in order to satisfy
[n] condition, ORCH may fall back to reading the tail portions of several part-files in the same
HDFS directory or to reading of head portions of part-files.

Two factors can degrade performance - the number of part files in the input HDFS directory (e.g.
HDFS object) and the size of each part file. Performance approximately linearly degrades with
the increase of number of HDFS data files and with the size increase of each data file. The cutoff
is approximately 100KB. After this point, further file size increase does not significantly change
runtime.

52 hdfs.toHive

Value

Character vector of the specified length n. The length can be less than n if the specified number of
lines cannot be retrieved. If the HDFS directory has no non-empty data files then a 0-size character
vector is returned. NULL is returned if the HDFS object’s directory does not exist or if an error has
occurred.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.head hdfs.sample hdfs.get hdfs.download

hdfs.toHive Converts an ORCH’s HDFS object identifier to a Apache Hive or
Apache Impala table represented by ORE’s ore.frame object.

Description

This function converts an HDFS object identifier in ORCH to a Apache Hive or Apache Impala
table that is represented by an ORE frame object. The returned ore.frame object can be used with
ORE transparency layer in ORCH.

Usage

hdfs.toHive(dfs.id, table = NULL)

Arguments

dfs.id HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions. It either represents a directory in HDFS or can be a string
with an HDFS-compliant path relative to the current working directory.

table A character string representing the target Apache Hive or Apache Impala table
name. If table is NULL (default), a table with a temporary name is created.
The table is dropped at the end of the R session or when the ore.frame associated
with the table is garbage collected. If the table needs to be preserved across
sessions, a non-NULL table argument must be passed.

Value

Returns the ore.frame object representing the Apache Hive or Apache Impala table.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.toHive 53

Attention

ORE-HIVE supports factor types within R but, in Apache Hive or Apache Impala, the factor
columns, are of the "string" type. If the input has one or more "factor" columns, they will be
automatically changed to "character" type without changing any values. In order to preserve orig-
inal values, the user needs to de-factorize the input data first converting integer values to strings
before calling hdfs.toHive. Refer to the ORCH manual for supported ORE-HIVE types.

Attention

HDFS datasets that use different delimiter for the key column and value columns cannot be con-
verted into Apache Hive tables because they use uniform delimiters only. User must convert the
dataset into a uniform delimited representation before passing it to hdfs.toHive.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.fromHive

Examples

Upload "cars" dataframe to HDFS.
x <- hdfs.put(cars, key=NA)

Create a HIVE table corresponding to x.
y <- hdfs.toHive(x)

Create a HIVE table named cars_temp.
z <- hdfs.toHive(x, "cars_temp")

Print the values.
print(y)
print(z)

Remove created Hive tables.
ore.drop(table="cars_temp")
hdfs.rmdir(x)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

54 hdfs.toRData

hdfs.toRData Converts an HDFS text object into HDFS binary object.

Description

This function allows the user to convert a text HDFS data object into ORCH’s proprietary binary
format based on R’s RData binary format. It will execute a mapReduce job that reads an HDFS
directory attached to ORCH as HDFS object and containing text files (see hdfs.attach). It outputs
the same data, but in the ORCH-specific binary format.

Usage

hdfs.toRData(dfs.id, out.name = NULL, overwrite = FALSE,
parts = NULL, split = NULL, silent = FALSE)

Arguments

dfs.id HDFS object identifier of the input data to be converted. This is a special ORCH
object returned by hdfs.attach and other functions. It either represents a directory
in HDFS or can be a string with an HDFS-compliant path relative to the current
working directory.

out.name Output HDFS directory name or an HDFS object identifier of the output con-
verted binary data. Note that the output directory must not exist otherwise the
function will fail. See overwrite for more details. If the output directory is
not specified a temporary directory is created in HDFS "/tmp".

overwrite Allows overwriting the output HDFS directory if it already exists under the same
name. By default, overwrite is disabled for safety of data manipulations.

parts The number of desired output partition files. This option directly controls the
size of each "part" file, which approximately equals the total output size/number
of "part" files. The function attempts to satisfy the specified requirement, but
with no guarantee, because of Hadoop jobs execution restrictions. If this argu-
ment is not specified, the function relies on Hadoop’s default behavior and either
generates a part file per each input part file or an HDFS split, whichever is of
lesser size.

split Maximum number of records per each RData payload. If number of records in
the input text "part"-file is larger than the specified split size then the output
binary "part"-file will have multiple data.frame structures with split records
or less in each data.frame stored in RData format. This allows ORCH to read
the data.frame by chunks, thereby limiting memory usage and improving over-
all performance. Refer to map.split and reduce.split configuration
options of mapred.config.

silent Do not print information messages to console. Do not print final attach summary
at the end of the run. Do not ask to rebuild the binary data if the user attempts
to change the splitting or other binary data

Details

The binary format is readable by ORCH mapReduce R jobs only and gives the advantage of the
fastest achievable data read and write throughput in the jobs. Data can be loaded directly into R
memory in the mapper or reducer, without any parsing or conversion of text into R objects.

hdfs.toRDD 55

Binary R data can be partitioned into the specified number of "part" HDFS files and each "part" file
can be split internally into several binary RData chunks of requested size (see split argument).
When running a mapReduce job with the binary RData input the data is loaded by the chunks.
Splitting "part" HDFS files limits memory usage and improves performance if the mapper or reducer
function does not need to read the whole input data at once.

Value

HDFS object identifier if data was successfully converted to binary, otherwise NULL if any conver-
sion error occurs.

Note

Output of the function is always pristine. If input HDFS data is not pristine the function will remove
all unclean and invalid rows from the dataset and output clean filtered data only.

See Also

hdfs.fromRData

hdfs.toRDD Converts an HDFS object into Spark’s RDD object.

Description

The function consumes a standard ORCH HDFS object and returns a compatible HDFS object that
points to the same dataset in HDFS. The HDFS object also contains a reference to an external Spark
RDD object that was created out of this HDFS object. The returned RDD object can be used in all
ORCH functions the same way as any non-RDD attached HDFS objects. In addition it can be used
in Spark-enabled analytics and Spark-specific APIs.

Usage

hdfs.toRDD(dfs.id, cache = FALSE)

Arguments

dfs.id A non-attached to Spark HDFS object identifier. If the object was attached pre-
viously, it is reused.

cache Forces caching of the HDFS data into Spark’s memory.

Value

HDFS object identifier with attached Spark RDD object.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

56 hdfs.upload

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

spark.connect

hdfs.upload Uploads a local file or directory into HDFS.

Description

This is the simplest and fastest possible way to transfer data to HDFS from local storage. It just
copies a local file or replicates a local directory into HDFS directory. By default if dfs.id
and dfs.file are not specified, then the target HDFS directory receives a unique ID and the
HDFS file(s) are named as "part-12345". If any of the uploaded local files are larger than the
split.size argument (in bytes), then the file automatically split into several smaller "part" files.

Usage

hdfs.upload(filename, dfs.id = NULL, dfs.file = NULL,
overwrite = FALSE, header = FALSE,
split.size = .orch.env$split.size, attach = TRUE, ...)

Arguments

filename Local file names or directory names as a vector to put to HDFS. If a directory
is specified then all files in this directory are uploaded into HDFS. You can mix
file and directory names.

dfs.id Name of the target HDFS directory, or the HDFS path relative to the current
working directory, or an HDFS object identifier. If the directory does not exist
in HDFS it is created. If it exists, then the overwrite parameter must be
considered.

dfs.file Vector of strings that specifies the desired names of files uploaded to HDFS. Its
length must either be the same as number of files to be uploaded into HDFS or
1. If 1, the string is used as a prefix for every HDFS file name. If not specified
or NULL, then the HDFS file is in the form "part-12345".

header TRUE if local files have a header in the first line which should be removed
before uploading to HDFS. You can also specify the number of rows to remove
by assigning a numeric value to this argument.

overwrite Enable replacing of HDFS directory and/or file if already exist. By default,
replacing is disabled.

split.size Maximum size in bytes of each HDFS "part" file or 0 to disable splitting. By
default, it is set to 10MB.

attach Automatically attach the uploaded file as an HDFS object. See hdfs.attach for
more details.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.valuesep 57

... Parameters passed to hdfs.attach. Used only if attach == TRUE. See hdfs.attach
for more details.

• key.sep Key field separator character, ORCH system "\t" by default.
• value.sep Value field separator character, ORCH system "," by default.
• trim TRUE to ignore trailing empty fields. If HDFS data is suspected to

have empty trailing columns like "„," this option allows to detect and ex-
clude such redundant columns for the data description in metadata and its
structure.

• data.frame If TRUE enforces the class of the attached HDFS data to be
"data.frame". Otherwise the class can be automatically recognized as "vec-
tor", or "matrix", or "data.frame".

• silent Do not print information messages to console. Do not print final
attach summary at the end of the run.

Details

Delimiters key.sep and value.sep are specified only as a "hint" . ORCH copies the local files
as-is and automatically creates its metadata with the specified delimiters. The content of the file
copied into HDFS will not change. If you specify an incorrect set of delimiters, then the attach of
the copied data fails. If you do not specify the delimiters, then the current ORCH defaults are used.

Value

HDFS object identifier of the loaded data if attached. The HDFS absolute path to the uploaded data
if it is not attached. NULL if an error occurs.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.download hdfs.put hdfs.get

hdfs.valuesep Gets or sets default value fields separator.

Description

Returns the currently configured value or sets a new value for the system wide default value sepa-
rator. The value separator is used in HDFS text based files to separate individual value fields from
each other. Examples of input data that use the value separator are:

• key\tvalue1<values_separator>value2... Two values
• key\tvalue Key and one value, no value separator.
• value One value only, no separators at all.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

58 hdfs.write

Usage

hdfs.valuesep(value.sep)

Arguments

value.sep Optional. A new value separator value to set. Must be single character only. If
not specified then the function returns the value that is currently set.

Details

Keep in mind that the value separator can be altered at the time of the data write to HDFS for each
specific object. The value separator is stored in the HDFS object’s metadata. The default system-
wide value is not used at the time of reading this object back from HDFS into ORCH. The default
value is used only when the user does not specify the value separator explicitly in the function call
for any of the following operations:

• Writing a new dataset to HDFS.

• Attaching existing HDFS data which does not have any metadata.

• Attaching existing HDFS data with metadata missing value separator.

Value

Currently configured system-wide value separator. Upon ORCH startup it is set to a comma char-
acter ",".

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.keysep hdfs.delim

hdfs.write Writes a dataframe as a CSV file.

Description

This function is used to write a Spark dataframe as a Comma Separated Values (CSV) file to HDFS,
a local file system, or any other Hadoop-compliant abstract file system, which is enabled in the
Hadoop configuration. It is also used to write the predictions created using Spark analytics in
ORAAH, which include:

• orch.lm2

• orch.glm2

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

hdfs.write 59

• orch.neural2

• orch.ml.logistic

• orch.ml.linear

• orch.ml.lasso

• orch.ml.ridge

• orch.ml.svm

• orch.ml.gmm

• orch.ml.kmeans

• orch.ml.dt

• orch.ml.random.forest

• orch.ml.gbt

• orch.elm

• orch.helm

Written data in HDFS will preserve all metadata required for retreiving it later from within ORAAH.
In order to access written data in an R session you can use hdfs.get.

Usage

hdfs.write(data, outPath, overwrite = FALSE)

Arguments

data Distributed model matrix object.

outPath Destination directory relative to the currently set user’s HDFS root path. See
link{hdfs.root} function for more information.

overwrite Whether to overwrite the destination directory if it exists. Default is FALSE.

Value

HDFS identifier object which points to data in HDFS, if data was written.

Attention

If your Spark Dataframe has non-atomic columns (Vector type), once written using hdfs.write
cannot be read using hdfs.get. However, they can be read forcefully but altering the meta data
using hdfs.meta.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

60 is.hdfs.id

See Also

hdfs.attach hdfs.get hdfs.head

Examples

data <- hdfs.put(iris)
lm_model <- orch.lm2(Petal.Length ~ Sepal.Length + Petal.Width, data = data, verbose = FALSE)
pred <- predict(lm_model, data, supplemental=c("Sepal.Length", "Petal.Width"), verbose = FALSE)
dfs.id <- hdfs.write(pred, outPath = "destination", overwrite = TRUE)
head(hdfs.get(dfs.id))
hdfs.rm(dfs.id)

is.hdfs.id Tests if an R object is interpretable as HDFS object identifier.

Description

Verifies if the R object specified by x contains an ORCH type HDFS object identifier. This is a
special ORCH object returned by hdfs.attach and other functions accessing HDFS. It represents a
directory in HDFS. Returns TRUE if x contains an HDFS object identifier, otherwise FALSE.

Usage

is.hdfs.id(x)

Arguments

x An R object of length 1, not NULL.

Value

TRUE if x is an "dfs.id" type object, FALSE otherwise

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.id hdfs.attach

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

is.rdd.id 61

is.rdd.id Tests if an R object is interpretable as an HDFS object identifier and
is attached to Spark containing corresponding Spark’s RDD object.

Description

Verifies if the R object specified by x contains an ORCH type HDFS object identifier. This is a
special ORCH object returned by hdfs.attach and other functions accessing HDFS. It represents a
directory in HDFS.

Usage

is.rdd.id(x)

Arguments

x An R object of length 1, not NULL.

Details

In addition tests that the HDFS object was attached to a Spark session and contains a corresponding
Spark RDD object. This is a special ORCH object returned by hdfs.toRDD function which can be
used after an HDFS object is attached with hdfs.attach.

Returns TRUE if x contains an HDFS object identifier which is attached to Spark’s session, other-
wise FALSE.

Value

TRUE if x is of HDFS object identifier type and attached to the current Spark session, otherwise
FALSE.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.attach hdfs.toRDD

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

62 mapred.config

mapred.config Hadoop’s mapReduce job configuration class.

Description

This class contains a number of advanced configuration options for adjusting and fine-tuning a
mapReduce job launched with hadoop.run or hadoop.exec ORCH functions. These are useful for
cases where the out-of-box ORCH job setup is not satisfactory.

Slots

job.name: Name of the mapReduce job. If the name is not specified then Hadoop’s default
job_ID is used. Tip: assign a meaningful name. This will help you to locate your job in the
Hadoop execution logs if needed.

map.tasks: Number of map tasks to run in the job. This option directly sets Hadoop’s property
"mapred.map.tasks". This is only a hint for Hadoop and the actual number of mappers run
may be less or more if Hadoop determines that another setting is optimal.

reduce.tasks: Number of reduce tasks to run in the job. This option directly sets Hadoop’s
property "mapred.reduce.tasks". This is a hint for Hadoop and the actual number of reducers
run may be less or more, based on Hadoop’s determination.

min.split.size: Changes HDFS split size which is by default equal to the HDFS block size
(typically 64MB). Split size indirectly controls the number of mappers and reducers launched
by Hadoop, because it defines the minimum size of data given to a map or reduce task. This
option sets Hadoop’s property "mapred.min.split.size".

task.timeout: Maximum time in seconds a map or reduce task is allowed to run before it is
force killed by Hadoop. The dfault value is 600 seconds. This option sets Hadoop’s property
"mapred.task.timeout".

skip.na.recs: This option enables a cleanup procedure in the ORCH driver. Any input record
containing NA in any of its fields is removed and the mapper and reducer user’s function
receives a clean dataset. This is useful when user’s R code does not handle NA correctly.

map.valkey: Include keys as part of values for mapper. When a dataset is copied into HDFS
one of its data columns can be used as a key. However, in this case, the values provided to a
mapper function do not have key values. If the user’s code expects the original data structure
with key column present in values, then this option should be enabled.

map.filter: Works in conjunction with map.valkey and indicates to the ORCH driver that
the mapper output should have exactly the same structure as the input provided to it. The only
operation it performs is filtering of some of the records. If map.valkey is enabled and keys
are inserted in values, then these are automatically removed from the mapper output.

reduce.valkey: Include keys as a part of the values for the reducer. When a dataset is copied
into HDFS, one of its data columns can be used as a key. In this case, values provided to a
reducer function will not have key values. If the user’s code expects the original data structure
with the key column present in values, then this option should be enabled.

reduce.filter: Works in conjuction with reduce.valkey and indicates to the ORCH
driver that the reducer output should have exactly the same structure as the input provided
to it. The only operation it performs is filtering of some of the records. If reduce.valkey
was enabled and key was inserted in values, then filter automatically removes it from the
reducer output.

map.input: R data type name expected by user’s map function as one of the following values:

mapred.config 63

• "data.frame": Native ORCH data type. Input data can have different types of columns.
• "matrix": Input data is converted into matrix, if any column is "character" then all values

in the matrix are converted into "character" data type. Otherwise, the usual coercion
hierarchy (logical < integer < double < complex) is used, i.e., all-logical data frames will
be coerced to a logical matrix, mixed logical-integer will give an integer matrix, etcetera.

• "vector": Input data is converted into a vector on row-by-row basis. E.g. c(row1-col1,
row1-col2, ..., row2-col1, ...). The same data type conversion rules as for "matrix" input
types are applied.

• "list": Input data is converted into a list on row-by-row basis. E.g. list(list(row1-col1,
row1-col2, ...), list(row2-col1, ...), ...). All data types are preserved. This input mode
should be used only for backward compatibility of pre ORCH-2.1 scripts or for unstruc-
tured data where field number and types are different from row to row.

map.output: Definition of the mapper output format in the form of data.frame. The user’s map-
per function can output via orch.keyvals or orch.keyval an arbitrary data structure. For ORCH
to correctly configure the Hadoop job and its data stream parser for running the reduce job
(or in case of map-only job to store ORCH metadata alongside with output HDFS dataset) it
needs to know its structure upfront. If map.output is not specified then ORCH assumes
that mapper output has the same structure as input data. A template must be provided in the
following form:

• template := data.frame([<columns>])
• columns := [key,]<value>[,<columns>]
• key := key=<key_type>
• key_type := NA | "none" | R scalar object
• value := <value_name>=<value_type>
• value_type := "character" | "factor" | R scalar object

Specification data.frame(key=NA) is a special case and only tells the framework that the map-
per output will be key-less, but it does not specify the format. For example, if a mapper writes
a data.frame with no key column, an integer column "a", a numeric column "b" and a character
column "c", in that order, then map.output=data.frame(key=NA, a=1L, b=1.0, c="a")

map.split: Number of records to supply at one time to a mapper. In order to limit memory
usage and prevent R running out of memory, the user can set an upper limit to the number
of rows that the ORCH driver can supply to a user’s mapper function at one time. The last
invocation may have fewer rows due to split boundary. Values accepted:

• >0: Upper limit. An in-memory buffer is used to accumulate the required number of
records and is released each time a chunk of data is given to the mapper.

• -1: No limit, give all data to the mapper. All input data is accumulated in memory,
converted into the target data type and then given to the mapper.

• 0: Give the same data size as an ORCH read buffer. This is a pass-through mode that
assures the lowest memory usage, but in this mode there are no guarantees about the size
of data given to the mapper, because it can range from 1 to all input rows.

map.eos: Send the End Of Stream (EOS) signal to a user’s mapper function after all data has
streamed in and is given to the function. The very last invocation of the mapper is with the
NULL key and NULL values, indicating the EOS condition. This is useful if the mapper must
perform special actions or output specific data at the very end.

reduce.input: R data type name expected by user’s reduce function. It can have one of the
following values: "data.frame", "matrix", "vector", "list". For more detail see map.input
definition.

reduce.output: Definition of the reducer output format in a form of data.frame.The user’s re-
ducer function can output (via orch.keyvals or orch.keyval) an arbitrary data structure. For

64 mapred.config

ORCH to correctly configure the Hadoop job and store the ORCH metadata alongside the
output HDFS dataset it must know the structure up front. If reduce.output is not spec-
ified then ORCH will samples the output data and automatically attaches it, which results in
the generation of the ORCH metadata. For more details, see the map.output definition .
Specification data.frame(key=NA) is a special case and only tells the framework that reducer
output will be key-less, but does not specify the format.

reduce.split: Number of records to supply at one time to a reducer. In order to limit memory
usage and prevent from R running out of memory a user can set an upper limit to the number
of rows that the ORCH driver can supply to the user’s reducer function at one time. The last
invocation may have fewer rows due to the split boundary limitation. Note that if there are
more values with the same key than the reduce.split limit, then key block is split into
parts and the reducer function must correctly handle duplicated key blocks. For more detail
see the map.split definition.

reduce.eos: Send the End Of Stream (EOS) signal to a user’s reducer function after all data
is streamed in and given to the function. The very last invocation of the reducer will be with
NULL key and NULL values, indicating the EOS condition. The purpose of this configuration
setting is to handle the scenario where the number of rows per key is too large to fit in the
reducer memory. This setting allows the reduce code to deal with chunks of rows at a time,
with an EOS flagging the end of input.

verbose: Produce verbose Hadoop execution log. This option directly sets Hadoop’s command
line argument "-verbose".

hdfs.access: Enables ORCH usage of all "hdfs." commands inside of mapReduce job. This
allows users to read/write and perform any other HDFS file system manipulation normally
available to a user in an ORCH client, but inside of a server-side mapper and reducer user’s
function. By default, the current working HDFS directory in every mapper and reducer is set
to the same path as it is in the ORCH client at the time that the Hadoop job is launched.

output.quoted: Indicates that the output of the mapReduce job uses quoted notation and also
specifies the quoting character. For instance in output.quoted = "’" this means that data
can contain records such as "a,’b,c’,d", where ’b,c’ is one field. If quoting is not set correctly ,
then the output data may not be parsed when it is read back in ORCH or in another mapReduce
job. The value is stored in ORCH metadata alongside the main dataset in HDFS. If this is a
map-only job, then the user’s mapper function output is considered as quoted, otherwise this
is applied to the user’s reducer output.

output.pristine: Tells ORCH that output of the mapReduce job is expected to be "pristine".
The definition of "pristine" data is that when every character value in each field stored in HDFS
is converted to its column data type as specified in ORCH metadata. It does not produce an NA
result except for the special values "NA" and "". For example, if a column type is "numeric"
and if there is any empty value or a value not convertible to a numeric form in its data, then
the entire dataset is not considered "pristine". Having the dataset in "pristine" mode greatly
improves data read and parse performance in ORCH mapReduce jobs. But specifying a non-
conforming dataset as "pristine" results in Hadoop job execution failure. If this is a map-only
job, then the user’s mapper function output is considered "pristine", otherwise, the user’s
reducer output is marked as pristine.

output.key.sep: Output key field separator character. The "\t" character is the default. For
uniformity in separators, set it to the same value as output.value.sep. The key separator
is stored in ORCH metadata. If this is a map-only job then this setting is applied to the user’s
mapper function output, otherwise it is applied to the user’s reducer output.

output.value.sep: Output value fields separator character. The "," character is the default
. For uniformity in separators, set it to the same value as output.key.sep. The value
separator is stored in ORCH metadata. If this is a map-only job, then this setting applies to
the user’s mapper function output, else it applies to the user’s reducer output.

mapred.config 65

mapred.quoted: Indicates that output of the user’s mapper uses quoted notation and specifies
the quoting character at the same time, e.g. mapred.quoted = "’". This value is used only
to parse data correctly in subsequent reduce jobs and is not stored in ORCH metadata. If this
is a map-only job, then the argument is ignored. For more detail, see the output.quoted
definition.

mapred.pristine: Tells ORCH that the output of the user’s mapper is expected to be "pris-
tine". This value is used only to parse data correctly in the reduce that follow and is not stored
in ORCH metadata. If this is a map-only job then it is ignored. For more detail, see the
output.pristine definition.

mapred.key.sep: Key field separator character between map and reduce jobs. The "\t" charac-
ter is the default. For uniformity in separators, set it to the same value as mapred.value.sep.
This value is used only to parse data correctly in reduce jobs that follow and is not stored in
ORCH metadata. If this is a map-only job then this setting is ignored. For more detail, see the
output.key.sep definition.

mapred.value.sep: Value field separator character between map and reduce jobs. The ","
character is the default. To maintain uniform separators set it to the same value as mapred.key.sep.
This value is used only to parse data correctly in subsequent reduce jobs and is not stored in
ORCH metadata. If this is a map-only job then, setting is ignored. For more detail, see the
output.value.sep definition.

direct.call: This option works only if input data is in RData binary format, otherwise the op-
tion is ignored by the ORCH driver. With this option set to TRUE, the ORCH driver bypasses
any input caching, data splitting and type conversion and directly passes the data as it is stored
in RData to the user’s mapper or reducer. With this option, the user loses the control of the
data size and type input to the mapReduce callbacks, but gains the fastest throughput.

queue: Name of queue where mapReduce job will be queued. If not specified the job will be
queued to default mapReduce Job queue.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hadoop.run hadoop.exec

Examples

Not run:
hadoop.run(

data = dfsRes,
mapper = function(k,v) {orch.keyvals(NULL,v+1)}
reducer = function(k,v) {orch.keyvals(NULL,v+1)}
config = new("mapred.config",

job.name = "greatest job ever!",
map.tasks = 10,
reduce.tasks = 10

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

66 ORCH_CLASSPATH

more config options
))

End(Not run)

ORCH_CLASSPATH ORCH system control environment variable.

Description

You can set this ORCH environment variable before starting R and loading the ORCH library.
It enables you to set the CLASSPATH used by ORAAH client’s Java Virtual Machine (JVM).
Setting this environment variable overrides the default CLASSPATH environment value. So, if both
ORCH_CLASSPATH and CLASSPATH environment variables are set, then ORAAH prioritize use
of ORCH_CLASSPATH. Also, Wildcard characters are supported. For example, having a path
/usr/lib/hadoop/lib/*.jar in ORCH_CLASSPATH or CLASSPATH will add all jars
from /usr/lib/hadoop/lib to rJava JVM’s CLASSPATH.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

ORCH-envvar ORCH_JAVA_XMX

Examples

Not run:
csh: setenv ORCH_CLASSPATH "/usr/lib/hadoop/lib/*.jar:/usr/lib/spark/*.jar"
bash: export ORCH_CLASSPATH="/usr/lib/hadoop/lib/*.jar:/usr/lib/spark/*.jar"

End(Not run)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.connected 67

orch.connected Checks if ORAAH is connected to Oracle Database.

Description

Checks if ORAAH is connected to Oracle Database.

Usage

orch.connected()

Value

TRUE if ORAAH is connected to Oracle Database, otherwise FALSE.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.connect orch.reconnect orch.dbinfo

orch.connect Establishes a connection to Oracle Database.

Description

This function connects ORAAH with an instance of Oracle Database. All following database import
and export operation are performed using this connection. After the connection is established it is
validated by reading the USER variable from the database. It displays connection attributes and
error messages if a problem is detected. If the user password is not supplied , it prompts for the
password at connection time and each time a connection with database is required, (i.e., when
invoking hdfs.push and hdfs.pull).

Usage

orch.connect(user, sid, host, password = NULL,
port = 1521, pdb = NULL, secure = TRUE,
driver = "sqoop", silent = FALSE, dbcon = NULL)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

68 orch.connect

Arguments

user The database user name.
sid Oracle System ID (SID) that is used to uniquely identify a particular database

on a system running Oracle Database in non-CDB mode.
pdb Oracle Pluggable Database’s service name that uniquely identifies a particular

PDB in the CDB database on a system. If [pdb] is not specified, then the
Oracle database is considered to be running in non-CDB mode and the [sid]
is used for database connection.

host The host name or IP address of the database server that is the target of the con-
nection.

password The database password (optional). If not specified, then the user is prompted to
enter the password.

port The database server connection port. The default is 1521.
secure Chooses ORAAH to Database connection mode. In secure mode, ORAAH does

not store the password and the user is prompted for the password at each attempt
to access the database. The default setting is TRUE.

driver Specifies the database to HDFS data transfer driver. The "sqoop" driver is the
default. Available drivers are: "sqoop", "olh".

silent If TRUE, does not print connection information to the R console. Otherwise, the
user, host, port and SID/PDB of the established connection are displayed. The
default setting is FALSE.

dbcon Provides an alternative way to specify all connection parameters as a single
orch.dbcon object. See orch.dbcon for more details.

Details

By default, [secure] is set to TRUE which means that the user is always prompted for the pass-
word. In the secure mode, the password is requested for every attempt to connect to a database.
The [secure] = FALSE mode is intended for testing purposes. In this mode, the password is
encrypted in memory and subsequent APIs that require this password will not prompt the user to
enter password each time. Be sure to set secure to TRUE in production environments.
If there is a connection failure or any other errors, the connection is rolled back to the connection
established prior to calling this function.

Value

TRUE if the connection was successfully established and validated. FALSE if the connection failed.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.disconnect orch.reconnect orch.dbcon

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.create.parttab 69

orch.create.parttab
Creates a partition Hive table from hdfs id or a Hive ore.frame

Description

This function is used to create a partitioned table from an ORCH-HDFS file or ORE-HIVE ore.frame
based on named partitioned columns provided as input.

Usage

orch.create.parttab(input, partcols, parttab = NULL)

Arguments

input This can be one of the following:

1. The ORCH HDFS identifier representing the input HDFS file
2. An ore.frame object representing a Hive table

partcols Vector of column names in the input to be used as partitioned columns. partcols
cannot be NULL or missing.

parttab Optional argument for the partitioned Hive table name. If this argument is
skipped, then a partitioned Hive table is created with a temporary name, which
is dropped at the end of the session.

Details

The goal of this functions is to partition input based on the partition columns using Hive. The
partitioned directories returned can be used for further ORCH analytical processing (e.g., model
building etc.).

Value

This function returns a list of dfs identifiers corresponding to all the partition directory locations in
the partitioned Hive table. Each of the list elements can be used as an input to hdfs.attach for
further ORCH processing.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

Examples

Create a HIVE table
library(MASS)
ore.create(cement, table="cmnt")

do filtering and projection on the input
filtered_x <- cmnt[cmnt$x1 > 7 & cmnt$x4 < 45,]
filtered_x <- filtered_x[, c('x1', 'x2', 'x3')]

70 orch.datagen

two column partitioning
part_dirs <- orch.create.parttab(filtered_x,

partcols = c("x3","x1"), "cmnt_parttab")

print the list of partitioned directories
print(part_dirs)

print the named partitioned table
print(cmnt_parttab)

put iris data set into HDFS
iris.dfs <- hdfs.put(iris, key=NA)

partition the above iris data set
part_dirs <- orch.create.parttab(iris.dfs, partcols=c("Species", "Petal.Width"))

print the list of partitioned directories
print(part_dirs)

print the data in the first partition
hdfs.get(part_dirs[[1]])

orch.datagen ORCH’s data generator.

Description

This function is used to generate an HDFS dataset with specific data characteristics for testing of
the ORCH functionality as well as any user-defined mapReduce code. Generates a dataset of ap-
proximate data.size size GB with numeric.col.count numeric (floating point) columns,
integer.col.count integer columns, factor.col.count categorical columns, and character.col.count
string columns.

Usage

orch.datagen(data.size = 1L * GB, numeric.col.count = 0L,
integer.col.count = 0L, factor.col.count = 0L,
character.col.count = 0L, numeric.mean = 0,
numeric.sd = 1,
integer.sample.size = .Machine$integer.max,
integer.sample.zero = 0L, factor.levels = 5L,
character.length = 80L, character.length.range = 10L,
part.size = 0L,
parts = if (part.size == 0L) max(10L, data.size/(10 * G.)) else 0L,
row.pattern = NULL, percent.na = 0, keys = 0L,
key.sep = NULL, value.sep = NULL, out.name = NULL,
overwrite = FALSE, task.timeout = -1L)

orch.datagen 71

Arguments

data.size Size of the data (in bytes) to be generated. Note, this number is used to approx-
imate the number of rows in the dataset using the other parameters. The output
dataset is close to the value of data.size. Default value is 1GB.

numeric.col.count
Number of numeric (floating point) columns in the dataset.

integer.col.count
Number of integer columns in the dataset.

factor.col.count
Number of categorical (factor) columns in the dataset.

character.col.count
Number of string (character) columns in the dataset.

numeric.mean Generated numeric values mean, by default 0.

numeric.sd Generated numeric values standard deviation, by default 1.
integer.sample.size

Generated integer values sample size, by default max integer value.
integer.sample.zero

Generated integer values 0-value, by default 0.
factor.levels

Number of level of the generated factor values.
character.length

Generated string values length, by default 80.
character.length.range

Generated string values range of length, by default 10.

part.size Required size of each "part"-file in the output dataset. Setting this parameter
will configure number of mappers to be run by the ORCH datagen mapReduce
job. Note, this parameter is used as a hint to the Hadoop framework. The actual
number of mapper tasks launched might be different.

parts Required number of "part"-files in the output dataset. Setting this parameter
will configure number of mappers run by the ORCH datagen mapReduce job.
NOTE: this parameter is used as a hint to the Hadoop framework. The actual
number of mapper tasks launched may be different.

row.pattern This argument can be used in conjunction with numeric.col.count, integer.col.count,
factor.col.count, and character.col.count to specify the order
of the columns. It can also be used by itself, which automatically sets number
of columns of each type. This is a string or a vector of characters where each
character denotes a columns type:

• n: numeric
• i: integer
• f: factor
• c: character

percent.na Percent of values (cells) in the generated data that needs to be missing (NA). The
generated data will have approximately percent.na of the total values as NA.

keys If not 0, then a key column is generated with a number of distinct integer values
specified by this parameter.

key.sep Key field separator character. The default system-wide value is used if this ar-
gument is not specified (normally "\t").

72 orch.dbcon

value.sep Value field separator character. The default system-wide value is used if this
argument is not specified (normally ",").

out.name HDFS directory name or an HDFS object identifier of the output data. Note that
the output directory must not already exist when the Hadoop job is submitted,
otherwise the job fails. If the output directory is not specified, a temporary
directory is created in HDFS "/tmp".

overwrite Allows overwriting of HDFS objects with the same name. By default, overwrite
is disabled for safety of data. The default is FALSE.

task.timeout Maximum time in seconds a map or reduce task is allowed to run before it is
force killed by Hadoop. The default value is 600 seconds.

Details

The number of records in the generated dataset is calculated using the number of columns and
approximate size of each column type when written in HDFS.

The value of numeric columns are generated using the normal distribution generator function rnorm
with numeric.mean and numeric.sd parameters in R. The categories of the factor columns
are randomly selected from levels 1to factor.levels. Integer values are generated using the
sample function with integer.sample.size parameter, and are then adjusted.

When percent.na is non-zero, a set of "size equal to number of rows" is created for each column.
This set has about percent.na percent values missing (NA). A random sample is then selected
from this set.

As a result of the sampling techniques and datatype size approximations used for data generation,
the generated dataset approximates the input parameters data.size and percent.na.

Value

HDFS identifier pointing to the directory containing the generated data set. Or, NULL if the mapRe-
duce job has failed or if any other error occurs.

orch.dbcon Stored database connection object.

