
Oracle Rdb™

SQL Reference Manual
Volume 5

Release 7.4.1.1 for HPE OpenVMS Industry Standard 64 for Integrity
Servers and OpenVMS Alpha operating systems

September 2021

®

SQL Reference Manual, Volume 5

Oracle Rdb Release 7.4.1.1 for HPE OpenVMS Industry Standard 64 for Integrity Servers and
OpenVMS Alpha operating systems

Copyright © 1987, 2021 Oracle and/or its affiliates. All rights reserved.
Oracle Corporation - Worldwide Headquarters, 2300 Oracle Way, Austin, TX 78741, United States

Primary Author: Rdb Engineering and Documentation group

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce,
translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this
software, unless required by law for interoperability, is prohibited. The information contained
herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing. If this is software or related documentation that is
delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the
following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or
iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

Oracle, Java, Oracle Rdb, Hot Standby, LogMiner for Rdb, Oracle SQL/Services, Oracle CODASYL
DBMS, Oracle RMU, Oracle CDD/Repository, Oracle Trace, and Rdb7 are registered trademarks of
Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

Contents

Send Us Your Comments . x

Preface . xi

A Error Messages

A.1 Types of Error Messages and Their Format . A–1
A.2 Error Message Documentation . A–2
A.3 Errors Generated When You Use SQL Statements A–3
A.4 Identifying Precompiler and Module Language Errors A–6

B SQL Standards

B.1 ANSI/ISO/IEC SQL 1999 Standard . B–1
B.2 SQL:1999 Features in Rdb . B–5
B.3 Establishing SQL:1999 Semantics . B–6

C The SQL Communications Area (SQLCA) and the Message Vector

C.1 The SQLCA . C–2
C.2 The Message Vector . C–15
C.3 Declarations of the SQLCA and the Message Vector C–16
C.4 Using SQLCA Include Files . C–20
C.5 SQLSTATE . C–20
C.5.1 Definition of the SQLSTATE Status Parameter C–21
C.5.2 Use of the SQLSTATE Status Parameter . C–24

D The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

D.1 Purpose of the SQLDA . D–1
D.2 How SQL and Programs Use the SQLDA . D–3
D.3 Declaring the SQLDA . D–4
D.4 Description of Fields in the SQLDA . D–7
D.5 Purpose of the SQLDA2 . D–11
D.5.1 Declaring the SQLDA2 . D–11
D.5.2 Description of Fields in the SQLDA2 . D–13

iii

E Logical Names Used by SQL

F Obsolete SQL Syntax

F.1 Incompatible Syntax . F–1
F.1.1 Incompatible Syntax Containing the SCHEMA Keyword F–1
F.1.1.1 CREATE SCHEMA Meaning Incompatible F–1
F.1.1.2 SHOW SCHEMA Meaning Incompatible . F–2
F.1.1.3 DROP SCHEMA Meaning Incompatible . F–2
F.1.2 DROP TABLE Now Restricts by Default . F–2
F.1.3 Database Handle Names Restricted to 25 Characters F–3
F.1.4 Deprecated Default Semantics of the ORDER BY Clause F–3
F.1.5 Change to EXTERNAL NAMES IS Clause . F–3
F.1.6 Comma statement separator in trigger body no longer supported F–3
F.2 Deprecated Syntax . F–4
F.2.1 Command Line Qualifiers . F–5
F.2.2 Deprecated Interactive SQL Statements . F–6
F.2.3 Constraint Conformance to the ANSI/ISO SQL Standard F–6
F.2.4 Obsolete Keywords . F–6
F.2.5 Obsolete Built-in Functions . F–7
F.3 Deprecated Logical Names . F–8
F.3.1 RDB$CHARACTER_SET Logical Name . F–8
F.4 Reserved Words Deprecated as Identifiers . F–8
F.4.1 ANSI/ISO 1989 SQL Standard Reserved Words F–9
F.4.2 ANSI/ISO 1992 SQL Standard Reserved Words F–9
F.4.3 ANSI/ISO 1999 SQL Standard Reserved Words F–11
F.4.4 Words From ANSI/ISO SQL3 Draft Standard No Longer Reserved . . . F–12
F.5 Punctuation Changes . F–12
F.5.1 Single Quotation Marks Required for String Literals F–12
F.5.2 Double Quotation Marks Required for ANSI/ISO SQL Delimited

Identifiers . F–12
F.5.3 Colons Required Before Host Language Variables in SQL Module

