

Effectively Managing the

Oracle ZFS Storage Appliance

with Scripting

August, 2024, Version 2.0

Copyright © 2024, Oracle and/or its affiliates

Public

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Purpose statement

This document provides guidance and best practices on how to integrate an Oracle ZFS Storage

Appliance system into a network infrastructure, monitor its functioning, and troubleshoot any

operational network problems.

Disclaimer

This document in any form, software or printed matter, contains proprietary information that is the

exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms

and conditions of your Oracle software license and service agreement, which has been executed and

with which you agree to comply. This document and information contained herein may not be

disclosed, copied, reproduced or distributed to anyone outside Oracle without prior written consent of

Oracle. This document is not part of your license agreement nor can it be incorporated into any

contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for

the implementation and upgrade of the product features described. It is not a commitment to deliver

any material, code, or functionality, and should not be relied upon in making purchasing decisions. The

development, release, timing, and pricing of any features or functionality described in this document

remains at the sole discretion of Oracle. Due to the nature of the product architecture, it may not be

possible to safely include all features described in this document without risking significant

destabilization of the code.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Table of contents

Introduction 4

Scripting in the Oracle ZFS Storage Appliance 5

Scripting Architecture of the Oracle ZFS Storage Appliance 5

Accessing the CLI of the Oracle ZFS Storage Appliance 7

Accessing the Oracle ZFS Storage Appliance CLI Layer 9

Scripting Programming Language 10

Syntax 10

Data Types and Variables 11

JavaScript Properties and Variables 12

JavaScript Operators 13

JavaScript Statements 14

Executing Scripts in the Oracle ZFS Storage Appliance 16

Using Oracle ZFS Storage Appliance Workflows 20

Alert Workflows 31

Scheduled Workflows 35

Applying Best Practices to Scripting 37

Best Practices for Coding Style 37

JavaScript Best Practices 38

Training Best Practices 38

Tips and Examples for Client-Side Appliance Control 39

Automatically Executing CLI Scripts Using SSH 39

Using CLI Scripting with UNIX Shell 39

Appendix A: References 46

Appendix B: Using the Oracle ZFS Storage Appliance

Simulator 47

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Introduction

The Oracle ZFS Storage Appliance is typically managed using a browser user interface (BUI) that

provides a sophisticated graphical user interface with unique ease-of-use features. You can also use a

command line interface (CLI), which is useful when the Oracle ZFS Storage Appliance cannot be

reached through the network or you need to repetitively execute a fixed set of commands. You can

access the CLI using the serial console or a secure shell (SSH).

Command-line interaction with the system offers a way to repetitively execute a number of tasks in a

fixed sequence as a kind of batch job. When the batch function requires conditional executed code,

you must use scripting. The CLI commands can either be entered interactively in the CLI or passed to

the CLI in files.

The script language of the Oracle ZFS Storage Appliance is based on JavaScript (ECMAScript version 3)

with a few extensions. JavaScript is an interpreted, loosely typed programming language offering

object-oriented capabilities. The script interpreter is part of the Oracle ZFS Storage Appliance shell, so

the shell interprets and executes the scripts.

Workflows are used to store scripts in the Oracle ZFS Storage Appliance and they also offer user access

management for scripts and argument validation functionality. Workflows contain scripts and

versioning information, and they can be started in either the BUI or CLI. They can also be started by

alert or timer events. Timer events are created from workflow schedules.

This paper primarily provides details on the use of JavaScript programming features within the Oracle

ZFS Storage Appliance. It also provides detail on the Oracle ZFS Storage Appliance script architecture,

the JavaScript interface into the Oracle ZFS Storage Appliance, and methods for executing scripts. It is

beyond the scope of this paper to provide a tutorial for the JavaScript language or CLI command

language for the Oracle ZFS Storage Appliance. Familiarity with C, C++, or programming languages

such as Perl or Python will help you understand the JavaScript examples provided in this document.

Appendix A contains references to books, online tutorials, blogs, and papers containing detailed

information about JavaScript. The Online Help feature within the Oracle ZFS Storage Appliance, which

can be accessed through the BUI, provides detailed information about CLI and BUI usage. Also view or

download a copy of Oracle's Sun ZFS Storage 7000 System Administration Guide (referred to as the

administration guide within this document) from one of the Oracle Unified Storage Systems

documentation libraries.

NOTE: References to Sun ZFS Storage Appliance, Sun ZFS Storage 7000, and ZFS Storage Appliance

all refer to the same family of Oracle ZFS Storage Appliance products. Some cited documentation or

screen code may still carry these legacy naming conventions.

http://www.oracle.com/technetwork/documentation/oracle-unified-ss-193371.html
http://www.oracle.com/technetwork/documentation/oracle-unified-ss-193371.html

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Scripting in the Oracle ZFS Storage Appliance

There are three options for interacting with the Oracle ZFS Storage Appliance using the CLI: grouping

CLI commands in a file, scripting CLI commands, and using workflows.

A fixed sequence of CLI commands can be grouped in a file and sent to the Oracle ZFS Storage

Appliance for execution using SSH. This is a form of batch processing of commands. The commands

are executed with the privileges of the user who logs in to the Oracle ZFS Storage Appliance. An

extensive desciption of commands available using the Oracle ZFS Storage Appliance shell are available

in the administration guide.

When more flexibility is needed, such as executing conditional code using variables and user-defined

functions, you can use scripting in the CLI. The shell offers a script interpreter that executes user-

defined scripts written in the JavaScript programming language. The scripts are passed to the Oracle

ZFS Storage Appliance in the same way batch jobs are passed to it, either through an SSH connection

into the Oracle ZFS Storage Appliance or interactively at the CLI prompt.

Workflows, which can encapsulate scripts for later execution, reside in the Oracle ZFS Storage

Appliance. You can initiate these workflows using the BUI or CLI. Timer and alert events can also be

used to trigger the start of a workflow. You can access the Oracle ZFS Storage Appliance using either

its console or an SSH connection.