Description

This object stores all RDBMS credentials needed to establish a connection to the database. The
object provides a simple, compact way for the user to switch among several databases without
entering credentials each time there is a attemp to re-establish the connection. The current database
connection object can be retrieived using the function orch.dbcon. This object can be reused
to reconnect to the database with the orch.[re]connect() function. If there is no connection to the
database, then orch.dbcon() returns an empty dbcon object.

Returns current Database connection object.

Usage

orch.dbcon()

orch.dbcon 73

Value

Current Database connection object. The object can be used to connect to a database once again with
orch.reconnect function. If the database is not connected then returns an empty orch.dbcon
object.

Slots

ok: TRUE if the connection is established and validated.

host: Hostname, URL, or IP address of the connected RDBMS server, or "" if not connected.

port: Server port number (default 1521).

sid: Oracle system ID (SID) that uniquely identifies a particular database on a system, or "" if not
connected or if connecting to an Oracle Database running in CDB mode.

pdb: Oracle Pluggable Database’s service name that uniquely identifies a particular PDB in a CDB
database on a system. If pdb is not specified, the Oracle database is considered to be running
in non-CDB mode and sid is used for database connection.

user: The database user name, or "" if not connected.

passwd: The database user password, or "" if either not connected or connected in a secure mode.

secure: The ORCH to RDMBS connection mode. In secure mode, ORCH does not store the
password and the user is prompted to enter a password on each attempt to access the RDBMS.
The default setting is TRUE.

drv: Hadoop driver ("sqoop" or "olh") to be used for establishing the connection. The same driver
is used for data transfer when hdfs.push and hdfs.pull are invoked.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.connect orch.disconnect orch.reconnect orch.dbinfo

orch.connect orch.reconnect

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm
www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

74 orch.dbg.off

orch.dbg.lasterr Returns the very last error message reported. Messages considered to
be errors are those of severity level ERROR, CRITICAL, or FATAL.

Description

Returns the very last error message reported. Messages considered to be errors are those of severity
level ERROR, CRITICAL, or FATAL.

Usage

orch.dbg.lasterr(clear = FALSE)

Arguments

clear NULL-ify the last error message after returning.

Value

The last error message reported to the ORCH debug logging sub-system. If clear is TRUE, then
this returns as an invisible value.

orch.dbg.off Globally disables debugging in the ORCH framework.

Description

Globally disables debugging in the ORCH framework. The severity parameter turns off indi-
vidual message severity logging only. This option also disables assertions in ORCH code when
debugging is completely disabled.

Usage

orch.dbg.off(severity = NULL, assert = NULL)

Arguments

severity Optional vector of message severity numeric IDs or string names. It can be
specified in a format of comma-separated string as well. Accepted configuration
values:

• NULL – Suspends debugging and all log messages until it is resumed with
an orch.dbg.on() function call. Turns off asserts also. For example: orch.dbg.off().

• vector – List of severities to disable individually. Only those severities are
not logged. Asserts are still enabled. For example: orch.dbg.off(c("info","trace")).

• string – Comma-separated list of severity names to disable individually.
Only those severities listed are not logged. Asserts will be still enabled.
For example: orch.dbg.off("info,trace").

• "all" – Completely turns off debugging and resets all enabled and disabled
severities. For example: orch.dbg.off("all")

orch.dbg.on 75

assert Enable or disable asserts throughout the code:

• TRUE – Keeps asserts enabled.
• FALSE – Force disable asserts.
• NULL – Default action. If individual severity or severities are turned off

or set to "all" the assert settings do not change. If debugging is disabled
globally, then asserts are also disabled.

Value

None.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.dbg.on orch.dbg.assert

Examples

Not run:
orch.dbg.off() # suspend debugging
orch.dbg.off("all") # turn off and reset debugging
orch.dbg.off("warning") # disable only warning messages
orch.dbg.off("warning,info") # disable warning and info messages
orch.dbg.off(assert=TRUE) # turn off log but keep asserts

End(Not run)

orch.dbg.on Globally enables debugging in ORCH framework.

Description

Globally enables debugging in ORCH framework. The severity argument lets the user sets a
new debug severity level or turn on individual message severity logging. Also enables assertions in
ORCH code when debugging is completely enabled.

Usage

orch.dbg.on(severity = NULL, assert = NULL)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

76 orch.dbg.on

Arguments

severity Optional vector of severity numeric ID or string name. It can be specified as a
comma-separated string as well. Accepted configuration values:

• NULL – This means to just enable debugging without changing the the
current debug settings. Severity will stay the same as prior turning off
orch.dbg.off(). For example: orch.dbg.on().

• "all" – Enable all debug output and reset individually enabled / disabled
debug severities. For example: orch.dbg.on("all").

• vector – A list that indicates a global severity level plus individual severities
to enable only. For example: orch.dbg.on(c("error","trace"))

• string – Comma-separated list of severity names which indicate a global
severity level plus individual severities to enable only. For example: orch.dbg.on("error,trace")

• "" – If the first value is empty "" then the current severity is not changed
and only additional list severities are enabled individually. For example:
orch.dbg.on(",trace")

• "~" – If the first value is "only" or "~" then only listed severities are enabled
and the global severity level is set to FATAL. For example: orch.dbg.on("~,info")

assert Enable or disable asserts throughout the code:

• TRUE – Force enable asserts.
• FALSE – Keeps asserts disabled.
• NULL – Default action. If an individual severity or set of severities are

turned off or "all" the assert settings do not change. If debugging is enabled
globally, then asserts are also enabled.

Value

None.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.dbg.off orch.dbg.assert

Examples

Not run:
orch.dbg.on() # resume debugging.
orch.dbg.on("all") # log all debug output.
orch.dbg.on("warning") # log warnings, errors, and up.
orch.dbg.on("error,trace") # log errors and up, plus TRACE only.
orch.dbg.on(",trace") # enable TRACE in addition.
orch.dbg.on("~,info") # log INFO messages only.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.dbg.output 77

End(Not run)

orch.dbg.output Sets a new debug log output stream or a file name.

Description

Lets the user set a new ORCH debug log output stream or a file name. If the new output is not spec-
ified, then it is set to stdout by default. Upon ORCH startup, the debug log is set to "\tmp\orch-
<user name>.log".

Usage

orch.dbg.output(con = "")

Arguments

con R connection object to be used as the debug log output See file for more deails.
This also can also be a file name as a string, or stdout(), or stderr(). ""
is considered stdout().

Value

None.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.dbinfo Prints out current or stored database connection information.

Description

Displays information about the current or stored database connection (if the dbcon argument is
specified). This is informational only. No results are returned.

Usage

orch.dbinfo(dbcon)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

78 orch.debug

Arguments

dbcon Optional argument that allows the user to specify a stored database connection
object orch.dbcon. If not specified, then the currently established connection is
used.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.connect orch.disconnect orch.reconnect orch.dbcon

orch.debug Checks or sets mapReduce "debug" mode.

Description

Checks or sets mapReduce "debug" mode. Debug mode allows the user to simulate a mapReduce
job run within the same R session from which the job was submitted. The user can set debug
breakpoints in their mapper, reducer, combiner, or in any function that was exported into the ORCH
mapReduce job environment via the export argument of the hadoop.run function. When "debug"
mode is enabled, ORCH prepares the mapReduce driver script as always, but instead of submitting
scripts to a Hadoop cluster, it load scripts locally and runs its own local implementation of the
Hadoop pipeline, invoking the local user’s functions.

Usage

orch.debug(onoff)

Arguments

onoff TRUE, to enable the "debug" mode. FALSE, to disable the "debug" mode. If
not specified then only the current setting for the "debug" mode is returned.

Details

This greatly improves debug-ability of mapReduce jobs allowing users to inspect input and output
values of the mapper, reducer, or combiner, do step by step walk through their functions and identify
errors and bugs. Users can employ built-in R debug tools or any third party debug library of their
choice.

Value

Current "debug" mode. If the onoff argument is not specified then, this option returns the value
visibly. Otherwise, the value is returned invisibly.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.destroyConf 79

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.dryrun hadoop.run hadoo.exec

orch.destroyConf Removes stored values for startup checks

Description

Removes the temp file with stored values for checks

Usage

orch.destroyConf()

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.reconf

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm
www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

80 orch.df.createView

orch.df.collect Collects a Spark data frame to client’s memory, and returns an R data
frame.

Description

Collects a Spark data frame to client’s memory, and returns an R data frame.

Usage

orch.df.collect(data)

Arguments

data Spark DataFrame.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

iris_hdfs <- hdfs.put(iris)
iris_df <- orch.df.fromCSV(csvPath = iris_hdfs)
iris_desc <- orch.df.describe(iris_df)
desc <- orch.df.collect(iris_desc)
print(desc)
hdfs.rm(iris_hdfs)

orch.df.createView Creates or replaces a temporary Spark SQL view.

Description

Creating a Spark SQL view is needed is you wish to run Spark SQL query on an exisiting Spark
data frame. This functions registers a Spark data frame as a SQL view. The SQL queries can be
submitted using orch.df.sql.

Usage

orch.df.createView(data, viewName)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.df.describe 81

Arguments

data Spark data frame.

viewName Spark SQL view name.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

iris_hdfs <- hdfs.put(iris)
iris_df <- orch.df.fromCSV(csvPath = iris_hdfs)
orch.df.createView(iris_df, "iris_view")
sql_df <- orch.df.sql("select Petal_Length, Sepal_Width from iris_view where Petal_Length < 1.4")
sql_df$show()
hdfs.rm(iris_hdfs)

orch.df.describe Computes and returns statistics for numeric columns. If no columns
are given, this function computes statistics for all numerical columns.

Description

Computes and returns statistics for numeric columns. If no columns are given, this function com-
putes statistics for all numerical columns.

Usage

orch.df.describe(data, columnList = NULL)

Arguments

columns List of column names.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm
www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

82 orch.df.fromCSV

Examples

iris_hdfs <- hdfs.put(iris)
iris_df <- orch.df.fromCSV(csvPath = iris_hdfs)
iris_desc <- orch.df.describe(iris_df)
iris_desc$show()
hdfs.rm(iris_hdfs)

orch.df.fromCSV Creates a Spark data frame from comma-separated values data source.

Description

Creates a Spark data frame from comma-separated values data source.

Usage

orch.df.fromCSV(csvPath, minPartitions = -1L,
headerPresent = TRUE, fieldSeparator = ",",
quote = "\"", na = "NA", verbose = TRUE)

Arguments

csvPath Any Hadoop-supported file system URI. For instance an HDFS directory, or a
local file system (if local, then it must be available on all nodes and specified
using file://<file_path>).

minPartitions
Suggested minimum number of partitions. If minPartitions <= 0, the default will
be used.

headerPresent
Whether each file contains the names of the variables as their first line.

fieldSeparator
CSV field separator character.

quote CSV quotation mark (most often it is the double quotation mark).

na Missing value representation. For instance, "NA" (Not Available).

verbose Whether to report some performance statistics.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.df.persist 83

Examples

iris_hdfs <- hdfs.put(iris)
iris_df <- orch.df.fromCSV(csvPath = iris_hdfs)
iris_df$show(5L)
iris_df$printSchema()
hdfs.rm(iris_hdfs)

orch.df.persist Persists Spark data frame.

Description

Persists Spark data frame.

Usage

orch.df.persist(data, storageLevel, verbose = TRUE)

Arguments

data Spark data frame.

storageLevel The desired storage level. The vaild choices are "NONE", "DISK_ONLY",
"DISK_ONLY_2", "MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2", "MEMORY_AND_DISK", "MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER", "MEMORY_AND_DISK_SER_2", "OFF_HEAP".
Check Spark documentation for more information on Storage Level differences.

verbose Show the description of the resultant storage.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

iris_hdfs <- hdfs.put(iris)
iris_df <- orch.df.fromCSV(csvPath = iris_hdfs)
orch.df.persist(iris_df, "DISK_ONLY")
hdfs.rm(iris_hdfs)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

84 orch.df.scale

orch.df.scale Scale numerical columns of a data frame.

Description

Scale numerical columns of a data frame.

Usage

orch.df.scale(data, method)

Arguments

data Input Spark data frame.

method Scaling technique

• "standardization" x−mean
sd

• "unitization" x−mean
range

• "unitization_zero_minimum" x−min
range

• "normalization" normalization with zero being the central point x−midrangerange/2

• "normalization_2" normalization in range [-1, 1] x−mean
max(abs(x−mean))

• "normalization_3" x−mean
sqrt(sum((x−mean)2))

• "quotient_sd" x
sd

• "quotient_range" x
range

• "quotient_max" x
max

• "quotient_mean" x
mean

• "quotient_sum" x
sum

• "quotient_sqrt_ssq" x
sqrt(sum(x2))

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

iris_hdfs <- hdfs.put(iris)
iris_df <- orch.df.fromCSV(csvPath = iris_hdfs)
scaled_iris_df <- orch.df.scale(iris_df, method = "quotient_max")
scaled_iris_df$show(5L)
hdfs.rm(iris_hdfs)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.df.sql 85

orch.df.sql Executes a Spark SQL query.

Description

This function is used to run an Apache Spark SQL query on a Spark SQL view created using
orch.df.createView. The results of the SQL query can then be collected in R session using
orch.df.collect.

Usage

orch.df.sql(query)

Arguments

query Spark SQL query to submit.

Value

Returns the results of the Spark SQL query as a Spark data frame.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

iris_hdfs <- hdfs.put(iris)
iris_df <- orch.df.fromCSV(csvPath = iris_hdfs)
orch.df.createView(iris_df, "iris_view")
sql_df <- orch.df.sql("select Petal_Length, Sepal_Width from iris_view where Petal_Length < 1.4")
sql_df$show()
hdfs.rm(iris_hdfs)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

86 orch.df.unpersist

orch.df.summary Creates and returns a summary Spark data frame.

Description

Creates and returns a summary Spark data frame.

Usage

orch.df.summary(data, verbose = TRUE)

Arguments

data Input Spark data frame.

verbose Whether to report progress. Default value is TRUE.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

iris_hdfs <- hdfs.put(iris)
iris_df <- orch.df.fromCSV(csvPath = iris_hdfs)
iris_summ <- orch.df.summary(iris_df)
iris_summ$show()
hdfs.rm(iris_hdfs)

orch.df.unpersist Unpersists Spark data frame.

Description

Unpersists Spark data frame.

Usage

orch.df.unpersist(data, storageLevel)

Arguments

data Spark data frame.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.disconnect 87

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

iris_hdfs <- hdfs.put(iris)
iris_df <- orch.df.fromCSV(csvPath = iris_hdfs)
orch.df.persist(iris_df, "DISK_ONLY")
orch.df.unpersist(iris_df)
hdfs.rm(iris_hdfs)

orch.disconnect Disconnects from Oracle Database.

Description

Drops a connection to the database. After the disconnect, the functions that access the database (i.e.
hdfs.push, hdfs.pull) will error out upon attempt to communicate with the database, since
the connection is broken.

Usage

orch.disconnect(silent = FALSE, dbcon = FALSE)

Arguments

silent Do not print connection status messages to the R console. The default setting is
FALSE.

dbcon Return current database connection object orch.dbcon after the disconnect is
performed. This allows you to re-establish the same connection using the same
connection object.

Value

Can return two types, depending on the dbcon argument value:

• If the dbcon argument is set to TRUE, returns the previous database connection object of class
orch.dbcon. The object can be used to reconnect to the database with the orch.reconnect
function. If the previous connection database is already disconnected, then the return value is
NULL.

• If the dbcon argument is set to FALSE, then returns TRUE if the connection was successfully
dropped, or, FALSE if the database connectionis already terminated.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

88 orch.dryrun

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.connect orch.connected orch.reconnect

orch.dryrun Checks or sets mapReduce "dryrun" mode.

Description

Checks or sets mapReduce "dryrun" mode. Dry run mode allows the user to run mapReduce jobs
as shell scripts outside of Hadoop and debug or benchmark the scripts. When "dry run" mode
is enabled, ORCH puts the input data into a local temprorary directory and generate a csh shell
compliant command line that simulates the execution of the scripts in the Hadoop environmnet via
ORCH.

Usage

orch.dryrun(onoff, direct.io)

Arguments

onoff TRUE to enable the "dry run" mode, FALSE to disable the "dry run" mode. If
not specified then only the current setting for the "dry run" mode is returned.

direct.io Use direct local file system read/write IO in the ORCH driver instead of stream-
ing data in/out via OS stdin/stdout. This eliminates streaming overhead for
benchmarking.

Details

If there are any failures, the shell command line can be retrieved from the ORCH debug log and used
standalone outside of ORCH in order to repeat the run or/and debug the map and reduce scripts.
For this the user must enable ORCH debug log via orch.dbg.on.

Value

Current "dryrun" mode with attribute "direct.io" indicating current "direct.io" mode. If onoff
argument is not specified then it is returned it visibly. Otherwise, it returns invisibly.

Note

direct.io can be switched on or off only when "dryrun" mode is enabled. As soon as "dryrun"
is disabled. "direct.io" is also turned off.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.export 89

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.debug hadoop.run hadoop.exec

orch.export Makes R objects from a user’s local R session available in the Hadoop
execution environment, so that they can be referenced in MapReduce
jobs.

Description

Passes local objects to the Hadoop job export function. Constructs a list of object values and the
same assigns object names to the list names. Example: export(a,b) is the same as list(a=a, b=b).

Usage

orch.export(..., MODE = NULL)

Arguments

... One or more variables, data frames, or other R in-memory objects, by name or
as an explicit named definition, in a comma-separated list. If an unnamed value,
which can not be exported is provided (e.g. orch.export(1)), then the function
will remove this values from the export list and issue a user warning.

MODE Alters export mode in this particular case. Can be "source", "rdata", or, ".Glob-
alEnv". In case of "source" mode, all exported R objects are embedded into
mapReduce R script as source code. In the case of "rdata", all exported R ob-
jects are stored in a binary RData sidecar file shared between all Hadoop nodes
and loaded in mapReduce driver script. ".GlobalEnv" mode re-assigns exported
objects to .GlobalEnv namespaces in order to prevent auto-loading of their corre-
sponding packages in the ORCH driver during deserialization. ".GlobalEnv" can
be used in conjuction with "rdata", e.g. MODE=c("rdata",".GlobalEnv").
The default mode is "rdata".

Value

List of named values that should be exported into mapReduce server-side tasks. Only variables and
named values are included. If there are no variables to export, then NULL is returned.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

90 ORCH_HAL_VERSION

Note

You can use this function to prepare local variables for use in hadoop.exec and hadoop.run functions.
The mapper, reducer, combiner, init, and final arguments can reference the exported variables.

Important

In ORCH debug mode (see orch.debug) this function may change the list of exported R objects in
order to accommodate the debug facility of the ORCH framework. For instance, all global functions
are from the export list because they are accessible as-is. Functions defined inside of scope of other
functions (or other environments) are exposed in the global R namespace for the same reason.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hadoop.run hadoop.exec

Examples

This code fragment shows orch.export used in the
export argument of the hadoop.run function:
b <- 2
x <- hadoop.run(seq(1,3),

export = orch.export(a=1, b),
mapper = function(k,v) {

a and b are accessible in the mapReduce job:
v <- (v + a) * b
orch.keyvals(k, v)

}
)
print(x)

ORCH_HAL_VERSION ORCH system control environment variable.

Description

You can set this ORCH environment variable before starting R and loading the ORCH library. It
enables you to override auto-detection of a Hadoop version and to specify the use of an exact version
of the ORCH Hadoop Abstraction Layer.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

ORCH_HAL_VERSION 91

Details

Supported versions are:

• 1: Apache/IDC/Hortonworks 1.*

• 2: Cloudera CDH3u*

• 3: Cloudera CDH4.* with MR1

• 4: Cloudera CDH4.[0-3] with MR2

• 4.1: Cloudera CDH4.4 with MR2

• 4.2: Cloudera CDH5.* with MR2

If ORCH auto-detection cannot identify the Hadoop version then an informational message indi-
cating that ORCH_HAL_VERSION is used and will be displayed to the user upon loading of the
ORCH library. If ORCH auto-detection can identify the Hadoop version and it is not consistent
with the one specified by ORCH_HAL_VERSION version then a warning message is issued upon
loading of the ORCH library and the version specified by ORCH_HAL_VERSION is used instead.

If ORCH_HAL_VERSION is not set (default), then ORCH uses Hadoop version auto-detection.
If it cannot identify the Hadoop distribution or version, then ORCH issues an error message and
remains in an error state (not initialized). This state prevents HDFS and mapReduce operations from
functioning correctly. You must unload ORCH, set the correct value of ORCH_HAL_VERSION, and
reload ORCH.

Note

If ORCH_HAL_VERSION is set to an invalid value, then an error message is issued when loading
ORCH and the value is ignored. ORCH will continue to operate as if the variable was not set. You
can unload ORCH, set the correct value of ORCH_HAL_VERSION, and reload ORCH in order to
correct this.

You can override the HAL version when you are testing ORCH against a new Hadoop distribution.
In this case, ORCH loads and initializes, but you may encounter failures when invoking ORCH API
functions. ORCH does not provide any functional guarantees in this case.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

Not run:
csh: setenv ORCH_HAL_VERSION 0
bash: export ORCH_HAL_VERSION=0

End(Not run)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

92 ORCH_HDFS_CHECK

ORCH_HDFS_CHECK ORCH system control environment variable.

Description

ORCH performs a simple HDFS functional check when loading the library to ensure that HDFS is
configured correctly and that a supported version of ORCH Hadoop Abstraction Layer is specified.
You can disable this feature either to improve loading time or to proceed even after an error with
HDFS interaction is detected.

• 1 | TRUE Performs the HDFS functional check (default).

• 0 | FALSE Skips the HDFS functional check.

Details

If ORCH_HDFS_CHECK is not set (default), then ORCH performs the HDFS checks. If ORCH_HDFS_CHECK
is set to an invalid value, then an error message is issued upon loading ORCH and the value is ig-
nored, resulting in the default action.

Note

You can skip the functional checks if you are testing ORCH against a new Hadoop distribution. If
ORCH_HAL_VERSION is not configured correctly and ORCH fails to recognize the new Hadoop
distribution, then ORCH remains in an uninitialized state even when ORCH_HDFS_CHECK is set
to 0.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

Not run:
csh: setenv ORCH_HDFS_CHECK 0
bash: export ORCH_HDFS_CHECK=0

End(Not run)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

ORCH_JAR_BUILD_NAME 93

ORCH_JAR_BUILD_NAME
ORCH system control environment variable.

Description

You can set this ORCH environment variable before starting R and loading the ORCH library. It
allows you to override auto-detection of a Hadoop distribution provider and to specify the build
name of the ORCH custom Hadoop JAR library. The build name is appended to the ORCH library
file name in order to differentiate distribution-specific versions of the library.

Details

If ORCH can not auto-detect the Hadoop version and HAL then the build name will be set to "" and
will default to the library compiled with Cloudera’s Distribution of Hadoop.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

Not run:
Force use of HortonWorks-specific library.
csh: setenv ORCH_JAR_BUILD_NAME hdp
bash: export ORCH_JAR_BUILD_NAME=hdp

End(Not run)

ORCH_JAR_MR_VERSION
ORCH system control environment variable.

Description

You can set this ORCH environment variable before starting R and loading the ORCH library. It
allows you to override auto-detection of a Hadoop mapReduce API version and to specify the use
of the appropriate version of the ORCH Hadoop JAR library.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

94 ORCH_JAVA_MAX_PERM

Details

Supported versions are:

• 1: MRv1.

• 2: MRv2, or YARN.

If ORCH can not auto-detect the Hadoop version and HAL then mapReduce version will default to
version 2.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

Not run:
Force use of mapReduce version 1.
csh: setenv ORCH_JAR_VERSION 1
bash: export ORCH_JAR_VERSION=1

End(Not run)

ORCH_JAVA_MAX_PERM ORCH system control environment variable.

Description

You can set this ORCH environment variable before starting R and loading the ORCH library. It
enables you to set the flag -XX:MaxPermSize for the ORAAH client’s Java Virtual Machine
(JVM). This flag specifies the size for Permanent Generation, which is is where the classes, meth-
ods, internalized strings, and similar objects used by the JVM are stored. The default value of this
flag for ORAAH is 256MB.

Details

This memory flag can be specified in multiple sizes, such as kilobytes (k), megabytes (m), gi-
gabytes (g) and so on. See examples for specification. You can increase this memory size for
the ORAAH client JVM using this environment variable for a new R session if you encounter
java.lang.OutOfMemoryError: PermGen space.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

ORCH_JAVA_XMS 95

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

ORCH-envvar ORCH_JAVA_XMX

Examples

Not run:
csh: setenv ORCH_JAVA_MAX_PERM "1g"
csh: setenv ORCH_JAVA_MAX_PERM "512m"
bash: export ORCH_JAVA_MAX_PERM="256m"
bash: export ORCH_JAVA_MAX_PERM="1g"

End(Not run)

ORCH_JAVA_XMS ORCH system control environment variable.

Description

You can set this ORCH environment variable before starting R and loading the ORCH library. It
enables you to set the flag -Xms for the ORAAH client’s Java Virtual Machine (JVM). This flag
specifies the initial memory allocation pool for a JVM, which means that your JVM will be able to
use an initial size of Xms amount of memory. The default value of this flag for ORAAH is 256 MB.

Details

This memory flag can be specified in multiple sizes, such as kilobytes (k), megabytes (m), gigabytes
(g) and so on. See examples for specification.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

ORHC_JAVA_XMX ORCH-envvar ORCH_JAVA_MAX_PERM

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm
www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

96 ORCH_JAVA_XMX

Examples

Not run:
csh: setenv ORCH_JAVA_XMS "4g"
csh: setenv ORCH_JAVA_XMS "512m"
bash: export ORCH_JAVA_XMS="10g"
bash: export ORCH_JAVA_XMS="400m"

End(Not run)

ORCH_JAVA_XMX ORCH system control environment variable.

Description

You can set this ORCH environment variable before starting R and loading the ORCH library. It
enables you to set the flag -Xmx for the ORAAH client’s Java Virtual Machine (JVM). This flag
specifies the maximum memory allocation pool for a JVM, which means that your JVM will be
able to use a maximum of Xmx amount of memory. The default value of this flag for ORAAH is
1GB.

Details

This memory flag can be specified in multiple sizes, such as kilobytes (k), megabytes (m), giga-
bytes (g) and so on. See examples for specification. You can increase the memory available to
the ORAAH client JVM using this environment variable for a new R session if you encounter
java.lang.OutOfMemoryError.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

ORCH-envvar ORCH_JAVA_MAX_PERM

Examples

Not run:
csh: setenv ORCH_JAVA_XMX "4g"
csh: setenv ORCH_JAVA_XMX "512m"
bash: export ORCH_JAVA_XMX="10g"
bash: export ORCH_JAVA_XMX="400m"

End(Not run)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.jdbc.close 97

orch.jdbc.close Closes JDBC connection created using orch.jdbc

Description

Closes the JDBC connection created in the object of type "orch.jdbc". It is recommended to close
the JDBC connection once the desired data has been ingested by the solvers that support "orch.jdbc"
input type.

Usage

orch.jdbc.close(object)

Arguments

object An "orch.jdbc" object created using orch.jdbc.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

Not run:
jdbc_info <- orch.jdbc(driverClass = "com.mysql.jdbc.Driver",
url = "jdbc:mysql://mysql.example.com:3306/mydb", user = "user",
password = "password", table= "mytable",
classpath = "/usr/lib/mysql/lib/mydriver.jar")

orch.jdbc.close(jdbc_info)

End(Not run)

orch.jdbc Create JDBC input object

Description

Creates a JDBC connection descriptor object of type "orch.jdbc". This object can be used for
specifying inputs for Spark and Spark MLlib analytics from ORCHstats package. Also, it can be
used as input for ORCHmpi package solvers.

Usage

orch.jdbc(driverClass, url, user, password, table,
classpath = "", identifier.quote = "`")

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

98 orch.keyval

Arguments

driverClass Name of the Java class of the JDBC driver to load.

url A database/JDBC URL of the form: jdbc:[subprotocol]://[node]/[databaseName].
For example, "jdbc:mysql://mysqlserver.example.com:3306/mydb"

user The username for database connection.

password The password for the database connection.

table The name of the input table.

classPath Class path that needs to be appended in order to load the desired JDBC driver.
Usually it is the path to the JAR file containing the driver.

identifier.quote
Character to use for quoting identifiers in automatically generated SQL state-
ments or NA if the back-end doesn’t support quoted identifiers.

Value

An object of type "orch.jdbc" which can be used as an input for Spark analytics available in packages
ORCHstats and ORCHmpi.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

Not run:
jdbc_info <- orch.jdbc(driverClass = "com.mysql.jdbc.Driver",
url = "jdbc:mysql://mysql.example.com:3306/mydb", user = "user",
password = "password", table= "mytable",
classpath = "/usr/lib/mysql/lib/mydriver.jar")

End(Not run)

orch.keyval Outputs one (key,value) pair from a mapReduce job.

Description

Inserts one key and value (or a set of values) pair into the ORCH driver’s output buffer. All keys and
values will be streamed out into HDFS at the end of the job or in arbitrary time points when ORCH
decides. Streaming format is based on job configuration and by default will be comma-separated
text with keys separated by ’\t’. Both key and value ... are optional and may be absent.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.keyval 99

Usage

orch.keyval(key = NULL, ...)

Arguments

key The key. Must be one-value vector or factor only. It may not consist of complex
structures such as the list of data.frame. NULL value indicates key-less output
(like "val1,val2"). A "" value indicates no-key output (such as "\tval1,val2). See
examples.

... Key’s value(s). If only one argument is specified then it can be a vector or
a list of values. If multiple arguments are specified then only primitive types
like numeric, integer, etc. can be used. Complex structures such as list and
data.frame are not accepted. All values given will be assigned to the same key
and written out as one record.

Value

None.

Attention

If you erroneously use orch.keyvals when you have one key and values pair then instead of out-
putting 1 record, the function outputs N records containing repeations of this key and each values
if input data is compatible (for instance one key and a vector of values is given). This will result in
incorrect output data format.

Note

One can understand this is function as a "return" expression of a mapReduce user function which
does not break function execution. The user can invoke this function multiple times and any location
within a of mapReduce R function, or may choose not to invoke the function at all which will result
in no output. Every invocation pushes key and values into the ORCH driver’s internal buffer, which
continues to accumulate returned values till the function finishes.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.keyvals hadoop.run hadoop.exec

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

100 orch.keyvals

Examples

Not run:
Different ways to invoke orch.keyval:
orch.keyval(key=1, 1,2,3) # will write "1\t1,2,3"
orch.keyval(key=1, c(1,2,3)) # will write "1\t1,2,3"
orch.keyval(key=NULL, 1,2,3) # will write "1,2,3"
orch.keyval(key="", 1,2,3) # will write "\t1,2,3"
orch.keyval(key=1) # will write "1\t"
orch.keyval() # will not write out anything

End(Not run)

orch.keyvals Outputs multiple (key,value) pairs from a mapReduce job.

Description

Inserts multiple key and value (or a set of values) pairs into the ORCH driver’s output buffer. All
keys and values will be streamed out into HDFS at the end of the job or at time points determined
by ORCH. Streaming format is based on job configuration and by default will be comma-separated
text with keys separated by ’\t’. Both key and value ... are optional and may be absent.

Usage

orch.keyvals(key = NULL, val = NULL)

Arguments

key The key. Must be a vector or factor of the same length as the value argument
.... Complex structures such as the list of data.frame may not be used. If
only one key is specified and value argument ... multiple records then this
key will be replicated for each record. A NULL key indicates key-less output
(auch as "val1,val2"). A "" key indicates no-key output (such as "\tval1,val2).
See examples.

... Key’s value(s). Can be a data.frame, vector, factor, matrix, or list. If it is a
data.frame or a matrix then each row is treated as a separate (key,value) record.
If it is a vector or a factor then each value is treated as an individual record. In
the case of a list then each of its element must represent a set of values of one
record.

Details

Length of key vector and number of rows in values ... must be the same and combination of
corresponding keys and values will form output records. The only exception is keyi, which may
be one value only. In that case, the same key is used with every value(s) when outputting pairs.

Value

None.

orch.keyvals 101

Attention

If you erroneously use orch.keyval when you have multiple key and value pairs then instead of
outputting N records the function will output one record containing one key and all values if input
data is compatible (for instance one key and a vector of values is given). This will result in incorrect
output data format.

Note

This is function can be understood as a "return" expression of a mapReduce user function which
does not break function execution. The user can invoke this function multiple times in any part of
a mapReduce R function. Or, they may choose not to invoke this function, which will result in no
output at all. Each invocation will push key and values into the ORCH driver’s internal buffer which
continues to accumulate returned values till the function finishes.

Depending on the values ... data type this function behaves differently. The best option is to use
data.frame as value type, because its native storage type is ORCH and it guarantees the best output
performance. The next favourable type is vector, which is slightly slower, then matrix and then list,
which provides the slowest output.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.keyval hadoop.run hadoop.exec

Examples

Not run:
Different ways to invoke orch.keyval:
orch.keyvals(key=1, 1,2,3) # will write "1\t1","1\t2","1\t3"
orch.keyvals(key=c(1,2,3), c(1,2,3)) # will write "1\t1","2\t2","3\t3"
orch.keyvals(key=NULL, 1,2,3) # will write "1","2","3"
orch.keyvals(val=c(1,2,3)) # will write "1","2","3"
orch.keyvals(key="", 1,2,3) # will write "\t1","\t2","\t3"
orch.keyvals(key=c(1,2,3)) # will write "1\t","2\t","3\t"
orch.keyvals() # will not write out anything

End(Not run)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

102 ORCH_LOG_SEVERITY

ORCH_LOG_OUTPUT ORCH system control environment variable.

Description

Controls the ORCH startup log output. If not specified then log is written to "/tmp/orch-<user>.log"
file. This environment variable allows to change the output stream to any other file or to redirect it
to stdout which may be helpful for ORCH startup debugging. See orch.dbg.output for details.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.dbg.output

Examples

Not run:
csh: setenv ORCH_LOG_OUTPUT /tmp/orch.log
bash: export ORCH_LOG_OUTPUT=/tmp/orch.log

End(Not run)

ORCH_LOG_SEVERITY ORCH system control environment variable.

Description

Controls the ORCH startup log severity. If not specified only ERRORs will be logged. If ORCH
fails to startup correctly this option may help to identify the issue via more detailed logging. See
orch.dbg.on for the list of available ORCH log severity levels.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm
www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

ORCH_MAPRED_CHECK 103

See Also

orch.dbg.on orch.dbg.off

Examples

Not run:
csh: setenv ORCH_LOG_SEVERITY all
bash: export ORCH_LOG_SEVERITY=all

End(Not run)

ORCH_MAPRED_CHECK ORCH system control environment variable.

