

Oracle ZFS Storage Appliance
as a Data Lake

May, 2024, Version [1.0]
Copyright © 2024, Oracle and/or its affiliates
Public

2 Oracle ZFS Storage Appliance as a Data Lake / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Disclaimer
This document in any form, software or printed matter, contains proprietary information that is the exclusive property
of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle
software license and service agreement, which has been executed and with which you agree to comply. This
document and information contained herein may not be disclosed, copied, reproduced or distributed to anyone
outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it
be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the
implementation and upgrade of the product features described. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing decisions. The development, release, timing,
and pricing of any features or functionality described in this document remains at the sole discretion of Oracle. Due to
the nature of the product architecture, it may not be possible to safely include all features described in this document
without risking significant destabilization of the code.

3 Oracle ZFS Storage Appliance as a Data Lake / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Table of contents

Introduction 4
Data Lake Architecture 4
Leveraging Oracle ZFS Storage as a Data Lake 5
Use Case: Batch Ingestion for Financial Data to Oracle ZFS Storage
Appliance 7

Implementation Steps for Financial Reporting with Batch Ingestion and
Processing 8

Other Use Cases 14
Conclusion 15

List of figures

Figure 1. Data Lake Architecture 4
Figure 2. Batch Ingestion 8

List of tables

Table 1. ZFS Storage Capabilities as a Data Lake 5
Table 2. Data Lake Pipeline Use Cases 14
Table 3. Best practices for tuning ZFSSA 15

4 Oracle ZFS Storage Appliance as a Data Lake / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Introduction
For over a decade, leading organizations across diverse sectors like banking & finance and media & entertainment
have relied on the cost-effective, petabyte-scale storage, and robust security and compliance features of on-premises
Oracle ZFS Storage Appliances (ZFSSA). This solution brief is specifically intended for existing ZFSSA customers. It
goes beyond the traditional role of storage, demonstrating how ZFSSA can serve as a foundation for building a data
lake. By leveraging their existing investment in ZFSSA, customers can gain a secure, scalable, and cost-effective data
lake solution. This approach unlocks additional value from their storage resources, transforming spare capacity into a
powerful tool for data analytics.

Data Lake Architecture
Data lakes offer a central repository capable of storing and managing a vast and diverse range of data. This includes
structured, semi-structured, and unstructured data, along with various file formats like JSON, ORC, AVRO, Iceberg,
CSV, Parquet, and XML. Data lakes excel at ingesting and processing both batch and streaming data, making them
powerful tools for fulfilling diverse data analysis goals.

Figure 1. Data Lake Architecture

The key components of a data lake architecture include:

• Data Ingestion Layer: This layer is responsible for collecting and ingesting data from various sources into the
data lake. It includes tools and processes for data ingestion, validation, and transformation, ensuring that data is
ingested efficiently and accurately.

• Data Storage Layer: The storage layer of a data lake provides scalable and cost-effective storage for storing raw
data. It typically utilizes distributed file systems or object storage solutions to accommodate large volumes of
data. Data is stored in big data file structures such as ORC, Avro or Parquet which provides both compression,
and better access. See this article for insights.

ORC,
Avro, or
Parquet

5 Oracle ZFS Storage Appliance as a Data Lake / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

• Data Processing Layer: This layer enables data transformation, enrichment, and analysis within the data lake. It
includes tools and frameworks for batch processing, stream processing, and interactive querying, allowing users
to derive insights from the stored data.

• Data Organization Layer: The organization layer focuses on organizing and cataloging data within the data lake
to make it discoverable, accessible, and understandable. It includes metadata management, data cataloging, and
data governance capabilities to ensure data quality, lineage, and compliance.

• Data Security and Governance Layer: This layer ensures the security, privacy, and compliance of data stored
and processed in the data lake. It includes access control mechanisms, encryption, data masking, auditing, and
compliance monitoring tools to protect sensitive data and ensure regulatory compliance.

Leveraging Oracle ZFS Storage as a Data Lake
Oracle ZFS Storage offers flexible ingestion capabilities, allowing organizations to ingest structured, unstructured, and
semi-structured data- from various sources, including databases, IoT devices, log files, and more. It offers protocol
support for all the key industry standard storage protocols as well as Oracle’s proprietary protocols that are optimized
for Oracle-on-Oracle environments.