Scripting Architecture of the Oracle ZFS Storage

Appliance

The Oracle ZFS Storage Appliance shell offers the functionality to execute scripts containing JavaScript

programming code. Because the JavaScript interpreter is integrated into the shell, it is known as an

application embedded environment. This is different from the typical Web browser client-server use of

JavaScript. JavaScript library functions, such as Document Management (DOM), are not available in

application-embedded environments. When referring to JavaScript documentation, use the Core

JavaScript Reference to find detailed information on available JavaScript library functions.

Since the embedded JavaScript interpreter interprets the code during execution, scripts are executed

in the context of the Oracle ZFS Storage Appliance shell and all information retrieved from the Oracle

ZFS Storage Appliance, or manipulation of it, is handled by functions passing the required commands

to the CLI context. This means that the same CLI navigation commands can be used to walk through

the CLI context structure. For instance, the following CLI command navigates to the child context net:

7000ppc1:> configuration net

7000ppc1:configuration net

2.0 2.0

Copyright © 2024, Oracle and/or its affiliates

The following is the equivalent script command:

run (‘configuration net’);

The JavaScript core functions are available from the JavaScript object library. This library contains

functions (methods) to manipulate complex object types such as arrays, strings, math on number

objects, regexpressions, and more.

Figure 1. Scripting architecture for the Oracle ZFS Storage Appliance

2.0 2.0

Copyright © 2024, Oracle and/or its affiliates

Scripts stored in the Oracle ZFS Storage Appliance are controlled by the Workflow Manager. The

Workflow Manager controls the starting of scripts by users employing the CLI or BUI or by timer or

alert events. It also handles the user input dialog, argument verification processing, and start of the

execution of scripts in workflows.

Accessing the CLI of the Oracle ZFS Storage Appliance

An SSH connection provides access to the CLI of the Oracle ZFS Storage Appliance. The show

command provides information about the CLI root context, the available properties, and children

contexts. The TAB key lists the available command options in the current context.

pBrouwers MacBook-Pro:~ pBrouwer$ ssh root@192.168.56.101

Password:

Last login: Mon Feb 14 16:09:05 2011 from 192.168.56.1

7000ppc1:> show

Properties:

showcode = false showstack = false exitcoverage = false

showmessage = true asserterrs = false

Children:

configuration => Perform configuration actions maintenance =>

Perform maintenance actions

raw => Make raw XML-RPC calls analytics => Manage appliance

analytics

status => View appliance status shares => Manage shares

mailto:root@192.168.56.101

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

7000ppc1:>

analytics coverage help script status

assert date ifconfig set time

assertlabels deny maintenance shares traceroute

configuration exit nslookup shell tree

confirm get ping show

cover getent raw sleep

7000ppc1:>

The script command opens the JavaScript interpeter for you to enter script

statements. To execute, type a period (.) and then press Enter.

pBrouwers MacBook-Pro:~ pBrouwer$ ssh root@192.168.0.140

Password:

Last login: Mon Feb 14 16:09:05 2011 from 192.168.56.1

7000ppc1:> script

("." to run)> var i=10 ;

("." to run)> printf("i = %d\n",i);

("." to run)> .

i = 10

7000ppc1:>

You can store script statements in a file. The file contents can then be used to send the statements to

the Oracle ZFS Storage Appliance using the SSH connection, as shown in Appendix B.

To navigate through the hierarchy of the Oracle ZFS Storage Appliance context structure, specify the

name of the context to navigate to, preceded by all the children above it, starting from the current

context. The done command restores the previous context environment. Use the UNIX cd command

to move up in the hierarchy or go back to the root context, cd /.

The following is the equivalent script program statement:

run(‘cd/’);

mailto:root@192.168.0.140

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Commands available in a certain child context can be directly executed from the current context by

specifying the path to the child context followed by the command.

7000ppc1:> configuration net interfaces list

INTERFACE STATE CLASS LINKS ADDRS LABEL e1000g0 up

ip e1000g0 192.168.56.101/24 i_e1000g0 e1000g1 up ip

e1000g1 192.168.0.147/24 i_e1000g1

7000ppc1:>

Accessing the Oracle ZFS Storage Appliance CLI Layer

Scripting is of no use if there are no means to retrieve status information from the Oracle ZFS Storage

Appliance and manipulate the configuration information within it. Table 1 shows extensions to the

available JavaScript functions that enable you to interact with the Oracle ZFS Storage Appliance.

TABLE 1. EXTENSIONS TO JAVASCRIPT FUNCTIONS

Function Description

run Runs the specified command in the shell, returning any output as a string. Note

that if the output contains multiple lines, the returned string will contain

embedded newlines.

props Returns an array of the property names for the current context

get Gets the value of the specified property. Note that this function returns the value

in native form. For example, dates are returned as Date objects.

set Takes two string arguments, setting the specified property to the specified

value.

list Returns an array of tokens corresponding to the dynamic children of the current

context.

choice The choices function returns an array of the valid property values for any

property for which the set of values is known and enumerable

 These commands are executed in the CLI context structure of the Oracle ZFS Storage Appliance. For

more detailed information, see "CLI Scripting" in Chapter 1 of the administration guide.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Scripting Programming Language

The scripting functionality of the Oracle ZFS Storage Appliance is implemented by a JavaScript

Language Interpreter build in the CLI layer. The supported JavaScript syntax is based upon the ECMA-

3 standard with a few extensions.

Contrary to its name, JavaScript has no relationship to Java. JavaScript is an object-oriented program

language that differs from C++ and Java in that it does not have strong type checking. The variable

type is defined at runtime, not during compile time. So, variable types are dynamic.

The term Script in JavaScript's name might imply that it is a simple, procedural-type programming

language, but JavaScript actually contains a rich, object-oriented feature set. Familiarity with object-

oriented programming concepts, such as those used by C++, for example, can help you understand

the true potential of JavaScript.

For simple tasks, using the traditional procedure-type programming features suffices. For more

complex tasks, JavaScript's object-oriented features, such as using objects containing properties and

methods to manipulate the properties of objects, is needed. Understanding these object-oriented

aspects of JavaScript, including the scope mechanism of variables and the handling of objects and

arrays, is essential to dealing with the more complex JavaScript coding.

This document provides basic information on some of the JavaScript concepts to be aware of when

you are trying to use JavaScript for more complex tasks. Appendix A contains a resource list for more

detailed information about JavaScript.