Description

ORCH performs a simple mapReduce functional check when loading the ORCH library to ensure
that mapReduce is configured correctly and that a supported version of the ORCH Hadoop Abstrac-
tion Layer is detected or specified. You can disable this feature either to improve loading time or to
proceed even when an error with the mapReduce job submission is detected.

• 1 | TRUE Performs the mapReduce functional check (default).
• 0 | FALSE Skips the mapReduce functional check.

Details

If ORCH_MAPRED_CHECK is not set (default), then ORCH performs the mapReduce checks. If
ORCH_MAPRED_CHECK is set to an invalid value, then an error message is issued when loading
ORCH and the value is ignored, resulting in the default action.

Note

You can skip the functional checks if you are testing ORCH against a new Hadoop distribution. If
ORCH_HAL_VERSION is not configured correctly and ORCH fails to recognize the new Hadoop
distribution, then ORCH remains uninitialized even if ORCH_MAPRED_CHECK is set to 0.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

Not run:
csh: setenv ORCH_MAPRED_CHECK 0
bash: export ORCH_MAPRED_CHECK=0

End(Not run)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

104 orch.options

orch.options Allow the user to set and examine a variety of global ORCH options
that affect the way ORCH computes and displays its results.

Description

Invoking orch.options() with no arguments returns a list with the current values of the options. Note
that not all options listed below are set initially. To access the value of a single option, one should
use ’orch.options("<option_name>")’. For example: orch.options("digits")

Usage

orch.options(...)

Arguments

... List of options and values to update or to retrieve:

• none: Get the list of all ORCH options.
• options_name=value[, ...]: Set one or more options.
• "options_name"[,...]: Get one or more options.

Details

List of supported ORCH options:

• digits: Controls the number of digits to write when writing numeric values into an HDFS file.
It is a suggestion only. Valid values are 1...22 with default 15.

• scientific: Either a logical specifying whether elements of a real or complex vector should
be encoded in scientific format when writing into an HDFS file, or an integer specifying the
penalty (see options("scipen")). Missing values correspond to the current default penalty.

Value

List of all ORCH option values if no options are specified in If the options are being retrieved,
e.g., orch.options(c("digits","scientific")) then the functions returns only their
values. Otherwise the function returns TRUE if all options were set, or FALSE if any option was
not set for some reason. See examples.

Note

... parameter can be specified using a vector or CSV string. In all cases it will mean to get one or
more attributes. All styles can be mixed and interchanged as needed:

• c("options_name"[,"options_name"[,...]])

• "options_name[,options_name[,...]]"

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

orch.pack 105

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

Not run:
Examples of orch.options invokations.
orch.options()
orch.options("digits")
orch.options("digits", "scientific")
orch.options("digits,scientific")
orch.options(digits=7)
orch.options(digits=7, scientific=TRUE)

End(Not run)

orch.pack Encodes any of R object(s) into a string stream friendly format.

Description

Packs a set of R objects into a text stream-friendly format. The function can be used with any R
object regardless of its complexity and structure. The output is a string in a proprietary format based
on base64 encoding which is guaranteed to not contain any special symbols like "\10","\t","\n", etc.,
or separators like ",", ",", etc. This packed string is safe to be used as a value in orch.keyval and
orch.keyvals functions to write out (key,value) pair from a mapReduce R job.

Usage

orch.pack(..., COMPRESS = -1L, DEPARSE = FALSE)

Arguments

... any R objects to pack.

COMPRESS Allows compression of the input data before proprietary base64 encoding to
lower its size. 3 values are accepted:

• -1, default: let function decide, be default objects of size >1KB will be
compressed;

• TRUE: enforce compression always;
• FALSE: disable compression entirely.
• "auto": Enables base64 "auto" compression setting. Encode engine will

compare and choose compressed vs uncompressed encoding based on the
encoded object size. The encoding will take longer but guarantees that the
output has the smallest size possible.

• "smart": Enables base64 "smart" compression setting. It is the same as
"auto", but it will not attempt any compression on small objects of size <=
1KB.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

106 orch.pack

DEPARSE Controls how to encode complex R objects (like data.frame, list, etc.):

• TRUE: The function will deparse the object into R source code in order to
serialize the R object. This will produce smaller output size but may have a
performance hit during orch.unpack. Also not all R object can be correctly
deparsed/parsed (especially custom classes from 3rd party packages) which
can case the orch.unpack to produce non-usable resulting objects. This
mode is kept for backward compatibility and ability to produce smaller
outputs only, otherwise it should not be used.

• FALSE, default: The function will serialize the object into a raw byte array.
This will produce larger output size but would allow to avoid the perfor-
mance hit of R source code parsing during orch.unpack.

Details

Syntax is the same as list(...), i.e., one can use it as pack(a=1, b=’x’). The main motivation
is to provide an ability to output complex datasets from a mapper or a reducer. For example:
orch.keyval(key, orch.pack(anything)).

Value

Custom base64-based encoded string (optionally compressed).

Note

All control parameters (i.e. COMPRESS, DEPARSE, etc.) are named in UPPER-CASE in order to
better differentiate them from user arguments supplied in free-form "..." argument.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.unpack orch.keyval orch.keyvals

Examples

x <- orch.pack(10)
orch.unpack(x) == 10

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.reconf 107

orch.reconf Reruns the checks for the session

Description

Removes the temporary file with stored environment variable values Forces startup checks to rerun
and assign new values Create a new file and store these values in the file

Usage

orch.reconf()

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hadoop.run orch.destroyConf

orch.reconnect Reconnects to Oracle Database with previous credentials.

Description

After a user invokes orch.disconnect(dbcon=TRUE) to drop the database connection, ORAAH
returns an orch.dbcon object that can be used by orch.reconnect to restablish the connec-
tion.

Usage

orch.reconnect(dbcon, silent = FALSE)

Arguments

dbcon The stored database connection object, can be returned by orch.disconnect.
See orch.dbcon for more information.

silent Set it to TRUE to not print connection status messages to the R console. Default
setting is FALSE.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

108 orch.revision

Details

Reconnect is faster than orch.connect as it does not perform expensive connectivity checks as
the initial connect does and relies on the assumption that the database connection was verified once
before. Only a quick connection test is performed.

Value

TRUE if connection was successfully established and validated or FALSE if connection has failed.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.connect orch.disconnect

orch.revision Allows to check currently installed ORCH revision number (unique
build).

Description

Allows to check currently installed ORCH revision number (unique build).

Usage

orch.revision()

Value

Current ORCH revision as a number value.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.sample 109

orch.sample Get a sample of an ORCH HDFS object or ORE HIVE table

Description

This function is used to get a simple random sample of an ORCH HDFS object. It can also be used
to obtain a sample of a HIVE table using HIVE block sampling, HIVE bucket sampling, HIVE
bucket sampling or HIVE random sampling.

Usage

orch.sample(input, percent = 1, output = NULL)
orch.sample(input, size, output = NULL)

Arguments

input This can be one of the following:

1. the ORCH HDFS identifier representing the input HDFS file
2. ore.frame object representing a HIVE table

percent Percent of input records desired in the sample. Default is 1

size Number of input records desired in the sample.

output Character string specifying the location of the sample output

type Character string specifying the type of sampling to apply on HIVE table. Default
is <e2><80><98>block<e2><80><99>

Details

This function is used to get a simple random sample of an ORCH HDFS object. See Simple random
sample for details.

When the input is an HDFS identifier, the output is an HDFS identifier containing the sample of the
data. The size of the sample desired can either be specified directly through the size parameter or
can be specified indirectly as a percentage of the input size using the percent parameter.

When the desired sample size is specified as a percentage of the input size, a Java map-only hadoop
job is used to generate the sample and the whole data is scanned row by row. Java’s pseudo-random
number generator is used to select or reject a row to be included in the sample. Thus, the size
of the sample obtained will only be approximately equal to the desired size, specified through the
percent argument (as opposed to being exactly equal).

When the desired sample size is specified directly through the size argument, a Java Map-Reduce
implementation of the Reservoir Sampling algorithm is used. (See Reservoir Sampling for details
on the algorithm).The size of the sample obtained will be exactly equal to the specified size. It
should be noted that the entire sample will need to be held in the memory of the Reducer task. This
has to be kept in mind while specifying the size argument.

This function can also be used to obtain a sample of a HIVE table using HIVE block sampling.

When the input is an ore.frame representing a source HIVE table, the output is an ore.frame
object representing the sample HIVE table. When type argument is ‘block‘ (default) HIVE uses
block sampling as default, so the granularity of data returned would be at the HDFS block size
level. See HIVE sampling for details. Since block sampling is inherently faster than scanning the
whole dataset, HIVE sampling is considerably faster than HDFS sampling. When type argument

http://en.wikipedia.org/wiki/Simple_random_sample
http://en.wikipedia.org/wiki/Simple_random_sample
http://utopia.duth.gr/~pefraimi/research/data/2007EncOfAlg.pdf
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Sampling

110 orch.sample

is ‘random‘, HIVE uses HIVE random sampling the sample size will be equal to the desired size,
specified through the percent argument. HIVE random sampling counts the total row count of
table and calculate the number of rows in sample, using percent argument. Then it runs qry to
extract a sample of exact sample as specified. When type argument is ‘bucket‘, HIVE uses bucket
sampling to sample the data. Size of the sample returned may vary depending on the distribution of
data in buckets.

Consider the following when choosing Hive sampling type. ‘random‘ type of sampling is the slow-
est one since it runs two MapReduce jobs in a sequence to create a "true" sample calculating exact
number of records that need to be kept in the sample and applying a random function to each record
with random distribution and order. It should be used when you can allow extra time for the sample
data to be generated. ‘bucket‘ type of sampling uses Hive’s "tablesample" function to bucket rows
randomly and return of the buckets as a sample. Its sample size may vary slightly from requested
sample size and this approach provide a good balance between quality of the sample and speed of
sampling. Bucket sampling is the recommended method to use. ‘block‘ sampling is the fastest one
of all other types but it’s not "true" sampling by far as it will return data at granularity of HDFS
block level, i.e. if block size is 256MB, even if n percent of input size is only 100MB, you get
256MB of data.

If the output location of the sample is not specified (NULL), the sample output is stored in a tem-
porary HDFS location if the input is a HDFS identifier or a temporary HIVE table if the input is a
HIVE table. For HIVE table input, the temporary HIVE table is dropped at the end of the R session
or when the ore.frame object associated with it is garbage collected. For HDFS identifier input,
the HDFS sample output is not removed or garbage collected.

If a non-default output parameter is specified, it is treated as the HDFS output location or HIVE
table name depending on the input. For HIVE table case, this sample HIVE table is not dropped
at the end of session or when the ore.frame object associated with it is garbage collected. So,
if the sample HIVE table needs to be preserved accross sessions, a non-default output table name
must be passed in.

Value

This can be one of the following:

1. the ORCH HDFS identifier representing the sample when the input is HDFS identifier

2. the ore.frame representing the sample HIVE table when the input is a HIVE table

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

See Also

orch.toHive orch.fromHive

Examples

Create a HIVE table
ore.create(iris[1:4], table="iris1")

y10 <- orch.sample(iris1, percent = 10, output = "samp_out10")
output sample table contents
print(y10)

orch.scale 111

copy iris dataset into HDFS
x <- hdfs.put(iris, dfs.name = "/tmp/iris_tmp")
z <- orch.sample(x, percent = 10, output = "/tmp/samp_hdfsout10")
print the sample output
print(head(hdfs.get(z)))

Sample using size
zz <- orch.sample(x, size = 10, output = "/tmp/samp_hdfsout_size10")
print(hdfs.get(zz))

Hive random sampling
zzz <- orch.sample(iris1, percent=10, output = "samp_rand10", type='random')
print(nrow(zzz))

orch.scale Scale the columns of ORCH HDFS object or ORE HIVE table

Description

This function is used to scale the columns of an ORCH HDFS object or a ORCH-HIVE frame

Usage

orch.scale(input, center = TRUE, scale = TRUE)

Arguments

input This can be one of the following:
1. the ORCH HDFS identifier representing the input HDFS file
2. ore.frame object representing a HIVE table

center It can be a logical value (default = TRUE) or a numeric vector of same length as
number columns in input

scale It can be a logical value (default = TRUE) or a numeric vector of same length as
number of columns in input

Details

The value of center determines centering method. If center is a numeric vector, then corre-
sponding value from center is subtracted from each column of input. If center is TRUE then
centering is done by subtracting the column means of input from their corresponding column
values, no centering is done if center is FALSE.

The value of scale determines column scaling method. If scale is a numeric vector, then each
column of input is divided by the corresponding value from scale. No scaling is done if scale
is FALSE. If scale is TRUE then scaling is done by dividing the columns by their standard devia-
tions if center is TRUE, and the root mean square if center is FALSE.

If the input is an ORCH HDFS identifier, the scaling operation is performed in HIVE after con-
verting the HDFS identifier to a HIVE table. After the completion of the HIVE computation, a
temporary HIVE table storing the scale output is created and an HDFS identifier pointing to this
table location is returned. This temporary HIVE table is dropped at the end of the session or during
R garbage collection invocation for the HDFS id object.

112 orch.tempPath

Value

This can be one of the following:

1. the ORCH HDFS identifier representing the scaled values when input is HDFS identifier

2. the ore.frame representing the scaled values when input is a HIVE table

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

See Also

scale

Examples

Create a HIVE table
library(MASS)
ore.create(cement, table="cmnt")

do filtering and projection on the input
filtered_x <- cmnt[cmnt$x1 > 7 & cmnt$x4 < 45,]
filtered_x <- filtered_x[, c('x1', 'x2', 'x3')]

Perform centering but no scaling
x <- orch.scale(filtered_x, center=c(1,2,3),scale = FALSE)
output scaled values
print(x)

Create a dfs identifier
dfs.id <- hdfs.put(cement, key=NA)

Perform both centering and scaling
x <- orch.scale(dfs.id)
output scaled values
print(hdfs.get(x))

orch.tempPath Changes the path where temporary data is stored.

Description

This function allows switching to a new temporary directory for security, disc quota or performance
reasons. Temporary files are created and deleted when transferring data between R memory or local
file system and HDFS.

Usage

orch.tempPath(path)

orch.unpack 113

Arguments

path The new temporary storage path. By default "/tmp" is used by ORCH. The
function will verify the path exists and will abort if it does not.

Value

Current temp path if path is missing. If the new path was set its value will be returned invisibly.

orch.unpack Decodes result or orch.pack back to original R object(s).

Description

Unpacks a set of R objects from a proprietary ORCH string stream friendly format encoded with
orch.pack. The main motivation is to provide an ability to output and input complex data types in a
mapper or reducer via text-based Hadoop stream.

Usage

orch.unpack(vals, as.list = FALSE)

Arguments

vals Result of orch.pack function, may be a vector.

as.list Always return a list of unpacked objects even if it contains only one packed
object. Otherwise unpacking of one packed object will result in unlisted value.

Value

List of original R object(s) or only its value if one R object was packed and as.list==FALSE.

Note

If vals contain only one packed object then it will unpack and return this object’s value alone as-is
(unless as.list==TRUE). If vals contains several packed objects then will unpack every one
of them and return them as a list where the name of each list’s element corresponds to the packed
variable name.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.pack orch.keyval orch.keyvals

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

114 rdd.isCached

Examples

orch.unpack(orch.pack(a=1)) # == list(a=1).
orch.unpack(orch.pack(a=1), as.list=T) # == list(list(a=1))
orch.unpack(rep(orch.pack(a=1),2)) # == list(list(a=1), list(a=1))

orch.version Allows to check currently installed ORCH version.

Description

Allows to check currently installed ORCH version.

Usage

orch.version()

Value

Current ORCH version as a string value.

rdd.isCached Tests if the given Spark RDD object was cached in memory.

Description

When an HDFS object is attached to a Spark session it is possible to force Spark to cache its data
in memory improving performance of consecutive Spark jobs on this object. Note that it is not
guaranteed that Spark will retain cache data in memory and it may uncache it any moment when
more free memory is required for current computations. This function tests if the data was "forcibly"
cached (by means of hdfs.toRDD(x, cache=T) call for instance) in memory but does not
guarantee that the data is still cached.

Usage

rdd.isCached(rdd.id)

Arguments

rdd.id HDFS object identifier which refers to an in-memory Spark’s RDD object.

Value

TRUE if the object was cached in Spark’s memory and consecutive Spark jobs on this object will
not read any data from a disk, otherwise FALSE.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

spark.connected 115

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.toRDD

spark.connected Returns TRUE if there is an "active" Spark context. Otherwise returns
FALSE.

Description

Returns TRUE if there is an "active" Spark context. Otherwise returns FALSE.

Usage

spark.connected()

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

spark.connect spark.disconnect spark.session

spark.connect Creates a new Spark session.

Description

The function will create a new Spark execution context if master contains the URL of Spark
master node. If master contains an existing Spark session object then the function will reuse its
context instead. The created (or reused) session will be set as "active" session for ORCH globally.

Usage

spark.connect(master = "local", memory = NULL,
dfs.namenode = NULL, name = NULL, disconnect = FALSE,
logLevel = "ERROR", enableHive = NULL, ...)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm
www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

116 spark.connect

Arguments

master This can be a Spark master node URL to connect to or an existing Spark context
to set as a current execution context. If not set the default value "local" is used.

memory Amount of memory to use per executor process, in the same format as JVM
memory strings (e.g. 512m, 2g). Or in byte if specified as integer. Default is 2
GB.

dfs.namenode Default HDFS Namenode to use when converting an HDFS object into RDD
object. If not set, then the active Namenode is determined for the cluster and
used. The Namenode being used will be reported as an INFO message. If auto-
detection of Namenode fails, then local file-system will be used, which is again
reported to the user.

name Name of a new Spark execution context. This parameter will be used only if
master is Spark master URL and a new Spark context is created. Default
name is "ORCH".

disconnect Explicitely disconnect an existing active Spark session first if set to TRUE, oth-
erwise if there is an active Spark session already then it will remain active con-
suming Spark cluster resources. See description for more details.

logLevel The log4j logging level for Spark connection. logLevel can be one of these
types: "ALL", "DEBUG", "ERROR", "FATAL", "INFO", "OFF", "TRACE" or
"WARN". The default logging level is "ERROR".

enableHive Enables Hive Support within Spark Session. By default, Hive Support is enabled
if you are connected to HIVE using ore.connect(..., type = "HIVE").
For Hive support to be enabled in Spark session you need to have your Hive
configuration available at the client side in the form of ’hive-site.xml’ file in
your ’CLASSPATH’. You can do so by adding your ’HIVE_CONF_DIR’ to the
’CLASSPATH’ before starting R and loading ORCH library. Alternatively, you
can specify the Hive metastore details as part of spark.connect by specifying pa-
rameters like hive.metastore.uris="thrift://METASTORE_NAME:METASTORE_PORT".
If your Hive is kerberized then you need to additionally specify other parameters
like hive.metastore.sasl.enabled="true", hive.metastore.kerberos.principal=HIVE_PRINCIPAL, hive.security.authorization.enabled="false", hive.metastore.execute.setugi="true",
If you do not wish to enable Hive Support in Spark while being connected to
Hive, then use enableHive=FALSE to start a session without it.

... Any of the additional spark properties can specified within the spark.connect
call as property="value" pairs if needed. See http://spark.apache.org/
docs/latest/configuration.html#available-properties for
the complete list and description of all spark properties. Few spark properties
are also described further below.

1. spark.executor.instances: The number of parallel Spark worker
instances to create. If using master=’yarn-client’, check with the cluster
administrator, since a good default might be the number of nodes in the
cluster that can run YARN containers. The default is set to ’2’.

2. spark.executor.cores: The number of cores to use on each Spark
executor. For YARN and standalone mode only. In standalone mode, set-
ting this parameter allows an application to run multiple executors on the
same worker, provided that there are enough cores on that worker. Other-
wise, only one executor per application will run on each worker. If using
master=’yarn-client’, check with the cluster administrator for the maximum
cores per YARN Container. The default is set to ’2’.

3. spark.cores.max: When running on a standalone deploy cluster, the
maximum amount of CPU cores to request for the application from across

http://spark.apache.org/docs/latest/configuration.html#available-properties
http://spark.apache.org/docs/latest/configuration.html#available-properties

spark.connect 117

the cluster (not from each machine). If not set, the default will be spark.deploy.defaultCores
on Spark’s standalone cluster manager. It needs to be at least spark.executor.cores * spark.executor.instances.

4. spark.driver.memory: Spark Driver memory might be important for
large problems. Suggestion in case of memory problems could be to start
with ’1g’ and grow if necessary.

5. spark.akka.threads: Number of actor threads to use for communi-
cation. Can be useful to increase on large clusters when the driver has a lot
of CPU cores.

Details

If there is currently an "active" Apache Spark session (i.e., this function was already invoked once
before) then it will be made "inactive" but will not be terminated immediately, i.e. Apache Spark
cluster resources will remain allocated until this session is explicitely teminated with spark.disconnect
call. Otherwise if there are no references to this session left in R environment, then it will be ter-
minated automatically at some point by R and Java garbage collectors and all Apache Spark cluster
resources will be released. This behavior can be altered using disconnect parameter that will
cause immediate termination of the current Apache Spark session.

Value

Invisibly returns a new (or re-connected) Spark session object in case of success, otherwise NULL.

Attention

If master contains an existing Spark context object and any Spark parameters have non-default
values, i.e., name, memory was specified, then the context will be created again using the same
parameters as the existing one plus non-default user-specified parameters that overwrite the existing
ones.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

spark.disconnect spark.connected spark.session

Examples

To use a local Spark pseudo-cluster in your R session (assuming your HDFS
namenode URI is <mynamenode.example.com:8020>) with 1 GB of memory per
executor:
Not run:
spark.connect(master="local[*]", memory="1g",
dfs.namenode="mynamenode.example.com")

End(Not run)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

118 spark.disconnect

To use Spark on YARN in your R session with 1 GB of memory per executor
and 2 cores on each executor:
Not run:
Using "yarn-client" - deprecated method (Spark 2.0+)
spark.connect(master="yarn-client", memory="1g",
dfs.namenode="mynamenode.example.com", spark.executor.cores=2)

Using "yarn" - correct method
spark.connect(master="yarn", spark.submit.deployMode="client", memory="1g",

dfs.namenode="mynamenode.example.com", spark.executor.cores=2)

End(Not run)
To use a standalone spark cluster in your R session (assuming Spark master
is <myspark.example.com:7077>) with 1 GB of memory per executor:
Not run:
spark.connect(master="spark://myspark.example.com:7077", memory="1g",

dfs.namenode="mynamenode.example.com")

End(Not run)
Sample connection to local spark cluster with local filesystem access:

spark.connect("local[*]")
Check if connected.
spark.connected()
Disconnect.
spark.disconnect()

spark.disconnect Deletes the current Spark execution context.

Description

The function does not actually delete the current context but rather makes it non-"active". If there
are no references to this context left anywhere in R code it will be deleted at some point by R and
Java garbage collectors.

Usage

spark.disconnect()

Value

Invisibly returns TRUE if there was an "active" Spark execution context and it was "disconnected",
otherwise returns FALSE.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

spark.property 119

See Also

spark.connect spark.connected spark.session

spark.property Returns the value of the Spark property of the "active" Spark execution
session object if there is one (i.e., spark.connect function was invoked),
otherwise returns NULL.

Description

Returns the value of the Spark property of the "active" Spark execution session object if there is one
(i.e., spark.connect function was invoked), otherwise returns NULL.

Usage

spark.property(property)

Arguments

property Character string specifying the Spark property value to be queried. See http:
//spark.apache.org/docs/latest/configuration.html#available-properties
for the complete list and description of all spark properties.

Value

Value of the property from the current Spark Context.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

spark.connect spark.disconnect spark.connected spark.session

http://spark.apache.org/docs/latest/configuration.html#available-properties
http://spark.apache.org/docs/latest/configuration.html#available-properties
www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

120 orch.summary

spark.session Returns the "active" Spark execution session object if there is one (i.e.,
spark.connect function was invoked), otherwise returns NULL.

Description

ORCH Spark session is represented by R class SparkSession and contains a reference to ORCH Java
Spark session object. This object includes native Spark’s context and a number of ORCH constructs
and functions consolidated together in order to accommodate ORCH and Spark integration.

Usage

spark.session()

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

spark.connect spark.disconnect spark.connected

orch.summary Hive Data Summary

Description

Generates descriptive statistics for ore.frame objects within flexible row aggregations.

Usage

orch.summary(data, var, stats = c("n", "mean", "min", "max"),
class = NULL, types = NULL, ways = NULL, weight = NULL,
order = NULL, maxid = NULL, minid = NULL, mu = 0,
no.type = FALSE, no.freq = FALSE)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.summary 121

Arguments

data An ore.frame object of data.

var A vector of character strings specifying the names of numeric columns in ar-
gument data to which to apply all of the statistical calculations in argument
stats, or a list of character string vectors. If the var argument is a list, then
the length of the list must be either 1 or the same as the length of stats. If it’s a
list of length 1, it’s equivalent to a vector of strings. If it’s a list of length greater
than 1, each element of the var list specifies the columns of data to which to
apply the statistical calculation in the corresponding position in stats.

stats A vector of character strings specifying the statistical calculations for argument
var. If the name of the vector element is specified, the name becomes the output
column name.
The values of this argument can be one or more of the following:
"n" or "freq" (Count of non-missing values),
"count" or "cnt" (Count of all observations),
"nmiss" (Count of missing values),
"mean" or "avg" (Average of values),
"min" (Minimum of values)
"max" (Maximum of values),
"css" (Corrected sum of squares),
"uss" (Uncorrected sum of squares),
"cv" (Coefficient of variation),
"sum" (Sum of values),
"sumwgt" (Weighted sum of values),
"range" (Range of values),
"stddev" or "std" (Standard deviation of values),
"stderr" or "stdmean" (Standard error for the mean),
"variance" or "var" (Variance of values),
"kurtosis" or "kurt" (Kurtosis),
"skewness" or "skew" (Skewness),
"loccount<" or "loc<" (Number of observations whose values are less
than the supplied mu),
"loccount>" or "loc>" (Number of observations whose values are greater
than the supplied mu),
"loccount!" or "loc!" (Number of observations whose values are not
equal to the supplied mu),
"loccount" or "loc" (Number of observations whose values are equal to
the supplied mu),
Percentiles Types: "p0", "p1", "p5", "p10", "p25" or "q1", "p50" or
"q2" or "median", "p75" or "q3", "p90", "p95", "p99", "p100"
(Percentile or quantile),
"qrange" or "iqr" (Interquartile range, Q3-Q1),
"mode" (Most frequently occurring value),
"lclm" (Two-sided left confidence limit with confidence level of the interval
equal to 0.95),
"rclm" (Two-sided right confidence limit with confidence level of the interval
equal to 0.95),

122 orch.summary

"clm" (Two-sided confidence interval with confidence level of the interval
equal to 0.95),

"t" (Student’s t-test statistic),

"probt" or "prt" (Two-tailed p-value for student’s t-test)

class A vector of character strings specifying the names of categorical columns within
argument data. If not specified, the aggregation of the entire data is returned.

types A list of character string vectors specifying the combinations of the column
names in classwithin which the aggregations will be executed in the returning
summary.

ways A vector of integers with each value indicating the number of columns in class
that are used to generate types. With one integer number, it generates types of
all possible combinations with the specified number of columns in class. The
types generated by ways will be combined with the types specified in types
with redundency removed automatically.

weight An optional single character string specifying a numeric column within data
to use as analytic weights. By default, the weight for each non-missing ob-
servation is 1. The statistics in stats that can take weight are "sum",
"sumwgt", "mean", "css", "uss", "cv", "stddev", "variance",
and "stderr". The weight argument is ignored when specified with other
statistics.

order A vector of character strings specifying the sorting criteria. The values of this
argument can be one or more of the following:

"freq" or "-freq" (Ascending or descending sorts based on count statis-
tics),

"type" or "-type" (Ascending or descending sorts based on type),

"class" or "-class" (Ascending or descending sorts based on the columns
in class).

maxid A named vector of character strings, each element of which specifies two columns
in data. The name of an element specifies an over-column and the value
of the element specifies an id-column. Each element results in an additional
column in the returned ore.frame object. Each additional column contains
the value from the id-column that corresponds to the observation that has the
maximum value in the over-column.

minid A named vector of character strings, each element of which specifies two columns
in data. The name of an element specifies an over-column and the value
of the element specifies an id-column. Each element results in an additional
column in the returned ore.frame object. Each additional column contains
the value from the id-column that corresponds to the observation that has the
minimum value in the over-column.

mu A single number or a vector of numbers whose elements correspond to each
value in var, to supply additional numeric parameters for some statistics. The
default value is 0. The statistics that use mu are "loccount<", "loccount>",
"loccount", "loccount!", "t", and "probt". The mu argument is ig-
nored when specified with other statistics.

no.type A logical value indicating whether to drop the TYPE column from the output.

no.freq A logical value indicating whether to drop the FREQ column from the output.

orch.summary 123

Details

The function ore.summary generates descriptive statistics for ore.frame objects within user
specified aggregation sub-groups.

The argument class specifies the columns to be used to define aggregation sub-groups. The
arguments types and ways define the sub-groups. If class is NULL, the function aggregates
the entire data without sub-groups. If class is specified, but both types and ways are NULL,
the function returns aggregations of all possible sub-groups by the columns in class. The number
of sub-groups increases exponentially over the number of class columns. Oracle recommands
using types and ways to specify the sub-groups of interest.

Value

Returns an ore.frame object.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

Oracle R Enterprise

Examples

ore.create(iris,"iris1")

orch.summary(iris1, c("sepal_length", "petal_length"))

orch.summary(iris1, c("sepal_length", "petal_length"), c("mean", "std", "p10"),
class="species")

orch.summary(iris1, list(c("sepal_length", "petal_length"),
"sepal_width"), c(AVG="mean", "std"), class="species")

orch.summary(iris1, c("sepal_length", "petal_length"), c("mean", "std"),
class="species", weight="sepal_width")

orch.summary(iris1, c("sepal_length", "petal_length"), c("mean", "std"),
class=c("species", "petal_width"),
types=list("species", c("species", "petal_width")),
order=c("type", "-freq", "class"))

orch.summary(iris1, c("sepal_length", "petal_length"), c("mean", "std"),
class=c("species", "petal_width"),
ways=1, order=c("type", "-freq", "class"))

orch.summary(iris1, c("sepal_length", "petal_length"), c("mean", "prt"),
class="species", mu=c(5.8, 3.7))

orch.summary(iris1, c("sepal_length", "petal_length"), "mean",
class="species",
maxid=c(sepal_length="sepal_width"))

ore.drop("iris1")

http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/documentation/index.html

124 orch.evaluate

orch.evaluate Evaluate a fit

Description

This is a S4 generic method to evaluate a fit. For example, this could be used to help in tuning
model parameters by evaluating the fit on a held out cross validation data set.

Usage

orch.evaluate(object, ...)

S4 method for signature 'orch.lmf.jellyfish'
orch.evaluate(object, input, dfs.output = NULL)

S4 method for signature 'orch.mahout.lmf.als'
orch.evaluate(object, input, dfs.output = NULL)

Arguments

object An instance of a model

input A CSV ratings file containing entries of the form (user, item, rating). This can
be one of the following

1. the HDFS directory containing the input file
2. R data.frame object
3. ore.frame object
4. name of a file in the local file system

dfs.output The output HDFS directory where the error metrics result file should be created.
If this argument is not specified, the method internally create a directory and use
that as the output directory.

Methods

signature(object = "orch.lmf.jellyfish") This function computes the error met-
rics (SSE, RMSE) on an input ratings file for the input model instance of class orch.lmf.jellyfish
Returns a list with the following components -

1. SSE - Sum of Squared Errors
2. RMSE - Root Mean Squared Error
3. inputDir - The HDFS directory containing the input
4. outputDir - The HDFS directory containing the error metrics output

signature(object = "orch.mahout.lmf.als") This function computes the RMSE
error metric on an input ratings file for the input model instance of class orch.mahout.lmf.als
Returns a list with the following components -

1. RMSE - Root Mean Squared Error
2. inputDir - The HDFS directory containing the input
3. outputDir - The HDFS directory containing the error metrics output

orch.export.fit 125

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

Examples

Setup the input (user, item, rating) entries
u <- sample(1:100, 300, replace=TRUE)
i <- sample(1:10, 300, replace=TRUE)
ui <- unique(cbind(u,i))
r <- sample(1:5, nrow(ui), replace=TRUE)
input <- cbind(ui,r)

Fit an "orch.lmf.jellyfish" model
fit1 <- orch.lmf(input, latin=2, iterations=10, rank=3)
print(fit1)

Evaluate this "orch.lmf.jellyfish" model
se.fit1 <- orch.evaluate(fit1, fit1$inputDir)
se.fit1

For "mahout-als", set up an input file
inputFile <- tempfile(tmpdir='/tmp')
write.table(input, file=inputFile, sep=",", col.names=FALSE, row.names=FALSE)

Fit using "mahout-als"
fit2 <- orch.lmf(inputFile, method="mahout-als", rank=3, iterations=5)
print(fit2)

Evaluate this "mahout-als" model
se.fit2 <- orch.evaluate(fit2, fit2$inputDir)
se.fit2

orch.export.fit Export a fit to HDFS

Description

This is a S4 generic method to export a fit to HDFS

Usage

orch.export.fit(object, ...)

S4 method for signature 'orch.lmf.jellyfish'
orch.export.fit(object, dfs.output = NULL,

type = c("data.frame", "ore.frame", "hdfs"), leftTableName,
rightTableName, overwrite = FALSE)

S4 method for signature 'orch.nmf.jellyfish'

126 orch.export.fit

orch.export.fit(object, dfs.output = NULL,
type = c("data.frame", "ore.frame", "hdfs"), leftTableName,
rightTableName, overwrite = FALSE)

Arguments

object An instance of a model

dfs.output The output HDFS directory where the factor matrices should be created in CSV
format. If not specified, this method will internally create a directory and use
that as the output directory.

type One of:

1. "hdfs" - the factor matrices are exported as CSV format HDFS files
2. "data.frame" - the factor matrices are exported as CSV format HDFS files.

Further, the factor matrices are exported as R data.frame objects
3. "ore.frame" - the factor matrices are exported as CSV format HDFS files.

Further, the data is transferred to the connected Oracle database and ore.frame
objects are returned

leftTableName
The name of the Oracle database table where the left factor matrix is to be stored.
This argument is considered only when "type" is picked as ore.frame.

rightTableName
The name of the Oracle database table where the right factor matrix is to be
stored. This argument is considered only when "type" is picked as ore.frame.

overwrite Controls whether the database tables should be overwritten. This argument is
considered only when "type" is picked as ore.frame.

