

Working with the RESTful API

for the Oracle ZFS Storage

Appliance

September, 2024, Version 2.0

Copyright © 2024, Oracle and/or its affiliates

Public

2

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Purpose statement

This document provides guidance and best practices on how to integrate an Oracle ZFS Storage Appliance system into

a network infrastructure, monitor its functioning, and troubleshoot any operational network problems.

Disclaimer

This document in any form, software or printed matter, contains proprietary information that is the exclusive property

of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle

software license and service agreement, which has been executed and with which you agree to comply. This

document and information contained herein may not be disclosed, copied, reproduced or distributed to anyone

outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it

be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the

implementation and upgrade of the product features described. It is not a commitment to deliver any material, code,

or functionality, and should not be relied upon in making purchasing decisions. The development, release, timing,

and pricing of any features or functionality described in this document remains at the sole discretion of Oracle. Due to

the nature of the product architecture, it may not be possible to safely include all features described in this document

without risking significant destabilization of the code.

3

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Table of contents

Introduction 4

RESTful API Architecture in the Oracle ZFS Storage Appliance 5

Success and Error Return Codes 8

Simple Examples 10

Authentication and Sessions 13

REST Service Versions 15

Using Integrated Development Environments 15

Program Examples 17

Using curl in Shell Scripts 18

Using Python 22

Python programming best practices 23

Python code examples 23

Conclusion 41

References 41

Appendix A: Python Code for restmulty.py Module 42

Appendix B: Python Code for restclient.py Module 49

4

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Introduction

The Oracle ZFS Storage Appliance combines advanced hardware and software architecture for a multiprotocol

storage subsystem that enables users to simultaneously run a variety of application workloads and offer advanced

data services. First-class performance characteristics are illustrated by the results of the industry standard

benchmarks like SPC-1, SPC-2 and SPECsfs.

The Oracle ZFS Storage Appliance provides an Application Programming Interface (API) based on the

Representational State Transfer (REST) architectural style. REST is designed to provide a consistent interface to the

roles of components, their functional interactions and state data while hiding the specific implementation and

protocol syntax details for a particular application or system.

REST is an industry standard developed by the W3C Technical Architecture Group – based on HTTP 1.1. A REST API

is known as RESTful as it adheres to the REST constraints which are detailed in "Architectural Styles and the design of

Network-based Software Architectures," the Doctoral dissertation by Roy Fielding at the University of California,

Irvine, in 2000.

There are only four REST methods – GET, PUT, POST, DELETE. With the obvious exception of the DELETE method,

these methods are those that are used by web browsers to access web sites. These methods are also described as

CRUD – Create, Read, Update and Delete – operations.

For the Oracle ZFS Storage Appliance, REST is designed for use in connecting systems management monitoring and

control software to allow automated and manual control and monitoring of the components and services with the

Oracle ZFS Storage Appliance without using either the command line interface (CLI) or direct browser user interface

(BUI). REST can also be used for iterative tasks in a programming environment such as Python. In this sense, REST is

not a storage protocol but an administrative interface.

5

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

RESTful API Architecture in the Oracle ZFS Storage

Appliance

The RESTful API supplements the access client methods offered by the Oracle ZFS Storage Appliance family of

products. The three supported client types are:

 CLI: SSH - Login - session

 BUI: HTTP - HTML/XML - Cookie based session

 REST: HTTP - JSON – Sessionless

The following graphic illustrates the client types and their architecture within the Oracle ZFS Storage Appliance.

6

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

 Figure 1. Client architecture for communicating with the Oracle ZFS Storage Appliance

The REST service supports any HTTP client conforming to HTTP 1.0 or HTTP 1.1. Previously, operations were carried

out on the Oracle ZFS Storage Appliance using SSH as the transport mechanism. The utility of this setup was

hampered by the inability to return the status of the operation without some interpretive wrapper around the

command execution.

7

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

With the advent of REST within the Oracle ZFS Storage Appliance, success or failure of the command is returned in

parsable JavaScript Object Notation (JSON) format. This means that large jobs with similar operations can be carried

out with proper error detection and, if necessary, remedial action also initiated by a comprehensive script.

One example where this may be useful is in the creation and masking of many LUNs in a virtual desktop

infrastructure (VDI) environment. Typically this involves similar operations being carried out with small variations in

the masking details and naming of LUNs. Written in any of the supported scripting languages, this tedious task can

now be carried out with relative ease and with full error reporting, so that any problems are caught and dealt with as

early as possible.

Access to the RESTful API is through the standard HTTPS interface: https://zfssa.example.com:215/api

The following figure and table represent and detail the operations the REST service offers.

Figure 2. The REST Service operations

Table 1. CRUD Operations

Operation Use

GET List information about a resource – for example, storage pools, projects, LUNs, shares, and

so on

POST Create a new resource – POST /storage/v1/pools creates a new pool, for example

PUT Modify a resource

DELETE Destroy a resource

https://zfssa.example.com:215/api

8

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Success and Error Return Codes

The response body from the API is encoded in JSON format (RFC 4627.) Unless otherwise stated, a single resource

returns a single JSON result object with the resource name as a property. Similarly, unless otherwise stated, the create

(POST) and modify (PUT) commands return the properties of the appropriate resource.

Errors return an HTTP status code indicating the error, along with the fault response payload which is formatted like

the following:

{

fault: {

message: ‘ERR_INVALID_ARG’,

details: ‘Error Details’,

 code: 500

 }

Table 2. Success Return Codes

Name Code Description

OK 200 Request returned success

CREATED 201 New resource created successfully

ACCEPTED 202 The request was accepted

NO CONTEST 204 Command returned OK but no data will be returned

9

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

The following table defines some common error codes:

Table 3. Error Return Codes

Name Code Description

ERR_INVALID_ARG

400 Request returned success

ERR_UNKNOWN_ARG 400 New resource created successfully

ERR_MISSING_ARG 400 The request was accepted

ERR_UNAUTHORIZED 401 Command returned OK but no data will be returned

ERR_DENIED 403 The operation was denied

ERR_NOT_FOUND 404 The requested item was not found

ERR_OBJECT_EXISTS 409 Request created an object that already exists

ERR_OVER_LIMIT 413 Input request too large to handle

ERR_UNSUPPORTED_MEDIA 415 Requested media type is not supported

ERR_NOT_IMPLEMENTED 501 Operation not implemented

ERR_BUSY 503 Service not available due to limited resources

10

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Simple Examples

The following example shows the RESTful API in use. This Python script uses the GET operation to download entries

in the audit log files:

from restclientlib import *

host = “10.0.2.13”

user = “root”

password = “secret”

client = RestClient (host)

result = client.login (user, password)

result = client.get(“/api/log/v1/collect/audit”)

print result.getdata()

client.logout()