Note that the JavaScript environment used in the Oracle ZFS Storage Appliance is described in various

reference materials as an application-embedded environment. However, material describing the use of

client-side JavaScript is not applicable for use in the Oracle ZFS Storage Appliance. Concentrate on the

core JavaScript sections.

Syntax

The syntax of the JavaScript language is similar to the C language syntax. It is case sensitive,

so it requires consistent names for variables and functions. Semicolons are used to terminate

statements and curly braces ({}) are used to group blocks of

statements. Although the use of semicolons in JavaScript is in some cases optional, it is best

practice to always use them at the end of each statement to maintain easy-to- understand

code. C and C++ comment syntaxes are recognized.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Data Types and Variables

In addition to primitive data types, such as numbers, Booleans, and strings, JavaScript supports

complex data types in the form of objects. Values of primitive data types are automatically converted

to the type needed for the operation.

var index=1;

var textarray = new Array(’Line 1’,’Line 2’,’Line 3’);

var array_elements = textarray.length

for (; index < array_elements ; index++) {

printf(’Array element’ + index + ’: ’ + textarray[index] + ’\n’);

}

Functions are a special type of object. This means that functions can be stored in variables, arrays, and

objects. Functions can also be passed as arguments to other functions.

As in other languages, JavaScript uses the value null to indicate that a variable does not hold a valid

value. JavaScript never sets a value to null; this has to be done explicitly by the programmer.

JavaScript uses the value undefined to identify a variable that has been declared but has never had

a value assigned to it. In this case, the type of the variable is not known yet. The value undefined is

also used to identify a reference to a property of an object that does not exist yet.

Variables in JavaScript can be referenced by value or by reference. Strings are a special case. In

JavaScript, the contents of a string are immutable; they can never be changed. A string can be

changed only by creating a new string and then copying the parts of the original string that should stay

the same.

Always use the var statement to declare a variable, because it fixes the scope of the variable at the

point of the declaration in the code. Not using the var statement automatically makes the variable

global, which could have unexpected side effects. For instance, a global variable will not be disposed of

by the JavaScript garbage collection mechanism, which might lead to memory leaks.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

JavaScript Properties and Variables

The JavaScript language supports both variables and properties. At first glance, they look the same.

Both are used to hold a value. Their differences lie in the way the JavaScript interpreter creates them

during runtime. Basically, properties belong to objects and variables belong to contexts. For the

average user, there is no real difference.

In the JavaScript language, properties are used to add variable information about an object, for

example, traffic-light.current-color=red. Functions are treated as objects too, so variables

defined within a function are seen as properties of that function.

It is important to understand the different methods and syntax for allocating a value to a property.

There are two methods, by value or by reference, and for each method a few different syntaxes can be

used. For ease of reading code and maintaining it, use the "by reference" method for variables that

hold references to functions, objects, and text strings.

Define text strings at the top of the program, so they can be easily found when doing maintenance on

the code.

In the following example, the values of the properties of the workflow structure are defined at the top

of the code. You will notice later that the workflow structure has to be declared at the far end of the

code. The example shows the syntax used for both the "by reference" and "by value" methods.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Example 1. Different Methods for Initializing Properties of the Object workflow

/// File: Example 1

// Object initialized with two properties, using the object literal syntax,

// in which each property name/value pair is followed by a comma.

// The property name is followed by colon. var MyWorkflow = {

MyVersion: '1.0', MyName: 'Example 1',

MyDescription: 'Example showing basic Object Workflow structure'

}

// New property added using variable assignment syntax. MyWorkflow.MyDescription =

'Use of properties example';

// Workflow object initialized using literal syntax and references.

// Values do not need to be literals; they can be references to other objects,

// as can be seen here. var workflow = {

name: MyWorkflow.MyName, // Reference syntax

description: MyWorkflow.MyDescription, // Reference syntax version:

MyWorkflow.MyVersion, // Reference syntax

origin: 'Oracle', // Literal syntax execute:

function () { return('Hello World'); }// Literal Syntax

JavaScript Operators

JavaScript uses all the familiar operators from other languages. Additionally, a new type of operator is

used to test "identity": ===and !==. These operators differ from the ==and != operators in that they

do not cause automatic typecasting the way the ==and !=

operators do. Note the details on these operators, because the differences are sometimes subtle.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

var num = 10;

var num_string= '10';

if (num==num_string)

print('True because values are the same\n');

if (num===num_string)

print('Variables are of identical type and have the same value\n');

else

print('Variables do not have same value OR are not of identical type\n');

The code in Example 1 results in the following output:

True because values are the same

Variables do not have same value OR are not of identical type

Note that all arithmetic operators can be used in combination with the assignment operator, for

example, *=, +=, and %=. Read these statements as a operator = b and as a

= a operator b.

JavaScript Statements

If you are familiar with UNIX shell, C, or C++ programming, it is easy to write programs in JavaScript. All

the familiar statements from other languages, such as if then, while, for, and switch case

statements are present in the JavaScript language.

It is good programming practice to catch runtime exceptions that might occur during the execution of

your program. Exception events are triggered by events such as a failing function or selecting a share

that does not exist with the command run (‘select myshare’). The throw statement forces an

explicit exception signal.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Catching runtime exceptions and recovering from them is handled with the JavaScript expression

try/catch/finally statements.

The following simple cluster configuration test script checks whether the current Oracle ZFS Storage

Appliance node is part of a cluster:

Example 2. Simple Cluster Configuration Test Script

7000ppc1:> script

("." to run)> function ClusterTest(){

("." to run)> try {

("." to run)> run ('cd /');

("." to run)> run ('configuration cluster');

("." to run)> return(true);

("." to run)> }

("." to run)> catch (err) {

("." to run)> if (err=EAKSH_BADCMD) { ("." to run)>

return(false); ("." to run)> }

("." to run)> else { // catch unknown condition

("." to run)> throw("Unexpected cluster test error");

("." to run)> }

("." to run)> }

("." to run)> }

("." to run)> // Main start

("." to run)> printf("Let’s see if this node is part of a cluster; ");

("." to run)> if (ClusterTest())

("." to run)> printf("Yes it is\n");

("." to run)> else

("." to run)> printf("No it is not\n");

("." to run)> .