Table 1. ZFS Storage Capabilities as a Data Lake

Data Lake Features ZFS Storage Capabilities as a Data Lake
Unified Storage • Support for structured, semi-structured and un- structured data

• Supports major industry standard protocols for data ingestion for e.g.
HTTP/HTTPS, NFS, SMB, iSCSI, REST, FTP, JDBC etc.

Scalability • Up to 25PB on-premises storage with support for block, file and object
storage in the same platform.

Performance • ZFSSA can be built with HDDs, SSDs, or both. With HDDs, its optional to
incorporate read and/or write acceleration SSDs for improved read/writes

• Offers multiple configurations to optimize various workload types for
performance and/or throughput

Data Tiering • Hybrid Storage Pool architecture offers data tiering for low latency I/O
• ZFSSA combines different storage media - DRAM, flash (SSDs), and spinning

disks - to deliver exceptional performance for both reading and writing data.
o For reads, frequently accessed data is cached in high-speed DRAM for

instant retrieval, with less-used data residing in a secondary flash cache
(L2ARC). The remaining data sits on traditional spinning disks.
This tiered structure ensures that critical data is always readily available
for rapid reads.

o Writes are handled intelligently as well. They are initially placed in DRAM
for speed, then flushed to either flash or spinning disks based on the
workload. Latency-sensitive applications benefit from writes being
acknowledged after copying to a high-performance SSD, minimizing wait
times. Conversely, throughput-intensive workloads can write data
directly to spinning disks for faster transfers. This approach balances
data integrity with optimal performance, catering to the specific needs of
different applications.

Storage and Cost Efficiency • Space efficient copy on write based snapshots, clones & replication
• Storage efficiency with compression, deduplication further enables more

storage for the same price points.
• Cost effective data tiering with OCI object store enables low-cost, durable

storage for archiving
• ZFSSA offers two powerful controllers to manage 25PB storage which is

unlike other solutions where compute must scale with storage, that increases
the total cost of ownership (TCO).

6 Oracle ZFS Storage Appliance as a Data Lake / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Data Protection • Block-level replication
• Shadow migration
• Supports tar & ZFS formats for backup/recovery

Security and Compliance • Role-Based Access Control (RBAC) allows for granular control over user
permissions within the storage system

• Implements RAID protection, data encryption, immutable snapshots,
retention locks, audit logs, ransomware recovery, and crypto replication for
comprehensive data security and recoverability.

• Compliance Ready: Cohasset's Compliance Assessment report on ZFS
Storage

• Oracle optimized object storage provides extensive permissions capabilities
to separate bucket and object management, along reading and updating
objects.

• Oracle optimized object storage also provides retention management by

roles.
Integration • Supports backups to OCI object store (standard and archival storage)

• S3 API compatibility for seamless data transfer from Amazon S3
Investment Protection • Existing customers who want to store and/or process data can leverage

ZFSSA in the data lake capacity, thereby capitalizing on existing investment.

Oracle ZFSSA can store data in block, file and object formats and offers a cost-effective storage for long term
retention or archival storage. The ZS9-2 ZFSSA appliance can scale up to 25PB which can accommodate a large
number of starter data lakes. If organizations need to scale beyond that, they may use open-source tools like Ceph or
GlusterFS to aggregate storage across multiple ZFS appliances, creating a distributed file system for their data lake.
These open-source tools provide a unified namespace and management plane, allowing you to treat multiple ZFS
appliances as a single entity for easier administration and scalability. This distributed architecture offers greater
scalability, improved performance, and enhanced fault tolerance for handling massive datasets.

As a unified storage platform, ZFSSA can manage its own internal metadata, including file attributes, block size
information, and object size data. ZFS ensures reliable access to data in data lakes through a layered metadata
management system. Embedded metadata on each data block allows for quick retrieval without relying on a central

https://www.oracle.com/a/ocom/docs/storage/oracle-zfs-assessment-report.pdf
https://www.oracle.com/a/ocom/docs/storage/oracle-zfs-assessment-report.pdf

7 Oracle ZFS Storage Appliance as a Data Lake / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

source, while the stash layer synchronizes comprehensive metadata copies across nodes for data consistency –
critical aspects for efficient data discovery, maintaining data integrity, and enabling data governance within large and
ever-growing data repositories.