Methods

signature(object = "orch.lmf.jellyfish") This function exports an orch.lmf.jellyfish
model. This is done by exporting the L and R factor matrices into CSV format HDFS files and
then additionally exporting them either as R data.frame objects or as ore.frame objects based
on the user’s input.
Returns a list with the following components -

1. Ldir - HDFS directory containing the left factor matrix in CSV format
2. Rdir - HDFS directory containing the right factor matrix in CSV format
3. L - the left latent factor matrix. First column of L is userid. Remaining columns are user

features (as many as "rank" used while fitting the model). L will either be a data.frame or
ore.frame depending on user’s choice

4. R - the right latent factor matrix. First column of R is itemid. Remaining columns are item
features (as many as "rank" used while fitting the model). R will either be a data.frame or
ore.frame depending on user’s choice

signature(object = "orch.nmf.jellyfish") This function exports a orch.nmf.jellyfish
model. This is done by exporting the W and H factor matrices into CSV format HDFS files
and then additionally exporting them either as R data.frame objects or as ore.frame objects
based on the user’s input.
Returns a list with the following components -

1. Wdir - HDFS directory containing the left factor matrix in CSV format
2. Hdir - HDFS directory containing the right factor matrix in CSV format

orch.getFactorLevels 127

3. W - the left latent factor matrix. First column of W is row-id. Remaining columns are
the basis vectors (as many as "rank" used while fitting the model). W will either be a
data.frame or ore.frame depending on user’s choice

4. H - the right latent factor matrix. First column of H is column-id. Remaining columns
are the coefficients (as many as "rank" used while fitting the model). H will either be a
data.frame or ore.frame depending on user’s choice

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

Examples

Setup the input (user, item, rating) entries
u <- sample(1:100, 300, replace=TRUE)
i <- sample(1:10, 300, replace=TRUE)
ui <- unique(cbind(u,i))
r <- sample(1:5, nrow(ui), replace=TRUE)
input <- cbind(ui,r)

Fit an "orch.lmf.jellyfish" model
fit <- orch.lmf(input, latin=2, iterations=5, rank=3)
print(fit)

Export the model into R data frames
lr <- orch.export.fit(fit)
dim(lr$L)
dim(lr$R)

orch.getFactorLevels
Factor Levels

Description

Creates a list of factor levels.

Usage

orch.getFactorLevels(formula, dfs.dat, keepSpace = TRUE)

Arguments

formula An orch.formula object.

dfs.dat An hdfs.id object.

keepSpace Whether to keep or remove any leading and trailing whitespace for factor levels.

128 orch.getXlevels

Details

Creates a list of factor levels. Note: the function supports only the simplest formulae; for instance,
interactions and I() function are not allowed. Function F(x) can be used to ensure x will be
treated as a factor variable.

Value

A named list containing the factor levels for the categorical variables. The order in the factor levels
for each categorical variable is undefined.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

See Also

getXlevels orch.formula

Examples

Load libraries for examples
library(ORCHstats)
library(rpart)

dfs.dat <- hdfs.put(kyphosis)
levels <- orch.getFactorLevels(Kyphosis ~ Age + F(Number) + Start, dfs.dat = dfs.dat)

orch.getXlevels Factor Levels for a Model Matrix

Description

Creates a list of factor levels that can be used in the xlev argument of a model.matrix call.

Usage

orch.getXlevels(Terms, dfs.dat)

Arguments

Terms A terms or formula object.
dfs.dat An hdfs.id object.

Details

This function is the ORCH equivalent to the getXlevels function in the stats package.

Value

A named list containing the factor levels for the categorical variables derived in the Terms argu-
ment.

The order of the components of the named list is undefined. The order in the factor levels for each
categorical variable is also undefined.

orch.glm2 129

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

See Also

getXlevels

Examples

X <- hdfs.put(data.frame(V1 = -1:2,
V2 = 1:4,
V3 = rep(c("a", "b"), 2),
V4 = rep(c("A", "B"), c(2, 2))))

trms <- terms(V1 ~ log(V2) * V3 * V4)
orch.getXlevels(trms, X)

orch.glm2 ORAAH Fitting Generalized Linear Models (GLM).

Description

High performance logistic regression, based on a parallel distributed Iteratively Reweighted Least
Squares (IRLS) algorithm. GLM is used to fit logistic regression models.

Usage

orch.glm2(formula, data, method = "irls",
relObjDiff = 1e-08, relVarDiff = 1e-08,
maxIterations = 20L, maxBlockRows = 20000L,
storageLevel = "MEMORY_ONLY", verbose = TRUE)

Arguments

formula An object of class orch.formula (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under Details.

data Input data for model fitting. The different input types supported are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An Oracle Distributed Model Matrix object prepared using orch.model.matrix
function.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

130 orch.glm2

method Algorithm to solve the underlying optimization model. "irls" iteratively
reweighted least squares (recommended, default); or "lbfgs" Limited-memory
Broyden-Fletcher-Goldfarb-Shanno, recommended for models with very large
number (e.g. more than 10000) of numerical features, or whenever memory
available to each Spark worker is severely limited. For L-BFGS it is important
to increase the maximum number of iterations to, say, at least 200.

relObjDiff Relative difference between objective function values at the current and the pre-
vious iterations. By default, 1E-8 is used as a stopping criterion.

relVarDiff Relative difference between solution vectors at the current and the previous it-
erations. By default, 1E-8 is used as the stopping criterion. This parameter is
deprecated, and unused by the L-BFGS method.

maxIterations
Maximum number of IRLS iterations. By default, 20 iterations is used as the
stopping criterion.

maxBlockRows Maximum number of rows in a partition. Smaller number or rows will create
smaller partitions and more paritions. More data partitions ensures higher par-
allelization degree across Spark cluster but at the same time small paritions will
cause higher communication and resource management overhead.

storageLevel To control the storage of the Input Spark dataframe, created from HDFS CSV
data, ore.frame objects or JDBC connection. The vaild choices are "" (empty
string, means to use the default Spark storage level), "NONE", "DISK_ONLY",
"DISK_ONLY_2", "MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2", "MEMORY_AND_DISK", "MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER", "MEMORY_AND_DISK_SER_2", "OFF_HEAP".
Check Spark documentation for more information on Storage Level differences.
The default value is "MEMORY_ONLY".

verbose Whether to report progress and performance statistics. Default value is TRUE.

Details

Assuming each training observation comprises an observed class y[i] (0, 1), and a vector of fea-
tures x[i], the logistic regression seeks to maximize the log-likelihood l(beta0, beta) = sum(-log(1 +
exp(beta0 + x[i] * beta))) + sum(y[i] * (beta0 + x[i] * beta)).

When method = "irls" the implementation will use a parallel distributed Iteratively Reweighted
Least Squares (IRLS) algorithm. To carry out IRLS iterations ORAAH GLM utilizes efficient
parallel distributed linear algebra algorithms, including parallel supernodal Cholesky factoriza-
tion. When method = "lbfgs" GLM2 will switch to a parallel distributed Limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm. L-BFGS is an experimental feature in this release,
and should be used when the number of numerical features is large, or memory available for Spark
worker processes is severly limited. When using L-BFGS solver the maximum number of itera-
tions maxIterations parameter should be increated to be at least 200. Note: relVarDiff is
unused when method = "lbfgs".

ORAAH GLM can efficiently handle both numeric and high cardinality factor variables. ORAAH
GLM automatically switches to the out-of-core mode, if the input data does not fit into the dis-
tributed memory.

Value

GLM2 fit object, orch.glm2.

orch.glm2 131

ORAAH Formula

Everywhere below A can be either an ID (column name), it can also denote any generated column,
for instance sin(A / 10), or any subset of columns for instance (A1 + A2 + A3).

Numerical engines, such as linear regression, cannot consume raw data; there must be a way to
specify response and explanatory variables, nonlinear transformations, and interactions. Formula is
such an engine, a recipe which specifies which columns (terms) to include to the model, and how
to transform them if desired.

• . dot-character is a shortcut for all variables (all data columns), except the response.

• +A plus operator means to include this variable into the model. Plus operator here is used
in set-theoretic sense. There is no arithmetic summation here of any kind. We add a term
(column) to an ordered set of statistical terms (model).

• -A minus operator means to remove this variable from the model. Example - (A + B)
removes both A and B variables from the model. Example . - (A + B) includes all vari-
ables, except A, B, and the response.

• A : B include the interaction between A and B variables.

• A * B include these variables and the interactions between them. This is equivalent to A
+ B + A : B. Example A * (. - B) * Z

• (A1 + A2 + ... + Ak)^n include these variables and all interactions up to n-way. For
instance, (A + B)^2 is equivalent to A + B + A : B. The exponentiation (the power
operator) can lead to much more compact model specification. For instance (. - A)^3
will include all variables, excluding the A and the response, and will include the corresponding
interactions. To reiterate, A can be either an ID (variable name) or any complex term. For in-
stance, (log(A) + B : Z)^2 is equivalent to log(A) + B : Z + log(A) : B : Z

• I() Identity function. Its argument will be treated in arithmetic sense (as versus set-theoretic
sense). For instance: I(log(A) + B) will include a new column, whose elements are
log(A[k]) + B[k]. Here, the plus operator (and all other operators) will be treated in
their traditional arithmetic sense.

• 24 arithmetic functions. The argument will be treated in arithmetic sense. Example log(A / 10 +
B * Z).

abs acos asin
atan cbrt ceil
cos cosh exp
expm1 floor log
log10 log1p rint
round signum sin
sinh sqrt tan
tanh toDegrees toRadians

• Relational operators, currently supported for numerical terms only. Example Y ~ X + (A >
B).

A >= B A <= B
A > B A < B
A == B A != B
A && B A || B
A & B A | B

132 orch.glm

• +1 Add the intercept.

• -0 Add the intercept (equivalent to +1).

• -1 Delete the intercept.

• +0 Delete the intercept (equivalent to -1).

It is very important to keep in mind, that all factor variables (including factor-factor and factor-
numeric interactions), are unrolled following one-hot scheme, meaning internally they will be sub-
stituted by k-1 dummy variables.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.formula predict.orch.glm2 oracle.model.matrix

Examples

library(rpart)
data <- hdfs.put(kyphosis)
model <- orch.glm2(formula = Kyphosis ~ log(Age) + Number, data = data)
pred <- predict(model, newdata = data, supplemental = c("Kyphosis", "Age"))
hdfs.write(pred, outPath = "kyphosisPrediction", overwrite = TRUE)

orch.glm Generalized Linear Models for HDFS objects

Description

Functions for fitting and using generalized linear models on HDFS data.

Usage

Fitting function
orch.glm(formula, data, family = gaussian(), start = NULL,

control = list(...), contrasts = NULL, xlev = NULL,
ylev = NULL, yprob = NULL, sparse = FALSE,
nMappers = -1, nReducers = 1, mapSplit = 0,
reducer.serial.limit = 8L, task.timeout = -1L, ...)

Fit control function
orch.glm.control(devlre = 8, maxit = 25, trace = FALSE, linesearch = TRUE, ...)

Specific methods for orch.glm objects

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.glm 133

S3 method for class 'orch.glm'
predict(object, newdata = NULL, type = c("link", "response"),

se.fit = FALSE, dispersion = NULL, na.action = na.pass,
skip.vals = FALSE, mapSplit = 0, nMappers = -1, ...)

S3 method for class 'orch.glm'
deviance(object)

S3 method for class 'orch.glm'
extractAIC(fit, scale = 0, k = 2, ...)

S3 method for class 'orch.glm'
vcov(object, ...)

Inherited methods for orch.glm objects
#coef(object, ...)
#coefficients(object, ...)
#family(object, ...)
#formula(x, ...)
#logLik(object, ...)
#nobs(object, ...)

Arguments

formula A formula object representing the model to be fit.

data An HDFS object specifying the data for the model.

family A family object specifying the generalized linear model family details. This
is the same type of object used for the glm function in the stats package.

start An optional numeric vector specifying the initial coefficient estimates in the
linear predictor.

control An optional list object containing a list of fit control parameters to be inter-
preted by the orch.glm.control function.

contrasts An optional named list to be supplied to the contrasts.arg argument of
model.matrix.

xlev An optional named list of character vectors specifying the levels for
each factor variable.

ylev An optional character vector to specify the response variable levels in binomial
generalized linear models.

yprob An optional numeric value between 0 and 1 specifying the overall probability of
y != ylev[1] in binomial generalized linear models.

sparse A logical value indicating whether a sparse matrix solver should be used from
the Matrix package.

nMappers Hint for number of mappers to be used for the Hadoop jobs. Hadoop defaults
are used.

nReducers Hint for number of reducers to be used for the Hadoop jobs. Default is 1.

mapSplit Number of records to supply at once to a mapper. See map.split in mapred.config
reducer.serial.limit

Maximum number of records later phase reducers should process serially

134 orch.glm

task.timeout Maximum time in seconds a map or reduce task is allowed to run before it gets
force killed by Hadoop. Hadoop defaults are used.

devlre A positive number specifying the minimum log relative error of the residual
deviance convergence criterion, −log10(|dev − devold|/|dev|) ≥ devlre.

maxit A positive integer specifying the maximum number of Fisher scoring iterations.

trace The control parameter that controls the output produced at each Fisher scoring
iteration; a value of FALSE or 0 indicating no output, a value of TRUE or 1
indicating the printing of the residual deviance for each iteration, or a value of 2
indicating the printing of the residual deviance and runtime breakdown for each
iteration.

object An orch.glm object.

newdata An HDFS or Hive object.

skip.vals If FALSE, then input value columns are included in the output, else they are not
included in the output. Default is FALSE.

type A character string specifying the type of predictions or residuals to produce.

se.fit A logical value indicating whether to return the standard errors for the predic-
tions.

na.action The manner in which NA values are handled, either na.omit or na.pass.

... Additional arguments.

Details

The orch.glm function fits generalized linear models using a Fisher scoring iteratively re-weighted
least squares algorithm. Instead of the traditional step halving to prevent the selection of less opti-
mal coefficient estimates, a line search is used to select new coefficient estimates at each iteration
starting from the current coefficient estimates and moving through the Fisher scoring suggested
estimates using the formula (1− α) ∗ old+ α ∗ suggested where α in [0, 2].

Each iteration uses map/reduce operations to calculate the necessary sufficient statistics for generat-
ing new coefficient estimates. For more parallelism during reducer computation, a tree of reducers
can be used.

To ensure stability, collinear terms are removed from the re-weighted least squares equations prior
to solving for new coefficient estimates. After the algorithm has either converged or reached the
maximum number of iterations, a final embedded map/reduce operation is used to generate the
complete set of model-level statistics. For more parallelism during reducer computation, a tree of
reducers can be used.

Value

For orch.glm, returns an orch.glm object.

For summary.orch.glm, returns a summary.orch.glm object.

For predict.orch.glm, returns an hdfs.id object. This corresponds to the output HDFS
file.

The output file contains a key column in addition if and only if newdata had a key. The value of
the key column can be used to associate a record in newdata with its corresponding record in the
output file.

The format of the output file is as follows - If key column is present it will appear first. This will be
followed by the remaining columns in newdata if and only if skip.vals==FALSE. The ordering
amongst these columns is preserved. Finally, the columns corresponding to the prediction results
follow.

orch.kmeans 135

See Also

orch.lm, glm, family

Examples

Load libraries for examples
library(ORCHstats)
library(rpart)

Logistic regression
KYPHOSIS <- hdfs.put(kyphosis)
kyphFit1 <- orch.glm(Kyphosis ~ ., data = KYPHOSIS, family = binomial())
kyphFit2 <- glm(Kyphosis ~ ., data = kyphosis, family = binomial())
summary(kyphFit1)
summary(kyphFit2)

Predict (note, we leave the result on HDFS)
pred <- predict(kyphFit1, newdata = KYPHOSIS)

Poisson regression
SOLDER <- hdfs.put(solder)
solFit1 <- orch.glm(skips ~ ., data = SOLDER, family = poisson())
solFit2 <- glm(skips ~ ., data = solder, family = poisson())
summary(solFit1)
summary(solFit2)

orch.kmeans K-Means Clustering for HDFS objects

Description

Perform k-means clustering on a data matrix stored as an HDFS file.

Usage

orch.kmeans(x, centers, iter.max = 10, nstart = 1, nstart.per.batch=nstart,
num.mappers=-1, num.reducers=1, reducer.serial.limit=8,
task.timeout=-1, job.name="ORCH k-means")

Arguments

x An hdfs.id object containing numeric columns. This input matrix is in dense
matrix representation. The key column, if present, is ignored. Only the value
columns are considered.

centers either the number of clusters, say k, or a set of initial (distinct) cluster centres.
If a number, a random set of (distinct) rows in x is chosen as the initial centres.

iter.max the maximum number of iterations allowed.

nstart if centers is a number, the number of random sets that should be chosen
nstart.per.batch

The maximum number of random starts to be run in a single batch. See details
for more information.

136 orch.kmeans

num.mappers Hint for number of mappers to be used for the Hadoop jobs. Hadoop defaults
are used.

num.reducers Hint for number of reducers to be used for the Hadoop jobs. Default is 1.
reducer.serial.limit

Maximum number of records later phase reducers should process serially

task.timeout Maximum time in seconds a map or reduce task is allowed to run before it gets
force killed by Hadoop. Hadoop defaults are used.

job.name Prefix to be used for the Hadoop job names

Details

The data in the HDFS file x is clustered by the k-means method, which aims to partition the points
into k groups such that the sum of squares from points to the assigned cluster centres is minimized.
At the minimum, all cluster centres are at the mean of their Voronoi sets (the set of data points
which are nearest to the cluster centre).

The algorithm of Lloyd(1957) is implemented using MapReduce. In each iteration tasks work in
parallel on disjoint sets of rows of the input matrix. The reducer then puts all these together by
performing a weighted mean computation to compute the cluster centers. The cluster centers pro-
vided by each mapper are weighted by the respective cluster sizes provided by the mapper and the
weighted mean is computed. For more parallelism during reducer computation, a tree of reducers
are used.

The assumption is that the matrix of cluster centers will fit in R memory.

k clusters may not always be returned because it is possible that no point will be closest to one or
more centres.

Trying several random starts (nstart> 1) is often recommended. Given the cost of data scans, the
implementation attempts to batch these random starts in such a way as to minimize the number of
scans required. Thus, it is best to use the default value which results in all the random starts being
part of a single batch. The only reason to override the default and choose smaller batch sizes is due
to considerations on the memory consumption of a batch. In general, this only applies when the
number of centers is large.

Value

orch.kmeans returns an object of class "orch.kmeans" which has a print method. It is a
list with components:

centers An in memory R matrix of the final cluster centres.

prev.centers An in memory R matrix of cluster centers used at the beginning of the final
iteration. It is these centers that are used to determine the cluster allocation of
the input points.

totss The total sum of squares.

withinss An in memory R vector of within-cluster sum of squares, one component per
cluster.

tot.withinss Total within-cluster sum of squares, i.e., sum(withinss).

betweenss The between-cluster sum of squares, i.e. totss-tot.withinss.

size An in memory R vector of the number of points in each cluster, one component
per cluster.

iter Number of iterations performed.

orch.lm2 137

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

See Also

kmeans

Examples

require(graphics)

a 2-dimensional example
x <- data.frame(rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),

matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2)))
colnames(x) <- c("x", "y")
xdir <- hdfs.put(x)

kcl <- kmeans(x, iter.max=2, centers=x[c(1,51),], algorithm="Lloyd")
ocl <- orch.kmeans(xdir, iter.max=2, centers=x[c(1,51),])

stopifnot(all.equal(kcl$centers, ocl$centers),
all.equal(kcl$withinss, ocl$withinss, check.attributes=FALSE),
all.equal(kcl$tot.withinss, ocl$tot.withinss),
all.equal(kcl$totss, ocl$totss),
all.equal(kcl$betweenss, ocl$betweenss),
all.equal(kcl$size, ocl$size)

)

plot(x, col=kcl$cluster)
points(ocl$centers, col = 1:2, pch = 8, cex = 2)

Prediction
pred <- orch.predict(ocl, xdir)
head(hdfs.get(pred))

orch.lm2 ORAAH Fitting Linear Models (LM)

Description

High performance linear regression, based on parallel distributed normal equations and Cholesky
factorization.

Usage

orch.lm2(formula, data, storageLevel = "MEMORY_ONLY",
maxBlockRows = 20000L, verbose = TRUE)

Arguments

formula An object of class orch.formula (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under Details.

138 orch.lm2

data Input data for model fitting. The different input types supported are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An Oracle Distributed Model Matrix object prepared using orch.model.matrix
function.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

storageLevel To control the storage of the Input Spark dataframe, created from HDFS CSV
data, ore.frame objects or JDBC connection. The vaild choices are "" (empty
string, means to use the default Spark storage level), "NONE", "DISK_ONLY",
"DISK_ONLY_2", "MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2", "MEMORY_AND_DISK", "MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER", "MEMORY_AND_DISK_SER_2", "OFF_HEAP".
Check Spark documentation for more information on Storage Level differences.
The default value is "MEMORY_ONLY".

maxBlockRows Maximum number of rows in a partition. Smaller number or rows will create
smaller partitions and more paritions. More data partitions ensures higher par-
allelization degree across Spark cluster but at the same time small paritions will
cause higher communication and resource management overhead.

verbose Whether to report progress and performance statistics. Default value is TRUE.

Details

ORAAH LM is used to carry out linear regression y = X * beta + e, where y is the re-
sponse, X is the design matrix, beta is a vector of regression coefficients, and e is the error.

The implementation is based on parallel distributed normal equations X^T * X * beta = X^T y,
and parallel supernodal Cholesky factorization.

ORAAH LM can efficiently handle both numeric and high cardinality factor variables. ORAAH
LM automatically switches to the out-of-core mode, if the input data does not fit into the distributed
memory.

Value

LM2 fit object, orch.lm2.

ORAAH Formula

Everywhere below A can be either an ID (column name), it can also denote any generated column,
for instance sin(A / 10), or any subset of columns for instance (A1 + A2 + A3).

Numerical engines, such as linear regression, cannot consume raw data; there must be a way to
specify response and explanatory variables, nonlinear transformations, and interactions. Formula is
such an engine, a recipe which specifies which columns (terms) to include to the model, and how
to transform them if desired.

• . dot-character is a shortcut for all variables (all data columns), except the response.

orch.lm2 139

• +A plus operator means to include this variable into the model. Plus operator here is used
in set-theoretic sense. There is no arithmetic summation here of any kind. We add a term
(column) to an ordered set of statistical terms (model).

• -A minus operator means to remove this variable from the model. Example - (A + B)
removes both A and B variables from the model. Example . - (A + B) includes all vari-
ables, except A, B, and the response.

• A : B include the interaction between A and B variables.

• A * B include these variables and the interactions between them. This is equivalent to A
+ B + A : B. Example A * (. - B) * Z

• (A1 + A2 + ... + Ak)^n include these variables and all interactions up to n-way. For
instance, (A + B)^2 is equivalent to A + B + A : B. The exponentiation (the power
operator) can lead to much more compact model specification. For instance (. - A)^3
will include all variables, excluding the A and the response, and will include the corresponding
interactions. To reiterate, A can be either an ID (variable name) or any complex term. For in-
stance, (log(A) + B : Z)^2 is equivalent to log(A) + B : Z + log(A) : B : Z

• I() Identity function. Its argument will be treated in arithmetic sense (as versus set-theoretic
sense). For instance: I(log(A) + B) will include a new column, whose elements are
log(A[k]) + B[k]. Here, the plus operator (and all other operators) will be treated in
their traditional arithmetic sense.

• 24 arithmetic functions. The argument will be treated in arithmetic sense. Example log(A / 10 +
B * Z).

abs acos asin
atan cbrt ceil
cos cosh exp
expm1 floor log
log10 log1p rint
round signum sin
sinh sqrt tan
tanh toDegrees toRadians

• Relational operators, currently supported for numerical terms only. Example Y ~ X + (A >
B).

A >= B A <= B
A > B A < B
A == B A != B
A && B A || B
A & B A | B

• +1 Add the intercept.

• -0 Add the intercept (equivalent to +1).

• -1 Delete the intercept.

• +0 Delete the intercept (equivalent to -1).

It is very important to keep in mind, that all factor variables (including factor-factor and factor-
numeric interactions), are unrolled following one-hot scheme, meaning internally they will be sub-
stituted by k-1 dummy variables.

140 orch.lmf

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.formula predict.orch.lm2 oracle.model.matrix

Examples

library(rpart)
data <- hdfs.put(kyphosis)
model <- orch.lm2(formula = Age ~ log(Number) + Kyphosis, data = data)
pred <- predict(model, newdata = data, supplemental = c("Kyphosis", "Age"))
hdfs.write(pred, outPath = "kyphosisPrediction", overwrite = TRUE)

orch.lmf Fit a Low Rank Matrix Factorization Model

Description

This function is used to fit a Low Rank Matrix Factorization model

Usage

orch.lmf(input, method =c("jellyfish", "mahout-als"), dfs.output = NULL, ...)

Arguments

input A CSV ratings file containing entries of the form (user, item, rating). This can
be one of the following

1. the HDFS directory containing the input file
2. R data.frame object
3. ore.frame object
4. name of a file in the local file system

method The method to be used. The default is jellyfish

dfs.output The output HDFS directory where the model should be created. If not specified,
this method will internally create a directory and use that as the output directory.

... Optional method specific arguments
The arguments specific to the "jellyfish" method are:

latin Latin Square dimension for Map Reduce parallelism. This is an optional argu-
ment. The default value is computed based on the memory per mapper.

rank The rank of the latent factor matrices. This is an optional argument with default
value of 50.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.lmf 141

iterations Number of iterations of Incremental Gradient Descent (IGD) to be performed.
This is an optional argument with default value 10.

step Learning Rate / Step size to be used in IGD. This is an optional argument with
default value 0.05.

decay Decay parameter for step size to be used in IGD. This is an optional argument
with default value 0.8.

regularizer Regularization parameter to be used in IGD. This is an optional argument with
default value 2.3.

init Values for initalization of factors will be uniformly chosen from (0 .. init). This
is an optional argument with default value 1.

seed Seed value for random number generation. This is an optional argument.

mapmem Amount of memory available per mapper in MB. This is an optional argument
with default value 200.
The arguments specific to the "mahout-als" method are:

rank The rank of the latent factor matrices. This is an optional argument with default
value of 50.

iterations Number of iterations to be performed. This is an optional argument with default
value 10.

regularizer Regularization parameter to be used in ALS. This is an optional argument with
default value 0.065.

Details

The jellyfish algorithm implements a projected incremental gradient descent method. Massive
parallelization of the gradient computations are achieved by partitioning the matrix into chunks.

Value

Returns the fitted model, an object of an orch.lmf subclass.

In case of "jellyfish", this is a list with the following components

results A data frame with the error metrics (RMSE, SSE) after each iteration of IGD.

nrows Number of rows in training input matrix.

ncols Number of columns in training input matrix.

nratings Number of input entries.

inputDir The HDFS directory containing the input.

modelDir The HDFS directory containing the model.

In case of "mahout-als", this is a list with the following components

inputDir The HDFS directory containing the input.

modelDir The HDFS directory containing the model.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

142 orch.lm

Examples

Setup the input (user, item, rating) entries
u <- sample(1:100, 300, replace=TRUE)
i <- sample(1:10, 300, replace=TRUE)
ui <- unique(cbind(u,i))
r <- sample(1:5, nrow(ui), replace=TRUE)
input <- cbind(ui,r)

Fit an "orch.lmf.jellyfish" model
fit1 <- orch.lmf(input, latin=2, iterations=5, rank=3)
print(fit1)

For "mahout-als", set up an input file
inputFile <- tempfile(tmpdir='/tmp')
write.table(input, file=inputFile, sep=",", col.names=FALSE, row.names=FALSE)

Fit using "mahout-als"
fit2 <- orch.lmf(inputFile, method="mahout-als", rank=3)
print(fit2)

orch.lm Linear Regression for HDFS Objects

Description

Functions for fitting and using linear regression models on HDFS data.

Usage

Fitting functions
orch.lm(formula, dfs.dat, nMappers = -1L, nReducers = 1L, mapSplit = 0,

contrasts = NULL, xlev = NULL, sparse = FALSE,
reducer.serial.limit = 8L, task.timeout = -1L, ...)

Specific methods for ore.lm objects
S3 method for class 'orch.lm'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

S3 method for class 'orch.lm'
vcov(object, ...)

S3 method for class 'orch.lm'
anova(object, ...)

S3 method for class 'orch.lm'
deviance(object)

S3 method for class 'orch.lm'

orch.lm 143

nobs(object)

S3 method for class 'orch.lm'
predict(object, newdata, se.fit = FALSE, scale = NULL, df = Inf,

interval = c("none", "confidence", "prediction"),
level = 0.95, na.action = na.pass, pred.var = NULL,
skip.vals =FALSE, mapSplit = 0, nMappers = -1, ...)

Inherited methods for ore.lm objects
#coef(object, ...)
#coefficients(object, ...)
#confint(object, parm, level = 0.95, ...)
#formula(x, ...)

Arguments

formula A formula object representing the model (orch.lm) or initial model (ore.stepwise)
to be fit.

dfs.dat An HDFS object specifying the data for the model.

contrasts An optional named list to be supplied to the contrasts.arg argument of
model.matrix.

xlev An optional named list of character vectors specifying the levels for
each factor variable.

sparse A logical value indicating whether a sparse matrix solver should be used from
the Matrix package.

nMappers Hint for number of mappers to be used for the Hadoop jobs. Hadoop defaults
are used.

nReducers Hint for number of reducers to be used for the Hadoop jobs. Default is 1.
reducer.serial.limit

Maximum number of records later phase reducers should process serially

task.timeout Maximum time in seconds a map or reduce task is allowed to run before it gets
force killed by Hadoop. Hadoop defaults are used.

object, model, newdata
orch.lm object.

correlation, symbolic.cor
Argument not implemented.

REML Argument not implemented.

se.fit A logical value indicating whether to return the standard errors for the predic-
tions.

scale The scale parameter for standard error of the predictions.

df The degrees of freedom for the predictions when argument scale is not NULL.

interval The type of interval to return, either "none", "confidence", or "prediction".

level The level for argument interval.

na.action The manner in which NA values are handled, either na.omit or na.pass.

pred.var When argument interval is "prediction", the variance for a single ob-
servation.

... Additional arguments.

144 orch.load.model

Details

The orch.lm function performs least squares regression on HDFS data.

A model fit is generated using map/reduce operations where the map operation creates QR decom-
positions of the model.matrix, or sparse.model.matrix if argument sparse = TRUE,
and the reduce operation block updates those QR decompositions. For more parallelism during re-
ducer computation, a tree of reducers can be used.

Once the coefficients for the model have been estimated another pass of the data is made to estimate
the model-level statistics.

If there are collinear terms in the model, orch.lm will not estimate the coefficient values for a
collinear set of terms.

Value

For orch.lm, returns an orch.lm object.

For summary.orch.lm, returns a summary.orch.lm object.

For predict.orch.lm, returns an hdfs.id object. This corresponds to the output HDFS file.

The output file contains a key column in addition if and only if newdata had a key. The value of
the key column can be used to associate a record in newdata with its corresponding record in the
output file.

The format of the output file is as follows - If key column is present it will appear first. This will be
followed by the remaining columns in newdata if and only if skip.vals==FALSE. The ordering
amongst these columns is preserved. Finally, the columns corresponding to the prediction results
follow.

See Also

orch.glm, lm,

Examples

Prepare the model and the data
Note, the number of mappers is defined by the ORCH platform.
dat <- hdfs.put(iris)
frm <- Petal.Width ~ Sepal.Length + (Sepal.Width + Petal.Length)^2
fit <- orch.lm(frm, dat)

Print summary
summary(fit)

Predict (note, we leave the result on HDFS)
pred <- predict(fit, newdata = dat)

orch.load.model Load ORAAH Models from HDFS.

Description

This function loads a model created using Spark analytics in ORAAH from hdfs for scoring/prediction.
It also enables loading of models created by other users if access to the hdfs path where models are
saved is provided.

orch.mdf 145

Usage

orch.load.model(dfs.name)

Arguments

dfs.name A string specifying absolute or relative HDFS path of the saved model.

Value

Model object of type among orch.glm2, orch.lm2, orch.neural2, orch.ml.logistic,
orch.ml.linear, orch.ml.lasso, orch.ml.ridge, orch.ml.svm, orch.ml.gmm,
orch.ml.kmeans, orch.ml.dt, orch.ml.random.forest or orch.ml.gbt present
at the location provided by dfs.name.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.save.model

Examples

library(rpart)
data <- hdfs.put(kyphosis)
model <- orch.ml.ridge(formula = Number ~ Age, data = data)
orch.save.model(model, "ridgeKypSave", overwrite=TRUE)
model.load <- orch.load.model("ridgeKypSave")
pred <- predict(model.load, newdata = data, supplemental = c("Kyphosis", "Age"))
hdfs.write(pred, outPath = "kyphosisPrediction", overwrite=TRUE)

orch.mdf Creates an MLlib Data Frame (MDF).

Description

MLlib machine learning and statistical algorithms require a special row-based distributed frame for
training and scoring.

Usage

orch.mdf(formula, data, factorMode = "one_hot",
maxBlockRows = 20000L, storageLevel = "MEMORY_ONLY",
verbose = TRUE, ...)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

146 orch.mdf

Arguments

formula A formula representing the model to be fit (see "details" section below for
more information.)

data Input data for prediction. The different input types supported are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

factorMode Factor mode. "one_hot" and "none" are supported.

maxBlockRows Maximum number of rows in a partition. Smaller number or rows will create
smaller partitions and more paritions. More data partitions ensures higher par-
allelization degree across Spark cluster but at the same time small paritions will
cause higher communication and resource management overhead.

storageLevel To control the storage of the MLlib Spark dataframe, created from HDFS CSV
data, ore.frame objects or JDBC connection. The vaild choices are "" (empty
string, means to use the default Spark storage level), "NONE", "DISK_ONLY",
"DISK_ONLY_2", "MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2", "MEMORY_AND_DISK", "MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER", "MEMORY_AND_DISK_SER_2", "OFF_HEAP".
Check Spark documentation for more information on Storage Level differences.
The default value is "MEMORY_ONLY".

verbose Whether to report progress and performance statistics. Default is TRUE.

... additional arguments.

Details

The following section describes the formula argument format and specification in details. For
more information and examples you can also refer to the base R specification of formula.

Value

MDF object.

ORAAH Formula

Everywhere below A can be either an ID (column name), it can also denote any generated column,
for instance sin(A / 10), or any subset of columns for instance (A1 + A2 + A3).