Let’s see if this node is part of a cluster; No it is not

The function ClusterTest uses the try/catch construction to execute the run

command to navigate to the child context cluster. If the run command fails, it is caught by the

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

catch statement, which is where you check to see whether the run command failed. Any

other unexpected error condition terminates the program using the throw statement.

Executing Scripts in the Oracle ZFS Storage

Appliance

The following code shows the commands used to load and execute scripts in the Oracle ZFS

Storage Appliance. Remember that scripts are passed on to the script interpreter in the Oracle

ZFS Storage Appliance shell.

pBrouwers MacBook-Pro:~ pBrouwer$ ssh root@192.168.0.140

Password:

Last login: Mon Feb 14 16:09:05 2011 from 192.168.56.1

7000ppc1:> script

("." to run)> var i=10 ;

("." to run)> printf("i = %d\n",i);

("." to run)> .

i = 10

7000ppc1:>

In the preceding example, script statements are entered after activating the script interpreter with the

command script. The statements are executed after typing a period (.) and then pressing Enter. This

method is fine for simple interactive use.

When dealing with more complex scripts, it is easier to group the commands in a text file and send the

file over to the Oracle ZFS Storage Appliance using an SSH connection. This environment provides full

JavaScript functionality, such as the use of functions and conditional statements.

The following example script uses a simplified version of a script to create and delete a share in an

existing pool and project.

mailto:root@192.168.0.140

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Example 3. Simple Script for Creating and Deleting a Share

// File: Example3.txt script

// For ease of use, group all our arguments in one object.

// One could even use a shell script to create this JavaScript from a template

// using the arguments passed on to the user in a shell script.

// Version: 1.1.3 var MyArguments = {

pool: 'poola',

project: 'projecta', share: 'volumeTest',

what: 'delete'

}

function CreateDeleteShare (Arg) {

run('cd /'); // Make sure we are at root child context level

run('shares');

try {

run('set pool=' + Arg.pool);

} catch (err) {

printf("Specified pool, %s not found\n ",Arg.pool);

return;

}

try {

run('select ' + Arg.project);

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

} catch (err) {

printf("Specified project, %s not found\n ",Arg.project);

return;

}

if (Arg.what=='create') {

try {

run('filesystem ' + Arg.share);

run('commit');

} catch(err) {

printf("Unable to create share, %s\n",Arg.share);

return;

}

printf('Successfully created share, '+Arg.share);

return;

} else {

try {

there

run('select' + Arg.share); // Check if share is

run('done'); // Release for delete

run('confirm destroy ' + Arg.share);

} catch (err) {

if (err.code == 10004)

printf("Specified share, %s, does not

exist\n",Arg.share);

}

else printf("Unable to delete share, %s\n",Arg.share);

return;

printf("Successfully deleted share, %s\n", Arg.share);

}

}

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

// Kick off the create delete function using our object MyArguments to pass

on the

// parameters needed for the job.

printf("About to %s share, %s from project, %s in pool %s\n",

MyArguments.what,

MyArguments.share,

MyArguments.project,

MyArguments.pool);

CreateDeleteShare(MyArguments);

The script uses an object, MyArguments, to hold the names of the pool, project, and share to use. This

structure keeps all the variable elements at the top of the script instead of hard-coding them

throughout the script. Runtime errors are handled using the try/catch construction. For simplicity,

no distinction is made between the types of errors caught. The variable err.code can be used to

examine what type of error caused the run command to fail.

Scripts used in this way are ideal for a batch-type environment, where predefined tasks need to be

executed. Workflows are a better choice when tighter control of script use is required. Scripts used in

workflows are stored in the Oracle ZFS Storage Appliance and cannot be modified once they are

loaded into it, because their code is not visible anymore to the end user.

Access control can also be applied to workflows, enabling restrictive use, for example, to those created

for administrative tasks. Workflows can prompt users for input, as you will see in the next section.

Apart from user input prompting, or start triggers by the Oracle ZFS Storage Appliance timer or alert

events, scripting with SSH presents no other restrictions compared to using workflows.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Using Oracle ZFS Storage Appliance Workflows

Previous examples illustrated loading scripts into the Oracle ZFS Storage Appliance using the SSH

connection or interactively at the console CLI. To permanently store a script in the Oracle ZFS Storage

Appliance, you must put the script under the Workflow Manager's control. Workflows are executed

asynchronously in the Oracle ZFS Storage Appliance shell with the user credentials that are used to log

in to the system.

In order for the Workflow Manager to store and execute a script, the script requires some additional

information. The Workflow Manager uses this to present information to the user and to gain access to

the workflow start function. This information is stored in the object named workflow and it contains

the properties shown in Table 2.

TABLE 2. OBJECT WORKFLOW PROPERTY MEMBERS

Required Properties Javascript Type Description

name String Name of the workflow

description String Short description of the workflow

execute Function Script code to execute

Optional Properties Javascript Type Description

version String Version of this workflow, in dotted decimal

(major.minor.micro) form

required String Minimum version of the Oracle ZFS Storage

Appliance software required for this workflow to run

origin String Workflow provider’s name

parameters Object Structure defining script input parameters

validate Function JavaScript function that validates input parameters

The creation of the object workflow follows the JavaScript object literal syntax: a comma-separated list

of colon-separated property/value pairs enclosed in curly braces.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

In the following code, <property>is one of the names of the properties mentioned in Table 2.

var workflow = {

<property>: <object literal>|<object reference>,

<property>: <object literal>|<object reference>,

};

The value in <object literal> is either of type string, function, or object, as mentioned in Table 2.

A minimal workflow script would look as follows:

// Example of basic workflow definition using object literals

// in the workflow object constructor. var workflow = {

name: ‘Minimum workflow code’,

description: ‘Example of basic workflow structure’,

execute: function() { return(‘Hello World’); }

};

Instead of directly specifying the data value for a property, a reference to an earlier defined object or

variable can be used inside the object workflow. The following example shows the minimal workflow

definition.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Example 4. Code for Defining a Minimal Workflow

// File: Example4.txt

// Example of basic workflow definition using variables

// in the workflow object’s constructor

//

//

var WorkflowName = 'Minimum workflow code';

var WorkflowDescription = 'Example of basic workflow structure';

function Main () {

return('Hello World');

}

var workflow = {

name: WorkflowName, description: WorkflowDescription,

execute: Main

};

To load the preceding workflow example in the Oracle ZFS Storage Appliance, you can use either the

BUI or the CLI upload command in the "maintenance workflow" child context of the Oracle ZFS Storage

Appliance.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

The following screenshots show the BUI workflow load steps.