Assuming the username, password and host are correctly set, the following output results from running the script:

Thu Apr 17 13:08:16 2014 nvlist version: 0

address = 10.0.2.15 host = 10.0.2.15 annotation =

user = root

class = audit.ak.xmlrpc.system.login_success

payload = (embedded nvlist)

11

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

nvlist version: 0

iscli = 0

(end payload)

summary = User logged in

Thu Apr 17 12:10:32 2014 nvlist version: 0

address = 10.0.2.15 host = 10.0.2.15 annotation =

user = root

class = audit.ak.appliance.nas.storage.configure

payload = (embedded nvlist)

nvlist version: 0

pool = onlystuff

profile = Striped

(end payload)

summary = Configured storage pool "onlystuff" using profile "Striped" Thu Apr 17 12:11:04

2014

nvlist version: 0

address = 10.0.2.15

host = 10.0.2.15

annotation =

user = root

class = audit.ak.xmlrpc.svc.enable

payload = (embedded nvlist)

nvlist version: 0

service = rest

(end payload)

12

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

summary = Enabled rest service

Thu Apr 17 12:24:01 2014 nvlist version: 0

address = 10.0.2.15 host = 10.0.2.15 annotation =

user = root

class = audit.ak.xmlrpc.system.session_timeout

payload = (embedded nvlist)

nvlist version: 0

iscli = 0

(end payload)

summary = Browser session timed out

Thu Apr 17 13:10:28 2014 nvlist version: 0

host = <console>

annotation =

user = root

class = audit.ak.xmlrpc.system.logout

payload = (embedded nvlist)

nvlist version: 0

iscli = 1

(end payload)

summary = User logged out of CLI

…

13

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Another example creates multiple shares (in this case, 10) in a given pool and project:

#!/usr/bin/python

from restclientlib import *

host = "10.0.2.13"

user = "root"

password = "secret"

pool="R1Pool"

project = "apiproj"

sharepath = "/api/storage/v1/pools/%s/projects/%s/filesystems"

client = RestClient(host)

result = client.login(user, password)

for i in range(1, 10+1):

sharename="MyShare_%d" % i

result=client.post(sharepath % (pool, project), { "name": sharename })

if result.status != httplib.CREATED:

print result.status

print "Error creating " + sharename + ": " + result.body

client.logout()

In this last example, the errors in creating the shares are tracked but the loop continues regardless. More complex

examples are presented in a following section.

Authentication and Sessions

The REST service uses the same underlying user authentication as the Oracle ZFS Storage Appliance BUI and CLI

services.

Authentication can take one of two forms: Basic or User. Basic authentication requires that each request contain a

valid username and password while User authentication requires that the X-Auth- User header contain the username

and the X-Auth-Key contain the password.

14

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Once a session has been successfully authenticated through either method, a session header is returned and can

subsequently be used for future requests until the session expires, at which point re- authentication must take place.

 Figure 3. Session variable use

15

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

REST Service Versions

Each service has a version number embedded as part of the Uniform Resource Identifier (URI) to access the REST

service. For example: /api/user/v1/users

The version numbering consists of a major and minor revision. While the major version number must be supplied, the

minor is optional and defaults to ‘0’. The major number must match the major number of the Oracle ZFS Storage

Appliance RESTful API software. The minor number, should it be supplied, must be less than or equal to the minor

number of the RESTful API service.

The following table shows the results of requests to a service which is running version 2.1 of the RESTful API

software.

Table 4. Version Return Codes

Request Version Result

v1 ERROR – major number does not match

v2 Success – Major number matches and implied minor ‘0’ is less than or equal to

minor version 1

v2.1 Success – Major and minor numbers both match

v2.2 ERROR – Major matches but minor is greater than the service version

Using Integrated Development Environments

There are three areas where the Oracle ZFS Storage Appliance RESTful API can be used to externally manage an

Oracle ZFS Storage Appliance:

 Using scripts to execute repetitive tasks, like creating a large number of shares

 Creating scripts/programs with specific tasks for administrators

 Integrating a customer monitoring and management environment, like the OpenStack environment, with the

Oracle ZFS Storage Appliance

16

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Each of these options requires some coding development to implement the required user/administrator functionality.

Several programming languages can be used for this. The choice of language depends on the programming rules and

standards enforced in a customer environment. Sometimes regulatory requirements influence the choice of program

language. Python, Ruby, PHP and Java are a few of the most popular choices.

A key requirement is the support for JavaScript Object Notation (JSON) in the programming environment of choice. It

is a lightweight data interchange format used by the RESTful API to exchange data between the client and the Oracle

ZFS Storage Appliance.

The simplest way to write code is to use a text editor, write code, and run it through the language interpreter program

or compile it to create a direct executable program. Test and debug the program and update the code source with the

text editor. This works fine for simple scripts and/or programs. When the number of lines of code increases from just

a few lines to multiple modules, using an Integrated Development Environment (IDE) makes more sense.

IDEs consists of a combined code text editor and a code compilation/debug environment. The text editor often has

extra features to format text according to general accepted coding standards and checks for coding syntax errors.

This enhances the quality of the code and helps to enforce a uniform way of writing code text within an engineering

group.

This document reflects Python as the coding language and the free Community Edition of PyCharm as the IDE. The

following figure shows a typical PyCharm setup, using a navigation pane on the left, showing the various Python

modules used for the current project, a code editor on the top right, and a debugger/console pane at the bottom.

17

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Figure 4. PyCharm IDE screen view

Program Examples

Regardless of the programming environments used for the RESTful API, the principle remains the same:

communication between the client program and the Oracle ZFS Storage Appliance is based on simple HTTP use. The

following examples illustrate the use of the RESTful API using the CURL utility in a shell scripting CLI-type

environment and a Python programming environment. The examples illustrate the use of the API commands. Error

handling is rudimentary.

18

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Using curl in Shell Scripts

The following example shows a framework for using curl in a shell script to execute the GET, PUT, POST and

DELETE commands through curl. The URL path of the resource to operate on has to be provided as argument for

the script. User login credentials can either be specified using the –u and –P argument options or set using the

environment variables $USER and $PASSWORD.

1 #!/bin/bash

2 #

3 # Example 1

4 # Copyright (c) 2013, 2014 Oracle and/or its affiliates. All rights reserved.