Numerical engines, such as linear regression, cannot consume raw data; there must be a way to
specify response and explanatory variables, nonlinear transformations, and interactions. Formula is
such an engine, a recipe which specifies which columns (terms) to include to the model, and how
to transform them if desired.

• . dot-character is a shortcut for all variables (all data columns), except the response.

orch.mdf 147

• +A plus operator means to include this variable into the model. Plus operator here is used
in set-theoretic sense. There is no arithmetic summation here of any kind. We add a term
(column) to an ordered set of statistical terms (model).

• -A minus operator means to remove this variable from the model. Example - (A + B)
removes both A and B variables from the model. Example . - (A + B) includes all vari-
ables, except A, B, and the response.

• A : B include the interaction between A and B variables.

• A * B include these variables and the interactions between them. This is equivalent to A
+ B + A : B. Example A * (. - B) * Z

• (A1 + A2 + ... + Ak)^n include these variables and all interactions up to n-way. For
instance, (A + B)^2 is equivalent to A + B + A : B. The exponentiation (the power
operator) can lead to much more compact model specification. For instance (. - A)^3
will include all variables, excluding the A and the response, and will include the corresponding
interactions. To reiterate, A can be either an ID (variable name) or any complex term. For in-
stance, (log(A) + B : Z)^2 is equivalent to log(A) + B : Z + log(A) : B : Z

• I() Identity function. Its argument will be treated in arithmetic sense (as versus set-theoretic
sense). For instance: I(log(A) + B) will include a new column, whose elements are
log(A[k]) + B[k]. Here, the plus operator (and all other operators) will be treated in
their traditional arithmetic sense.

• 24 arithmetic functions. The argument will be treated in arithmetic sense. Example log(A / 10 +
B * Z).

abs acos asin
atan cbrt ceil
cos cosh exp
expm1 floor log
log10 log1p rint
round signum sin
sinh sqrt tan
tanh toDegrees toRadians

• Relational operators, currently supported for numerical terms only. Example Y ~ X + (A >
B).

A >= B A <= B
A > B A < B
A == B A != B
A && B A || B
A & B A | B

• +1 Add the intercept.

• -0 Add the intercept (equivalent to +1).

• -1 Delete the intercept.

• +0 Delete the intercept (equivalent to -1).

It is very important to keep in mind, that all factor variables (including factor-factor and factor-
numeric interactions), are unrolled following one-hot scheme, meaning internally they will be sub-
stituted by k-1 dummy variables.

148 orch.ml.dt

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.attach hdfs.write hdfs.get hdfs.sample

Examples

library(rpart)
data <- hdfs.put(kyphosis)
modelMatrix <- orch.mdf(Kyphosis ~ Number, data = data)
hdfs.rm(data)

orch.ml.dt MLlib Decision Tree.

Description

MLlib Decision Tree.

Usage

orch.ml.dt(formula, data, type = NULL, impurity = NULL,
maxDepth = NULL, maxBins = NULL,
minInstancesPerNode = NULL, minInfoGain = NULL,
maxCategories = 32L, threshold = NULL,
maxBlockRows = 20000L, storageLevel = "MEMORY_ONLY",
verbose = TRUE)

Arguments

formula An object of class orch.formula (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under Details.

data Input data for model fitting. The different input types supported are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An MLlib input Dataframe object prepared using orch.model.matrix(..., factorMode="none", type="mdf", ...)
function.

• An MLlib input Dataframe object prepared using orch.mdf(..., factorMode="none", ...)
function.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.ml.dt 149

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

type Can be set to "classification" or "regression". Default value is NULL, in which
case it will be determined automatically based on the input dataset and formula.

impurity Criterion used for information gain calculation. Values "gini" and "entropy" are
supported for classification, and "variance" for regression. The default value is
NULL, in which case it will be determined automatically based on the type.

maxDepth Maximum depth of the decision tree, default value 5.

maxBins Maximum number of bins used for splitting features, default value 32.
minInstancesPerNode

Minimum number of instances each child must have after a split.

minInfoGain Minimum information gain for a split to be considered at a tree node.
maxCategories

Features with levels higher than maxCategories distinct values are treated
as continuous.

threshold Thresholds are used in multi-class classification to adjust the probability of pre-
dicting each class. Array must have length equal to the number of classes, with
values > 0 excepting that at most one value may be 0. The class with largest
value p/t is predicted, where p is the original probability of that class and t is the
class’s threshold. This parameter will not have any effect for type="regression"
models.

maxBlockRows Maximum number of rows in a partition. Smaller number or rows will create
smaller partitions and more paritions. More data partitions ensures higher par-
allelization degree across Spark cluster but at the same time small paritions will
cause higher communication and resource management overhead.

storageLevel To control the storage of the MLlib Spark dataframe, created from HDFS CSV
data, ore.frame objects or JDBC connection. The vaild choices are "" (empty
string, means to use the default Spark storage level), "NONE", "DISK_ONLY",
"DISK_ONLY_2", "MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2", "MEMORY_AND_DISK", "MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER", "MEMORY_AND_DISK_SER_2", "OFF_HEAP".
Check Spark documentation for more information on Storage Level differences.
The default value is "MEMORY_ONLY".

verbose Whether to report progress and performance statistics. Default value is TRUE.

Details

Decision trees are recursive algorithms consisting of binary nodes. Each node is characterized by a
decision boundary over one of the predictor variables.

Decision boundaries.

Each binary node identifies a decision w.r.t. one predictor variable xi by splitting domain region
R of that predictor into two disjoint domain regions R1 , R2 : R1 ∪ R2 = R , R1 ∩ R2 = ∅.
If predictor is continuous, then the decision is sought as a split boundary θ between the enclosing
regionsR1 andR2 so that both new regions are continuous. If the predictor is categorical, then the
decision boundary θ is defined by two disjoint category subsetsR1 andR2 directly: θ = (R1,R2).

150 orch.ml.dt

Each decision node therefore is characterized by a heuristic referred to as the information gain:

IG (R,R1,R2) = I (R)− N1

N
I (R1)− N2

N
(R2)

.

Here, N , N1, N2 are cardinalities of subsets of the training set such that xi ∈ R, xi ∈ R1, and
xi ∈ R2, respectively. Also, the quantities I (·) are measures of target variable impurity in the
specified predictor regions.

At prediction time, if the input’s predictor xi ∈ R1, then prediction algorithm recursively walks
down the left subtree, otherwise the algorithm walks down the right subtree. The domain range of
xi is assignedR ← R1 for the left subtree, andR ← R2 for the right subtree.

The tree leaves have a prediction quantity ŷ associated with them. The prediction algorithm stops
when the leaf is reached, at which point prediction result is taken as the prediction quantity of the
leaf reached.

Impurity heuristics.
There are several choices of the impurity heuristic to be used during tree fitting.

For categorical targets y, i.e., a classification problem, the choices are:

• Gini impurity: IGini (R) =
∑C
i=1 fi (1− fi);

• Entropy: IEntropy (R) = −
∑C
i=1 fi log fi.

Here, C is the cardinality of target category set, and fi is frequency of the i-th category in the
training subset subject to xi ∈ R.

For a continuous target y, i.e., a regression problem, impurity choice is the variance of the target
variable:

IVariance (R) = VAR (y) , subject to xi ∈ R.

Fitting.
The fitting of decision tree is therefore driven by assigning model parameters to each node: a choice
of predictor variable xi to use, and the split boundary θ. For exact strategies for finding (i, θ), please
refer to the MLlib manual.

Value

Decision Tree fit object, orch.ml.dt.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.formula predict.orch.ml.dt oracle.model.matrix

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.ml.gbt 151

Examples

library(rpart)
data <- hdfs.put(kyphosis)
model <- orch.ml.dt(formula = Kyphosis ~ Number + Age, data = data, type="classification")
pred <- predict(model, newdata = data, supplemental = c("Kyphosis", "Age"))
hdfs.write(pred, outPath = "kyphosisPrediction", overwrite = TRUE)

orch.ml.gbt MLlib gradient Boosted Trees.

Description

MLlib Gradient-Boosted Trees (GBTs) are ensembles of decision trees. GBTs iteratively train
decision trees in order to minimize a loss function. Like decision trees, GBTs handle categorical
features, extend to the multiclass classification setting, do not require feature scaling, and are able
to capture non-linearities and feature interactions. MLlib supports GBTs for binary classification
and for regression, using both continuous and categorical features.

Usage

orch.ml.gbt(formula, data, type = NULL,
maxIterations = 100L, maxCategories = 32L,
threshold = NULL, maxBlockRows = 20000L,
storageLevel = "MEMORY_ONLY", verbose = TRUE)

Arguments

formula An object of class orch.formula (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under Details.

data Input data for model fitting. The different input types supported are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An MLlib input Dataframe object prepared using orch.model.matrix(..., factorMode="none", type="mdf", ...)
function.

• An MLlib input Dataframe object prepared using orch.mdf(..., factorMode="none", ...)
function.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

type Can be set to "classification" or "regression". Default value is NULL, in which
case it will be determined automatically based on the input dataset and formula.

maxIterations
Maximum number of iterations. By default, 100 iterations is used as the stop-
ping criterion.

152 orch.ml.gbt

maxCategories
Features with levels higher than maxCategories distinct values are treated
as continuous.

threshold Thresholds are used in multi-class classification to adjust the probability of pre-
dicting each class. Array must have length equal to the number of classes, with
values > 0 excepting that at most one value may be 0. The class with largest
value p/t is predicted, where p is the original probability of that class and t is the
class’s threshold. This parameter will not have any effect for type="regression"
models.

maxBlockRows Maximum number of rows in a partition. Smaller number or rows will create
smaller partitions and more paritions. More data partitions ensures higher par-
allelization degree across Spark cluster but at the same time small paritions will
cause higher communication and resource management overhead.

storageLevel To control the storage of the MLlib Spark dataframe, created from HDFS CSV
data, ore.frame objects or JDBC connection. The vaild choices are "" (empty
string, means to use the default Spark storage level), "NONE", "DISK_ONLY",
"DISK_ONLY_2", "MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2", "MEMORY_AND_DISK", "MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER", "MEMORY_AND_DISK_SER_2", "OFF_HEAP".
Check Spark documentation for more information on Storage Level differences.
The default value is "MEMORY_ONLY".

verbose Whether to report progress and performance statistics. Default value is TRUE.

Value

Gradient Boosted Tree fit object, orch.ml.gbt.

Attention

MLlib Gradient-Boosted Trees do not yet support multiclass classification. For multiclass problems,
please use decision trees (orch.ml.dt) or Random Forests (orch.ml.random.forest).

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.formula predict.orch.ml.gbt oracle.model.matrix

Examples

library(rpart)
data <- hdfs.put(kyphosis)
model <- orch.ml.gbt(formula = Kyphosis ~ Number + Age, data = data, type="classification")
pred <- predict(model, newdata = data, supplemental = c("Kyphosis", "Age"))
hdfs.write(pred, outPath = "kyphosisPrediction", overwrite = TRUE)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.ml.gmm 153

orch.ml.gmm MLlib Gaussian Mixture Model

Description

MLlib implementation of Gaussian Mixture Model fitting.

Usage

orch.ml.gmm(formula, data, nGaussians = 2L,
maxIterations = 20L,
seed = as.integer(1e+08 * runif(1)),
maxBlockRows = 20000L, storageLevel = "MEMORY_ONLY",
verbose = TRUE)

Arguments

formula An object of class orch.formula (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under Details.

data Input data for model fitting. The different input types supported are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An MLlib input Dataframe object prepared using orch.model.matrix(..., type="mdf", ...)
function.

• An MLlib input Dataframe object prepared using orch.mdf function.
• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

nGaussians Number of gaussian centers.
maxIterations

Maximum number of iterations. By default, 20 iterations is used as the stopping
criterion.

convergenceTol
Convergence tolerance. By default, 1E-4 is used as the stopping criterion.

seed Pseudo-random number generator seed, for cluster initialization.

maxBlockRows Maximum number of rows in a partition. Smaller number or rows will create
smaller partitions and more paritions. More data partitions ensures higher par-
allelization degree across Spark cluster but at the same time small paritions will
cause higher communication and resource management overhead.

storageLevel To control the storage of the MLlib Spark dataframe, created from HDFS CSV
data, ore.frame objects or JDBC connection. The vaild choices are "" (empty
string, means to use the default Spark storage level), "NONE", "DISK_ONLY",
"DISK_ONLY_2", "MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER",

154 orch.ml.gmm

"MEMORY_ONLY_SER_2", "MEMORY_AND_DISK", "MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER", "MEMORY_AND_DISK_SER_2", "OFF_HEAP".
Check Spark documentation for more information on Storage Level differences.
The default value is "MEMORY_ONLY".

verbose Whether to report progress and performance statistics. Default value is TRUE.

Details

Gaussian Mixture Models (GMM) are often used for data clustering.

Gaussian Mixture Models express probability density of any particular input point as a weighted
mixture of individual multivariate normal distributions:

p (xi|θ) =
K∑
k=1

πkN (xi|µk,Σk) .

K denotes the number of the normally distributed components in the summation.

Fitting the model means finding parameters of this distribution θ =
{
πk,µk,Σk : k = 1, 2, ...K

}
.

Probabilistic approach seeks to maximize the posterior (MAP) of the parameters θ given observed
input X, K, and the hyperparameters of prior distributions of θ.

Once the GMM model parameters are estimated, either the training or some new input X can be
then assigned to clusters k : k = 1, 2, . . .K. These assignments can be expressed as responsi-
bility quantities rik representing probabilities of the point xi being generated by the k-th normal
component of the distribution:

rik = p (zi = k|xi,θ) .

The process of assigning quantities rik to the input points xi is called soft clustering.

The process of hard clustering, on the other hand, associates each input point xi with exactly one
normal component in the distribution. Hard clustering is usually derived based on responsibility
estimates of the soft clustering, for example:

z∗i = arg max
k

rik.

MLlib itself is capable of finding both soft and hard cluster assignments.

ORAAH ‘predict‘ implementation performs hard cluster assignment.

Value

GMM fit object, orch.ml.gmm.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.formula predict.orch.ml.gmm oracle.model.matrix

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.ml.kmeans 155

Examples

library(rpart)
data <- hdfs.put(kyphosis)
model <- orch.ml.gmm(formula = ~ Number + Age, data = data)
pred <- predict(model, newdata = data, supplemental = c("Kyphosis", "Age"))
hdfs.write(pred, outPath = "kyphosisPrediction", overwrite = TRUE)

orch.ml.kmeans MLlib K-means.

Description

MLlib K-means.

Usage

orch.ml.kmeans(formula, data, nClusters = 2L,
maxIterations = 20L, initializationMode = "k-means||",
seed = as.integer(1e+08 * runif(1)),
maxBlockRows = 20000L, storageLevel = "MEMORY_ONLY",
verbose = TRUE)

Arguments

formula An object of class orch.formula (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under Details.

data Input data for model fitting. The different input types supported are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An MLlib input Dataframe object prepared using orch.model.matrix(..., type="mdf", ...)
function. orch.mdf function.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

nClusters Number of clusters. By default 2 clusters will be formed.
maxIterations

Maximum number of iterations. By default, 20 iterations is used as the stopping
criterion.

nParallelRuns
Number of parallel runs, defaults to 1. The best model is returned.

initializationMode
Initialization model, either "random" or "k-means||". Default is "k-means||".

seed Seed value for cluster initialization. If not specified a pseudo-random generated
number will be used.

156 orch.ml.kmeans

maxBlockRows Maximum number of rows in a partition. Smaller number or rows will create
smaller partitions and more paritions. More data partitions ensures higher par-
allelization degree across Spark cluster but at the same time small paritions will
cause higher communication and resource management overhead.

storageLevel To control the storage of the MLlib Spark dataframe, created from HDFS CSV
data, ore.frame objects or JDBC connection. The vaild choices are "" (empty
string, means to use the default Spark storage level), "NONE", "DISK_ONLY",
"DISK_ONLY_2", "MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2", "MEMORY_AND_DISK", "MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER", "MEMORY_AND_DISK_SER_2", "OFF_HEAP".
Check Spark documentation for more information on Storage Level differences.
The default value is "MEMORY_ONLY".

verbose Whether to report progress and performance statistics. Default value is TRUE.

Details

K-means is a simple unsupervised learning technique performing data partitioning into k clusters.
Each cluster is assigned a centroid point, and every point in the dataset is assigned to the closest
centroid, thus producing a Voronoi tessellation. The training produces a model c onsisting of k
centroid points.

Let the training input beD = {xi : i = 1, 2, . . .m}. Let cluster centroid points be {µj : j = 1, 2, . . . k},
and the paritioning of the input points into clusters based on nearest centroid criteria at any moment
S = {Sj : j = 1, 2, . . . k}. The fitting seeks a solution (centroid model µ) as:

µ̂ = arg min
µ

k∑
j=1

xi∈Sj∑
i

‖xi − µj‖2 .

The exact solution is NP-hard and is usually intractable; various modifications seek a local mini-
mum of the objective instead. MLlib employs a variety of the algorithm called "k-means ||". This
algorithm replaces classic Forgy initialization with a probabilistic approximation of density proxies,
so that Lloyd iterations have a better chance of achieving a better local minimum solution due to a
better initial guess.

Value

K-means fit object, orch.ml.kmeans.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.formula predict.orch.ml.kmeans oracle.model.matrix

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.ml.lasso 157

Examples

library(rpart)
data <- hdfs.put(kyphosis)
model <- orch.ml.kmeans(formula = ~ Number + Age, data = data)
pred <- predict(model, newdata = data, supplemental = c("Kyphosis", "Age"))
hdfs.write(pred, outPath = "kyphosisPrediction", overwrite = TRUE)

orch.ml.lasso MLlib Lasso (Least Absolute Shrinkage and Selection Operator) with
Stochastic Gradient Descent.

Description

Linear regression family of methods seeks to minimize a loss function employing 1-norm penalty
over the fitted parameters β.

Usage

orch.ml.lasso(formula, data, regParam = 0.3,
convergenceTol = 1e-04, maxIterations = 100L,
standardization = TRUE, maxBlockRows = 20000L,
storageLevel = "MEMORY_ONLY", verbose = TRUE)

Arguments

formula An object of class orch.formula (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under Details.

data Input data for model fitting. The different input types supported are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An MLlib input Dataframe object prepared using orch.model.matrix(..., type="mdf", ...)
function.

• An MLlib input Dataframe object prepared using orch.mdf function.
• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

regParam Regularization parameter, default value 0.3.
convergenceTol

Convergence tolerance. By default, 1E-4 is used as the stopping criterion.
maxIterations

Maximum number of iterations. By default, 100 iterations is used as the stop-
ping criterion.

standardization
Whether to standardize the training features before fitting the model. Default
value is TRUE.

158 orch.ml.lasso

maxBlockRows Maximum number of rows in a partition. Smaller number or rows will create
smaller partitions and more paritions. More data partitions ensures higher par-
allelization degree across Spark cluster but at the same time small paritions will
cause higher communication and resource management overhead.

storageLevel To control the storage of the MLlib Spark dataframe, created from HDFS CSV
data, ore.frame objects or JDBC connection. The vaild choices are "" (empty
string, means to use the default Spark storage level), "NONE", "DISK_ONLY",
"DISK_ONLY_2", "MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2", "MEMORY_AND_DISK", "MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER", "MEMORY_AND_DISK_SER_2", "OFF_HEAP".
Check Spark documentation for more information on Storage Level differences.
The default value is "MEMORY_ONLY".

verbose Whether to report progress and performance statistics. Default value is TRUE.

Details

Generalized linear models family of methods seeks to minimize a loss function employing 1-norm
penalty over the fitted parameters β.

Suppose we have the training dataset of predictorsD = {xi : i = 1, 2, . . . N} and their correspond-
ing target variables {yi : i = 1, 2, . . . N}. Linear methods seek to minimize the loss function:

L (β) =
1

2N

∑
i

(
β>xi − yi

)2
+ λR (β) ,

where λ is the regularization rate (parameter regParam), and R (β) is the regularization penalty
function.

Value

Lasso fit object, orch.ml.lasso.

Fitting

This MLlib version seeks solution using SGD (Stochastic Gradient Descent) over several training
epochs. The maximum amount of epochs is controlled by the maxIterations parameter of the
training procedure. During each epoch j, a fraction of the input is sampled into a minibatch Sj , and
then a partial loss gradient is computed and solution is updated according to:

β(j+1) = β(j) − α(j)∇βL
(
β(j)

)
,

where α(j) is the SGD learning rate in j-th epoch. In MLlib, the epoch learning rate α(j) is subject
to annealing schedule:

α(j) = α
√
j,

where α is the initial learning rate as supplied by the stepSize parameter.

orch.ml.lasso 159

Fitting

Lasso regression uses 1-norm regularization:

R (β) = ‖β‖1 .

The Lasso update is:

β(j+1) = proxλα(j) ‖·‖1

β(j) +
α(j)

|Sj |

xi∈Sj∑
i

r
(j)
i xi

 ,

where proxλα(j)‖·‖1 (·) is element-wise application of the proximal operator of the function λα(j) ‖·‖1,

and r(j)i = yi − β(j)>xi is the previous epoch’s residual at point i.

The proximal operator for 1-norm, and any real γ > 0 as:

proxγ‖·‖1 (f) =

 f − γ, f > γ;
0, −γ ≤ f ≤ γ;
f + γ, f < −γ.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

https://en.wikipedia.org/wiki/Lasso_(statistics)

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.formula predict.orch.ml.lasso oracle.model.matrix

Examples

library(rpart)
data <- hdfs.put(kyphosis)
model <- orch.ml.lasso(formula = Kyphosis ~ Number + Age, data = data)
pred <- predict(model, newdata = data, supplemental = c("Kyphosis", "Age"))
hdfs.write(pred, outPath = "kyphosisPrediction", overwrite = TRUE)

https://en.wikipedia.org/wiki/Lasso_(statistics)
www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

160 orch.ml.linear

orch.ml.linear MLlib Linear Regression with Stochastic Gradient Descent.

Description

MLlib Linear Regression with Stochastic Gradient Descent.

Usage

orch.ml.linear(formula, data, elasticNetParam = 0.8,
regParam = 0.3, convergenceTol = 1e-04,
maxIterations = 100L, standardization = TRUE,
maxBlockRows = 20000L, storageLevel = "MEMORY_ONLY",
verbose = TRUE)

Arguments

formula An object of class orch.formula (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under Details.

data Input data for model fitting. The different input types supported are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An MLlib input Dataframe object prepared using orch.model.matrix(..., type="mdf", ...)
function.

• An MLlib input Dataframe object prepared using orch.mdf function.
• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).
elasticNetParam

The ElasticNet mixing parameter, default value 0.8.

regParam Regularization parameter, default value 0.3.
convergenceTol

Convergence tolerance. By default, 1E-4 is used as the stopping criterion.
maxIterations

Maximum number of iterations. By default, 100 iterations is used as the stop-
ping criterion.

standardization
Whether to standardize the training features before fitting the model. Default
value is TRUE.

maxBlockRows Maximum number of rows in a partition. Smaller number or rows will create
smaller partitions and more paritions. More data partitions ensures higher par-
allelization degree across Spark cluster but at the same time small paritions will
cause higher communication and resource management overhead.

orch.ml.linear 161

storageLevel To control the storage of the MLlib Spark dataframe, created from HDFS CSV
data, ore.frame objects or JDBC connection. The vaild choices are "" (empty
string, means to use the default Spark storage level), "NONE", "DISK_ONLY",
"DISK_ONLY_2", "MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2", "MEMORY_AND_DISK", "MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER", "MEMORY_AND_DISK_SER_2", "OFF_HEAP".
Check Spark documentation for more information on Storage Level differences.
The default value is "MEMORY_ONLY".

verbose Whether to report progress and performance statistics. Default value is TRUE.

Details

Generalized linear models family of methods seeks to minimize a loss function employing 1-norm
penalty over the fitted parameters β.

Suppose we have the training dataset of predictorsD = {xi : i = 1, 2, . . . N} and their correspond-
ing target variables {yi : i = 1, 2, . . . N}. Linear methods seek to minimize the loss function:

L (β) =
1

2N

∑
i

(
β>xi − yi

)2
+ λR (β) ,

where λ is the regularization rate (parameter regParam), and R (β) is the regularization penalty
function.

Value

Linear regression fit object, orch.ml.linear.

Fitting

This MLlib version seeks solution using SGD (Stochastic Gradient Descent) over several training
epochs. The maximum amount of epochs is controlled by the maxIterations parameter of the
training procedure. During each epoch j, a fraction of the input is sampled into a minibatch Sj , and
then a partial loss gradient is computed and solution is updated according to:

β(j+1) = β(j) − α(j)∇βL
(
β(j)

)
,

where α(j) is the SGD learning rate in j-th epoch. In MLlib, the epoch learning rate α(j) is subject
to annealing schedule:

α(j) = α
√
j,

where α is the initial learning rate as supplied by the stepSize parameter.

Fitting

The OLS update in MLlib is:

β(j+1) = β(j) +
α(j)

|Sj |

xi∈Sj∑
i

r
(j)
i xi,

where r(j)i = yi − β(j)>xi is the previous epoch’s residual at point i.

162 orch.ml.logistic

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.formula predict.orch.ml.linear oracle.model.matrix

Examples

library(rpart)
data <- hdfs.put(kyphosis)
model <- orch.ml.linear(formula = Number ~ Age, data = data)
pred <- predict(model, newdata = data, supplemental = c("Kyphosis", "Age"))
hdfs.write(pred, outPath = "kyphosisPrediction", overwrite = TRUE)

orch.ml.logistic MLlib Logistic Regression with L-BFGS.

Description

Logistic regression multinomial logistic regression.

Usage

orch.ml.logistic(formula, data, maxIterations = 100L,
threshold = NULL, maxBlockRows = 20000L,
storageLevel = "MEMORY_ONLY", verbose = TRUE)

Arguments

formula An object of class orch.formula (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under Details.

data Input data for model fitting. The different input types supported are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An MLlib input Dataframe object prepared using orch.model.matrix(..., type="mdf", ...)
function.

• An MLlib input Dataframe object prepared using orch.mdf function.
• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm
http://en.wikipedia.org/wiki/Logistic_regression
http://en.wikipedia.org/wiki/Multinomial_logistic_regression

orch.ml.logistic 163

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).
maxIterations

Maximum number of iterations. By default, 100 iterations is used as the stop-
ping criterion.

threshold Thresholds are used in multi-class classification to adjust the probability of pre-
dicting each class. Array must have length equal to the number of classes, with
values > 0 excepting that at most one value may be 0. The class with largest
value p/t is predicted, where p is the original probability of that class and t is the
class’s threshold.

maxBlockRows Maximum number of rows in a partition. Smaller number or rows will create
smaller partitions and more paritions. More data partitions ensures higher par-
allelization degree across Spark cluster but at the same time small paritions will
cause higher communication and resource management overhead.

storageLevel To control the storage of the MLlib Spark dataframe, created from HDFS CSV
data, ore.frame objects or JDBC connection. The vaild choices are "" (empty
string, means to use the default Spark storage level), "NONE", "DISK_ONLY",
"DISK_ONLY_2", "MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2", "MEMORY_AND_DISK", "MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER", "MEMORY_AND_DISK_SER_2", "OFF_HEAP".
Check Spark documentation for more information on Storage Level differences.
The default value is "MEMORY_ONLY".

verbose Whether to report progress and performance statistics. Default value is TRUE.

Details

Suppose we have a training dataset consisting of predictors D = {xi : i = 1, 2, . . . N}, and their
corresponding target variables {yi : i = 1, 2, . . . N}.
Logistic regression seeks to minimize a loss function of the form:

L (β) =
1
N

N∑
i=1

log
(
1 + exp

(
−yiβ>xi

))
+ λR (β) ,

where λ is the regularization rate (parameter regParam), and R (β) is the regularization penalty
function.

This method uses L2 normalization:

R (β) =
1
2
‖β‖22 .

The prediction score estimator is evaluated by applying the logistic function over linear combination
of predictors:

ŷ (x) =
1

1 + exp (−β>x)
.

For binomial targets the outcome is predicted as positive if ŷ (x) > 0.5, and as negative otherwise.
The interpretation of the score estimator is probabilistic. When regularization is used (λ > 0),

164 orch.ml.random.forest

the score estimates maximum aposteriori (MAP) of the positive outcome. Otherwise, the score the
probability of positive outcome per maximum likelihood estimate (MLE).

In MLlib the logistic regression procedure also is extended to support multi-class predictions. In
this case, if K is the number of classes (parameter nClasses), then K − 1 logistic regression
models are trained. At prediction time, the class i+ 1 is selected if the i-th model has highest score
that is greater than 0.5; otherwise, class 1 is selected.

ORAAH adds formula functionality in addition to MLlib functionality. Within ORCH formula
parameter, the target should be a factor in order to trigger multiclass target transformation for MLlib.
If the target is continuous, it should be following the MLlib conventions of specifying multiclass
targets as one of 0, 1, .. (K-1), where K is the number of classes.

Value

Logistic regression fit object, orch.ml.logistic.

Fitting

This method maps to MLlib implementation that uses the full batch LBFGS optimizer to converge
on the solution.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.formula predict.orch.ml.logistic oracle.model.matrix

Examples

library(rpart)
data <- hdfs.put(kyphosis)
model <- orch.ml.logistic(formula = Kyphosis ~ Number, data = data)
pred <- predict(model, newdata = data, supplemental = c("Kyphosis", "Age"))
hdfs.write(pred, outPath = "kyphosisPrediction", overwrite = TRUE)

orch.ml.random.forest
MLlib Random Forest.

Description

MLlib Random Forest.

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.ml.random.forest 165

Usage

orch.ml.random.forest(formula, data, nTrees = 1L,
type = NULL, impurity = NULL, maxDepth = 5L,
maxBins = 32L, featureSubsetStrategy = "auto",
minInstancesPerNode = 1L, minInfoGain = 0,
maxCategories = 32L, threshold = NULL,
maxBlockRows = 20000L, storageLevel = "MEMORY_ONLY",
verbose = TRUE)

Arguments

formula An object of class orch.formula (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under Details.

data Input data for model fitting. The different input types supported are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An MLlib input Dataframe object prepared using orch.model.matrix(..., factorMode="none", type="mdf", ...)
function.

• An MLlib input Dataframe object prepared using orch.mdf(..., factorMode="none", ...)
function.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

nTrees Number of trees in the forest, default value is 1. Generally you want as many
trees as will improve your model. More trees also mean more computational
cost and after a certain number of trees, the improvement is negligible. After
sometime there is no significant improvement in error rate even if we are in-
creasing no of tree.

type Can be set to "classification" or "regression". Default value is NULL, in which
case it will be determined automatically based on the input dataset and formula.

impurity Criterion used for information gain calculation. Values "gini" and "entropy"
are supported for classification, and ’variance’ for regression. Default value is
NULL, in which case it will be determined automatically based on the input
dataset and formula.

featureSubsetStrategy
Feature subset strategy. Number of features to consider for splits at each node.
Supported values are "auto", "all", "sqrt", "log2", "onethird". If "auto" is set,
this parameter is set based on nTrees as follows:

• If nTrees == 1, set to "all";
• if nTrees > 1 (forest) set to "sqrt" for classification and to "onethird"

for regression.

maxDepth Maximum depth of the decision trees, default value is 4.

maxBins Maximum number of bins used for splitting features, default value is 100.

166 orch.ml.random.forest

minInstancesPerNode
Minimum number of instances each child must have after a split.

minInfoGain Minimum information gain for a split to be considered at a tree node.
maxCategories

Features with levels higher than maxCategories distinct values are treated
as continuous.

threshold Thresholds are used in multi-class classification to adjust the probability of pre-
dicting each class. Array must have length equal to the number of classes, with
values > 0 excepting that at most one value may be 0. The class with largest
value p/t is predicted, where p is the original probability of that class and t is the
class’s threshold. This parameter will not have any effect for type="regression"
models.

maxBlockRows Maximum number of rows in a partition. Smaller number or rows will create
smaller partitions and more paritions. More data partitions ensures higher par-
allelization degree across Spark cluster but at the same time small paritions will
cause higher communication and resource management overhead.

storageLevel To control the storage of the MLlib Spark dataframe, created from HDFS CSV
data, ore.frame objects or JDBC connection. The vaild choices are "" (empty
string, means to use the default Spark storage level), "NONE", "DISK_ONLY",
"DISK_ONLY_2", "MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2", "MEMORY_AND_DISK", "MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER", "MEMORY_AND_DISK_SER_2", "OFF_HEAP".
Check Spark documentation for more information on Storage Level differences.
The default value is "MEMORY_ONLY".

verbose Whether to report progress and performance statistics. Default value is TRUE.

Details

MLlib Random forest trains several decision trees at the same time. Input for every decision tree
learning is bootstrapped. Bootstrapping means sampling individual tree’s input from the total input
without replacement.

Aside from the sampling of the input, another way the training randomizes the process is random
selection of the attribute subsets to consider for individual tree node boundaries.

As the result, the model produces an ensemble of experts (each being a decision tree) that vary in
goodness of fit in various areas of the input domain.

The prediction is produced using expert majority vote for classification targets, and averaging of
expert scores for regression problems.

Value

Random Forest fit object, orch.ml.random.forest.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.ml.ridge 167

See Also

orch.formula predict.orch.ml.random.forest oracle.model.matrix

Examples

library(rpart)
data <- hdfs.put(kyphosis)
model <- orch.ml.random.forest(formula = Kyphosis ~ Number + Age,
data = data, type="classification")

pred <- predict(model, newdata = data, supplemental = c("Kyphosis", "Age"))
hdfs.write(pred, outPath = "kyphosisPrediction", overwrite = TRUE)

orch.ml.ridge MLlib Ridge Regression with Stochastic Gradient Descent.

Description

MLlib Ridge Regression with Stochastic Gradient Descent.

Usage

orch.ml.ridge(formula, data, regParam = 0.3,
convergenceTol = 1e-04, maxIterations = 100L,
standardization = TRUE, maxBlockRows = 20000L,
storageLevel = "MEMORY_ONLY", verbose = TRUE)

Arguments

formula An object of class orch.formula (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under Details.

data Input data for model fitting. The different input types supported are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An MLlib input Dataframe object prepared using orch.model.matrix(..., type="mdf", ...)
function.

• An MLlib input Dataframe object prepared using orch.mdf function.
• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

regParam Regularization parameter, default value 0.3.
convergenceTol

Convergence tolerance. By default, 1E-4 is used as the stopping criterion.
maxIterations

Maximum number of iterations. By default, 100 iterations is used as the stop-
ping criterion.