This allows for basic data access and retrieval. However, ZFSSA benefits significantly from leveraging external meta
store solutions. These external meta stores, like Apache Hive Meta store or Apache Atlas, provide a central repository
for comprehensive meta data details including schema information, lineage tracking, and access control. This enables
efficient data discovery, enforces data governance, streamlines data processing, and fosters collaboration – all
essential for maximizing the value of your data lake.

Use Case: Batch Ingestion for Financial Data to Oracle ZFS
Storage Appliance
This section outlines the batch Ingestion use case with Oracle ZFSSA. Batch ingestion is used for loading large
datasets at scheduled intervals. Batch processing then analyzes these datasets at once.

In financial institutions, data integrity, security, and regulatory compliance are critical. Archiving financial data is
essential for regulatory compliance, historical analysis, and disaster recovery purposes. In this use case, we'll
demonstrate how to set up a batch ingestion pipeline to archive financial data in CSV format to an Oracle ZFS Storage
Appliance (ZFSSA) object store using OCI Object Store API. The financial data includes daily transaction records,
account balances, market data, portfolio holdings, and trade history. By archiving this data to the ZFSSA,
organizations can ensure data integrity, compliance with regulatory requirements, and have access to historical
financial data for analysis and reporting purposes. The setup provides a cost-effective and scalable solution for data
archival, leveraging the robust storage capabilities of the ZFSSA.

Batch processing data pipeline automates and optimizes the process of archiving data for compliance and cost-
effective storage for later use. It involves:

1. Data Ingestion: Financial data from various sources (transactions, ERP, CRM) is gathered using ELT/ETL
tools and stored in a central data lake.

2. Data Archiving: This data can be archived for the duration set by the administrator and used later for
processing if needed. * Archival data can also be protected with a retention lock.

8 Oracle ZFS Storage Appliance as a Data Lake / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Figure 2. Batch Ingestion

Implementation Steps for Financial Reporting with Batch Ingestion and
Processing
The following experiment lays out the steps used to set up data pipeline for batch ingestion and processing:

Steps:

1. Create a data source

2. Set Up ZFS Storage Configuration

3. Ingest Data via OCI Object Store API into ZFSSA:

4. Archiving – setting up retention period

1. Create a data source

a. Choose a virtual machine (VM) as the environment for hosting your data source

b. Prepare your financial data in either CSV or JSON format and store it within the VM.

2. Set Up ZFS Storage Configuration

a. Create and configure Share

i. Log into Oracle ZFS Storage Appliance Browser User Interface (BUI) and navigate to Shares-
>PROJECTS-> Click on +icon next to Projects and a dialog box opens->Enter the project Name-
>click Apply

9 Oracle ZFS Storage Appliance as a Data Lake / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

ii. Click the pencil icon for the DataLake project just created to create the filesystem share.

iii. Click the +icon -> + icon next to Filesystem and a dialog opens->Enter a filesystem Name and
enable permissions for User, Group and Other-> Click Apply.

iv. This will create the file share and its mount point can be seen: /export/datalake-zfssa. Click on
the pencil icon for the file system you just created to configure the filesystem.

10 Oracle ZFS Storage Appliance as a Data Lake / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

v. Navigate to Protocols and scroll down to NFS-> select the Share mode from the drop-down as
‘Read/write-> click Apply.

b. Create a user

i. Within the BUI, navigate to Configuration ->USERS-> click the +icon -> + icon next to Users and
a dialog opens-> Select the Type as ‘Local’ from the drop-down menu ->Enter a username and
provide a password-> Click Add.

11 Oracle ZFS Storage Appliance as a Data Lake / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

c. Configure protocol service

i. Navigate to Configuration -> SERVICES -> HTTP->Click the power-on icon to turn it on & the
circle to the left of HTTP will turn green.

ii. Double click on HTTP to enter the set-up screen -> Click OCI->under OCI API, check ‘Enable OCI’
checkbox and in Default path enter the mountpoint (/export/datalake-zfssa) for the share which
you will create for data lake.

iii. Click on the + icon-> + icon next to Keys, to create the user key. Enter a name for User -> then
enter public key credentials generated as part of the private/public key pair -> click Apply.