5 # Script akrest

6

7 CURL=(`which curl` -3 -k) # curl command options

8 ACCEPT="application/json" # Default returned content type accepted

9 DO_FORMAT=false # Pretty print JSON output

10 PYTHON=`which python` # Used for pretty printing JSON output

11 USER=$ZFSSA_USER # Login user

12 PASSWORD=$ZFSSA_PASSWORD # Login password

13 SESSION=$ZFSSA_SESSION # Login session id

14 INFILE= # POST/PUT input file

15 CONTENT="application/json" # Default input content type

16 VERBOSE=false # Print more data

17

18 usage() {

19 echo "usage akrest [options] <host> <get|post|put|delete> <path> [json]"

20 echo "options:"

21 echo " -f Format output"

22 echo " -h Print headers"

23 echo " -c Request CLI script"

24 echo " -i <file> Input file to post/put"

25 echo " -s <id> Session id"

26 echo " -p <pass> Login password"

27 echo " -u <user> Login username"

28 echo " -v Verbose"

19

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

29 echo " -y Request YAML output"

30 echo " -z Request compressed return data (only some commands supported)"

31 exit 2

32 }

33

34 while getopts u:p:i:s:hvbcfyz name

35 do

36 case $name in

37 c) CURL=("${CURL[@]}" "--header" "X-Zfssa-Get-Script: true");;

38 b) CONTENT="application/octet-stream";;

39 f) DO_FORMAT="true";;

40 u) USER="$OPTARG";;

41 p) PASSWORD="$OPTARG"

42 SESSION=;;

43 h) CURL=("${CURL[@]}" "-i");;

44 i) INFILE=$OPTARG;;

45 s) CURL=("${CURL[@]}" --header "X-Auth-Session: $OPTARG")

46 PASSWORD="";;

47 v) VERBOSE="true"

48 CURL=("${CURL[@]}" "-v");;

49 y) ACCEPT="text/x-yaml";;

50 z) CURL=("${CURL[@]}" "--header" "Accept-Encoding: gzip");;

51 ?) usage

52 esac

53 done

54 shift $(($OPTIND - 1))

55

56 if ["$#" == "3"]; then

57 JSON=""

58 elif ["$#" == "4"]; then

59 JSON=$4

60 CURL=("${CURL[@]}" "-d" "@-" "--header" "Content-Type: ${CONTENT}")

61 else

62 usage

63 fi

64

65 HOST=$1

20

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

66 REQUEST=$2

67 PATH=$3

68 DATA=$4

69

70 case $REQUEST in

71 get) REQUEST=GET;;

72 put) REQUEST=PUT;;

73 post) REQUEST=POST;;

74 delete) REQUEST=DELETE;;

75 *) usage

76 esac

77

78 if ["$HOST" == ""]; then

79 usage

80 fi

81 if ["$PATH" == ""]; then

82 usage

83 fi

84 if ["localhost" == "$HOST"]; then

85 URL=http://$HOST:8215/$PATH

86 else

87 URL=https://$HOST:215/api/$PATH

88 fi

89

90 if ["${USER}" == ""]; then

91 USER=root

92 fi

93 if ["${SESSION}" != ""]; then

94 CURL=("${CURL[@]}" --header "X-Auth-Session: ${SESSION}")

95 elif ["${PASSWORD}" != ""]; then

96 CURL=("${CURL[@]}" --user "${USER}:${PASSWORD}")

97 else

98 if ["$HOST" != "localhost"]; then

99 echo "Either password or session needs to be set"

100 exit 1

101 fi

102 fi

http://$host:8215/$PATH
https://$host:215/api/$PATH

21

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

103

104 if ["${INFILE}" == ""]; then

105 CURL=("${CURL[@]}" "-sS")

106 else

107 CURL=("${CURL[@]}" "-d" "@${INFILE}" "--header" "Content-Type: $CONTENT")

108 fi

109

110 CURL=("${CURL[@]}" "--header" "Accept: ${ACCEPT}" -X "${REQUEST}" "${URL}")

111

112 if ["${VERBOSE}" == "true"]; then

113 echo "${CURL[@]}"

114 fi

115

116 if ["${DO_FORMAT}" == "true"]; then

117 if ["$JSON" == ""]; then

118 "${CURL[@]}" | $PYTHON -mjson.tool

119 else

120 "${CURL[@]}" << JSON_EOF | $PYTHON -mjson.tool

121 $JSON

122 JSON_EOF

123 fi

124 elif ["$JSON" == ""]; then

125 "${CURL[@]}"

126 else

127

128 "${CURL[@]}" << JSON_EOF

129 $JSON

130 JSON_EOF

131 fi

132

133 echo ""

134

The following command line example shows how to retrieve detailed information for a specific user account using the

akrest script.

22

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

$./akrest -u root -p verysecret 192.168.0.230 get user/v1/users/Edinburgh

{"user":

{"href": "/api/user/v1/users/Edinburgh",

"logname": "Edinburgh",

"fullname": "John Edinburgh",

"initial_password": "DummyPassword",

"require_annotation": false,

"roles": ["basic"],

"kiosk_mode": false,

"kiosk_screen": "status/dashboard",

"exceptions": [],

"preferences": {"href": "/api/user/v1/users/Edinburgh/preferences",

"locale": "C",

"login_screen": "status/dashboard",

"session_timeout": 15,

"advanced_analytics": false,

"keys": []

}

}}

Using Python

The Python code examples in this document heavily use the Python module structure. This enables creation of a

library of commonly used functions for client code to access the RESTful API service in the Oracle ZFS Storage

Appliance. Functions in Python RESTful API modules restclientlib.py and restmulti.py are made

available to client code by importing the modules in client code modules using the Python import statement.

The code for the used Python Restful library modules restclientlib and restmulti in the following examples

can be found in the appendices at the end of this document.

23

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Python programming best practices

When writing Python code, try to write self-contained code modules, and avoid using global data variables. As Python

is an Object Oriented type programming language, define data classes and implement methods (functions) operating

on that data. The Python RESTful API modules can be used as examples.

Python code examples

The next example shows Python code, illustrating how to log in to the Oracle ZFS Storage Appliance and issue a GET

command to retrieve its user accounts. Note that user and password login information is hard coded, which is not

recommended in actual practice. A later section of this paper shows how to avoid including user names and

passwords in code. The following illustration shows the code and part of its output.

24

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Figure 5. Python code to log in and issue a get command for the Oracle ZFS Storage Appliance

The next step is to make the code in the example more generic and follow the Python module structure coding

practice. A proper main function is defined, and if the module is started as a main module, the main function is called

(code lines 44-46). Another change is the use of the create_client method of the restclient object. This

method adds checks on arguments passed to it (code line 20).

25

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

An addition is the use of multithread functionality from the RESTful client API restmulti Python module. See the

restmulti module import in line 12.