Language . F–12
F.6 Suppressing Diagnostic Messages . F–13

G Oracle Database Compatibility

G.1 Oracle Database Functions . G–1
G.1.1 Optional Oracle SQL Functions . G–1
G.2 Oracle Style Outer Join . G–10
G.2.1 Outer Join Examples . G–11

H System Tables

H.1 Using Data Dictionary . H–1
H.2 Modifying System Tables . H–1
H.3 Updating Metadata . H–1
H.4 LIST OF BYTE VARYING Metadata . H–2
H.5 Read Only Access . H–3
H.6 All System Tables . H–5
H.6.1 RDB$CATALOG_SCHEMA . H–7
H.6.2 RDB$COLLATIONS . H–7
H.6.3 RDB$CONSTRAINTS . H–8
H.6.3.1 RDB$FLAGS . H–9

iv

H.6.4 RDB$CONSTRAINT_RELATIONS . H–9
H.6.4.1 RDB$FLAGS . H–9
H.6.5 RDB$DATABASE . H–10
H.6.5.1 RDB$FLAGS . H–12
H.6.6 RDB$FIELD_VERSIONS . H–13
H.6.6.1 RDB$FLAGS . H–15
H.6.7 RDB$PARAMETER_SUB_TYPE . H–15
H.6.8 RDB$FIELD_SUB_TYPE . H–15
H.6.9 RDB$FIELDS . H–16
H.6.9.1 RDB$FLAGS . H–19
H.6.10 RDB$GRANTED_PROFILES . H–19
H.6.11 RDB$INDEX_SEGMENTS . H–20
H.6.11.0.1 RDB$FLAGS . H–20
H.6.12 RDB$INDICES . H–20
H.6.12.1 RDB$FLAGS . H–22
H.6.13 RDB$INTERRELATIONS . H–23
H.6.13.1 RDB$USAGE . H–23
H.6.13.2 RDB$FLAGS . H–25
H.6.14 RDB$MODULES . H–25
H.6.15 RDB$OBJECT_SYNONYMS . H–26
H.6.15.1 RDB$FLAGS . H–27
H.6.16 RDB$PARAMETERS . H–27
H.6.16.1 RDB$FLAGS . H–28
H.6.17 RDB$PRIVILEGES . H–28
H.6.17.1 RDB$FLAGS . H–29
H.6.18 RDB$PROFILES . H–29
H.6.18.1 RDB$FLAGS . H–30
H.6.19 RDB$QUERY_OUTLINES . H–30
H.6.19.1 RDB$FLAGS . H–31
H.6.20 RDB$RELATION_CONSTRAINTS . H–31
H.6.20.1 RDB$FLAGS . H–32
H.6.20.2 RDB$CONSTRAINT_TYPE . H–32
H.6.21 RDB$RELATION_CONSTRAINT_FLDS . H–33
H.6.22 RDB$RELATION_FIELDS . H–33
H.6.23 RDB$RELATIONS . H–35
H.6.23.1 RDB$FLAGS . H–37
H.6.24 RDB$ROUTINES . H–37
H.6.24.1 RDB$FLAGS . H–39
H.6.24.2 RDB$SOURCE_LANGUAGE . H–39
H.6.25 RDB$SEQUENCES . H–40
H.6.25.1 RDB$FLAGS . H–40
H.6.26 RDB$STORAGE_MAPS . H–41
H.6.26.1 RDB$FLAGS . H–41
H.6.27 RDB$STORAGE_MAP_AREAS . H–42
H.6.27.1 RDB$FLAGS . H–42
H.6.28 RDB$SYNONYMS . H–43
H.6.29 RDB$TRIGGERS . H–44
H.6.29.1 RDB$FLAGS . H–46
H.6.29.2 RDB$TRIGGER_TYPE Values . H–46
H.6.30 RDB$VIEW_RELATIONS . H–47
H.6.31 RDB$TRIGGER_ACTIONS . H–47
H.6.31.1 RDB$FLAGS . H–48
H.6.32 RDB$WORKLOAD . H–48