168 orch.ml.ridge

standardization
Whether to standardize the training features before fitting the model. Default
value is TRUE.

maxBlockRows Maximum number of rows in a partition. Smaller number or rows will create
smaller partitions and more paritions. More data partitions ensures higher par-
allelization degree across Spark cluster but at the same time small paritions will
cause higher communication and resource management overhead.

storageLevel To control the storage of the MLlib Spark dataframe, created from HDFS CSV
data, ore.frame objects or JDBC connection. The vaild choices are "" (empty
string, means to use the default Spark storage level), "NONE", "DISK_ONLY",
"DISK_ONLY_2", "MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2", "MEMORY_AND_DISK", "MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER", "MEMORY_AND_DISK_SER_2", "OFF_HEAP".
Check Spark documentation for more information on Storage Level differences.
The default value is "MEMORY_ONLY".

verbose Whether to report progress and performance statistics. Default value is TRUE.

Details

Generalized linear models family of methods seeks to minimize a loss function employing 1-norm
penalty over the fitted parameters β.

Suppose we have the training dataset of predictorsD = {xi : i = 1, 2, . . . N} and their correspond-
ing target variables {yi : i = 1, 2, . . . N}. Linear methods seek to minimize the loss function:

L (β) =
1

2N

∑
i

(
β>xi − yi

)2
+ λR (β) ,

where λ is the regularization rate (parameter regParam), and R (β) is the regularization penalty
function.

Value

Ridge regression fit object, orch.ml.ridge.

Fitting

This MLlib version seeks solution using SGD (Stochastic Gradient Descent) over several training
epochs. The maximum amount of epochs is controlled by the maxIterations parameter of the
training procedure. During each epoch j, a fraction of the input is sampled into a minibatch Sj , and
then a partial loss gradient is computed and solution is updated according to:

β(j+1) = β(j) − α(j)∇βL
(
β(j)

)
,

where α(j) is the SGD learning rate in j-th epoch. In MLlib, the epoch learning rate α(j) is subject
to annealing schedule:

α(j) = α
√
j,

where α is the initial learning rate as supplied by the stepSize parameter.

orch.ml.svm 169

Fitting

The ridge regression update is:

β(j+1) = prox0.5λα(j) ‖·‖22

β(j) +
α(j)

|Sj |

xi∈Sj∑
i

r
(j)
i xi

 ,

where proxλα(j)‖·‖22
(·) is element-wise application of the proximal operator of the function 0.5λα ‖·‖22,

and r(j)i = yi − β(j)>xi is the previous epoch’s residual at point i.

The proximal operator for 2-norm, and any real γ > 0 is defined as:

prox0.5γ‖·‖22
(f) = (1− γ) f.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.formula predict.orch.ml.ridge oracle.model.matrix

Examples

library(rpart)
data <- hdfs.put(kyphosis)
model <- orch.ml.ridge(formula = Number ~ Age, data = data)
pred <- predict(model, newdata = data, supplemental = c("Kyphosis", "Age"))
hdfs.write(pred, outPath = "kyphosisPrediction", overwrite = TRUE)

orch.ml.svm MLlib Support Vector Machine (SVM) with Stochastic Gradient De-
scent

Description

Compute fit for linear SVM using MLlib.

Usage

orch.ml.svm(formula, data, convergenceTol = 1e-04,
maxIterations = 100L, regParam = 0.01,
threshold = NULL, maxBlockRows = 20000L,
storageLevel = "MEMORY_ONLY", verbose = TRUE)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

170 orch.ml.svm

Arguments

formula An object of class orch.formula (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under Details.

data Input data for model fitting. The different input types supported are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An MLlib input Dataframe object prepared using orch.model.matrix(..., type="mdf", ...)
function.

• An MLlib input Dataframe object prepared using orch.mdf function.
• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).
convergenceTol

Convergence tolerance. By default, 1E-4 is used as the stopping criterion.
maxIterations

Maximum number of iterations. By default, 100 iterations is used as the stop-
ping criterion.

regParam Regularization parameter, default value 0.01.

maxBlockRows Maximum number of rows in a partition. Smaller number or rows will create
smaller partitions and more paritions. More data partitions ensures higher par-
allelization degree across Spark cluster but at the same time small paritions will
cause higher communication and resource management overhead.

storageLevel To control the storage of the MLlib Spark dataframe, created from HDFS CSV
data, ore.frame objects or JDBC connection. The vaild choices are "" (empty
string, means to use the default Spark storage level), "NONE", "DISK_ONLY",
"DISK_ONLY_2", "MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2", "MEMORY_AND_DISK", "MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER", "MEMORY_AND_DISK_SER_2", "OFF_HEAP".
Check Spark documentation for more information on Storage Level differences.
The default value is "MEMORY_ONLY".

verbose Whether to report progress and performance statistics. Default value is TRUE.

Details

Generalized linear models family of methods seeks to minimize a loss function employing 1-norm
penalty over the fitted parameters β.

Suppose we have the training dataset of predictorsD = {xi : i = 1, 2, . . . N} and their correspond-
ing target variables {yi : i = 1, 2, . . . N}. Linear methods seek to minimize the loss function:

L (β) =
1

2N

∑
i

(
β>xi − yi

)2
+ λR (β) ,

where λ is the regularization rate (parameter regParam), and R (β) is the regularization penalty
function.

orch.ml.svm 171

Value

SVM fit object, orch.ml.svm.

Fitting

This MLlib version seeks solution using SGD (Stochastic Gradient Descent) over several training
epochs. The maximum amount of epochs is controlled by the maxIterations parameter of the
training procedure. During each epoch j, a fraction of the input is sampled into a minibatch Sj , and
then a partial loss gradient is computed and solution is updated according to:

β(j+1) = β(j) − α(j)∇βL
(
β(j)

)
,

where α(j) is the SGD learning rate in j-th epoch. In MLlib, the epoch learning rate α(j) is subject
to annealing schedule:

α(j) = α
√
j,

where α is the initial learning rate as supplied by the stepSize parameter.

Fitting

Linear SVM uses the hinge loss function along with L2 regularization:

Lhinge (β) = max
(
0, 1− yβ>x

)
;

R (β) =
1
2
‖β‖22 ;

L (β) = Lhinge (β) + λR (β) .

Although hinge loss is designed for use with labels {−1, 1}, MLlib gradient update implementation
is adjusted for labels {0, 1}. Our formula performs all necessary adjustments automatically if a
factor target variable is used; however, if class label is specified as a continuous target variable, that
variable must be in {0, 1}.
Gradient updates within MLlib are performed using Stochastic Gradient Descent (SGD).

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.formula predict.orch.ml.svm oracle.model.matrix

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

172 orch.model.matrix

Examples

library(rpart)
data <- hdfs.put(kyphosis)
model <- orch.ml.svm(formula = Kyphosis ~ Number + Age, data = data)
pred <- predict(model, newdata = data, supplemental = c("Kyphosis", "Age"))
hdfs.write(pred, outPath = "kyphosisPrediction", overwrite = TRUE)

orch.model.matrix Creates a distributed model matrix.

Description

Machine learning and statistical algorithms require a Distributed Model Matrix (DMM) for their
training phase. For supervised learning algorithms DMM captures a target variable and explanatory
terms; for unsupervised learning DMM captures explanatory terms only. Internally Distributed
Model Matrices are stored as Spark RDDs (Resilient Distributed Datasets).

Usage

orch.model.matrix(formula, data, factorMode = "one_hot",
type = "dmm", maxBlockRows = 20000L,
storageLevel = "MEMORY_ONLY", verbose = TRUE, ...)

Arguments

formula A formula representing the model to be fit (see "details" section below for
more information.)

data Input data for prediction. The different input types supported are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

factorMode Factor mode. "one_hot" and "none" are supported.

type "dmm" distributed model matrix type; "mdf" MLlib dataframe for input to ML-
lib algorithms are supported.

maxBlockRows Maximum number of rows in a partition. Smaller number or rows will create
smaller partitions and more paritions. More data partitions ensures higher par-
allelization degree across Spark cluster but at the same time small paritions will
cause higher communication and resource management overhead.

storageLevel To control the storage of the Model matrix created from HDFS CSV data, ore.frame
objects or JDBC connection. The vaild choices are "" (empty string, means to
use the default Spark storage level), "NONE", "DISK_ONLY", "DISK_ONLY_2",
"MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER", "MEMORY_ONLY_SER_2",
"MEMORY_AND_DISK", "MEMORY_AND_DISK_2", "MEMORY_AND_DISK_SER",

orch.model.matrix 173

"MEMORY_AND_DISK_SER_2", "OFF_HEAP". Check Spark documenta-
tion for more information on Storage Level differences. The default value is
"MEMORY_ONLY".

verbose Whether to report progress and performance statistics. Default is TRUE.

Details

The following section describes the formula argument format and specification in details. For
more information and examples you can also refer to the base R specification of formula.

Value

Distributed model matrix object.

ORAAH Formula

Everywhere below A can be either an ID (column name), it can also denote any generated column,
for instance sin(A / 10), or any subset of columns for instance (A1 + A2 + A3).

Numerical engines, such as linear regression, cannot consume raw data; there must be a way to
specify response and explanatory variables, nonlinear transformations, and interactions. Formula is
such an engine, a recipe which specifies which columns (terms) to include to the model, and how
to transform them if desired.

• . dot-character is a shortcut for all variables (all data columns), except the response.

• +A plus operator means to include this variable into the model. Plus operator here is used
in set-theoretic sense. There is no arithmetic summation here of any kind. We add a term
(column) to an ordered set of statistical terms (model).

• -A minus operator means to remove this variable from the model. Example - (A + B)
removes both A and B variables from the model. Example . - (A + B) includes all vari-
ables, except A, B, and the response.

• A : B include the interaction between A and B variables.

• A * B include these variables and the interactions between them. This is equivalent to A
+ B + A : B. Example A * (. - B) * Z

• (A1 + A2 + ... + Ak)^n include these variables and all interactions up to n-way. For
instance, (A + B)^2 is equivalent to A + B + A : B. The exponentiation (the power
operator) can lead to much more compact model specification. For instance (. - A)^3
will include all variables, excluding the A and the response, and will include the corresponding
interactions. To reiterate, A can be either an ID (variable name) or any complex term. For in-
stance, (log(A) + B : Z)^2 is equivalent to log(A) + B : Z + log(A) : B : Z

• I() Identity function. Its argument will be treated in arithmetic sense (as versus set-theoretic
sense). For instance: I(log(A) + B) will include a new column, whose elements are
log(A[k]) + B[k]. Here, the plus operator (and all other operators) will be treated in
their traditional arithmetic sense.

• 24 arithmetic functions. The argument will be treated in arithmetic sense. Example log(A / 10 +
B * Z).

abs acos asin
atan cbrt ceil
cos cosh exp
expm1 floor log
log10 log1p rint

174 orch.model.matrix

round signum sin
sinh sqrt tan
tanh toDegrees toRadians

• Relational operators, currently supported for numerical terms only. Example Y ~ X + (A >
B).

A >= B A <= B
A > B A < B
A == B A != B
A && B A || B
A & B A | B

• +1 Add the intercept.

• -0 Add the intercept (equivalent to +1).

• -1 Delete the intercept.

• +0 Delete the intercept (equivalent to -1).

It is very important to keep in mind, that all factor variables (including factor-factor and factor-
numeric interactions), are unrolled following one-hot scheme, meaning internally they will be sub-
stituted by k-1 dummy variables.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

hdfs.attach hdfs.write hdfs.get hdfs.sample

Examples

library(rpart)
data <- hdfs.put(kyphosis)
modelMatrix <- orch.model.matrix(Kyphosis ~ Number, data = data)
hdfs.rm(data)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.multivar 175

orch.multivar Multivariate statistics for HDFS objects

Description

Multivariate numerical aggregation methods for hdfs.id objects based on function in R’s stats
package.

Usage

orch.cov(x, use="everything", num.mappers=-1, num.reducers=1,
reducer.serial.limit=8, task.timeout=-1,
job.name="ORCH Covariance Matrix")

orch.cor(x, use="everything", num.mappers=-1, num.reducers=1,
reducer.serial.limit=8, task.timeout=-1,
job.name="ORCH Correlation Matrix")

Arguments

x An hdfs.id object containing numeric columns. This input matrix is in dense
matrix representation

use A method of computation when missing values are present. One of "everything",
"all.obs", "complete.obs", or "na.or.complete".

num.mappers Hint for number of mappers to be used for the Hadoop jobs. Hadoop defaults
are used.

num.reducers Hint for number of reducers to be used for the Hadoop jobs. Default is 1.
reducer.serial.limit

Maximum number of records later phase reducers should process serially

task.timeout Maximum time in seconds a map or reduce task is allowed to run before it gets
force killed by Hadoop. Hadoop defaults are used.

job.name Prefix to be used for the Hadoop job names

Details

These statistics are calculated using multiple Map Reduce jobs. Computation of cov can be broken
up into computing the crossproduct, colSums and number of rows of the input matrix.

Each of these can be computed in parallel by having tasks work on disjoint sets of rows of the input
matrix. The reducer then puts all these together. For more parallelism during reducer computation,
a tree of reducers are used.

Computation of cor is achieved by invoking cov2cor on the Covariance matrix.

Unlike the cor and cov functions in the stats package, use = "pairwise.complete.obs"
and method %in% c("kendall", "spearman") are not supported.

Value

An in memory R matrix of dimension ncol(x) by ncol(x).

176 orch.neural2

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

See Also

cor, cov,

Examples

LONGLEY <- hdfs.put(longley)
all.equal(orch.cor(LONGLEY), cor(longley), check.attributes=FALSE)
all.equal(orch.cov(LONGLEY), cov(longley), check.attributes=FALSE)

orch.neural2 High performance multilayer feed-forward neural network on Spark
with L-BFGS algorithm.

Description

The orch.neural2 function solves multilayer feed-forward neural network models. It supports
an arbitrary number of hidden layers and an arbitrary number of neurons per layer. Each layer can
be assigned a different activation function. The L-BFGS algorithm is used to solve the underlying
unconstrained nonlinear optimization problem.

Usage

orch.neural2(formula, data, weight = NULL,
hiddenSizes = NULL, activations = NULL,
gradTolerance = 1e-08, maxIterations = 200L,
objMinProgress = 1e-06, lowerBound = -0.7,
upperBound = 0.7, seed = as.integer(1e+08 * runif(1)),
nUpdates = 20L, scaleHessian = TRUE,
maxBlockRows = 20000L, storageLevel = "MEMORY_ONLY",
verbose = getOption("orch.trace", FALSE))

Arguments

formula A formula object.

data Input data for model fitting. The different input types supported are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An Oracle Distributed Model Matrix object prepared using orch.model.matrix
function.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

orch.neural2 177

weight A vector of initial weights. If not specified, the initial weights will be randomly
generated.

hiddenSizes An integer vector, whose elements store the number of neurons in each hidden
layer. orch.neural2 supports an arbitrary number of hidden layers. The
length of hiddenSizes indicates the number of hidden layers in the model,
and hiddenSizes[k] stores the number of neurons in the k-th hidden layer.
If not specified, the input units will be directly connected to the output neurons
(no hidden structure). If any element of hiddenSizes is zero, then all hidden
neurons will be dropped, which is equivalent to hiddenSizes=NULL.
Example: hiddenSizes=c(10, 4) specifies a neural network with two
hidden layers (length(hiddenSizes) is 2); the first hidden layer will have
10 neurons, and the second one will have 4.

activations A vector of activation functions for the hidden and the output neural network
layers. The orch.neural2 function supports a single activation function per
layer. Neurons are grouped into layers, and each layer (a subset of neurons) can
be assigned its own activation function. Note: the target variable range needs to
correspond to the range of the output activation function. For instance, logistic
sigmoid can be used to model targets in the range of zero to one (range of the
sigmoid function). The orch.neural2 function does not preprocess the input
data; appropriate data normalization and scaling are strongly recommended. If
not specified, the activation function for each hidden layer is bipolar sigmoid
and for the output it is linear.
If activations is specified, its size must be length(hiddenSizes) + 1,
where the last element corresponds to the output layer.
Possible values:

"atan" arctangent f(x) = arctanx
"bSigmoid" bipolar sigmoid f(x) = 1−e−x

1+e−x

"linear" linear f(x) = x
"sigmoid" logistic sigmoid f(x) = 1

1+e−x

"tanh" hyperbolic tangent f(x) = tanhx
"entropy" entropy (output only) f(x) = log(1 + exp(x))− yx
"softmax" softmax (output only) fi(x) = exp(xi)/sumj(exp(xj))wherexistheinputvectorandxi(orxj)isitselement

Example: activations = c("sigmoid", "tanh", "linear") cor-
responds to a neural network with two hidden layers. The first hidden layer is as-
signed the sigmoid activation function, the second hidden layer is assigned the
tanh activation function, and the output (target) layer is assigned the linear.

gradTolerance
Numerical optimization stopping criterion: desired gradient norm.

maxIterations
Numerical optimization stopping criterion: maximum number of iterations.

objMinProgress
Numerical optimization stopping criterion: minimal relative change in the ob-
jective function value.

lowerBound Lower bound for the weight initialization (not used if weight is specified).

upperBound Upper bound for the weight initialization (not used if weight is specified).

seed pseudo-random number generator seed, for weight initialization.

nUpdates Number of L-BFGS update pairs.

178 orch.neural2

scaleHessian A logical value that indicates whether to scale the inverse of the Hessian matrix
in L-BFGS updates.

maxBlockRows maximum number of rows in a model matrix partition.

storageLevel To control the storage of the Input Spark dataframe, created from HDFS CSV
data, ore.frame objects or JDBC connection. The vaild choices are "" (empty
string, means to use the default Spark storage level), "NONE", "DISK_ONLY",
"DISK_ONLY_2", "MEMORY_ONLY", "MEMORY_ONLY_2", "MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2", "MEMORY_AND_DISK", "MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER", "MEMORY_AND_DISK_SER_2", "OFF_HEAP".
Check Spark documentation for more information on Storage Level differences.
The default value is "MEMORY_ONLY".

verbose A logical value that indicates whether to print out execution information.

Details

ORAAH Neural2 is used to train multilayer feed-forward neural network models. Multilayer means
that the neurons are groupped into layers, forming a directed acyclic (feed-forward) graph.

The numerical optimization solver implements a parallel distributed L-BFGS algorithm with a line
search. The line search termination criteria are based on Armijo sufficient decrease and Wolfe
curvature conditions.

ORAAH Neural2 can efficiently handle both numeric and high cardinality factor variables. ORAAH
Neural2 automatically switches to an out-of-core mode, if the input data does not fit into the dis-
tributed memory.

Value

A neural network model object, orch.neural2.

ORAAH Formula

Everywhere below A can be either an ID (column name), it can also denote any generated column,
for instance sin(A / 10), or any subset of columns for instance (A1 + A2 + A3).

Numerical engines, such as linear regression, cannot consume raw data; there must be a way to
specify response and explanatory variables, nonlinear transformations, and interactions. Formula is
such an engine, a recipe which specifies which columns (terms) to include to the model, and how
to transform them if desired.

• . dot-character is a shortcut for all variables (all data columns), except the response.

• +A plus operator means to include this variable into the model. Plus operator here is used
in set-theoretic sense. There is no arithmetic summation here of any kind. We add a term
(column) to an ordered set of statistical terms (model).

• -A minus operator means to remove this variable from the model. Example - (A + B)
removes both A and B variables from the model. Example . - (A + B) includes all vari-
ables, except A, B, and the response.

• A : B include the interaction between A and B variables.

• A * B include these variables and the interactions between them. This is equivalent to A
+ B + A : B. Example A * (. - B) * Z

• (A1 + A2 + ... + Ak)^n include these variables and all interactions up to n-way. For
instance, (A + B)^2 is equivalent to A + B + A : B. The exponentiation (the power
operator) can lead to much more compact model specification. For instance (. - A)^3

orch.neural2 179

will include all variables, excluding the A and the response, and will include the corresponding
interactions. To reiterate, A can be either an ID (variable name) or any complex term. For in-
stance, (log(A) + B : Z)^2 is equivalent to log(A) + B : Z + log(A) : B : Z

• I() Identity function. Its argument will be treated in arithmetic sense (as versus set-theoretic
sense). For instance: I(log(A) + B) will include a new column, whose elements are
log(A[k]) + B[k]. Here, the plus operator (and all other operators) will be treated in
their traditional arithmetic sense.

• 24 arithmetic functions. The argument will be treated in arithmetic sense. Example log(A / 10 +
B * Z).

abs acos asin
atan cbrt ceil
cos cosh exp
expm1 floor log
log10 log1p rint
round signum sin
sinh sqrt tan
tanh toDegrees toRadians

• Relational operators, currently supported for numerical terms only. Example Y ~ X + (A >
B).

A >= B A <= B
A > B A < B
A == B A != B
A && B A || B
A & B A | B

• +1 Add the intercept.

• -0 Add the intercept (equivalent to +1).

• -1 Delete the intercept.

• +0 Delete the intercept (equivalent to -1).

It is very important to keep in mind, that all factor variables (including factor-factor and factor-
numeric interactions), are unrolled following one-hot scheme, meaning internally they will be sub-
stituted by k-1 dummy variables.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.formula predict.orch.neural2 oracle.model.matrix

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

180 orch.neural

Examples

regression with iris dataset
IRIS <- hdfs.put(iris)
model <- orch.neural2(formula = Sepal.Length ~.,

data = IRIS,
hiddenSizes = c(10, 10),
activations = c("sigmoid", "tanh", "linear"),
seed = 0,
objMinProgress = 1e-5,
maxIterations = 400,
verbose = TRUE)

summary(model)
p <- predict(model, IRIS, supplemental=c("Species", "Sepal.Length"))
IrPred.dfs <- hdfs.write(p, "IrPred", overwrite=TRUE)
IrPred <- hdfs.get(IrPred.dfs)

binary classification with kyphosis dataset
library(rpart)
KYPHOSIS <- hdfs.put(kyphosis)
model <- orch.neural2(formula = Kyphosis ~.,

data = KYPHOSIS,
hiddenSizes = c(20, 20),
activations = c("sigmoid", "sigmoid", "entropy"),
seed = 0,
verbose = TRUE)

p <- predict(model, KYPHOSIS, supplemental=c("Age", "Kyphosis"))
KyPred.dfs <- hdfs.write(p, "KyPred", overwrite=TRUE)
KyPred <- hdfs.get(KyPred.dfs)

orch.neural Multilayer Feed-Forward Neural Network for Oracle R Connector for
Hadoop

Description

Multilayer feed-forward neural network on HDFS data.

Usage

orch.neural(
formula,
dfs.dat,
weight = NULL,
xlev = NULL,
hiddenSizes = NULL,
activations = NULL,
gradTolerance = 1E-1,
maxIterations = 200L,
objMinProgress = 1E-6,
lowerBound = -0.7,
upperBound = 0.7,
nUpdates = 20L,
scaleHessian = TRUE,

orch.neural 181

trace = getOption("orch.trace", FALSE),
nMappers = -1L,
nReducers = 1L,
mapSplit = 0)

Specific methods for orch.neural objects
S3 method for class 'orch.neural'
predict(object, newdata, supplemental.cols = NULL, ...)
S3 method for class 'orch.neural'
print(x, ...)
S3 method for class 'orch.neural'
coef(object, ...)
S3 method for class 'orch.neural'
summary(object, ...)

Arguments

formula A formula object representing the neural network model to be trained.

dfs.dat The HDFS object specifying the data for the model. Alternatively, it can also be
an RDD created using orch.prepare, orch.orch.prepare.model.matrix.

hiddenSizes
An integer vector, whose elements store the number of neurons in each hid-
den layer. orch.neural supports an arbitrary number of hidden layers. The
length of hiddenSizes gives the number of hidden layers in the model, and
hiddenSizes[k] stores the number of neurons in the k-th hidden layer.
The hiddenSizes value may be NULL, in which case input units will be
directly connected to the output neurons (no hidden structure). If any element
of hiddenSizes is zero, then all hidden neurons will be dropped, which is
equivalent to hiddenSizes=NULL.
Example: hiddenSizes=c(10, 4) specifies a neural network with two
hidden layers (length(hiddenSizes) is 2); the first hidden layer will have
10 neurons, and the second one will have 4.
Example: hiddenSizes=c(101, 20, 1) specifies a neural network with
three hidden layers, with 101, 20, and 1 units correspondingly.
In a typical training scenario (assuming no prior knowledge of the model), you
may start with a single hidden layer and a small number of hidden neurons (for
instance, hiddenSizes=1). You may then gradually increase the number of
neurons (and possibly layers) until no further error reduction can be observed
on the validation data set.

activations
This argument specifies activation functions for the hidden and the output neu-
ral network layers. The orch.neural function supports a single activation
function per layer. Neurons are grouped into layers, and each layer (a subset of
neurons) can be assigned its own activation function. Note: the target variable
range needs to correspond to the range of the output activation function. For
instance, logistic sigmoid can be used to model targets in the range of zero to
one (range of the sigmoid function). The orch.neural function does not pre-
process the input data; appropriate data normalization and scaling are strongly
recommended.
If the activations argument is NULL, then the activation function for each
hidden layer is bipolar sigmoid and for the output it is linear.
If activations is not NULL, then its size must be

182 orch.neural

length(hiddenSizes) + 1,
where the last element corresponds to the output layer.
Possible values:

"atan" arctangent f(x) = arctanx
"bSigmoid" bipolar sigmoid f(x) = 1−e−x

1+e−x

"cos" cosine f(x) = cosx
"gaussian" Gaussian f(x) = e−x

2

"gaussError" Gauss error f(x) = 2√
π

∫ x
0
e−t

2
dt

"gompertz" Gompertz f(x) = e−e
−x

"linear" linear f(x) = x
"reciprocal" reciprocal f(x) = 1

x
"sigmoid" logistic sigmoid f(x) = 1

1+e−x

"sigmoidModulus" sigmoid modulus f(x) = x
1+|x|

"sigmoidSqrt" sigmoid sqrt f(x) = x√
1+x2

"sin" sine f(x) = sinx
"square" square f(x) = x2

"tanh" hyperbolic tangent f(x) = tanhx
"wave" wave f(x) = x

1+x2

"entropy" entropy (output only) f(x) = log(1 + exp(x))− yx

Example: activations=c("wave", "tanh", "linear") corresponds
to a neural network with two hidden layers. The first hidden layer is assigned the
"wave" activation function, the second hidden layer is assigned the "tanh"
activation function, and the output (target) layer is assigned the "linear".

gradTolerance
Numerical optimization stopping criterion: Desired gradient norm.

maxIterations
Numerical optimization stopping criterion: Maximum number of iterations.

objMinProgress
Numerical optimization stopping criterion: minimal relative change in the ob-
jective function value.

nUpdates Number of L-BFGS update pairs.
scaleHessian

Whether to scale the inverse of the Hessian matrix in L-BFGS updates.

lowerBound Lower bound for the weight initialization (not used if weights are supplied).

upperBound Upper bound for the weight initialization (not used if weights are supplied).

weight Initial vector of weights (may be NULL, in which case a random starting point
will be generated). Useful when using a solution from a previously solved
model. Note: the previous neural network architecture (number of input, out-
put, hidden layers and hidden neurons in each layer and the type of activation
functions), should be identical to the current one.

xlev A named list of character vectors specifying the levels for each ore.factor
variable.

trace Report iteration log

nMappers Hint for number of mappers to be used for the Hadoop jobs. Hadoop defaults
are used.

nReducers Hint for number of reducers to be used for the Hadoop jobs. Default is 1.

orch.neural 183

mapSplit Number of records to supply at once to a mapper. See map.split in mapred.config

object, x An orch.neural object.

newdata The HDFS object, test data.
supplemental.cols

Additional columns to include in the prediction result from the newdata data
set.

... Additional arguments.

Details

The orch.neural function solves multilayer feed-forward neural network models. It supports
an arbitrary number of hidden layers and an arbitrary number of neurons per layer. The L-BFGS
algorithm is used to solve the underlying unconstrained nonlinear optimization problem.

Value

orch.neural returns an object of class orch.neural. Some of its components are as follows:

weight Weight coefficients.

nLayers Number of layers.

summary.orch.neural returns a summary.orch.neural object.

predict.orch.neural returns an hdfs.id object which corresponds to the output HDFS
file.

The output file contains a key column in addition if newdata had a key. The value of the key
column can be used to associate a record in newdata with its corresponding record in the output
file.

The format of the output file is as follows: If key column is present it will appear first. This will be
followed by the remaining columns in newdata specified by supplemental.cols argument.
The ordering among these columns is preserved. Finally, the column corresponding to the prediction
results follows.

coef.orch.neural returns the coefficients of the orch.neural object as a named numeric
vector.

Execution Scenarios

orch.neural can compute the model from data in HDFS over Hadoop or Spark (if connected
using spark.connect). Different scenarios for invocation of orch.neural are described below:

1) Spark not connected: In this case, all computations are performed over Hadoop. orch.prepare
& orch.prepare.model.matrix are both a no-op if Spark is not connected.

For example:
IRIS <- hdfs.put(iris)
sformula <- Petal.Length ~ Petal.Width + Sepal.Length
fit <- orch.neural(formula = sformula,

dfs.dat = IRIS,
hiddenSizes = c(20L, 5L),
activations = c("bSigmoid", "tanh", "linear"),
maxIterations = 5L)

184 orch.neural

2) Spark connected but data not prepared: In this case, if the input data is in Text CSV format and
the formula is simple, then computations will be performed over Spark. Though Spark cache is not
utilised without the use of prepare functions.

For example:
spark.connect("<spark_master_address>", memory="2g",

dfs.namenode="<hdfs_name_node_address>")
IRIS <- hdfs.put(iris)
sformula <- Petal.Length ~ Petal.Width + Sepal.Length
fit <- orch.neural(formula = sformula,

dfs.dat = IRIS,
hiddenSizes = c(20L, 5L),
activations = c("bSigmoid", "tanh", "linear"),
maxIterations = 5L)

spark.disconnect()

3) Spark connected and data cached: In this case, data has been cached using orch.prepare
into Spark cache memory. The computations happen over Spark with a significant performance
improvement with the use of cache. But the model matrix for the specific formula will be computed
for all iterations.

For example:
spark.connect("<spark_master_address>", memory="2g",

dfs.namenode="<hdfs_name_node_address>")
IRIS <- hdfs.put(iris)
sformula <- Petal.Length ~ Petal.Width + Sepal.Length
IRISprep <- orch.prepare(IRIS)
fit <- orch.neural(formula = sformula,

dfs.dat = IRISprep,
hiddenSizes = c(20L, 5L),
activations = c("bSigmoid", "tanh", "linear"),
maxIterations = 5L)

spark.disconnect()

4) Spark connected and model matrix cached: In this case the model matrix specific to the formula
is cached in Spark memory using orch.prepare.model.matrix. The data is read once and
the model matrix is cached. All the iterations use this model matrix directly. The neural model
computation performance is highest in this case.

For example:
spark.connect("<spark_master_address>", memory="2g",

dfs.namenode="<hdfs_name_node_address>")
IRIS <- hdfs.put(iris)
sformula <- Petal.Length ~ Petal.Width + Sepal.Length
IRISprepMat <- orch.prepare.model.matrix(sformula, IRIS)
fit <- orch.neural(formula = sformula,

dfs.dat = IRISprepMat,
hiddenSizes = c(20L, 5L),
activations = c("bSigmoid", "tanh", "linear"),
maxIterations = 5L)

spark.disconnect()

orch.neural 185

References

Christopher Bishop (1996) Neural Networks for Pattern Recognition

Simon Haykin (2008) Neural Networks and Learning Machines (3rd Edition)

Stephen Marsland (2009) Machine Learning: An Algorithmic Perspective

Examples

###
Two hidden layers (20 neurons in the first layer, 5 hidden
neurons in the second layer).
#
Use bipolar sigmoid activation function for the first
hidden layer, hyperbolic tangent for the second hidden
layer, and linear activation function for the output layer.
#
Note that the dimension (number of elements) of the
"activations" argument is always greater by exactly one
than the dimension of "hiddenSizes".
#
Least-squares objective function.
###
IRIS <- hdfs.put(iris)

fit <- orch.neural(Petal.Length ~ Petal.Width + Sepal.Length,
dfs.dat = IRIS,
hiddenSizes = c(20L, 5L),
activations = c("bSigmoid", "tanh", "linear"),
maxIterations = 5L)

ansPred <- predict(fit, newdata = IRIS,
supplemental.cols = c("Petal.Length"))

ans <- hdfs.get(ansPred)

###
Entropy objective function.
###
INFERT <- hdfs.put(infert)

fit <- orch.neural(case ~ ., dfs.dat = INFERT,
activations = c('entropy'), objMinProgress = 1E-7,
maxIterations = 10L)

Entropy (max likelihood) model with one hidden layer.
fit <- orch.neural(
formula = case ~ .,
dfs.dat = INFERT,
hiddenSizes = c(40L),
activations = c("sigmoid", "entropy"),
lowerBound = -0.7,
upperBound = 0.7,
objMinProgress = 1E-12,
maxIterations = 10L)

186 orch.nmf

orch.nmf Nonnegative matrix factorization (NMF)

Description

Builds an NMF model, returning an NMF model instance.

Usage

orch.nmf(input, method =c("jellyfish"), dfs.output = NULL, ...)

Arguments

input A CSV ratings file containing entries of the form (user, item, rating). This can
be one of the following

1. the HDFS directory containing the input file
2. R data.frame object
3. ore.frame object
4. name of a file in the local file system

method The method to be used. Currently only jellyfish is supported.

dfs.output The output HDFS directory where the model should be created. If not specified,
this method will internally create a directory and use that as the output directory.

... Optional method specific arguments are:

latin Latin Square dimension for Map Reduce parallelism. This is an optional argu-
ment. The default value is computed based on the memory per mapper.

rank The rank of the latent factor matrices. This is an optional argument with default
value of 50.

iterations Number of iterations of Incremental Gradient Descent (IGD) to be performed.
This is an optional argument with default value 10.

step Learning Rate / Step size to be used in IGD. This is an optional argument with
default value 0.05.

decay Decay parameter for step size to be used in IGD. This is an optional argument
with default value 0.8.

regularizer Regularization parameter to be used in IGD. This is an optional argument with
default value 2.3.

init Values for initialization of factors will be uniformly chosen from (0 .. init). This
is an optional argument with default value 1.

seed Seed value for random number generation. This is an optional argument.

mapmem Amount of memory available per mapper in MB. This is an optional argument
with default value 200.