1 #!/usr/bin/python
2
3 # Example 3
4 # Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
5 #
6 """An example of using multi-threaded requests to list the details for all
7 users in a system"""
8
9 import os
10 import sys
11 import restclientlib
12 import restmulti
13
14
15 def usage():
16 print "usage: python listusers.py <host> [user] [password]"
17 sys.exit(2)
18
19 def main(args):|
20 client = restclientlib.create_client(*args)
21 if not client:
22 usage()
23
24 result = client.get("/api/user/v1/users")
25 if result.status == restclientlib.Status.OK:
26 users = result.getdata().get("users")
27 user_details = restmulti.RestMultiRequest()
28
29 # Create a multi-threaded request to get detail info for every user
30 for user in users:
31 request = restclientlib.RestRequest(
32 "GET", "/api/user/v1/users/%s" % user.get("logname"))
33 user_details.add_request(client, request)
34
35 user_details.run()
36 user_details.wait()
37
38 # Print the results for listing all user details
39 for run in user_details.runs:
40 print str(run)
41
42 client.logout()
43
44 if name == " main ":
45 main(sys.argv[1:])
46 os._exit(0)

The next example demonstrates how to upload a workflow and use the option to pass on arguments to the workflow.

Workflows are scripting code uploaded in the Oracle ZFS Storage Appliance and run under control of the Oracle ZFS

Storage Appliance software shell. For more detailed information on workflows, see the technical paper "Effectively

Managing the Oracle ZFS Storage Appliance with Scripting" in the Oracle ZFS Storage Appliance Technical Papers

web site listed in the References section.

26

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

The example shows an upload of a simple workflow that will stop after the number of seconds specified in the

argument of the workflow. The Python script takes the workflow file name and a workflow parameter block passed as

a JSON object.

The following is the workflow code:

1 # Example 4a

2 # Copyright (c) 2013, 2014 Oracle and/or its affiliates. All rights reserved.

3 # Workflow: slow_workflow.akwf

4

5 var workflow = {

6 name: 'Slow Return',

7 description: 'A workflow that takes a long time to end.',

8 scheduled: false,

9 parameters: {

10 seconds: {

11 label: 'Seconds to sleep',

12 type: 'Integer'

13 },

14 sendOutput: {

15 label: 'Send output while executing',

16 type: 'Boolean'

17 }

18 },

19 execute: function (params) {

20 "use strict";

21 var i = 0;

22 for (i = 0; i < params.seconds; i = i + 1) {

23 run('sleep 1');

24 if (params.sendOutput) {

25 printf('%s second\n', i);

26 }

27 }

28 return ('Workflow ended successfully.');

29 }

30 };

31

27

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

The workflow definition specifies the workflow characteristics. Note in code line 8 that scheduled is set to false, so

the workflow can be executed using the RESTful API workflow execute function.

The Python module upload_workflow is used to upload the workflow (code line 89), pass on the parameters, and

execute the workflow (code lines 101-112).

Note also the slightly different import syntax for the restclientlib module. With the python code from

<libmodulename> import *, the classes and objects from that imported module can be referenced directly in

the code. When using the import <libmodulename>syntax, a class from that module must be referred to as

<modulename>.<classname>. Which method to use is a personal preference. When using multiple library

modules, using the <modulename>.style of code writing makes it easier to track the location of classes and

functions.

1 #!/usr/bin/python

2

3 # Example 4b

4 # Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.

5 #

6 """

7 Upload any workflow in your local folder/directory and run it using this script

8 Ensure that the workflow property "scheduled" is not set to true to execute

9 the workflow

10 """

11

12 from restclientlib import *

13 import getopt

14 import getpass

15 import sys

16 import jason

17

18

28

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

19 def readfile(filename):

20 if "akwf" in filename.lower():

21 try:

22 with open(filename, "r") as f:

23 return f.read()

24 except IOError as e:

25 print e

26 else:

27 print "Please upload an akwf file"

28

29

30 def usage():

31 print "upload_workflow.py - Upload and Execute a workflow"

32 print "uses restclientlib.py - please ensure that it is in your workspace"

33 print "usage: upload_workflow.py [options] <zfssa-host>"

34 print "options:"

35 print " -u <user> Login user. (default is root)"

36 print " -p <pass> Login password."

37 print " -f <filename> filename (neccessary)."

38 print " -e <TRUE/FALSE> (default is false)."

39 print " -c <JSON> (content to execute the workflow with). (optional)"

40

41

42 def main(argv):

43 do_execute = "False"

44 execute_content = ""

45 user = "root"

46 password = ""

47 filename = ""

48

49 try:

50 opts, args = getopt.getopt(argv[1:], "u:p:f:e:c:")

51 except getopt.GetoptError as err:

52 print str(err)

53 usage()

54 sys.exit(2)

29

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

55

56 for opt, arg in opts:

57 if opt == "-u":

58 user = arg

59 elif opt == "-p":

60 password = arg

61 elif opt == "-f":

62 filename = arg

63 elif opt == "-e":

64 do_execute = arg

65 elif opt == "-c":

66 execute_content = arg

67

68 if len(args) != 1:

69 print "Insufficient arguments"

70 usage()

71 sys.exit(2)

72

73 if not password:

74 password = getpass.getpass()

75

76 host = args[0]

77 client = RestClient(host)

78 result = client.login(user, password)

79

80 if result.status != Status.CREATED:

81 print "Login failed:"

82 print json.dumps(result.getdata(), sort_keys=True, indent=4)

83 sys.exit(1)

30

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

84

85 if filename == "":

86 print "Include a filename"

87

88 body = readfile(filename)

89 result = client.post("/api/workflow/v1/workflows", body)

90

91 if result.status != Status.CREATED:

92 print result.status

93 print result

94 raise Exception("Failed to upload the workflow")

95 else:

96 print "Workflow uploaded"

97 workflow = result.getdata()

98 print json.dumps(workflow, sort_keys=True, indent=4)

99 if do_execute.lower() == "true":

100 print execute_content

101 result = client.put(workflow["workflow"]["href"] + "/execute",

102 execute_content)

103 if result.status != Status.ACCEPTED:

104 print "The workflow cannot be executed. " \

105 "Ensure that scheduled property is not set to true"

106 print json.dumps(result.getdata(), sort_keys=True, indent=4)

107

108 else:

109 print "The workflow has been executed"

110 print "output:"

111 print json.dumps(result.getdata(), sort_keys=True, indent=4)

112

113

114 if name == " main ":

115 main(sys.argv)

116

31

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

When executing the code, special attention needs to be given to the double quotes in the JSON formatted text block

to pass the workflow parameters. Backslashes must be used to surround the double quotes required within the JSON

text block so that the quotes are not stripped out by either the shell or IDE environment. The following figure shows

how to do this using the PyCharm IDE.