Figure 2. Workflows in the Oracle ZFS Storage Appliance BUI

Use the + button to bring up the load workflow file dialog box.

Figure 3. BUI displaying the Add Workflow window

Syntax errors in the workflow file are checked during the load process.

Once loaded, the workflow is shown with the name and description info as set in the workflow object’s

name and description properties.

Figure 4. BUI showing newly added workflow

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

To execute the workflow, double-click it.

Figure 5. New workflow output in the BUI

Adding some input parameters to the workflow using the workflow property parameters

makes the workflow more useful.

parameters = {

<parameter1name>: {

label: <String>

type: <String>

}

<parameter2name>: {

label: <String> type: <String> options: <Array>

optionlabels:<Array>

}

<parameterNname>: {

label: <String>

type: <String>

optional: <Boolean>

}

};

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

This in itself is an object with the following structure:

 The property parameterNname is the name of the input parameter by which it can be referred to

in the script code.

 The property parameterNname is itself an object and always needs to contain the labeland type

properties.

 The value of the property label is used in the code in Example 5.

 The value of the property type specifies the type of the value stored in the paramenterNname

object, such as Boolean, string, or file.

Note: A complete list of the type definitions can be found in the administration guide of the Oracle ZFS

Storage Appliance.

The following properties are not required, but you can use them to specify requirements on a

parameter:

 The property optional– When set to true, specifies that no input is required in the UI for this

parameter

 The property pair options-optionlabels– Presents a fixed list of input values. To use this

function, you must set the property type to the value ChooseOne.

Next, you will see how the Workflow Manager uses the properties in an object when a workflow is

started. The example shows the BUI interface. For the CLI interaction, see the administration guide.

The processing mechanism used by the Workflow Manager is the same for both the BUI and the CLI.

The object parameters is used to build a dialog box that contains fields into which you can enter the

input required by the object parameters. When you fill in the fields and click PROCEED, the Workflow

Manager executes the validation function, as specified in the property validate, and uses the

reference to the object parameters as an argument. When an error is signaled by the validate

function, the Workflow Manager brings back the dialog box indicating in which field an error was

detected.

Once the function validate is passed correctly, the Workflow Manager calls the function specified in

the workflow property execute, again with a reference to the object parameters as an argument.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Example 5 takes the create/delete share script example and adapts it for use in a workflow. The

Workflow Manager prompts for a pool and project name for which the share create/delete operation

takes place. The choice between delete/create is presented using a pull-down list construction.

Example 5. Basic Workflow Script for Creating and Deleting a Share

// Simple example of how to create/delete a share.

// File example5.txt

// Information to be used in workflow object:

var MyWorkflow = {

MyVersion: '1.0.0',

MyName: 'Create/Delete a share',

MyDescription: 'Example of how to create/delete a share', Origin:

'Oracle Corporation',

err: { // Definition of error codes.

// Define a range for your project that

// can be recognized by the sysadmins in

// your org. WP_SCRIPT_WORKFLOWS_CREATE_SHARE: 8001,

WP_SCRIPT_WORKFLOWS_DELETE_SHARE: 8002,

}

}

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

// This example workflow uses four input parameters.

// The last parameter is an example of the use of a fixed list of values. var

MyParams = {

pool: { // Pool to create/delete the share. label: 'Pool Name',

type: 'String',

},

project: { // Project to create/delete the share. label: 'Project name',

type: 'String',

},

share: { // Share to create/delete. label: 'Share name',

type: 'String',

},

what: { // Create or delete the share. label: 'Operation',

type: 'ChooseOne',

options: ['create','delete'],

optionlabels:['Create','Delete'],

}

}

// Verify function from workflow.

// Check whether pool and project exist. function VerifyPoolandProject(p) {

var err_msg = ' does not exist';

run ('cd /'); // Make sure we are at root child context level. run ('shares');

try { // Check whether pool name exists. run('set

pool='+p.pool);

} catch(err) {

return({pool: 'Specified pool, ' + p.pool + err_msg });

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

}

try {

run('select ' + p.project);

} catch(err) {

return({project: 'Specified project, ' + p.project + err_msg }

);

if (p.what=='delete') { // Check whether the share to be deleted

exists.

try {

}

run('select'+ p.share);

});

catch(err) {

return({share: 'Specified share, ' + p.share + err_msg

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

}

}

return;

}

function CreateDeleteShare (p) {

run('cd /'); // Make sure we are at root child context level. run('shares');

run('set pool=' + p.pool);

run('select ' + p.project);

if (p.what=='create') {

try {

run('filesystem ' + p.share);

run('commit');

} catch(err) {

throw {

code: MyWorkflow.err.WP_SCRIPT_WORKFLOWS_CREATE_SHARE,

message: 'Unable to create ' +

p.share + ',' + err.message

}

}

return('Successfully created share, '+p.share);

} else {

try {

run('confirm destroy ' + p.share);

} catch(err) {

throw {

code: MyWorkflow.err.WP_SCRIPT_WORKFLOWS_DELETE_SHARE,

message: 'Unable to delete ' +

p.share + ',' + err.message

}

}

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

return('Successfully deleted share, '+p.share);

}

}

var workflow = {

name: MyWorkflow.MyName, description: MyWorkflow.MyDescription, version:

MyWorkflow.MyVersion, origin: MyWorkflow.Origin, parameters: MyParams,

validate: VerifyPoolandProject,

execute: CreateDeleteShare

};

Notice that the object workflow is specified at the end of the code, since all objects and functions

referenced in that object must be defined first. For ease of readability and manageability, all the script

information is held in an object and is specified at the top of the code. References to elements of this

object are later used in the object workflow.

The same is done for the properties validate and execute in the workflow. This makes the workflow

script easier to read.