1. Use the OCI documentation to create public/private keys.

https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs

12 Oracle ZFS Storage Appliance as a Data Lake / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

3. Ingest Data via OCI Object Store API into ZFSSA

a. Create a config file for creating a bucket in Oracle ZFSSA

i. Note: To access ZFSSA via OCI CLI -> CLI, download the OCI cli tool from here.

b. Creating a bucket in ZFSSA

i. See the OCI documentation on bucket creation. I created the following bucket.

oci os bucket create -c datalake-zfssa -ns datalake-zfssa --endpoint

http://ca-ovmstor12.us.oracle.com/oci --profile default --name

datalake_files

where:

--endpoint: it is the <url>/oci. For my ZFSSA it is

--endpoint http://ca-ovmstor12.us.oracle.com/oci

-ns: this is the namespace and is the share on the ZFSSA. In my config, it is:

-ns datalake-zfssa

-c: this is the compartment-id and is also the share on the ZFSSA. In my config it is:

-c datalake-zfssa

--name: the name of the bucket I want to create, in my case it is:

--name datalake_files

https://docs.oracle.com/en-us/iaas/Content/API/Concepts/cliconcepts.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/managingbuckets_topic-To_create_a_bucket.htm#top

13 Oracle ZFS Storage Appliance as a Data Lake / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

{
 "data": {
 "approximate-count": null,
 "approximate-size": null,
 "auto-tiering": null,
 "compartment-id": "datalake-zfssa",
 "created-by": "DataLake_User",
 "defined-tags": null,
 "etag": "bd49bfa296eb505db25bbcbb2bab23af",
 "freeform-tags": null,
 "id": "bd49bfa296eb505db25bbcbb2bab23af",
 "is-read-only": null,
 "kms-key-id": null,
 "metadata": null,
 "name": "datalake_files",
 "namespace": "datalake-zfssa",
 "object-events-enabled": null,
 "object-lifecycle-policy-etag": null,
 "public-access-type": "NoPublicAccess",
 "replication-enabled": null,
 "storage-tier": "Standard",
 "time-created": "2024-03-14T00:18:51+00:00",
 "versioning": "Disabled"
 },
 "etag": "bd49bfa296eb505db25bbcbb2bab23af"
}

c. Ingesting data into the bucket

i. See the OCI documentation on uploading an object storage object into a bucket. I uploaded the
sample.csv file I had created for this experiment into datalake_files bucket in ZFSSA.

oci os object put -ns datalake-zfssa -bn datalake_files --file

/home/opc/sample.csv --name sample.csv --metadata '{"description":"Sample

CSV data"}' --profile default --endpoint http://ca-

ovmstor12.us.oracle.com/oci

4. Archiving – Setting up retention period

The following document provides information to configure and use the file retention feature within ZFSSA OS
version: 8.8.45 and above:
https://support.oracle.com/knowledge/Sun%20Microsystems/2867335_1.html#aref_section25

Important Requirements and Settings:

The following are requirements to use the file retention feature:

• The ZFS Appliance MUST be on OS version 8.8.45 (i.e. 2013.06.05.8.45) or higher.

• Deferred updates MUST first be applied on the storage pool.

• Filesystems that are intended to contain file retention data can ONLY be created in a storage pool that has
redundancy (i.e. Mirror or RAID-Z).

• If using OS version(s) 8.8.45 - 8.8.50 and log devices are present they MUST be mirrored, otherwise file
retention policy cannot be set.

 Non-mirrored log devices are permitted in OS versions 8.8.51 and higher.

• If using OS version(s) 8.8.45 - 8.8.56 and metadevices are present they MUST be mirrored, otherwise file
retention policy cannot be set.

https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/managingobjects_topic-To_upload_objects_to_a_bucket.htm#top
http://ca-ovmstor12.us.oracle.com/oci
http://ca-ovmstor12.us.oracle.com/oci

14 Oracle ZFS Storage Appliance as a Data Lake / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

 Non-mirrored metadevices are permitted in OS versions 8.8.57 and higher.

• The file retention feature is enabled at the initial point of creation on a new filesystem. File retention CANNOT
be enabled on an existing filesystem.

• OS 8.8.45 requires the NTP service to be functional. The ZFS Appliance MUST be able to reach an NTP server,
and the sync_always setting MUST be enabled.

• Root login MUST be disabled for the BUI (https) and CLI (ssh).

• Each administrator should have their own account for auditing purposes.

There could be another use case for batch ingestion and processing where the batch data after ingestion needs to be
processed for generating reports. In that case at regular intervals, a batch processing framework (e.g., Apache Spark)
cleanses, transforms, and calculates metrics on the data in batches. Financial reports (income statements, balance
sheets, etc.) are then generated using reporting or data visualization tools, providing valuable insights for decision-
making.