Figure 6. Using backslashes to prevent Python from stripping quotation marks in code when passed as an argument

Running the upload_workflowscript generates the following output:

32

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

/System/Library/Frameworks/Python.framework/Versions/2.7/bin/python

"/Users/peterbrouwer/Documents/SunDocs/docs&whitepapers/Rest

API/examples/Python/upload_workflow.py" -u root -p verysecret -f slow_workflow.akwf -e true -c

"{\"seconds\": \"10\" , \"sendOutput\" : \"False\" }" 192.168.0.230

Workflow uploaded

{

"workflow": {

 "alert": false,

 "description": "A workflow that takes a long time to end.",

 "href": "/api/workflow/v1/workflows/5d29f146-0f52-6566-b443-f54eb11b5ea4",

 "name": "Slow Return",

 "origin": "<local>",

 "owner": "root",

 "scheduled": false,

 "setid": false,

 "uuid": "5d29f146-0f52-6566-b443-f54eb11b5ea4",

 "version": ""

}

{

{"seconds": "10" , "sendOutput" : "False" }

The workflow has been executed

output:

{

"result": "Workflow ended successfully.\n"

}

Process finished with exit code 0

The next example shows how to retrieve log information from the Oracle ZFS Storage Appliance. The Oracle ZFS

Storage Appliance maintains status information classified according to severity (Alerts and Faults) and type (System

and Audit). The Python module download_filter_logs.py uses the –t option (code line 50) to specify the

type logs to be retrieved. Use the –f option to specify the name of the file in which to store the retrieved log info.

33

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

1 #!/usr/bin/python

2

3 # Example 5

4 #

5 # Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.

6 #

7

8

9 import restclientlib

10 import getopt

11 import getpass

12 import json

13 import sys|

14

15

16 def usage():

17 print "download_filter_logs.py - Download and filter logs"

18 print "uses restclient.py - please ensure that it is in your workspace"

19 print "usage: download_logs [options] <zfssa-host>"

20 print "options:"

21 print " -u <user> Login user. (default is root)"

22 print " -p <pass> Login password."

23 print " -t <logs type> (default is audit)"

24 print " -f <filename> filename (default is logs.txt)."

25 print " -F <filter> if -F is given. Login, Logouts entries will be" \

26 " deleted."

27 print " only works if log type is audit"

28

34

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

29

30 def main(argv):

31 do_filter = False

32 filename = "logs.txt"

33 logtype = "audit"

34

35 user = "root"

36 password = ""

37

38 try:

39 opts, args = getopt.getopt(argv[1:], "u:p:t:f:F")

40 except getopt.GetoptError as err:

41 print str(err)

42 usage()

43 sys.exit(2)

44

45 for opt, arg in opts:

46 if opt == "-u":

47 user = arg

48 elif opt == "-p":

49 password = arg

50 elif opt == "-t":

51 logtype = arg

52 elif opt == "-f":

53 filename = arg

54 elif opt == "-F" and logtype == "audit":

55 do_filter = True

56

57 if len(args) != 1:

58 print "Insufficient arguments"

59 usage()

60 sys.exit(2)

61

62 if not password:

63 password = getpass.getpass()

64

65 host = args[0]

35

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

66 client = restclientlib.RestClient(host)

67

68 result = client.login(user, password)

69

70 if result.status != restclientlib.Status.CREATED:

71 print "Login failed:"

72 print json.dumps(result.getdata(), sort_keys=True, indent=4)

73 sys.exit(1)

74

75 download_log(client, logtype, filename)

76 if do_filter:

77 remove_login_logout(filename)

78

79

80 def download_log(client, logtype, filename):

81 result = client.get("/api/log/v1/collect/%s" % logtype)

82 if result.status != restclientlib.Status.OK:

83 raise Exception("failed to download the logs")

84 else:

85 fp = open('./%s' % filename, 'w')

86 line = result.readline()

87 while line:

88 fp.write(line)

89 line = result.readline()

90 fp.close()

91

92

93 def remove_login_logout(filename):

94 fp = open('./%s' % filename, 'r')

95 fp1 = open('./%s.filtered' % filename, 'w')

96 lines = fp.readlines()

97 i = 0

98 while i < len(lines) - 1:

99 if "summary" in lines[i]:

100 if "User logged in" in lines[i] or "User logged out" in lines[i]:

101 pass

36

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

102 else:

103 for j in range(-12, 2):

104 fp1.write(lines[i+j])

105 i += 12

106 else:

107 i += 1

108 fp.close()

109 fp1.close()

110

111

112 if name == " main ":

113 main(sys.argv)

114

The last example demonstrates uploading an ssh key to the Oracle ZFS Storage Appliance to avoid having to code

passwords into ssh-based scripts. The Python module addsshkey.py uses the file authorized_keys in the

user’s directory ~/.ssh (code line 73) to upload the ssh keys into the specified user’s (code line 64) account of the

Oracle ZFS Storage Appliance. The default used for user is root (code line 61).

37

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

First you need to create an SSH DSA-type key pair for authentication:

Peter-Brouwer-Mac-Pro: peterbrouwer$ ssh-keygen -t dsa

Generating public/private dsa key pair.

Enter file in which to save the key (/Users/peterbrouwer/.ssh/id_dsa):

/Users/peterbrouwer/.ssh/id_dsa already exists.

Overwrite (y/n)? y

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /Users/peterbrouwer/.ssh/id_dsa.

Your public key has been saved in /Users/peterbrouwer/.ssh/id_dsa.pub.

The key fingerprint is:

a5:68:a6:3b:7d:d5:12:1f:ef:40:8e:74:02:0c:f6:27 peterbrouwer@Peter-Brouwer-Mac-

Pro.local

The key's randomart image is:

+--[DSA 1024]----+

| oo |

| . .o |

| E.o |

| . =+ + |

| + A. Q o |

| + # = . |

| o |

| |

| .. . |

+-----------------+

Peter-Brouwer-Mac-Pro: ~ peterbrouwer$

38

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

The Python addsshkey uses the file authorized_keys in the user's ~/.ssh directory to upload the keys, so

add the just-generated key to that file:

Peter-Brouwer-Mac-Pro:~ peterbrouwer$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Peter-Brouwer-Mac-Pro:~ peterbrouwer$

Now execute the Python addsshkey.py script to upload the previously generated ssh key. After the upload, you

can test the uploaded keys by using ssh to log in to the Oracle ZFS Storage Appliance. There should be no password

request.

1 #!/usr/bin/python

2

3 # Example 6

4 # Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.