The object MyParams specifies the input information requested from the user for this workflow. Four

parameters are requested: three are of type text and one is a list with two items, as shown in Figure 6.

The reference to the object MyParams is stored in the property parameters in the object workflow.

Figure 6. Example of user dialog box

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Executing the workflow in the BUI brings up the dialog box shown in Figure 7.

In this example, volumeqqq does not exist. Clicking APPLY triggers the share select error in the validate

function ValidatePoolandProject in the object workflow, as shown in Figure 7.

Figure 7. Example of user dialog box input error

The error is the result of the following statement:

return({share: 'Specified share, ' + p.share + err_msg });

The return statement share: contains a reference to the property name of the input parameter for

which an error is flagged. As a result, the Workflow Manager highlights the input field value that

triggered the error and displays the error message preceded by the value of the label property of the

field definition in the object MyParams.

The error is caught using the JavaScript try/catchfunctionality.

Alert Workflows

You can also use workflows to implement a custom function or action in response to an Oracle ZFS

Storage Appliance-generated alert. The Oracle ZFS Storage Appliance can generate alerts for a variety

of situations. Alert messages are stored under Maintenance → Logs → Alerts. By defining an alert

action, you can bind a workflow to an alert.

Workflows triggered by alert actions run in the background and do not prompt for user input. The

“Configuration” section of the administration guide provides detailed information about alerts, how

they are customized, and where alert logs can be found.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

In order to tie workflows to events, you must add new properties to the object workflow. Both the

alert property and setid property must be set to true to enable the workflow to run with the

privileges of the owner of the workflow file (as set up in the owners role). Since no user input is

required, the object describing the input parameters is not needed.

The code in Example 6 adapts the previous example to provide a very simple alert action workflow.

Example 6. Minimum Code for Alert Workflow

// File: Example 6

// Example 5 adapted for alert usage var MyWorkflow = {

MyVersion: '1.0', MyName: 'Example 6', MyDescription: 'Example of use

of Alert',

Origin: 'Oracle'

};

var workflow = {

name: MyWorkflow.MyName, description: MyWorkflow.MyDescription,

version: MyWorkflow.MyVersion,

alert: true, // Workflow triggered by alert

setid: true,

origin: MyWorkflow.Origin, execute: function (MyAlert) {

audit('workflow started for alert'+MyAlert.uuid);

}

};

For the workflow to send information to the outside world, the function audit must be used. This

function takes a single string as argument, and the text is placed in the audit log of the Oracle ZFS

Storage Appliance. The Workflow Manager passes an object to the function defined for the property

execute. This object contains the elements shown in Table 3.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

TABLE 3. ELEMENTS IN THE EXECUTE PROPERTY

Property Type Description

class String The class of the alert

code String The code for the alert

uuid String The alert’s unique identifier

timestamp Date Event time

items Object Object with more detailed information on the event

The property items is an object that contains the following detailed information on the event that

triggered the workflow.

TABLE 4. EVENT INFORMATION

Property Type Description

url String URL to Web page containing a description of the

event

action String The action that should be taken by the user in

response to the event

impact String The impact of the event that precipitated the alert

description String A human-readable string describing the alert

severity String The severity of the event that precipitated the alert

response String Automated response action information

type String Type of alert, for example, minor or major

The information is also shown in the BUI in response to a request for detailed information about an

alert, as shown in Figure 8.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Figure 8. Detailed alert information in the Oracle ZFS Storage Appliance BUI

To bind the example code to, for instance, a replication event in the Oracle ZFS Storage Appliance, you

must first load the workflow into the Oracle ZFS Storage Appliance. The screenshot in Figure 9 shows

the dialog box in which you must define an alert action in the configuration context. The alert action

must be bound to an event category. For each category, you can select a subset event type.

You can configure more than one alert action. If you select Execute workflow, the previously loaded

example script would be executed.

In this example, two actions are set to execute when a replication action fails: sending an e-mail and

starting a workflow. Note the TEST option for triggering the configured action manually.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Figure 9. Adding an alert action in the Oracle ZFS Storage Appliance BUI

Scheduled Workflows

The start of workflows can be managed by setting up schedules for them. The workflow manager

creates timer events from the schedules to start a workflow at a specific time.

Schedules can be created using the CLI for an existing workflow or incorporated in the workflow by

defining an array type object named schedule containing one or more entries using the structure as

shown in table 5.

TABLE 5. WORKFLOW SCHEDULE OBJECT PROPERTIES

Property Type Description

offset Number Determines the starting point in the defined period.

Zero start point is Thursday.

period Number Defines the frequency of the Schedule

unit String Specifies if either seconds or month are used as unit

in the offset and period

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Example 7. Workflow Schedule definition example

// File: Example 7 var MyWorkflow = {

MyVersion: '1.0', MyName: 'Example 7',

MyDescription: 'Example of use of Schedules',

Origin: 'Oracle'

};

var MySchedules = [

// use the inline arithmetic to create readable code

// half hr interval

// Starting day seems to be Thursday for the offset.

{ offset: 0, period: 1800, units: "seconds" },

// every Monday on 10:15

{ offset: 4*24*60*60+10*60*60+15*60, period: 7*24*60*60, units: "seconds"}

];

var workflow = {

name: MyWorkflow.MyName, description: MyWorkflow.MyDescription, version:

MyWorkflow.MyVersion, origin: MyWorkflow.Origin,

alert: false,

setid: true, schedules: MySchedules, scheduled: true,

execute: function () {

audit ('Example 7: started via scheduled event');

}

};

After uploading the workflow code in the Oracle ZFS Storage Appliance, we can use its

CLI to verify the workflow schedule ;

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Node1:> maintenance workflows

Node1:maintenance workflows> select workflow-007

Node1:maintenance workflow-007> schedules

Node1:maintenance workflow-007 schedules> show

Schedules:

NAME FREQUENCY DAY HH:MM

schedule-000 halfhour - --:00 schedule-001

week Monday 10:

Applying Best Practices to Scripting

The following section provides recommendations for developing and implementing scripts.

Best Practices for Coding Style

Since the programming structure of JavaScript resembles the structure of the programming languages

C and C++, code-writing standard practices for C or C++ apply to JavaScript code, for example, the use

of curly braces and indents, as seen in this document.