Details

The jellyfish algorithm implements a projected incremental gradient descent method. Massive
parallelization of the gradient computations are achieved by partitioning the matrix into chunks.

orch.predict-kmeans 187

Value

Returns an instance of NMF model class, an object of orch.nmf.jellyfish

This is a list with the following components

lmffit The orch.lmf.jellyfish LMF model that is used underneath

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

See Also

orch.lmf

Examples

Setup the input (term, doc, freq) entries
t <- sample(1:50, 300, replace=TRUE)
d <- sample(1:100, 300, replace=TRUE)
td <- unique(cbind(t,d))
f <- sample(1:5, nrow(td), replace=TRUE)
input <- cbind(td,f)

Fit an "orch.nmf.jellyfish" model
fit <- orch.nmf(input, latin=2, iterations=5, rank=5)
print(fit)

orch.predict-kmeans
ORCH Predictions Using kmeans and orch.kmeans Models

Description

ORCH method for generating predictions using kmeans and orch.kmeans Models.

Usage

S4 method for signature 'kmeans'
orch.predict(object, newdata, skip.vals, num.mappers,

task.timeout, job.name, ...)
S4 method for signature 'orch.kmeans'

orch.predict(object, newdata, skip.vals, num.mappers,
task.timeout, job.name, ...)

188 orch.predict-kmeans

Arguments

object A kmeans or orch.kmeans model object.

newdata An HDFS object.

skip.vals If FALSE, then input value columns are included in the output, else they are not
included in the output. Default is FALSE.

num.mappers Hint for number of mappers to be used for the Hadoop jobs. Hadoop defaults
are used.

task.timeout Maximum time in seconds a map or reduce task is allowed to run before it gets
force killed by Hadoop. Hadoop defaults are used.

job.name Prefix to be used for the Hadoop job names.

... Optional arguments.

Value

Returns an hdfs.id object. This corresponds to the output HDFS file. The column named
"ORCH_classes" contains the cluster classifications and the column named "ORCH_distance"
contains the distance of the row from its corresponding center.

The output file contains a key column in addition if and only if newdata had a key. The value of
the key column can be used to associate a record in newdata with its corresponding record in the
output file.

The format of the output file is as follows: If key column is present it will appear first. This will be
followed by the remaining columns in newdata if and only if skip.vals==FALSE. The ordering
among these columns is preserved. Finally, the columns corresponding to the prediction results,
"ORCH_classes" and "ORCH_distance" follow in that order.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

See Also

kmeans. orch.kmeans

Examples

iris4dir <- hdfs.put(iris[,1:4])

ick <- kmeans(as.matrix(iris[,1:4]), centers = 3)
kout <- orch.predict(ick, iris4dir)
head(hdfs.get(kout))

ico <- orch.kmeans(iris4dir, centers = 3, iter.max=2)
oout <- orch.predict(ico, iris4dir)
head(hdfs.get(oout))

orch.predict-princomp 189

orch.predict-princomp
ORCH Predictions Using princomp Models

Description

ORCH method for generating predictions using princomp Models.

Usage

S4 method for signature 'princomp'
orch.predict(object, newdata, skip.vals, num.mappers, task.timeout,

job.name, ...)

Arguments

object A princomp object.

newdata An HDFS object.

skip.vals If FALSE, then input value columns are included in the output, else they are not
included in the output. Default is FALSE.

num.mappers Hint for number of mappers to be used for the Hadoop jobs. Hadoop defaults
are used.

task.timeout Maximum time in seconds a map or reduce task is allowed to run before it gets
force killed by Hadoop. Hadoop defaults are used.

job.name Prefix to be used for the Hadoop job names.

... Optional arguments.

Details

Prediction works independently on each row of the input HDFS object. Thus, this can be performed
in parallel using predict.princomp in a mapper only job.

If the original fit used a formula or a data frame or a matrix with column names, newdata must
contain columns with the same names. Otherwise, it must contain the same number of columns,
to be used in the same order. The key column in newdata, if there is one, is not included in this
consideration.

Value

Returns an hdfs.id object. This corresponds to the output HDFS file containing the rotated
columns of newdata.

The output file contains a key column in addition if and only if newdata had a key. The value of
the key column can be used to associate a record in newdata with its corresponding record in the
output file.

The format of the output file is as follows: If key column is present it will appear first, the rotated
columns will appear next. The remaining columns in newdata will appear at the end if and only if
skip.vals==FALSE. The order within the remaining columns is preserved.

190 orch.predict

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

See Also

orch.predict, princomp.

Examples

irisModel <- princomp(~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
data = iris)

IRIS <- hdfs.put(iris)
orch.predict(irisModel, IRIS)

USARRESTS <- hdfs.put(USArrests)
arrestsModel <- orch.princomp(USARRESTS, cor = TRUE)

res <- orch.predict(arrestsModel, USARRESTS)
head(hdfs.get(res))

orch.predict Oracle R Connectors for Hadoop Predictions Using R Models

Description

Generic for model predictions in ORCH

Usage

orch.predict(object, newdata, ...)

Arguments

object A model object.

newdata An HDFS object.

... Optional arguments for implemented methods.

Value

Returns an HDFS object, usually the hdfs.id of the HDFS file containing the predictions.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

orch.prepare.model.matrix 191

orch.prepare.model.matrix
Prepare model matrix from HDFS data

Description

This function will return an HDFS id object which also refers to the cached model matrix in Spark
cache. This HDFS id, if given to orch.neural as dfs.dat, will lead to model computation to
happen over Spark framework and provide significant performance improvement.

Usage

orch.prepare.model.matrix(formula, dfs.dat, xlev = NULL)

Arguments

formula A formula object representing the neural network model to be trained.

dfs.dat The HDFS object specifying the data for the model.

xlev A named list of character vectors specifying the levels for each factor
variable.

Value

An enhanced HDFS object specifying the data for the model.

Attention

This function should be called after a spark.connect. Failing to do so won’t provide any
performance gain and Hadoop framework will be utilised.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

www.oracle.com/technetwork/bdc/big-data-connectors

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

spark.connect spark.connected

www.oracle.com/us/products/database/big-data-connectors
www.oracle.com/technetwork/bdc/big-data-connectors
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

192 orch.prepare

Examples

IRIS <- hdfs.put(iris)
iris_formula <- Petal.Length ~ Petal.Width
IRIS_mm <- orch.prepare.model.matrix(iris_formula, IRIS)

Use IRIS_mm for orch.neural
if (spark.connected())
iris_fit <- orch.neural(iris_formula, IRIS_mm, trace=TRUE)

orch.prepare Prepare HDFS data

Description

This function will return an HDFS id object which refers to the cached input in Spark cache. If
given to orch.neural as dfs.dat, it will route the computation over Spark framework and
provide significant performance improvement.

Usage

orch.prepare(dfs.dat)

Arguments

dfs.dat The HDFS object specifying the data.

Value

An enhanced HDFS object specifying the data for the model.

Attention

This function should be called after doing a spark.connect. Failing to do so won’t provide any
performance gain, since existing Hadoop framework will be utilised.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

www.oracle.com/technetwork/bdc/big-data-connectors

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

spark.connect spark.connected

www.oracle.com/us/products/database/big-data-connectors
www.oracle.com/technetwork/bdc/big-data-connectors
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.princomp 193

Examples

Prepare Data
IRIS <- hdfs.put(iris)
IRIS_data <- orch.prepare(IRIS)

Use IRIS_data for orch.neural
if (spark.connected())
iris_fit <- orch.neural(Petal.Length ~ Petal.Width, IRIS_data, trace=TRUE)

orch.princomp Principal Components Analysis

Description

Principal components analysis of HDFS data.

Usage

orch.princomp(x, cor=FALSE, num.mappers=-1, num.reducers=1,
reducer.serial.limit=8, task.timeout=-1,
job.name="ORCH PCA")

Arguments

x An hdfs.id object containing numeric columns. This input matrix is in dense
matrix representation

cor A logical value that indicates whether the principal components should be based
on the correlation matrix (cor = TRUE) or the covariance matrix (cor = FALSE).

num.mappers Hint for number of mappers to be used for the Hadoop jobs. Hadoop defaults
are used.

num.reducers Hint for number of reducers to be used for the Hadoop jobs. Default is 1.
reducer.serial.limit

Maximum number of records later phase reducers should process serially

task.timeout Maximum time in seconds a map or reduce task is allowed to run before it gets
force killed by Hadoop. Hadoop defaults are used.

job.name Prefix to be used for the Hadoop job names

Details

This is a wrapper method around the princomp function in the stats package to perform Prinicpal
Components Analysis on HDFS objects.

Value

A princomp object.

See Also

princomp

194 orch.recommend

Examples

USARRESTS <- hdfs.put(USArrests)

orch.princomp(USARRESTS)
orch.princomp(USARRESTS, cor = TRUE)

orch.recommend Recommend Top N

Description

This function computes top N items to be recommended for each user from LMF models.

Usage

orch.recommend(object, ...)

S4 method for signature 'orch.mahout.lmf.als'
orch.recommend(object, dfs.output = NULL, n, maxRating)

Arguments

object An instance of a LMF model of type mahout-als

dfs.output The output HDFS directory where the recommendations output file will be cre-
ated. If not specified, this method will internally create a directory and use that
as the output directory.

n Number of items to recommend for each user

maxRating The maximum possible rating value per item

Value

Returns the HDFS directory containing the output file.

Methods

signature(object = "orch.mahout.lmf.als") This function computes top N items
to be recommended for each user using the predicted ratings based on the input orch.mahout.lmf.als
model instance.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

orch.save.model 195

Examples

Setup the input (user, item, rating) entries
u <- sample(1:100, 300, replace=TRUE)
i <- sample(1:10, 300, replace=TRUE)
ui <- unique(cbind(u,i))
r <- sample(1:5, nrow(ui), replace=TRUE)
input <- cbind(ui,r)

For "mahout-als", set up an input file
inputFile <- tempfile(tmpdir='/tmp')
write.table(input, file=inputFile, sep=",", col.names=FALSE, row.names=FALSE)

Fit using "mahout-als"
fit <- orch.lmf(inputFile, method="mahout-als", rank=3, iterations=5)

Recommend top 2 items per user
orch.recommend(fit, n=2, maxRating=5)

orch.save.model Save MLlib Models to HDFS.

Description

This function saves a model created using Spark analytics in ORAAH to hdfs for scoring/prediction
later on. It also enables model sharing amongst different users if the other users have access to the
path where models are saved.

Usage

orch.save.model(model, dfs.name, overwrite = FALSE)

Arguments

model MLlib fit object of type among orch.ml.logistic, orch.ml.linear,
orch.ml.lasso, orch.ml.ridge, orch.ml.svm, orch.ml.gmm, orch.ml.kmeans,
orch.ml.dt or orch.ml.random.forest, orch.ml.gbt, orch.glm2,
orch.lm2, orch.neural2.

dfs.name Name of the target HDFS directory or HDFS path relative to the current working
directory. If the directory does not exist in HDFS it will be created. If it exists
overwrite parameter must be considered.

overwrite whether to overwrite the destination directory if it exists.

Value

HDFS absolute path to the saved model location.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

196 orch.unprepare

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.load.model

Examples

library(rpart)
data <- hdfs.put(kyphosis)
model <- orch.ml.ridge(formula = Number ~ Age, data = data)
orch.save.model(model, "ridgeKypSave", overwrite=TRUE)
model.load <- orch.load.model("ridgeKypSave")
pred <- predict(model.load, newdata = data, supplemental = c("Kyphosis", "Age"))
hdfs.write(pred, outPath = "kyphosisPrediction", overwrite=TRUE)

orch.unprepare Uncache data from Spark cache

Description

This function will uncache data or model matrix cached into Spark cache using orch.prepare
or orch.prepare.model.matrix functions.

Usage

orch.unprepare(dfs.dat)

Arguments

dfs.dat The HDFS object specifying the data.

Attention

This function should be called only with an active spark session. Also the dfs.dat should be
cached in spark using orch.prepare or orch.prepare.model.matrix. If not, the func-
tion will error out.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

www.oracle.com/technetwork/bdc/big-data-connectors

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm
www.oracle.com/us/products/database/big-data-connectors
www.oracle.com/technetwork/bdc/big-data-connectors
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

predict.orch.lmf 197

See Also

orch.prepare.model.matrix orch.prepare

Examples

IRIS <- hdfs.put(iris)

Prepare Data
IRIS_data <- orch.prepare(IRIS)

Prepare Model Matrix
IRIS_mm <- orch.prepare.model.matrix(Petal.Length ~ Petal.Width, IRIS)

Once cached data/model matrix is not needed
use orch.unprepare to uncache it
orch.unprepare(IRIS_data)
orch.unprepare(IRIS_mm)

predict.orch.lmf Predict using a Low Rank Matrix Factorization Model

Description

This function can be used to make predictions using an LMF model. For instance, if the input
consists of (user, item) pairs, then this function can be used to predict the ratings of the user on the
item for each pair.

Usage

S3 method for class 'orch.lmf.jellyfish'
predict(object, newdata, dfs.output=NULL)

Arguments

object An instance of a orch.lmf.jellyfish model

input Input containing entries of the form (user, item). This can be one of the follow-
ing

1. the HDFS directory containing the input file
2. R data.frame
3. ore.frame
4. name of a file in the local file system

dfs.output The output HDFS directory where the predicted ratings should be created. If not
specified, this method will internally create a directory and use that as the output
directory.

Value

A list with the following components

inputDir The HDFS directory containing the input

outputDir HDFS output directory that contains the predicted ratings

198 summary.orch.glm2

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

Examples

Setup the input (user, item, rating) entries
u <- sample(1:100, 300, replace=TRUE)
i <- sample(1:10, 300, replace=TRUE)
ui <- unique(cbind(u,i))
r <- sample(1:5, nrow(ui), replace=TRUE)
input <- cbind(ui,r)

Fit an "orch.lmf.jellyfish" model
fit <- orch.lmf(input, latin=2, iterations=5, rank=3)
print(fit)

Get the input on which predictions are desired
This is a subset of u and subset of i used in the training data set
up <- sample(u, 10, replace=TRUE)
ip <- sample(i, 10, replace=TRUE)
pred.input <- cbind(up, ip)

Make the prediction using the orch.lmf.jellyfish model
pred.results <- predict(fit, newdata=pred.input)

Get the predictions into R and display
preddf <- hdfs.get(hdfs.attach(pred.results$outputDir))
pj <- as.matrix(preddf)
pj

summary.orch.glm2 Summary for the high performance logistic regression, for the class
orch.glm2.

Description

Summary for the high performance logistic regression, for the class orch.glm2.

Usage

summary.orch.glm2(object, ...)

Arguments

object an object of class "orch.glm2", returned by a call to orch.glm2. The
object comprises the following components

• coefficients matrix of coefficients, standard errors, z-values and p-values.
• nIterations number of iterations.
• deviance negative deviance.

summary.orch.lm2 199

• nRows number of rows (observations) in the input model matrix.
• nullDeviance deviance for the null model.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.glm2 predict.orch.glm2 print.summary.orch.glm2 oracle.model.matrix

summary.orch.lm2 Summary for the high performance linear regression, for the class
orch.lm2.

Description

Summary for the high performance linear regression, for the class orch.lm2.

Usage

summary.orch.lm2(object, ...)

Arguments

object an object of class "orch.lm2", returned by a call to orch.lm2.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

orch.lm2 predict.orch.lm2 print.summary.orch.lm2 oracle.model.matrix

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm
www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

200 as.matrix.orch.drm

summary.orch.neural2
Neural network summary.

Description

Neural network summary.

Usage

summary.orch.neural2(object, ...)

Arguments

object An orch.neural2 model object.

Value

A summary.orch.neural2 object.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

as.matrix.orch.drm Collect a distributed matrix into an R matrix

Description

Collect a distributed matrix into an R matrix

Usage

as.matrix.orch.drm(x)

Arguments

x A distributed matrix

Value

an R dense matrix

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

as.matrix.orch.mx 201

Examples

dec <- orch.dssvd(data, formula = ~ . - 1, k = 2L, saveLoc = "svdOut")
cf <- coef(dec)

as.matrix(cf$U)

as.matrix.orch.mx Tranform an in-memory Java matrix to an R matrix

Description

Tranform an in-memory Java matrix to an R matrix

Usage

as.matrix.orch.mx(x)

Arguments

x an in-memory Java matrix

Value

an R dense matrix

coef.orch.dspca Overloaded coef() for D-SPCA

Description

Overloaded coef() for D-SPCA

Usage

coef.orch.dspca(object, ...)

Arguments

object The DSPCA "model"

Value

An R list with (mu, U, V, sigma)

Examples

data <- hdfs.put(iris)

dec <- orch.dspca(formula = ~ . - 1, data = data, k = 2L)

cf <- coef(dec)
as.matrix(cf$U)

202 coef.orch.elm

coef.orch.dssvd coef() for DSSVD "model"

Description

coef() for DSSVD "model"

Usage

coef.orch.dssvd(object, ...)

Arguments

object A DSSVD "model"

Value

An R list of (U,V,sigma)

Examples

data <- hdfs.put(iris)

dec <- orch.dssvd(formula = ~ . - 1, data = data, k = 2L, saveLoc = "svdOut",
verbose = FALSE, overwrite = TRUE)

cf <- coef(dec)
cf$s

coef.orch.elm ELM coef()

Description

pick model parameters off the ELM model

Usage

coef.orch.elm(object, ...)

Arguments

object the ELM model

Value

A list of the model parameter tensors

Examples

model <- orch.elm.load(hdfsLoc)
cfs <- coef(model)

coef.orch.helm 203

coef.orch.helm HELM coef()

Description

Pick model parameters off the H-ELM model

Usage

coef.orch.helm(object, ...)

Arguments

object The ELM model

Value

A list of the model parameter tensors

Examples

model <- orch.helm.load(hdfsLoc)
cfs <- coef(model)

dim.orch.drm dim() for a distributed matrix

Description

Obtain the dimensions of a distributed matrix

Usage

dim.orch.drm(x)

Value

The dimensions of ‘x‘

Examples

dec <- orch.dssvd(data, formula = ~ . - 1, k = 2L, saveLoc = "svdOut")
cf <- coef(dec)

dim(cf$U)

204 foldInMx.orch.dspca

dim.orch.mx dim() overload for in-memory Java matrix

Description

Obtain the dimensions of an in-memory Java matrix

Usage

dim.orch.mx(x)

Arguments

x An in-memory Java matrix

Value

The dimensions of ‘x‘

foldInMx.orch.dspca
SPCA fold-in (output: DRM)

Description

SPCA fold-in (output: DRM)

Usage

foldInMx.orch.dspca(object, newdata, supplemental = NULL,
verbose = TRUE, numPartitions = 1L)

Arguments

object The DSPCA model.

newdata New observation data. The supported input types are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

supplemental In this implementation this parameter is not used.

verbose If TRUE, provide more formula output to standard output.
numPartitions

The number of partitions to re-partition into (if positive).

foldIn.orch.dspca 205

Details

The fold-in PCA operation computes aproximation of new datapoints folded into PCA space as

ŨkΣk ≈
(
Ã− µ

)
Vk,

where Ã is the matrix induced by new observations; Ũk is the matrix corresponding to new obser-
vations in the scaled PCA space. Note that result of this routine is unscaled PCA space.

Value

A distributed matrix of new observations folded into PCA space.

Current MPI Limitations

Support for MPI integration is experimental.

Worker process lifecycle and resource requirements:
MPI has a message-passing programming model. That means distributed jobs must be able to
start all MPI workers and load all their data before they can start exchanging messages, and have
synchronous life cycle. Consequently, at the very least all MPI individual submission data must
fit into machine cluster memory, comfortably.
MPI cohabitates resources along with Spark resource manager and may cause cluster oversub-
scription if resources are not properly allowed.

Limited sparse algebra support:
Currently, our MPI algorithms support dense algebra only. It means sparse and extra-sparse prob-
lems may likely not perform as well as dense problems, as they will have to be transformed into a
dense problem first.
In particular, solutions using formula one-hot transformations of categorical variables with high
category cardinalities, as well as interactions of such, may produce vectorization of extreme spar-
sity, and may suffer from the aforementioned significant problem expansion.
The support for sparse MPI algebra will be added in future releases. For now, it is recommended
to avoid extra sparse scenarios with MPI based solvers.

Examples

data <- hdfs.put(iris)

dec <- orch.dspca(formula = ~ . - 1, data = data, k = 2L)

r <- foldInMx.orch.dspca(dec, data)
as.matrix(r)

foldIn.orch.dspca D-SPCA fold-in (output: Spark data frame)

Description

D-SPCA fold-in (output: Spark data frame)

206 foldIn.orch.dspca

Usage

foldIn.orch.dspca(object, newdata, supplemental = NULL,
predictColPrefix = ".predict", verbose = TRUE,
numPartitions = 1L)

Arguments

object The DSPCA model.

newdata New observation data. The supported input types are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

supplemental The input columns to be joined with the results.
predictColPrefix

Column name prefix for the columns mapped into data frame attributes.

verbose If TRUE provide more formula output to standard output.
numPartitions

The number of partitions to re-partition into (if positive).

Details

The fold-in PCA operation computes aproximation of new datapoints folded into PCA space as

ŨkΣk ≈
(
Ã− µ

)
Vk,

where Ã is the matrix induced by new observations; Ũk is the matrix corresponding to new obser-
vations in the scaled PCA space. Note that result of this routine is unscaled PCA space.

Value

A Spark ‘DataFrame‘ contianing ‘supplemental‘ columns concatenated with PCA component columns.
The PCA component columns are named per ‘predictColPrefix‘_i, where ‘i‘ is the component num-
ber, starting with 1.

Current MPI Limitations

Support for MPI integration is experimental.

Worker process lifecycle and resource requirements:
MPI has a message-passing programming model. That means distributed jobs must be able to
start all MPI workers and load all their data before they can start exchanging messages, and have
synchronous life cycle. Consequently, at the very least all MPI individual submission data must
fit into machine cluster memory, comfortably.
MPI cohabitates resources along with Spark resource manager and may cause cluster oversub-
scription if resources are not properly allowed.

orch.dspca 207

Limited sparse algebra support:
Currently, our MPI algorithms support dense algebra only. It means sparse and extra-sparse prob-
lems may likely not perform as well as dense problems, as they will have to be transformed into a
dense problem first.
In particular, solutions using formula one-hot transformations of categorical variables with high
category cardinalities, as well as interactions of such, may produce vectorization of extreme spar-
sity, and may suffer from the aforementioned significant problem expansion.
The support for sparse MPI algebra will be added in future releases. For now, it is recommended
to avoid extra sparse scenarios with MPI based solvers.

Examples

data <- hdfs.put(iris)

dec <- orch.dspca(formula = ~ . - 1, data = data, k = 2L)

r <- foldIn.orch.dspca(dec, data, supplemental = "Species")
r$show()

orch.dspca D-SPCA

Description

Run formula transform + DSPCA. Produce predictMetadata + SVD artifacts (as requested).

Usage

orch.dspca(formula, data, k, p = 15L, q = 0L,
formU = TRUE, formV = TRUE, saveLoc = NULL,
verbose = FALSE, numPartitions = 0L, overwrite = FALSE)

Arguments

formula R formula to use.

data The dataset to be converted to input matrix. The supported input types are as
follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

k SSVD’s reduced rank (perhaps no more than 200..500).

p Oversampling, default: 15.

q The number of power iterations. Suggested values are 0, 1 or 2. Having more
than 0 power iterations may significantly increase the computational cost.

208 orch.dspca

formU If TRUE, form output matrix U

formV If TRUE, form output matrix V

saveLoc If not NULL, the HDFS location to save decomposition results into.

verbose If TRUE, verbose output

numPartition If greater than 0, the number of Spark partitions to repartition the formula output
into before feeding into D-SSVD solver.

overwrite Whether to overwrite the saveLoc directory, if it exists.

Details

The algorithm runs formula transformation to produce input matrix (A) and applies distributed
SPCA (stochastic PCA).

The SPCA algorithm flow is equivalent to subtracting colmeans from rows of observatisons and
then running stochastic SVD (S-SVD) on it (althout it is not doing exactly that verbatim):(

A− 1µ>
)
≈ UkΣV>k ,

where k is the rank of the SVD decomposition: A ∈ Rm×n , Uk ∈ Rm×k, V ∈ Rn×k; and µ is
the colmeans of A:

µ =
1
m

m∑
i=1

Ai∗ =
1
m

m∑
i=1

xi.

Subsequently, Uk and Vk contains first k singular vectors, and Σk contains first k singular values
of the S-SVD.

Thus, UkΣk (or Uk) correspond to original data points converted to PCA (or normalized PCA)
spaces; and Vk can be used for subsequent fold-in(s) of new observations into the PCA (normalized
PCA) spaces obtained by the original decomposition.

The computed SPCA model is thus {µ,Uk,Vk,σ} plus information related to formula transfor-
mation.

Value

DSPCA model: formula metadata + (mu, U, V, sigma)

Current MPI Limitations

Support for MPI integration is experimental.

Worker process lifecycle and resource requirements:
MPI has a message-passing programming model. That means distributed jobs must be able to
start all MPI workers and load all their data before they can start exchanging messages, and have
synchronous life cycle. Consequently, at the very least all MPI individual submission data must
fit into machine cluster memory, comfortably.
MPI cohabitates resources along with Spark resource manager and may cause cluster oversub-
scription if resources are not properly allowed.

Limited sparse algebra support:
Currently, our MPI algorithms support dense algebra only. It means sparse and extra-sparse prob-
lems may likely not perform as well as dense problems, as they will have to be transformed into a
dense problem first.

orch.dssvd.load 209

In particular, solutions using formula one-hot transformations of categorical variables with high
category cardinalities, as well as interactions of such, may produce vectorization of extreme spar-
sity, and may suffer from the aforementioned significant problem expansion.
The support for sparse MPI algebra will be added in future releases. For now, it is recommended
to avoid extra sparse scenarios with MPI based solvers.

Examples

data <- hdfs.put(iris)

dec <- orch.dspca(formula = ~ . - 1, data = data, k = 2L)
cf <- coef(dec)
as.matrix(cf$U)

r <- foldIn.orch.dspca(dec, data, supplemental = "Species")
r$show()

orch.dssvd.load Load the D-SSVD model from HDFS

Description

Load the D-SSVD model from HDFS

Usage

orch.dssvd.load(loc)

Arguments

loc The location of HDFS model on HDFS.

Value

DSSVD "model": formula metadata + (U,V, Sigma).

Examples

data <- hdfs.put(iris)

dec <- orch.dssvd(formula = ~ . - 1, data = data, k = 2L, saveLoc = "svdOut",
verbose = FALSE, overwrite = TRUE)

decClone <- orch.dssvd.load("svdOut")
cf <- coef(decClone)
cf$s

210 orch.dssvd

orch.dssvd D-SSVD algorithm

Description

D-SSVD algorithm

Usage

orch.dssvd(formula, data, k, p = 15L, q = 0L,
formU = TRUE, formV = TRUE, saveLoc = NULL,
verbose = FALSE, numPartitions = 0L, overwrite = FALSE)

Arguments

formula R formula to use
data The dataset to be converted to input matrix. The supported input types are as

follows:
• HDFS object identifier. This is a special ORCH object returned by hdfs.attach

and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).
k SSVD’s reduced rank (perhaps no more than 200..500).
p Oversampling, default: 15.
q The number of power iterations. Suggested values are 0, 1 or 2. Having more

than 0 power iterations may significantly increase the computational cost.
formU If TRUE, form output matrix U.
formV if TRUE, form output matrix V.
saveLoc If not NULL, the HDFS location to save decomposition results into.
verbose If TRUE, verbose output.
numPartition If greater than 0, the number of Spark partitions to repartition the formula output

into before feeding into D-SSVD solver.
overwrite Whether to overwrite the saveLoc directory, if it exists.

Details

The algorithm computes reduced, approximate k-rank SVD decomposition

A ≈ UkΣkV>k ,

where A ∈ Rm×n is the input matrix formed by applying R formula to the data frame input; Uk ∈
Rm×k and Vk ∈ Rn×k are orthonormal matrices containing first k left and right singular vectors;
Σk ∈ Rk×k is diagonal matrix containing k singular values {σi : i = 1, 2, . . . k}. Alternatively,
we denote information carried by Σ, by its diagonal vector σ.

orch.elm.load 211

Value

DSSVD model: formula metadata + (U, V, Sigma)

Current MPI Limitations

Support for MPI integration is experimental.

Worker process lifecycle and resource requirements:
MPI has a message-passing programming model. That means distributed jobs must be able to
start all MPI workers and load all their data before they can start exchanging messages, and have
synchronous life cycle. Consequently, at the very least all MPI individual submission data must
fit into machine cluster memory, comfortably.
MPI cohabitates resources along with Spark resource manager and may cause cluster oversub-
scription if resources are not properly allowed.

Limited sparse algebra support:
Currently, our MPI algorithms support dense algebra only. It means sparse and extra-sparse prob-
lems may likely not perform as well as dense problems, as they will have to be transformed into a
dense problem first.
In particular, solutions using formula one-hot transformations of categorical variables with high
category cardinalities, as well as interactions of such, may produce vectorization of extreme spar-
sity, and may suffer from the aforementioned significant problem expansion.
The support for sparse MPI algebra will be added in future releases. For now, it is recommended
to avoid extra sparse scenarios with MPI based solvers.

Examples

data <- hdfs.put(iris)

dec <- orch.dssvd(formula = ~ . - 1, data = data, k = 2L, saveLoc = "svdOut",
verbose = FALSE, overwrite = TRUE)

cf <- coef(dec)
as.matrix(cf$U)

orch.elm.load ELM model load

Description

load the ELM model off HDFS.

Usage

orch.elm.load(loc)

Arguments

loc The hdfs location (directory) to load the model from.

212 orch.elm

Value

The loaded ELM model

Examples

data <- hdfs.put(iris)

create and save a model
model <- orch.elm(formula = Species ~ . - 1, data = data, zScoreX = TRUE,
l = 10, lambda = 1e-12, saveLoc = "example-elm", overwrite = TRUE)

Not run:
The current Spark session can be disconnected using spark.disconnect().
In a new Spark session, you can load this model again.

End(Not run)

load the model and predict new observations
model <- orch.elm.load("example-elm")
predOut <- predict(model, newdata = data, supplemental = "Species")
predOut$show()

orch.elm ORCH elm fit using formula.

Description

ORCH elm fit using formula.

Usage

orch.elm(formula, data, zScoreX = FALSE, zScoreT = FALSE,
l, lambda, l1 = FALSE, l1FistaIterations = 50,
g = "tanh", saveLoc = NULL, verbose = FALSE,
numPartitions = -1, overwrite = FALSE)

Arguments

formula The R formula to be used.

data The input data. The supported input types are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

zScoreX If true, normalize the predictors upon the application of formula transformations.

orch.elm 213

zScoreT If true, normalize the target upon the application of formula transformations.

l The size of the hidden layer.

lambda The regularization of the output ELM layer fit.

l1 If true, use L1 regularization (LASSO), otherwise use L2 regularization (ridge).
l1FistaIterations

The number of Fista iterations (default 50) if L1 regularization is requested.

g The hidden layer activation function. Currently, one of: ’linear’, ’sigmoid’,
’tanh’.

saveLoc *optional* HDFS location to save the resulting model tree.

verbose If true, provide more formula output to standard output.
numPartitions

If positive, repartition formula output into this many partitions before handing
over to the fitter algorithm. This allows manipulating degrees of parallelism
during fitting algorithm execution.

overwrite Whether to overwrite the saveLoc directory, if it exists.

Details

For information on ELM technique, see:

Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. "Extreme learning machine: theory and
applications." Neurocomputing 70.1 (2006): 489-501.

For information on L1 FISTA fitting used in this method, see:

Beck, Teboulle. A fast iterative shrinkage-thresholding algorithm with application to wavelet- based
image deblurring.

Use cases: Multiclass classifier, regression.

Model persistence via HDFS, can be shared between different user sessions.

Value

A trained ELM model.

Current MPI Limitations

Support for MPI integration is experimental.

Worker process lifecycle and resource requirements:
MPI has a message-passing programming model. That means distributed jobs must be able to
start all MPI workers and load all their data before they can start exchanging messages, and have
synchronous life cycle. Consequently, at the very least all MPI individual submission data must
fit into machine cluster memory, comfortably.
MPI cohabitates resources along with Spark resource manager and may cause cluster oversub-
scription if resources are not properly allowed.

Limited sparse algebra support:
Currently, our MPI algorithms support dense algebra only. It means sparse and extra-sparse prob-
lems may likely not perform as well as dense problems, as they will have to be transformed into a
dense problem first.

214 orch.helm.load

In particular, solutions using formula one-hot transformations of categorical variables with high
category cardinalities, as well as interactions of such, may produce vectorization of extreme spar-
sity, and may suffer from the aforementioned significant problem expansion.
The support for sparse MPI algebra will be added in future releases. For now, it is recommended
to avoid extra sparse scenarios with MPI based solvers.

Examples

data <- hdfs.put(iris)

model <- orch.elm(formula = Species ~ . - 1, data = data, zScoreX = TRUE,
l = 10, lambda = 1e-12)

summary(model)
cfs <- coef(model)
names(cfs)

#collect coefficient matrix to front end
as.matrix(cfs$Beta)

predict new observations
predOut <- predict(model, newdata = data, supplemental = "Species")
predOut$show()

orch.helm.load HELM model load

Description

load the HELM model off HDFS.

Usage

orch.helm.load(loc)

Arguments

loc The hdfs location (directory) to load the model from.

Value

The loaded HELM model

Examples

data <- hdfs.put(iris)

create and save the model
model <- orch.helm(data, formula = Species ~ . - 1, zScoreX = TRUE,

l = c(10L, 50L), lambdaAEnc = 1e-3, lambdaELM = 1e-9,
saveLoc = "example-helm", overwrite = TRUE)

Not run:
The current Spark session can be terminated using spark.disconnect().

orch.helm 215

In a new Spark session, you can load this model again.

End(Not run)

load the model and predict new observations
model <- orch.helm.load("example-helm")
predOut <- predict(model, newdata = data, supplemental = "Species")
predOut$show()

orch.helm H-ELM fit

Description

H-ELM fit

Usage

orch.helm(formula, data, zScoreX = FALSE,
zScoreXRows = FALSE, zScoreT = FALSE, l, lambdaAEnc,
lambdaELM, useL1inAE = TRUE, l1FistaIterations = 50L,
g = "linear", s = 1, saveLoc = NULL, verbose = FALSE,
numPartitions = 0L, overwrite = FALSE)

Arguments

formula The R formula to be used.

data The input data. The supported input types are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

zScoreX If true, normalize the predictors upon the application of formula transformations.

zscoreXRows If true, row-normalize the input.

zScoreT If true, normalize the target upon the application of formula transformations.

l The sizes of the hidden layers. The first n-1 are the sizes of ELM-AE layers; the
last number is the size of the last ELM layer.

lambdaAenc The regularization rates of the AEs (must be of size n-1).

lambdaELM The regularization rate of the final ELM fit. This is always L2.

useL1inAE If true, use L1 regularization (Lasso); otherwise, use the L2.
l1FistaIterations

The number of Fista iterations (default 50) if L1 regularization is requested.