5 #

6

7 """Adds all public keys of the current user to an appliance"""

8

9 import getpass

10 import os

11 import restclientlib

12 import sys

13

14

15 def add_keys(appliance, user, password, filename):

16

17 Adds a ssh key to the specified appliance.

18

19 :param appliance: Host name

20 :param user: Appliance management login user name

39

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

21 :param password: User password

22 :param filename: Key filename

23 """

24

25 with open(filename) as key_file:

26 keys = key_file.readlines()

27 client = restclientlib.RestClient(appliance, user, password)

28

29 key_types = {

30 "ssh-dss": "DSA"

31 }

32

33 for k in keys:

34 words = k.split()

35 if len(words) != 3:

36 continue

37 key_type = key_types.get(words[0])

38 if not key_type:

39 continue

40 key = {

41 "type": key_type,

42 "key": words[1],

43 "comment": words[2]

44 }

45 path = "/api/user/v1/users/%s/preferences/keys" % user

46 result = client.post(path, key)

47 if result.status == 201:

48 print "Created key %s" % key

49 else:

50 print "Error creating %s\nError:%s" % (key, str(result))

51

40

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

52

53 def usage():

54 print "addsshkey.py - Add public SSH keys to an appliance user"

55 print "usage: python addsshkey.py <host> [user] [password]"

56 print " If user is not supplied than 'root' is used as default"

57 print " If password is not supplied then a prompt will be used"

58

59

60 def main():

61 user = "root"

62

63 if len(sys.argv) == 3:

64 user = sys.argv[2]

65 elif len(sys.argv) == 2:

66 pass

67 else:

68 print "usage: add_key.py <host> [user]"

69 sys.exit(2)

70

71 password = getpass.getpass()

72

73 filename = "%s/.ssh/authorized_keys" % os.environ['HOME']

74

75 print filename

76

77 add_keys(sys.argv[1], user, password, filename)

78

79

80 if name == " main ":

81 main()

82

41

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Conclusion

The provided code examples in this paper have been written to illustrate the use of the RESTful API and in many

cases lack full error checking on input parameters as well as detailed information on possible failing commands.

Please use the examples accordingly. When creating programs in production environments, pay proper attention to

writing code that fully checks user input and provides enough detail in diagnostic error messages for the user to

understand the nature of a failure. A message such as ‘Error encountered, contact your administrator’ would not meet

any standards of usefulness.

The RESTful API provides a full framework for administrators to create programs and scripts, tailored to the best

practices and administrative procedures used within the organization, for addressing the Oracle ZFS Storage

Appliance.

References

Oracle RESTful API documentation

https://docs.oracle.com/en/storage/zfs-storage/zfs-appliance/os8-8-x/restful-api-guide/index.html

Oracle ZFS Storage Appliance Product Information

https://www.oracle.com/storage/nas/

Oracle ZFS Storage Appliance Technical Papers and Subject-Specific Resources

https://www.oracle.com/storage/technologies/nas-unified-storage-documentation.html

Oracle ZFS Storage Appliance Document library

 https://docs.oracle.com/cd/F24627_01/

Python IDE environments

 https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Python

https://www.python.org

https://docs.oracle.com/en/storage/zfs-storage/zfs-appliance/os8-8-x/restful-api-guide/index.html
https://www.oracle.com/storage/nas/
http://www.oracle.com/technetwork/server-storage/sun-unified-storage/documentation/index.html
https://docs.oracle.com/cd/F24627_01/
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://www.python.org/

42

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Appendix A: Python Code for restmulty.py Module

1 #!/usr/bin/python

2

3 # The sample code provided here is for training purposes only to help you to

get

4 # familiar with the Oracle ZFS Storage Appliance RESTful API.

5 # As such the use of this code is unsupported and is for non-commercial or

6 # non-production use only.

7 # No effort has been made to include exception handling and error checking

8 # functionality as is required in a production environment.

9 #

10 # Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.

11 #

12

13 """Run many REST API client commands in parallel"""

14

15 import getopt

16 import json

17 import os

18 import restclientlib

19 import sys

20 import threading

21 import Queue

22

23 class _RestWorker(threading.Thread):

24 """A worker thread that runs REST API requests from a queue"""

25 def init (self, work_queue):

26 threading.Thread. init (self)

27 self._work_queue = work_queue # Queue containing requests

28 self._lock = threading.Lock() # Lock to protect properties below

29 self._request = None # Current REST request being

processed

30 self._running = True # Worker will run while True

31 self.start() # Start this thread

43

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

32

33 def run(self):

34 """Run a REST API command from a queue. This method should only be

35 called by the thread that is running this worker via start()

36 """

37 with self._lock:

38 running = self._running

39

40 while running:

41 request = self._work_queue.get()

42 with self._lock:

43 running = self._running

44 if running:

45 self._request = request

46

47 if running:

48 try:

49 self._request.run()

50 except Exception as err:

51 self._request.error = err

52

53 with self._lock:

54 self._request = None

55 running = self._running

56

57 def shutdown(self):

58 """Allows RestThreadPool to shutdown this thread."""

59 with self._lock:

60 self._running = False

61 if self._request:

62 self._request.cancel()

63 self._request = None

64

65

66 class RestThreadPool(object):

67 """A pool of threads that will run REST API client requests."""

68 def init (self, max_threads=16):

44

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

69 """Creates a REST API thread pool.

70

71 :param max_threads: Max number of threads in the pool.

72 """

73 self._work_queue = Queue.Queue()

74 self._workers = list()

75 self.max_threads = max_threads

76

77 def add_request(self, *requests):

78 """Adds a REST API request to the thread pool queue to be

processed"""

79 for request in requests:

80 self._work_queue.put(request)

81 num_threads = len(self._workers)

82 if self.max_threads <= 0 or self.max_threads > num_threads:

83 if self._work_queue.qsize() > num_threads:

84 self._workers.append(_RestWorker(self._work_queue))

85

86 def stop(self):

87 """Stops all worker threads when thread pool is stopped"""

88 for worker in self._workers:

89 worker.shutdown()

90

91

92 class RestMultiRequest(object):

93 def init (self):

94 self.runs = list()

95

96 def add_request(self, client, request):

97 self.add_runner(restclientlib.RestRunner(client, request))

98

99 def add_runner(self, runner):

100 self.runs.append(runner)

101

102 def run(self, pool=None):

103 if not pool:

104 pool = RestThreadPool()

45

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

105 pool.add_request(*self.runs)

106

107 def wait(self):

108 """Wait for all requests to finish"""

109 done = False

110 while not done:

111 done = True

112 for r in self.runs:\

113 if not r.result():

114 done = False

115

116 def print_results(self):

117 """Print out all the response data from all of the requests"""

118 done = False

119 for r in self.runs:

120 setattr(r, "print_results", False)

121 while not done:

122 done = True

123 for r in self.runs:

124 if not r.print_results:

125 if r.isdone():

126 print r

127 r.print_results = True

128 else:

129 done = False

130

131

132 #

133 # Main Program

134 #

135 def main(args):

136 verbose = False

137 pool = RestThreadPool()

138 default_user = "root"

139 default_password = ""

140 default_host = ""

141

46

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

142 try:

143 opts, args = getopt.getopt(args, "h:u:p:t:v")

144 except getopt.GetoptError as err:

145 print str(err)

146 usage()

147 sys.exit(2)

148

149 for opt, arg in opts:

150 if opt == "-t":

151 pool.max_threads = int(arg)

152 elif opt == "-u":