Use variable names that make sense and are easily understood. Do not use variables such as i, n, or x.

Keep variable names short and concise, but descriptive. A variable name such as FC_Lunor

iSCSI_Lunmakes more sense than LUN.

Use the English language when using a program language. It makes it easier to share workflow scripts

and request input or support from non-local language speaking colleagues.

Use simple and well-structured code statements, and add comments. Comments should add

information, not repeat the existing information. Well-written comments should help you return to a

piece of code after a year to make some updates. When workflows are going to be shared, their use

and purpose should be clear from the embedded comments.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

JavaScript Best Practices

Use the following JavaScript best practices:

 Use semicolons. In general, each statement in JavaScript is terminated by a semicolon. However,

JavaScript allows some freedom and tries to make assumptions if semicolons are not present in

certain situations. Also the Workflow Manager does some checking during the load phase of a

workflow into the Oracle ZFS Storage Appliance. To avoid any ambiguity, always use a semicolon

at the end of each statement.

 Avoid cluttering the global namespace. Using global variables always presents the risk of name

conflicts or resolving references at the wrong level in the scope chain. Use objects to encapsulate

variables; see the object MyWorkflowin Example 5. Using objects also helps create portable code

that is easy to maintain.

 Use the var statement to define a variable before using it. When a variable has not been defined,

JavaScript will use the variable as defined with a global scope. As a result, a script can continue to

increase memory usage because the undefined (now global) variable is not included in the

JavaScript garbage collection mechanism. This phenomenon is known as memory leak.

 Avoid the with statement. The with statement is often used to save typing when dealing with

deeply nested object hierarchies. However, there is no control over how variables are resolved

when JavaScript traverses up the hierarchy chain. Use a variable that holds a reference to the

object that would have been used within the with statement.

Training Best Practices

The following are recommended training best practices:

 Read and study. Use the wealth of information about JavaScript available on the internet in the

form of blogs and articles. But do not underestimate the value of information on real paper.

Nothing substitutes for sitting in a comfortable chair with a cup of coffee reading a book.

 Last but not least, simulate. The Oracle ZFS Storage Appliance Simulator is an excellent tool for

getting familiar with the scripting and workflow environment. The simulator supports all script and

workflow functionality.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Tips and Examples for Client-Side Appliance

Control

This section provides some simple examples that might trigger you to come up with an elegant way of

solving your problem. The examples are by no means foolproof solutions. For simplicity, error

checking and exceptions are not dealt with in the following code examples.

Automatically Executing CLI Scripts Using SSH

Avoid the password prompt each time a CLI script is executed using SSH by installing on the Oracle

ZFS Storage Appliance a public key that has been generated with the ssh- keygen -t rsa -b

1024command on the host from which the scripts are executed. Setup scripts can be executed using

the following syntax for ssh, where <key_rsa> is the name of the file containing the key generated

with the ssh-keygen command.

ssh -i .ssh/<key_rsa> root@MyAppliance

Using CLI Scripting with UNIX Shell

Sending a sequence of commands to the Oracle ZFS Storage Appliance when an SSH connection is

used for access can sometimes get confusing. To understand the options available, refer back to the

basics. Like any UNIX-type command interface, SSH has two I/O mechanisms: stdin and stdout.

Basically, stdin is a communication interface into SSH and stdout is a communication interface

out of SSH. The input and output can be redirected.

ssh root@myAppliance < inputfile > outputfile

In the preceding command, the input is redirected for ssh to read the characters from file inputfile

and the output from ssh is redirected to file outputfile. So if inputfile looks like the following,

characters in inputfile are sent to the CLI of the Oracle ZFS Storage Appliance.

configuration net interfaces list

The output of the command sequence is picked up by ssh and redirected to outputfile.

mailto:root@MyAppliance

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

At the CLI prompt of the Oracle ZFS Storage Appliance, you can interactively enter JavaScript

commands and execute them. This means that you can write JavaScript commands in file inputfile,

send them to the Oracle ZFS Storage Appliance using ssh, and capture the output of the JavaScript

commands in outputfile. This is quite powerful, because it means you can write "intelligent" batch

jobs. This capability merges the batch command environment with the intelligent dynamic coding

environment.

Now that you understand the ssh mechanism, you can write scripts that are sent to the Oracle ZFS

Storage Appliance using ssh, and you can check on the exit status of the scripts on the client side.

So, for example, if you have a script that creates a share, and you want to check on a failure of that

script, you could return the error code back to SSH (the client shell) and react to the error situation in

the client shell code.

Example 8 uses the old create/delete share script from Example 3. First, you must substitute all the

code that emits text messages with code that returns numeric codes. Text strings are too difficult to

process in the shell. Then you must add additional shell coding to handle the shell argument

processing and initiate the shell variables to be used to pass the variables to the Oracle ZFS Storage

Appliance scripting part.

Note that the text between the two "EOF" strings in the file is the bit of JavaScript code that is sent to

the Oracle ZFS Storage Appliance using ssh stdin. Error codes from the JavaScript part are passed

back using the print command at the end of the JavaScript code and captured in the shell script’s

ScriptError variable.

Example 8. Shell Script to Pass Arguments to Oracle ZFS Storage Appliance Script

#!/bin/sh

File example8.txt

Shell script using input arguments to be passed to appliance script job.

Script error codes are passed back to the shell. Usage() {

echo "$1 -u <Appliance user> -h <appliance> -s <share> -c|-d -j <project>

-p <pool>"

exit 1

}

Error code definitions

PoolNotFound=100

ProjectNotFound=101

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

CreateShareFailed=102

DeleteShareFailed=103

UnKnownError=999

Shell script main

PROG=$0

Check used command line options while getopts u:h:s:j:p:cd flag

do

done

case "$flag" in

c) create="true"; action="create";; d) delete="true";

action="delete";; p) pool="$OPTARG";;

j) project="$OPTARG";;

s) share="$OPTARG";;

u) user="$OPTARG";;

h) appliance="$OPTARG";;

\?) Usage $PROG ;;

esac

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Create and Delete action are multi-exclusive

["$create" = "true" -a "$delete" = "true"] && Usage $PROG

None of the arguments can be empty

[-z "$pool" -o -z "$project" -o -z "$share" -o -z "$appliance" -o -z "$user"

] && Usage $PROG

Now get to the job at hand

Start ssh and feed the script code in using stdin

ScriptError=`ssh $user@$appliance << EOF

script

// Above command activates script mode in the appliance.