Other Use Cases
This table provides examples of how ZFS can be used as a data lake foundation, tailored to specific industries and
requirements. ZFS offers flexibility to support both stream and batch processing pipelines and can integrate with
additional open-source and proprietary tools needed to build pipelines for various analytical objectives. (Note: These
tools are not part of the core Oracle solution but offer potential integration options for specific use cases.)

Table 2. Data Lake Pipeline Use Cases

Industry Use Case Name Data Source Data Type
Processing
Frequency

Additional Tools Considerations

Banking &
Finance Fraud Detection

Transaction logs, customer
data, network activity

Structured, semi-
structured

Real-time
(streaming)

Apache Spark,
Kafka

Low latency, real-time
alerts, high data volume

Banking &
Finance

Risk Analysis
Market data, economic
indicators, social media
sentiment

Structured,
unstructured

Batch
Spark, Hadoop,
Hive

Historical analysis,
complex calculations,
regulatory compliance

Media &
Entertainment

Personalized
Content
Recommendations

User behavior, content
metadata, streaming data

Unstructured,
semi-structured

Real-time
(streaming) and
batch

Spark, Kafka,
Elasticsearch

Real-time
recommendations, user
segmentation, offline
analysis

Media &
Entertainment

Content Analytics
Viewing statistics, social
media engagement,
content creation tools

Unstructured,
semi-structured

Batch
Spark, Hadoop,
Hive

Identify trends, predict
audience preferences,
optimize content strategy

Healthcare
Real-time Patient
Monitoring

Sensor data, medical
records, vital signs

Structured, semi-
structured

Real-time
(streaming)

Apache Flink,
Apache Pulsar

Low latency, anomaly
detection, critical care
monitoring

Healthcare Medical Research
Clinical trials data, genomic
data, medical images

Structured,
unstructured

Batch Spark, Hadoop, R
Statistical analysis,
disease modeling, drug
discovery

Retail
Product
Recommendations

Sales data, customer
behavior, product
information

Structured, semi-
structured

Real-time
(streaming) and
batch

Spark, Kafka,
Neo4j

Personalized
recommendations,
inventory optimization,
campaign targeting

Retail Demand Forecasting
Sales history, weather data,
social media trends

Structured,
unstructured

Batch
Spark, Hadoop,
Prophet

Predict future demand,
optimize inventory levels,
improve pricing strategies

IoT
Industrial Asset
Monitoring

Sensor data, machine logs,
performance metrics

Structured, semi-
structured

Real-time
(streaming) and
batch

Apache Kafka,
Prometheus,
Grafana

Anomaly detection,
predictive maintenance,
operational efficiency

IoT Smart City Analytics
Traffic data, energy
consumption, public safety
data

Structured, semi-
structured

Batch
Spark, Hadoop,
Tableau

Analyze city trends,
optimize resource
allocation, improve citizen
services

15 Oracle ZFS Storage Appliance as a Data Lake / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Best Practices for Optimizing ZFSSA according to Data Lake
Use Case Requirements
The following steps describe best practices for tuning ZFSSA to obtain optimal results for specific use cases.

Table 3. Best practices for tuning ZFSSA

BUI Label CLI property name Value Image
Data
Compression

Compression

Controls how data
stored in filesystem is
compressed

• Set to LZ4

Synchronous
Write bias

logbias

controls the behavior
of ZFS when
synchronizing data
writes to the
underlying storage
pool

• Set to Latency for prioritizing low
latency

• Set to Throughput for
prioritizing high throughput

Cache device
usage

secondarycache

defines how dedicated
cache devices are
used for storing data
and metadata within
a ZFS storage pool

• Set to All data and metadata for
smaller files accessed frequently
and write heavy workloads

• Set to do not use cache devices
for most data lake workloads with
large files, read heavy workloads
& cost efficiency

• Not recommended setting
Metadata only

Conclusion
Turning your existing Oracle ZFS Storage Appliances into data lake makes smart business sense. It's secure, scales
easily, and maximizes your current storage investment. This lets you use spare capacity for valuable data analysis,
giving you the insights, you need to make data-driven decisions.

16 Oracle ZFS Storage Appliance as a Data Lake / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

May 2024
Authors: Sheetal Sabharwal

Copyright © 2024, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is
not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document.
This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