153 default_user = arg

154 elif opt == "-p":

155 default_password = arg

156 elif opt == "-v":

157 verbose = True

158 elif opt == "-h":

159 default_host = arg

160

161 if len(args) != 1:

162 usage()

163 sys.exit(2)

164

165 data_file = args[0]

166

167 json_str = open(data_file).read()

168 json_data = json.loads(json_str)

169

170 request = RestMultiRequest()

171

172 def add_requests(config):

173 commands = config.get("commands")

174 if not commands:

175 return

176 host = config.get("host", default_host)

177 user = config.get("user", default_user)

178 password = config.get("password", default_password)

47

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

179 client = restclient.RestClient(host, user, password)

180 for command in commands:

181 req = restclient.RestRequest(*command)

182 runner = restclient.RestRunner(client, req, verbose=verbose)

183 request.add_runner(runner)

184

185 if isinstance(json_data, dict):

186 add_requests(json_data)

187 elif isinstance(json_data, list):

188 for c in json_data:

189 add_requests(c)

190

191 request.run(pool)

192 request.print_results()

193

194 failed = 0

195 succeeded = 0

196 tried = len(request.runs)

197 completed = 0

198

199 for r in request.runs:

200 result = r.result()

201 if result:

202 completed += 1

203 status = result.status

204 if status > 299 or status < 200:

205 failed += 1

206 else:

207 succeeded += 1

208

209 print "Completed %d of %d REST API calls" % (completed, tried)

210 print "Succeeded: %d" % succeeded

211 print "Failed: %d" % failed

212

213 os._exit(failed)

214

215

48

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

216 def usage():

217 print "restmulti.py - Make many REST API calls"

218 print "usage: restmulti.py [options] <config-file>"

219 print "options:"

220 print " -t <threads> Max number of threads. (Default is 10)"

221 print " -v Turn on verbose output."

222 print " -u <user> Login user name"

223 print " -p <passwd> Login user password"

224 print " -h <host> ZFSSA host"

225

226 if name == " main ":

227 try:

228 main(sys.argv[1:])

229 except KeyboardInterrupt:

230 os._exit(0)

49

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

Appendix B: Python Code for restclient.py Module

1 #!/usr/bin/python

2

3 # The sample code provided here is for training purposes only to help you to get

4 # familiar with the Oracle ZFS Storage Appliance RESTful API.

5 # As such the use of this code is unsupported and is for non-commercial or

6 # non-production use only.

7 # No effort has been made to include exception handling and error checking

8 # functionality as is required in a production environment.

9 #

10 # Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.

11 #

12

13 """A REST API client for the ZFSSA"""

14

15 import base64

16 import json

17 import httplib

18 import threading

19 import urllib2

20

21 class Status:

22 """Result HTTP Status"""

23

24 def init (self):

25 pass

26

27 OK = 200 #: Request return OK

28 CREATED = 201 #: New resource created successfully

29 ACCEPTED = 202 #: Command accepted

30 NO_CONTENT = 204 #: Command returned OK but no data

will

be returned

31 BAD_REQUEST = 400 #: Bad Request

32 UNAUTHORIZED = 401 #: User is not authorized

33 FORBIDDEN = 403 #: The request is not allowed

50

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

34 NOT_FOUND = 404 #: The requested resource was not found

35 NOT_ALLOWED = 405 #: The request is not allowed

36 TIMEOUT = 408 #: Request timed out

37 CONFLICT = 409 #: Invalid request

38 BUSY = 503 #: Busy

39

40 class RestRequest(object):

41 def init (self, method, path, data=""):

42 self.method = method

43 self.data = data

44 if not path.startswith("/"):

45 path = "/" + path

46 if not path.startswith("/api"):

47 path = "/api" + path

48 self.path = path

49

50

51 class RestResult(object):

52 """Result from a REST API client operation"""

53

54 def init (self, response, error_status=0):

55 """Initialize a RestResult containing the results from a REST call"""

56 self.response = response

57 self.error_status = error_status

58 self._body = None

59

60 def str (self):

61 if self.error_status:

62 return str(self.response)

63

64 data = self.getdata()

65 if isinstance(data, (str, tuple)):

66 return data

67 return json.dumps(data, indent=4, default=str)

68

69 @property

70 def body(self):

51

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

71 """Get the entire returned text body. Will not return until all

72 data has been read from the server."""

73 self._body = ""

74 data = self.response.read()

75 while data:

76 self._body += data

77 data = self.response.read()

78 return self._body

79

80 @property

81 def status(self):

82 """Get the HTTP status result, or -1 if call failed"""

83 if self.error_status:

84 return self.error_status

85 else:

86 return self.response.getcode()

87

88 def readline(self):

89 """Reads a single line of data from the server. Useful for

90 commands that return streamed data.

91

92 :returns: A line of text read from the REST API server

93 """

94 if self.error_status:

95 return None

96 self.response.fp._rbufsize = 0

97 return self.response.readline()

98

99 def getdata(self):

100 """Get the returned data parsed into a python object. Right now

101 only supports JSON encoded data.

102

103 :return: Data is parsed as the returned data type into a python

104 object. If the data type isn't supported than the string value of

105 the data is returned.

106 """

107 if self.error_status:

52

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

108 return None

109 data = self.body

110 if data:

111 content_type = self.getheader("Content-Type")

112 if content_type.startswith("application/json"):

113 data = json.loads(data)

114 return data

115

116 def getheader(self, name):

117 """Get an HTTP header with the given name from the results

118

119 :param name: HTTP header name

120 :return: The header value or None if no value is found

121 """

122 if self.error_status:

123 return None

124 info = self.response.info()

125 return info.getheader(name)

126

127 def debug(self):

128 """Get debug text containing HTTP status and headers"""

129 if self.error_status:

130 return repr(self.response) + "\n"

131

132 msg = httplib.responses.get(self.status, "Unknown")

133 hdr = "HTTP/1.1 %d %s\n" % (self.status, msg)

134 return hdr + str(self.response.info())

135

136

137 class RestRunner(object):

138 """REST request runner for a background client call. Clients can obtain

139 the result when it is ready by calling result()

140 """

141 def init (self, client, request, **kwargs):

142 self._result = None # REST result from request

143 self._called = threading.Condition() # Result available condition

144 self.client = client # Client used to run request

53

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

145 self.request = request # REST Request

146 self.verbose = kwargs.get("verbose")

147

148 def str (self):

149 url = self.client.REST_URL % (self.client.host, self.request.path)

150 out = "%s %s %s\n" % (self.request.method, url, self.request.data)

151 if self.isdone():

152 if self.verbose:

153 out += self._result.debug()

154 out += "\n"

155 out += str(self._result)

156 out += "\n"

157 else:

158 out += "waiting"

159 return out

160

161 def run(self):

162 """Thread run routine. Should only be called by thread"""

163 try:

164 result = self.client.execute(self.request)

165 except Exception as err:

166 result = RestResult(err, -1)

167 with self._called:

168 self._result = result

169 self._called.notify_all()

170

171 def isdone(self):

172 """Determine if the REST call has returned data.