216 orch.helm

g The AE hidden layer activation function. Currently, one of: ‘linear‘, ‘sigmoid‘,
‘tanh‘.

s The ELM pre-scaling factor, defualt 1.0 (no effect).

saveLoc *optional* HDFS location to save the resulting model tree.

verbose If true, provide more formula output to standard output.
numPartitions

If positive, repartition formula output into this many partitions before handing
over to the fitter algorithm. This allows manipulating degrees of parallelism
during fitting algorithm execution.

overwrite Whether to overwrite the saveLoc directory, if it exists.

Details

H-ELM references:

* [H-ELM] Tang et. al. Extreme Learning Machine for Mutilayer Perceptron

* [FISTA] Beck, Teboulle. A fast iterative shrinkage-thresholding algorithm with application to
wavelet-based image deblurring

* [ELM-ML] Kasun et. al. Representational learning with ELM for Big Data

Deviations from vanilla method and clarifications

1. Interlayer rescaling

What was not clearly articulated in the paper is that rescaling between layers is performed per

fAE (H) =
(
H− 1c>min

)
◦
[
1 (cmax − cmin)>

]◦−1

,

where cmin and cmax are column-wise minimums and maximums of an AE’s (autoencoder’s) hid-
den layer output H.

Further, to preserve intermediate output accumulated sparsity, we replaced that normalization with
one centered around 0:

f∗AE (H) = H ◦
(
1c>maxabs

)◦−1
,

where cmaxabs,i = max [sgn (H∗i) H∗i] ∀i = 1, 2, . . . n is the maximum absolute value in the i-th
column of the matrix H.

2. No image prep by default

Additionally, the original publication’s implementation applied row-wise normalization of the input,
which is only beneficial in case of black-and-white equally ranged pixel data (simple autocontrast
of sorts), as a part of the preparation. This is by default disabled by the parameter ‘zscoreXRows‘ .
To re-enable this behavior, set ‘zscoreXRows‘ to TRUE.

Use cases

The method handles supervised regression and multiclass targets. The type of problem is deter-
mined by the target in the R formula.

Unsupervised formulas are rejected with an error.

Prediction output is provided in the form of Spark ‘DataFrame‘.

Value

A trained HELM model

orch.mpiAvailable 217

Current MPI Limitations

Support for MPI integration is experimental.

Worker process lifecycle and resource requirements:
MPI has a message-passing programming model. That means distributed jobs must be able to
start all MPI workers and load all their data before they can start exchanging messages, and have
synchronous life cycle. Consequently, at the very least all MPI individual submission data must
fit into machine cluster memory, comfortably.
MPI cohabitates resources along with Spark resource manager and may cause cluster oversub-
scription if resources are not properly allowed.

Limited sparse algebra support:
Currently, our MPI algorithms support dense algebra only. It means sparse and extra-sparse prob-
lems may likely not perform as well as dense problems, as they will have to be transformed into a
dense problem first.
In particular, solutions using formula one-hot transformations of categorical variables with high
category cardinalities, as well as interactions of such, may produce vectorization of extreme spar-
sity, and may suffer from the aforementioned significant problem expansion.
The support for sparse MPI algebra will be added in future releases. For now, it is recommended
to avoid extra sparse scenarios with MPI based solvers.

Examples

data <- hdfs.put(iris)

model <- orch.helm(formula = Species ~ . - 1, data = data, zScoreX = TRUE,
l = c(10L, 50L), lambdaAEnc = 1e-3, lambdaELM = 1e-9,
saveLoc = "example-helm", overwrite = TRUE)

summary(model)
cfs <- coef(model)
names(cfs)

as.matrix(cfs$Beta1)
as.matrix(cfs$elmQ)

predOut <- predict(model, data, supplemental = "Species")
predOut$show()

orch.mpiAvailable MPI subsystem check

Description

Check if proper MPI subsystem is available

Usage

orch.mpiAvailable()

218 orch.mpi.cleanup

Current MPI Limitations

Support for MPI integration is experimental.

Worker process lifecycle and resource requirements:
MPI has a message-passing programming model. That means distributed jobs must be able to
start all MPI workers and load all their data before they can start exchanging messages, and have
synchronous life cycle. Consequently, at the very least all MPI individual submission data must
fit into machine cluster memory, comfortably.
MPI cohabitates resources along with Spark resource manager and may cause cluster oversub-
scription if resources are not properly allowed.

Limited sparse algebra support:
Currently, our MPI algorithms support dense algebra only. It means sparse and extra-sparse prob-
lems may likely not perform as well as dense problems, as they will have to be transformed into a
dense problem first.
In particular, solutions using formula one-hot transformations of categorical variables with high
category cardinalities, as well as interactions of such, may produce vectorization of extreme spar-
sity, and may suffer from the aforementioned significant problem expansion.
The support for sparse MPI algebra will be added in future releases. For now, it is recommended
to avoid extra sparse scenarios with MPI based solvers.

orch.mpi.cleanup MPI Cleanup

Description

Clean up stuck MPI processes and shared memory segments on the cluster using Spark tasks.

Usage

orch.mpi.cleanup(global = FALSE)

Arguments

global If TRUE, will attempt to cleanup the ENTIRE cluster. If FALSE, we only at-
tempt to cleanup processes belonging to the current OS user.

Details

This is only necessary as a last recourse if less-than-graceful crash occurred during MPI phase
execution, AND the driver process (which otherwise automatically cleans up failed MPI jobs) has
failed as well.

Value

The list of cleanup task errors grouped by host (if any). Errors are not necessarily an indication of
objective failure.

ORCH_MPI_LIBS 219

Current MPI Limitations

Support for MPI integration is experimental.

Worker process lifecycle and resource requirements:
MPI has a message-passing programming model. That means distributed jobs must be able to
start all MPI workers and load all their data before they can start exchanging messages, and have
synchronous life cycle. Consequently, at the very least all MPI individual submission data must
fit into machine cluster memory, comfortably.
MPI cohabitates resources along with Spark resource manager and may cause cluster oversub-
scription if resources are not properly allowed.

Limited sparse algebra support:
Currently, our MPI algorithms support dense algebra only. It means sparse and extra-sparse prob-
lems may likely not perform as well as dense problems, as they will have to be transformed into a
dense problem first.
In particular, solutions using formula one-hot transformations of categorical variables with high
category cardinalities, as well as interactions of such, may produce vectorization of extreme spar-
sity, and may suffer from the aforementioned significant problem expansion.
The support for sparse MPI algebra will be added in future releases. For now, it is recommended
to avoid extra sparse scenarios with MPI based solvers.

ORCH_MPI_LIBS ORCHmpi system control environment variable.

Description

This control environment variable is used to locate the MPI libraries on the cluster system. MPI
should be available at the same location on all the nodes of the cluster. By default, it is set in
your Renviron.site by the client installer to point to the pre-built MPI library, which is available at
’/usr/lib64/R/lib/mpich/lib’.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

ORCH_MPI_MPIEXEC ORCH_MPI_MAX_GRID_SIZE

Examples

Not run:
csh: setenv ORCH_MPI_LIBS /usr/lib/mpi/lib
bash: export ORCH_MPI_LIBS=/usr/lib/mpi/lib

End(Not run)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

220 ORCH_MPI_MPIEXEC

ORCH_MPI_MAX_GRID_SIZE
ORCHmpi system control environment variable.

Description

This control environment variable is used to set the maximum number of MPI workers (not counting
the leader process) that MPI computation may spawn on the cluster per submission. It is recom-
mended to set this to an integer value, with maximum being no more than 60 percent of available
cluster CPU cores.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

ORCH_MPI_LIBS ORCH_MPI_MPIEXEC

Examples

Not run:
csh: setenv ORCH_MPI_MAX_GRID_SIZE 50
bash: export ORCH_MPI_MAX_GRID_SIZE=50

End(Not run)

ORCH_MPI_MPIEXEC ORCHmpi system control environment variable.

Description

This control environment variable is used to locate the ’mpiexec’ program on the cluster system.
MPI should be available at the same location on all the nodes of the cluster. By default, it is set in
your Renviron.site by the client installer to point to the pre-built MPI library, which is available at
’/usr/lib64/R/lib/mpich/bin/mpiexec’.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

orch.mpi.options 221

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

See Also

ORCH_MPI_LIBS ORCH_MPI_MAX_GRID_SIZE

Examples

Not run:
csh: setenv ORCH_MPI_MPIEXEC /usr/lib/mpi/bin/mpiexec
bash: export ORCH_MPI_MPIEXEC=/usr/lib/mpi/bin/mpiexec

End(Not run)

orch.mpi.options MPI Options

Description

Set MPI stage execution options.

Usage

orch.mpi.options(maxGridSize = NULL, mpiRetries = NULL,
mpiCleanupTasks = NULL)

Arguments

maxGridSize Integer, maximum number of MPI workers (not counting the leader process) that
MPI computation may spawn on the cluster per submission.

mpiRetries Number of retries if MPI computation fails. 0 means do not try again, 1 means
try again once if the initial submission fails, etc.

mpiCleanupTasks
The number of spark tasks for MPI cleanup to spawn in orch.mpi.cleanup().

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

222 predict.orch.elm

orch.scalapackAvailable
Scalpack subsystem check

Description

Scalpack subsystem check

Usage

orch.scalapackAvailable()

Current MPI Limitations

Support for MPI integration is experimental.

Worker process lifecycle and resource requirements:
MPI has a message-passing programming model. That means distributed jobs must be able to
start all MPI workers and load all their data before they can start exchanging messages, and have
synchronous life cycle. Consequently, at the very least all MPI individual submission data must
fit into machine cluster memory, comfortably.
MPI cohabitates resources along with Spark resource manager and may cause cluster oversub-
scription if resources are not properly allowed.

Limited sparse algebra support:
Currently, our MPI algorithms support dense algebra only. It means sparse and extra-sparse prob-
lems may likely not perform as well as dense problems, as they will have to be transformed into a
dense problem first.
In particular, solutions using formula one-hot transformations of categorical variables with high
category cardinalities, as well as interactions of such, may produce vectorization of extreme spar-
sity, and may suffer from the aforementioned significant problem expansion.
The support for sparse MPI algebra will be added in future releases. For now, it is recommended
to avoid extra sparse scenarios with MPI based solvers.

predict.orch.elm ELM predict

Description

Score ELM model (overloaded)

Usage

predict.orch.elm(object, newdata, supplemental = NULL,
verbose = TRUE)

predict.orch.elm 223

Arguments

object The ELM model produced by orch.elm().

newdata The new observation data. The supported input types are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

supplemental The array of names for supplemental data to be joined with predictions; could
be empty if no join with original dataset columns is desired.

Value

A Spark ‘DataFrame‘ instance of scores joined by ‘supplemental‘ columns (if any).

Current MPI Limitations

Support for MPI integration is experimental.

Worker process lifecycle and resource requirements:
MPI has a message-passing programming model. That means distributed jobs must be able to
start all MPI workers and load all their data before they can start exchanging messages, and have
synchronous life cycle. Consequently, at the very least all MPI individual submission data must
fit into machine cluster memory, comfortably.
MPI cohabitates resources along with Spark resource manager and may cause cluster oversub-
scription if resources are not properly allowed.

Limited sparse algebra support:
Currently, our MPI algorithms support dense algebra only. It means sparse and extra-sparse prob-
lems may likely not perform as well as dense problems, as they will have to be transformed into a
dense problem first.
In particular, solutions using formula one-hot transformations of categorical variables with high
category cardinalities, as well as interactions of such, may produce vectorization of extreme spar-
sity, and may suffer from the aforementioned significant problem expansion.
The support for sparse MPI algebra will be added in future releases. For now, it is recommended
to avoid extra sparse scenarios with MPI based solvers.

Examples

data <- hdfs.put(iris)

model <- orch.elm(data, formula = Species ~ . - 1, zScoreX = TRUE,
l = 10, lambda = 1e-12)

predict new observations
predOut <- predict(model, newdata = data, supplemental = "Species")
predOut$show()

224 predict.orch.helm

predict.orch.helm HELM predict

Description

Score H-ELM model (overloaded)

Usage

predict.orch.helm(object, newdata, supplemental = NULL,
verbose = TRUE, numPartitions = 1L)

Arguments

object The H-ELM model produced by orch.helm().

newdata The new observation data. The supported input types are as follows:

• HDFS object identifier. This is a special ORCH object returned by hdfs.attach
and other functions accessing HDFS which represents a directory in HDFS.
Alternatively, it can be a string with HDFS compliant directory path relative
to the current working directory.

• An ore.frame object, when connected to "HIVE" or "IMPALA" using
ore.connect.

• A Spark dataframe created using any other external method or Spark API
directly.

• An ’orch.jdbc’ object created using orch.jdbc(...).

supplemental The array of names for supplemental data to be joined with predictions; could
be empty if no join with original dataset columns is desired.

Value

A Spark ‘DataFrame‘ instance of scores joined by ‘supplemental‘ columns (if any)

Current MPI Limitations

Support for MPI integration is experimental.

Worker process lifecycle and resource requirements:
MPI has a message-passing programming model. That means distributed jobs must be able to
start all MPI workers and load all their data before they can start exchanging messages, and have
synchronous life cycle. Consequently, at the very least all MPI individual submission data must
fit into machine cluster memory, comfortably.
MPI cohabitates resources along with Spark resource manager and may cause cluster oversub-
scription if resources are not properly allowed.

Limited sparse algebra support:
Currently, our MPI algorithms support dense algebra only. It means sparse and extra-sparse prob-
lems may likely not perform as well as dense problems, as they will have to be transformed into a
dense problem first.

summary.orch.elm 225

In particular, solutions using formula one-hot transformations of categorical variables with high
category cardinalities, as well as interactions of such, may produce vectorization of extreme spar-
sity, and may suffer from the aforementioned significant problem expansion.
The support for sparse MPI algebra will be added in future releases. For now, it is recommended
to avoid extra sparse scenarios with MPI based solvers.

Examples

data <- hdfs.put(iris)

model <- orch.helm(data, formula = Species ~ . - 1, zScoreX = TRUE,
l = c(10L, 50L), lambdaAEnc = 1e-3, lambdaELM = 1e-9)

predict new observations
predOut <- predict(model, newdata = data, supplemental = "Species")
predOut$show()

summary.orch.elm ELM summary

Description

Print out summary of the ELM model

Usage

summary.orch.elm(object, ...)

Arguments

object the ELM model

Examples

model <- orch.elm(data, formula = Species ~ . - 1, zScoreX = TRUE, l = 10, lambda = 1e-12)
summary(model)

summary.orch.helm H-ELM summary

Description

Print out summary of the HELM model

Usage

summary.orch.helm(object, ...)

Arguments

object the H-ELM model

226 orch.testkit

Examples

clonedModel <- orch.helm.load("example-helm")
summary(clonedModel)

orch.testkit Oracle R Advanced Analytics test kit.

Description

The function executes Oracle R Advanced Analytics for Hadoop (ORAAH) internal unit test kit,
which will test all core components, specifically ORCHcore package functionality. This test kit
enables test and pre-certification of ORAAH on Hadoop distributions not (yet) officially certified
by Oracle. Running the unit tests ensures that the product functions correctly, without errors, and
compatible with the current Hadoop configuration.

Usage

orch.testkit(test, long = FALSE, severity = "fatal")

Arguments

test Specific unit test name or a regexp pattern of a test name range. If it is not
specified or NULL, then all available ORAAH unit tests will be run. This option
is especially useful to re-run only failed tests from a previous run after fixing the
possible cause of the test failure. Also you can specify an ORAAH API function
to test and all tests specific to that function alone will be executed.

long Specifies which version of the tests to run - long or short. Long version may
take several hours to run but ensures that all corner cases, special functions and
known bugs are tested. Short version will run only "barebone" tests, i.e. the
most important and core tests. It’s wise to run the "short" tests first and if they
are clean then to run "long" test to make sure that the software is functioning
correctly.

severity Error log severity during the tests. By default, "fatal" severity is used to monitor
internal ORAAH failures. See orch.dbg.on help page for the list of available
severity levels. Enabling higher severity level allows to debug issue by inspect-
ing the output log. Note that the log output can be quite large and will slow
down the test execution.

Details

Any errors reported by the test kit indicate possible issues in configuration of the product itself or
in Hadoop installation and configuration.

Value

TRUE if all tests have passed, otherwise FALSE.

Author(s)

Oracle <oracle-r-enterprise@oracle.com>

orch.testkit 227

References

www.oracle.com/us/products/database/big-data-connectors

docs.oracle.com/en/bigdata

docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Examples

Not run:
orch.testkit(long=FALSE) # run all ORAAH "short" tests
orch.unit.test("^bug") # run all bug tests
orch.unit.test("^test") # run all unit tests
orch.unit.test("hadoop") # run all unit tests for "hadoop.*" functions.
orch.unit.test(orch.export) # test one function only

End(Not run)

www.oracle.com/us/products/database/big-data-connectors
docs.oracle.com/en/bigdata
docs.oracle.com/cd/E37231_01/doc.20/e36961/orch.htm

Index

∗Topic HIVE
orch.create.parttab, 69
orch.sample, 109
orch.scale, 111

∗Topic ORCH
hdfs.cleanInput, 12
orch.create.parttab, 69
orch.sample, 109
orch.scale, 111

∗Topic category
orch.summary, 120

∗Topic cluster
orch.kmeans, 135
orch.predict-kmeans, 187

∗Topic datasets
ORCH_CLASSPATH, 66
ORCH_HAL_VERSION, 90
ORCH_HDFS_CHECK, 92
ORCH_JAR_BUILD_NAME, 93
ORCH_JAR_MR_VERSION, 93
ORCH_JAVA_MAX_PERM, 94
ORCH_JAVA_XMS, 95
ORCH_JAVA_XMX, 96
ORCH_LOG_OUTPUT, 102
ORCH_LOG_SEVERITY, 102
ORCH_MAPRED_CHECK, 103
ORCH_MPI_LIBS, 219
ORCH_MPI_MAX_GRID_SIZE, 220
ORCH_MPI_MPIEXEC, 220

∗Topic export
mapred.config, 62
orch.keyval, 98
orch.keyvals, 100
ORCH_CLASSPATH, 66
ORCH_HAL_VERSION, 90
ORCH_HDFS_CHECK, 92
ORCH_JAR_BUILD_NAME, 93
ORCH_JAR_MR_VERSION, 93
ORCH_JAVA_MAX_PERM, 94
ORCH_JAVA_XMS, 95
ORCH_JAVA_XMX, 96
ORCH_LOG_OUTPUT, 102
ORCH_LOG_SEVERITY, 102

ORCH_MAPRED_CHECK, 103
ORCH_MPI_LIBS, 219
ORCH_MPI_MAX_GRID_SIZE, 220
ORCH_MPI_MPIEXEC, 220

∗Topic methods
orch.evaluate, 124
orch.export.fit, 125
orch.recommend, 194

∗Topic models
orch.evaluate, 124
orch.export.fit, 125
orch.kmeans, 135
orch.lmf, 140
orch.nmf, 186
orch.predict, 190
orch.recommend, 194
predict.orch.lmf, 197

∗Topic multivariate
orch.multivar, 175
orch.predict-kmeans, 187
orch.predict-princomp, 189
orch.princomp, 193

∗Topic neural
orch.neural, 180

∗Topic regression
orch.glm, 132
orch.lm, 142

∗Topic sampling
orch.sample, 109

∗Topic scale
orch.scale, 111

∗Topic summary
orch.summary, 120

∗Topic utilities
orch.getFactorLevels, 127
orch.getXlevels, 128

anova.orch.lm (orch.lm), 142
as.matrix.orch.drm, 200
as.matrix.orch.mx, 201

binomial, 133

character, 133, 143, 182, 191

228

INDEX 229

coef.orch.dspca, 201
coef.orch.dssvd, 202
coef.orch.elm, 202
coef.orch.helm, 203
coef.orch.neural (orch.neural),

180
cor, 175, 176
cov, 175, 176
cov2cor, 175

Details, 129, 137, 148, 151, 153, 155, 157,
160, 162, 165, 167, 170

deviance.orch.glm (orch.glm), 132
deviance.orch.lm (orch.lm), 142
dim.orch.drm, 203
dim.orch.mx, 204

extractAIC.orch.glm (orch.glm),
132

family, 133, 135
file, 77
foldIn.orch.dspca, 205
foldInMx.orch.dspca, 204
formula, 133, 143, 146, 172, 173, 181, 191

getXlevels, 128, 129
glm, 133, 135

hadoo.exec, 79
hadoop.exec, 1, 6, 62, 65, 89, 90, 99, 101
hadoop.jobs, 3
hadoop.run, 2, 3, 4, 21, 62, 65, 78, 79, 89,

90, 99, 101, 107
hdfs.attach, 1, 4, 7, 17–21, 23–30, 32, 33,

36–38, 45, 47–49, 51, 52, 54, 56, 57,
60, 61, 129, 138, 146, 148, 151, 153,
155, 157, 160, 162, 165, 167, 170,
172, 174, 176, 204, 206, 207, 210,
212, 215, 223, 224

hdfs.cache, 9, 50
hdfs.cd, 10, 14, 15, 27, 31, 34, 35, 44, 47,

49
hdfs.cleanInput, 12
hdfs.cp, 13, 35
hdfs.cwd, 15, 44
hdfs.delim, 16, 29, 58
hdfs.describe, 8, 17, 25, 30, 33, 43
hdfs.dim, 18, 36, 37
hdfs.download, 19, 25, 27, 43, 48, 52, 57
hdfs.exists, 8, 21, 21, 28, 45, 46
hdfs.fromHive, 22, 53
hdfs.fromRData, 23, 55

hdfs.get, 8, 20, 21, 24, 27, 40, 42, 43, 47,
48, 52, 57, 59, 60, 148, 174

hdfs.head, 26, 52, 60
hdfs.id, 27, 60
hdfs.keysep, 17, 28, 58
hdfs.levels, 18, 29, 33, 42, 43
hdfs.ls, 8, 12, 15, 21, 31, 38, 44–46, 49
hdfs.meta, 8, 18, 19, 24, 25, 30, 32, 36, 37,

43, 47
hdfs.mkdir, 14, 34, 35, 45
hdfs.mv, 14, 35
hdfs.ncol, 19, 36, 37
hdfs.nrow, 19, 36, 37
hdfs.parts, 38, 49
hdfs.pull, 39, 40, 42, 48, 67, 73, 87
hdfs.push, 3, 6, 40, 40, 43, 67, 73, 87
hdfs.put, 3, 6, 8, 20, 24, 25, 40, 42, 42, 43,

57
hdfs.pwd, 12, 15, 27, 31, 43, 47, 49
hdfs.rm, 21, 45, 45
hdfs.rmdir, 14, 21, 34, 35, 44, 46
hdfs.root, 10–12, 15, 31, 44, 46, 48, 49
hdfs.sample, 27, 47, 47, 52, 148, 174
hdfs.setroot, 10, 15, 43, 47, 48
hdfs.size, 38, 49
hdfs.sync, 10, 50
hdfs.tail, 27, 51
hdfs.toHive, 23, 52, 53
hdfs.toRData, 24, 54
hdfs.toRDD, 55, 61, 115
hdfs.upload, 3, 6, 20, 25, 43, 56
hdfs.valuesep, 17, 29, 57
hdfs.write, 58, 148, 174

is.hdfs.id, 60
is.rdd.id, 61

kmeans, 137, 187, 188

levels, 133, 143, 182, 191
list, 133, 143, 182, 191
lm, 144

mapred.config, 2, 3, 5, 6, 54, 62, 133, 183
model.matrix, 133, 143

nobs.orch.lm (orch.lm), 142
numeric, 133

options, 104
oracle.model.matrix, 132, 140, 150,

152, 154, 156, 159, 162, 164, 167,
169, 171, 179, 199

ORCH-envvar, 66, 95, 96

230 INDEX

orch.connect, 39–42, 67, 67, 73, 78, 88,
108

orch.connected, 67, 88
orch.cor (orch.multivar), 175
orch.cov (orch.multivar), 175
orch.create.parttab, 69
orch.datagen, 70
orch.dbcon, 68, 72, 78, 87, 107
orch.dbg.assert, 75, 76
orch.dbg.lasterr, 74
orch.dbg.off, 74, 76, 103
orch.dbg.on, 75, 75, 88, 102, 103, 226
orch.dbg.output, 77, 102
orch.dbinfo, 67, 73, 77
orch.debug, 3, 6, 78, 89, 90
orch.destroyConf, 79, 107
orch.df.collect, 80
orch.df.createView, 80
orch.df.describe, 81
orch.df.fromCSV, 82
orch.df.persist, 83
orch.df.scale, 84
orch.df.sql, 85
orch.df.summary, 86
orch.df.unpersist, 86
orch.disconnect, 68, 73, 78, 87, 107, 108
orch.dryrun, 3, 6, 79, 88
orch.dspca, 207
orch.dssvd, 210
orch.dssvd.load, 209
orch.elm, 59, 212
orch.elm.load, 211
orch.evaluate, 124
orch.evaluate,orch.lmf.jellyfish-method

(orch.evaluate), 124
orch.evaluate,orch.mahout.lmf.als-method

(orch.evaluate), 124
orch.evaluate-methods

(orch.evaluate), 124
orch.export, 2, 5, 89
orch.export.fit, 125
orch.export.fit,orch.lmf.jellyfish-method

(orch.export.fit), 125
orch.export.fit,orch.nmf.jellyfish-method

(orch.export.fit), 125
orch.export.fit-methods

(orch.export.fit), 125
orch.formula, 127–129, 132, 137, 140,

148, 150–157, 159, 160, 162, 164,
165, 167, 169–171, 179

orch.fromHive, 13, 110
orch.getFactorLevels, 127

orch.getXlevels, 128
orch.glm, 132, 144
orch.glm2, 58, 129, 198, 199
orch.helm, 59, 215
orch.helm.load, 214
orch.jdbc, 97
orch.jdbc.close, 97
orch.keyval, 3, 6, 63, 98, 101, 105, 106,

113
orch.keyvals, 2, 3, 5, 6, 63, 99, 100, 105,

106, 113
orch.kmeans, 135, 187, 188
orch.lm, 135, 142
orch.lm2, 58, 137, 199
orch.lmf, 140, 187
orch.load.model, 144, 196
orch.mdf, 145, 148, 151, 153, 155, 157,

160, 162, 165, 167, 170
orch.ml.dt, 59, 148
orch.ml.gbt, 59, 151
orch.ml.gmm, 59, 153
orch.ml.kmeans, 59, 155
orch.ml.lasso, 59, 157
orch.ml.linear, 59, 160
orch.ml.logistic, 59, 162
orch.ml.random.forest, 59, 164
orch.ml.ridge, 59, 167
orch.ml.svm, 59, 169
orch.model.matrix, 129, 138, 148, 151,

153, 155, 157, 160, 162, 165, 167,
170, 172, 176

orch.mpi.cleanup, 218
orch.mpi.options, 221
orch.mpiAvailable, 217
orch.multivar, 175
orch.neural, 180
orch.neural2, 59, 176
orch.nmf, 186
orch.options, 43, 104
orch.pack, 105, 113
orch.predict, 190, 190
orch.predict,ANY-method

(orch.predict), 190
orch.predict,kmeans-method

(orch.predict-kmeans), 187
orch.predict,orch.kmeans-method

(orch.predict-kmeans), 187
orch.predict,princomp-method

(orch.predict-princomp),
189

orch.predict-kmeans, 187
orch.predict-princomp, 189

INDEX 231

orch.prepare, 192, 197
orch.prepare.model.matrix, 191,

197
orch.princomp, 193
orch.recommend, 194
orch.recommend,orch.mahout.lmf.als

(orch.recommend), 194
orch.recommend-methods

(orch.recommend), 194
orch.reconf, 79, 107
orch.reconnect, 67, 68, 73, 78, 87, 88,

107, 107
orch.revision, 108
orch.sample, 13, 109
orch.save.model, 145, 195
orch.scalapackAvailable, 222
orch.scale, 111
orch.summary, 120
orch.tempPath, 112
orch.testkit, 226
orch.toHive, 110
orch.unpack, 106, 113
orch.unprepare, 196
orch.version, 114
ORCH_CLASSPATH, 66
ORCH_HAL_VERSION, 90, 92, 103
ORCH_HDFS_CHECK, 92
ORCH_JAR_BUILD_NAME, 93
ORCH_JAR_MR_VERSION, 93
ORCH_JAVA_MAX_PERM, 94, 95, 96
ORCH_JAVA_XMS, 95
ORCH_JAVA_XMX, 66, 95, 96
ORCH_LOG_OUTPUT, 102
ORCH_LOG_SEVERITY, 102
ORCH_MAPRED_CHECK, 103
ORCH_MPI_LIBS, 219, 220, 221
ORCH_MPI_MAX_GRID_SIZE, 219, 220,

221
ORCH_MPI_MPIEXEC, 219, 220, 220
ore.factor, 182
ore.frame, 41, 43, 52, 120–123
ore.sync, 39
ORHC_JAVA_XMX, 95

predict.orch.elm, 222
predict.orch.glm (orch.glm), 132
predict.orch.glm2, 132, 199
predict.orch.helm, 224
predict.orch.lm (orch.lm), 142
predict.orch.lm2, 140, 199
predict.orch.lmf, 197
predict.orch.ml.dt, 150
predict.orch.ml.gbt, 152

predict.orch.ml.gmm, 154
predict.orch.ml.kmeans, 156
predict.orch.ml.lasso, 159
predict.orch.ml.linear, 162
predict.orch.ml.logistic, 164
predict.orch.ml.random.forest,

167
predict.orch.ml.ridge, 169
predict.orch.ml.svm, 171
predict.orch.neural

(orch.neural), 180
predict.orch.neural2, 179
predict.princomp, 189
princomp, 189, 190, 193
print.orch.neural (orch.neural),

180
print.summary.orch.glm

(orch.glm), 132
print.summary.orch.glm2, 199
print.summary.orch.lm (orch.lm),

142
print.summary.orch.lm2, 199

rdd.isCached, 114

scale, 112
spark.connect, 56, 115, 115, 119, 120,

191, 192
spark.connected, 115, 117, 119, 120,

191, 192
spark.disconnect, 115, 117, 118, 119,

120
spark.property, 119
spark.session, 115, 117, 119, 120
summary.orch.elm, 225
summary.orch.glm2, 198
summary.orch.helm, 225
summary.orch.lm (orch.lm), 142
summary.orch.lm2, 199
summary.orch.neural

(orch.neural), 180
summary.orch.neural2, 200

vcov.orch.glm (orch.glm), 132
vcov.orch.lm (orch.lm), 142

	hadoop.exec
	hadoop.jobs
	hadoop.run
	hdfs.attach
	hdfs.cache
	hdfs.cd
	hdfs.cleanInput
	hdfs.cp
	hdfs.cwd
	hdfs.delim
	hdfs.describe
	hdfs.dim
	hdfs.download
	hdfs.exists
	hdfs.fromHive
	hdfs.fromRData
	hdfs.get
	hdfs.head
	hdfs.id
	hdfs.keysep
	hdfs.levels
	hdfs.ls
	hdfs.meta
	hdfs.mkdir
	hdfs.mv
	hdfs.ncol
	hdfs.nrow
	hdfs.parts
	hdfs.pull
	hdfs.push
	hdfs.put
	hdfs.pwd
	hdfs.rmdir
	hdfs.rm
	hdfs.root
	hdfs.sample
	hdfs.setroot
	hdfs.size
	hdfs.sync
	hdfs.tail
	hdfs.toHive
	hdfs.toRData
	hdfs.toRDD
	hdfs.upload
	hdfs.valuesep
	hdfs.write
	is.hdfs.id
	is.rdd.id
	mapred.config
	ORCH_CLASSPATH
	orch.connected
	orch.connect
	orch.create.parttab
	orch.datagen
	orch.dbcon
	orch.dbg.lasterr
	orch.dbg.off
	orch.dbg.on
	orch.dbg.output
	orch.dbinfo
	orch.debug
	orch.destroyConf
	orch.df.collect
	orch.df.createView
	orch.df.describe
	orch.df.fromCSV
	orch.df.persist
	orch.df.scale
	orch.df.sql
	orch.df.summary
	orch.df.unpersist
	orch.disconnect
	orch.dryrun
	orch.export
	ORCH_HAL_VERSION
	ORCH_HDFS_CHECK
	ORCH_JAR_BUILD_NAME
	ORCH_JAR_MR_VERSION
	ORCH_JAVA_MAX_PERM
	ORCH_JAVA_XMS
	ORCH_JAVA_XMX
	orch.jdbc.close
	orch.jdbc
	orch.keyval
	orch.keyvals
	ORCH_LOG_OUTPUT
	ORCH_LOG_SEVERITY
	ORCH_MAPRED_CHECK
	orch.options
	orch.pack
	orch.reconf
	orch.reconnect
	orch.revision
	orch.sample
	orch.scale
	orch.tempPath
	orch.unpack
	orch.version
	rdd.isCached
	spark.connected
	spark.connect
	spark.disconnect
	spark.property
	spark.session
	orch.summary
	orch.evaluate
	orch.export.fit
	orch.getFactorLevels
	orch.getXlevels
	orch.glm2
	orch.glm
	orch.kmeans
	orch.lm2
	orch.lmf
	orch.lm
	orch.load.model
	orch.mdf
	orch.ml.dt
	orch.ml.gbt
	orch.ml.gmm
	orch.ml.kmeans
	orch.ml.lasso
	orch.ml.linear
	orch.ml.logistic
	orch.ml.random.forest
	orch.ml.ridge
	orch.ml.svm
	orch.model.matrix
	orch.multivar
	orch.neural2
	orch.neural
	orch.nmf
	orch.predict-kmeans
	orch.predict-princomp
	orch.predict
	orch.prepare.model.matrix
	orch.prepare
	orch.princomp
	orch.recommend
	orch.save.model
	orch.unprepare
	predict.orch.lmf
	summary.orch.glm2
	summary.orch.lm2
	summary.orch.neural2
	as.matrix.orch.drm
	as.matrix.orch.mx
	coef.orch.dspca
	coef.orch.dssvd
	coef.orch.elm
	coef.orch.helm
	dim.orch.drm
	dim.orch.mx
	foldInMx.orch.dspca
	foldIn.orch.dspca
	orch.dspca
	orch.dssvd.load
	orch.dssvd
	orch.elm.load
	orch.elm
	orch.helm.load
	orch.helm
	orch.mpiAvailable
	orch.mpi.cleanup
	ORCH_MPI_LIBS
	ORCH_MPI_MAX_GRID_SIZE
	ORCH_MPI_MPIEXEC
	orch.mpi.options
	orch.scalapackAvailable
	predict.orch.elm
	predict.orch.helm
	summary.orch.elm
	summary.orch.helm
	orch.testkit
	Index