// For ease of use, group all arguments in one object.

// Note we use the shell variables obtained from the shell command line.

// Version: 1.0.0 var MyArguments = {

pool: '$pool', project: '$project', share:

'$share',

what: '$action'

}

// We could use the script variables throughout the scripting code but it might

create

// confusion, so keep all the shell-script variable interaction concentrated

in one

// place in the script. var MyErrors = {

PoolNotFound: '$PoolNotFound', ProjectNotFound: '$ProjectNotFound',

CreateShareFailed: '$CreateShareFailed', DeleteShareFailed:

'$DeleteShareFailed',

UnKnownError: '$UnknownError',

}

function CreateDeleteShare (Arg) {

run('cd /'); // Make sure we are at root child context level

run('shares');

mailto:$user@$appliance

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

try {

run('set pool=' + Arg.pool);

} catch (err) {

return(MyErrors.PoolNotFound);

}

try {

run('select ' + Arg.project);

} catch (err) {

return(MyErrors.ProjectNotFound);

}

if (Arg.what=='create') {

try {

run('filesystem ' + Arg.share);

run('commit');

} catch(err) {

return(MyErrors.CreateShareFailed);

}

return(0);

} else {

try {

there

run('select' + Arg.share); // Check if share is

run('done'); // Release for delete

run('confirm destroy ' + Arg.share);

} catch (err) {

if (err.code == 10004)

return(MyErrors.DeleteShareFailed);

else return(MyErrors.UnKnownError);

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

}

return(0);

}

}

// Kick off the create delete function using our MyArguments object to pass on

the

// parameters needed for the job. err=CreateDeleteShare(MyArguments);

// The devil is in the tail; return the error code to stdout of ssh so the shell

can

// pick it up in the ScriptError variable. print(err);

.

EOF`

echo $ScriptError

["$ScriptError" != "0"] && {

case $ScriptError in

$PoolNotFound) Message="Specified pool : $pool, not found";;

$ProjectNotFound) Message="Specified project : $project, not found";;

$CreateShareFailed) Message="Share $share could not be created";;

$DeleteShareFailed) Message="Share $share could not be deleted";;

$UnknownError) Message="Unexpected script error";;

esac

echo $Message exit 1

}

echo "$action of share: share in project: $project, pool: $pool, was successful"

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Note that the shell variable could have been used throughout the JavaScript part, but this would make

the JavaScript more difficult to maintain. For ease of use, all the shell variables used are concentrated

at the start of the JavaScript part. Also note that the shell substitutes the shell variables in the CLI script

before the script is sent to the Oracle ZFS Storage Appliance.

Effectively Managing the Oracle ZFS Storage Appliance with Scripting / 2.0

Copyright © 2024, Oracle and/or its affiliates

Appendix A: References

NOTE: References to Sun ZFS Storage Appliance, Sun ZFS Storage 7000, and ZFS Storage Appliance

all refer to the same family of Oracle ZFS Storage Appliance products. Some cited documentation or

screen code may still carry these legacy naming conventions.

 Oracle ZFS Storage Appliance System Administration Guide:

https://docs.oracle.com/en/storage/

 Oracle ZFS Storage Appliance Administration Guide can be accessed using the online help, which

can be accessed through the Appliance BUI

 JavaScript: The Definitive Guide, 6th Edition by David Flanagan (O’Reilly Media, 2006)

 ECMA Script Wikipedia page:

http://en.wikipedia.org/wiki/ECMAScript

 JavaScript Wikipedia page:

http://en.wikipedia.org/wiki/JavaScript

 ECMA Scripting Language Specification:

https://ecma-international.org/publications-and-standards/standards/ecma-262/

 JavaScript online tutorial:

http://www.howtocreate.co.uk/tutorials/javascript/introduction

http://en.wikipedia.org/wiki/ECMAScript
http://en.wikipedia.org/wiki/JavaScript
http://www.howtocreate.co.uk/tutorials/javascript/introduction

47 Effectively Managing the Oracle ZFS Storage Appliance with Scripting / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Appendix B: Using the Oracle ZFS Storage Appliance

Simulator

The Oracle ZFS Storage Appliance Simulator is an excellent platform for getting familiar with the CLI interface and the

scripting language. Access the CLI either using the Oracle ZFS Storage Appliance console or an SSH connection.

Figure 10. Oracle ZFS Storage Appliance console access using the simulator

Script commands can be entered interactively to explore the syntax and use of the JavaScript language in the Oracle

ZFS Storage Appliance.

You can use the network interface configuration information obtained through the console to start an SSH connection

to the Oracle ZFS Storage Appliance. Using SSH makes it easy to execute a batch of CLI commands or some simple

scripts in the Oracle ZFS Storage Appliance.

48 Effectively Managing the Oracle ZFS Storage Appliance with Scripting / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Figure 11. SSH connection to the Oracle ZFS Storage Appliance

Commands can be grouped in a file. By feeding the file into the stdin option of the ssh

command, you can feed a batch of commands into the Oracle ZFS Storage Appliance. For example, the following

commands were put into the file mybatchjob:

Configuration net interfaces list

script printf(“hello\n”) ; printf(“End of My Batch Job\n”);

49 Effectively Managing the Oracle ZFS Storage Appliance with Scripting / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Then the file was fed into the ssh command:

pBrouwers MacBook-Pro:~ pBrouwer$ ssh root@192.168.56.101 < mybatchjob

Password:

Last login: Mon Feb 14 16:09:05 2011 from 192.168.56.1

INTERFACE STATE CLASS LINKS ADDRESS LABEL E1000g0 up ip

e1000g0 192.168.56.101 i_e1000g0

Hello

End of My Batch Job

pBrouwers MacBook-Pro:~ pBrouwer

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2024, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is

not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document.

This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

mailto:root@192.168.56.101