173

174 :return: True if server has returned data, otherwise False

175 """

176 with self._called:

177 return self._result is not None

178

179 def result(self, timeout=0):

180 """Get the REST call result object once the call is finished.

181

54

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

182 :param timeout: The number of seconds to wait for the response to

183 finish

184 :returns: RestResult or None if not finished.

185 """

186 with self._called:

187 if self._result:

188 return self._result

189 else:

190 self._called.wait(timeout)

191 return self._result

192

193 def cancel(self):

194 if self.isdone():

195 result = self.result()

196 if result:

197 result.fp.close()

198

199

200 class RestClient(object):

201 """A REST Client API class to access the ZFSSA REST API"""

202 REST_URL = https://%s:215%s

203 ACCESS_URL = https://%s:215/api/access/v1

204

205 def init (self, host, user=None, password=None, session=None):

206 """Create a client that will communicate with the specified ZFSSA

207 host. If user and password are not supplied then the client must

208 login before making calls.

209

210 :param host: Appliance host name/ip address

211 :param user: Management user name

212 :param password: Management user password.

213 :param session: Create a client using an existing session

214 """

215 self.host = host

216 self.opener = urllib2.build_opener(urllib2.HTTPHandler)

217 self.services = None

218 if session:

55

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

219 self.opener.addheaders = [

220 ("X-Auth-Session", session),

221 ('Content-Type', 'application/json')]

222 elif user and password:

223 auth = "%s:%s" % (user, password)

224 basic = "Basic %s" % base64.encodestring(auth).replace('\n', '')

225 self.opener.addheaders = [

226 ("Authorization", basic),

227 ('Content-Type', 'application/json')]

228

229 def login(self, user, password):

230 """

231 Create a login session for a client. The client will keep track of

232 the login session information so additional calls can be made without

233 having to supply credentials.

234

235 :param user: The login user name

236 :param password: The ZFSSA user password

237 :return: The REST result of the login call

238 """

239 if self.services:

240 self.logout()

241

242 auth = "%s:%s" % (user, password)

243 basic = "Basic %s" % base64.encodestring(auth).replace('\n', '')

244 url = self.ACCESS_URL % self.host

245 request = urllib2.Request(url, '')

246 request.add_header('Authorization', basic)

247 request.get_method = lambda: 'POST'

248

249 try:

250 result = RestResult(self.opener.open(request))

251 if result.status == httplib.CREATED:

56

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

252 session = result.getheader("X-Auth-Session")

253 self.opener.addheaders = [

254 ("X-Auth-Session", session),

255 ('Content-Type', 'application/json')]

256 data = result.getdata()

257 self.services = data["services"]

258 except urllib2.HTTPError as e:

259 result = RestResult(e)

260 return result

261

262 def logout(self):

263 """Logout of the appliance and clear session data"""

264 request = urllib2.Request(self.ACCESS_URL % self.host)

265 request.get_method = lambda: "DELETE"

266 result = self.call(request)

267 self.opener.addheaders = None

268 self.services = None

269 return result

270

271 def _service_url(self, module, version=None):

272 url = None

273 for service in self.services:

274 if module == service['name']:

275 if version and service['version'] != version:

276 continue

277 url = service['uri']

278 break

279 return url

280

281 def url(self, path, **kwargs):

282 """

283 Get the URL of a resource path for the client.

284

285 :param path: Resource path

286 :key service: The name of the REST API service

287 :key version: The version of the service

288 :return:

57

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

289 """

290 service = kwargs.get("service")

291 if service:

292 url = self._service_url(service, kwargs.get("version")) + path

293 else:

294 url = self.REST_URL % (self.host, path)

295 return url

296

297 def call(self, request, background=False):

298 """Make a REST API call using the specified urllib2 request"""

299 if background:

300 runner = RestRunner(self, request)

301 thread = threading.Thread(target=runner)

302 thread.start()

303 return runner

304 try:

305 response = self.opener.open(request)

306 result = RestResult(response)

307 except urllib2.HTTPError as e:

308 result = RestResult(e)

309 return result

310

311 def get(self, path, **kwargs):

312 """Make a REST API GET call

313

314 :param path: Resource path

315 :return: RestResult

316 """

317 request = urllib2.Request(self.url(path, **kwargs))

318 return self.call(request, kwargs.get("background"))

319

320 def delete(self, path, **kwargs):

321 """Make a REST API DELETE call

322

323 :param path:

324 :return: RestResult

325 """

58

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

326 request = urllib2.Request(self.url(path, **kwargs))

327 request.get_method = lambda: "DELETE"

328 return self.call(request, kwargs.get("background"))

329

330 def put(self, path, data="", **kwargs):

331 """Make a REST API PUT call

332

333 :param path: Resource path

334 :param data: JSON input data

335 :return: RestResult

336 """

337 url = self.url(path, **kwargs)

338 if not isinstance(data, (str, unicode)):

339 data = json.dumps(data)

340 request = urllib2.Request(url, data)

341 request.get_method = lambda: "PUT"

342 request.add_header('Content-Type', "application/json")

343 return self.call(request, kwargs.get("background"))

344

345 def post(self, path, data="", **kwargs):

346 """Make a REST API POST call

347

348 :param path: Resource path

349 :param data: JSON input data

350 :return: RestResult

351 """

352 url = self.url(path, **kwargs)

353 if not isinstance(data, (str, unicode)):

354 data = json.dumps(data)

355 request = urllib2.Request(url, data)

356 request.get_method = lambda: "POST"

357 request.add_header('Content-Type', "application/json")

358 return self.call(request, kwargs.get("background"))

359 def execute(self, request, **kwargs):

360 """Make an HTTP REST request

361

362 :param method: HTTP command (GET, PUT, POST, DELETE)

59

 Working with the RESTful API for the Oracle ZFS Storage Appliance / Version 2.0

 Copyright © 2024, Oracle and/or its affiliates

363 :param path: Resource path

364 :param data: JSON input data

365 """

366 if request.method.lower() == "get":

367 return self.get(request.path, **kwargs)

368 if request.method.lower() == "put":

369 return self.put(request.path, request.data, **kwargs)

370 if request.method.lower() == "post":

371 return self.post(request.path, request.data, **kwargs)

372 if request.method.lower() == "delete":

373 return self.delete(request.path, **kwargs)

374 raise Exception(

375 "Invalid HTTP request '%s' "

376 "(Should be one of GET, PUT, POST, DELETE)" % request.method

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2024, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is

not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document.

This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