v

I Information Tables

I.1 Introduction to Information Tables . I–1
I.1.1 Restrictions for Information Tables . I–4
I.2 All Information Tables . I–4
I.2.1 All_Information_Tables . I–4
I.2.1.1 RDB$STORAGE_AREAS . I–4
I.2.1.1.1 RDB$FLAGS . I–6
I.2.1.2 RDB$JOURNALS . I–6
I.2.1.2.1 RDB$FLAGS . I–7
I.2.1.3 RDB$CACHES . I–7
I.2.1.3.1 RDB$FLAGS . I–8
I.2.1.4 RDB$DATABASE_ROOT . I–8
I.2.1.4.1 RDB$FLAGS . I–10
I.2.1.5 RDB$DATABASE_JOURNAL . I–11
I.2.1.5.1 RDB$FLAGS . I–12
I.2.1.6 RDB$DATABASE_USERS . I–12
I.2.1.6.1 RDB$FLAGS . I–12
I.2.1.7 RDB$LOGICAL_AREAS . I–13
I.2.1.7.1 RDB$FLAGS . I–13
I.2.1.7.2 RDB$RECORD_TYPE . I–13
I.2.1.8 RDB$CHARACTER_SETS . I–14
I.2.1.8.1 RDB$REPERTOIRE . I–14
I.2.1.8.2 RDB$FORM_OF_USE . I–15
I.2.1.8.3 RDB$FLAGS . I–15
I.2.1.9 RDB$NLS_CHARACTER_SETS . I–16
I.2.1.10 RDB$SESSION_PRIVILEGES . I–16

J Guide to Database Management: Database Vault

J.1 Overview of Security Checking . J–1
J.1.1 OpenVMS Privileges as Database Overrides . J–2
J.1.1.1 From the GRANT Statement Documentation J–3
J.1.1.2 From the CREATE MODULE Statement documentation J–3
J.2 Goals of the DATABASE VAULT Feature . J–3
J.3 Establishing the Database Vault Environment . J–4
J.3.1 RMU Interface . J–5
J.3.2 SQL Interface . J–5
J.3.3 Auditing . J–6
J.4 General Questions . J–7

Index

Examples

C–1 Fields in the SQLCA . C–2
C–2 Including Error Literals in a COBOL Program C–6
C–3 Values in SQLCA after PREPARE Statement C–10
C–4 Ada SQLCA and Message Vector Declaration C–16
C–5 BASIC SQLCA and Message Vector Declaration C–17
C–6 C SQLCA and Message Vector Declaration . C–18
C–7 COBOL SQLCA and Message Vector Declaration C–18
C–8 FORTRAN SQLCA and Message Vector Declaration C–19

vi

C–9 Pascal SQLCA and Message Vector Declaration C–19
C–10 Declaring SQLSTATE in a C Program . C–25
D–1 Declaration of the SQLDA in Ada . D–5
D–2 Declaration of the SQLDA in BASIC . D–6
D–3 Declaration of the SQLDA in C . D–6
D–4 Declaration of the SQLDA2 in Ada . D–12
D–5 Declaration of the SQLDA2 in BASIC . D–12
D–6 Declaration of the SQLDA2 in C . D–13

Figures

C–1 Fields of the Message Vector . C–16

Tables

A–1 Explanation of Error Message Severity Codes A–2
A–2 SQL Errors Generated at Run Time . A–3
B–1 Fully Supported Core SQL:1999 Features . B–3
B–2 Partially Supported Core SQL:1999 Features B–4
B–3 Unsupported Core SQL:1999 Features . B–5
C–1 Values Returned to the SQLCODE Field . C–3
C–2 Including the Error Literals File in Programs C–6
C–3 SQLERRD array setting by statement . C–8
C–4 SQLCA SQLERRD[0] Values . C–11
C–5 SQLSTATE Status Parameter Values—Sorted by SQLSTATE Class

and Subclass . C–21
C–6 Include Files for SQLSTATE . C–25
D–1 Fields in the SQLDA . D–7
D–2 Codes for SQLTYPE Field of SQLDA and SQLDA2 D–9
D–3 Fields in the SQLDA2 . D–14
D–4 Codes for Interval Qualifiers in the SQLDA2 . D–18
D–5 Codes for Date-Time Data Types in the SQLDA2 D–18
D–6 Values for the SQLCHAR_SET_NAME Field . D–19
E–1 Summary of SQL Logical Names . E–1
E–2 Valid Equivalence Names for RDB$CHARACTER_SET Logical

Name . E–2
F–1 Deprecated Syntax for SQL . F–4
F–2 Obsolete SQL Keywords . F–6
G–1 Optional Oracle SQL Functions . G–2
I–1 Supported Information Tables . I–1

vii

Send Us Your Comments

Oracle Rdb for OpenVMS
Oracle SQL Reference Manual, Release 7.4.1.1
Oracle Corporation welcomes your comments and suggestions on the quality and
usefulness of this publication. Your input is an important part of the information
used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most?

If you find any errors or have any other suggestions for improvement, please
indicate the document title, release date, chapter, section, and page number (if
available).

Please direct all comments, and corrections to this email address:
infordb_us@oracle.com.

If you have problems with the software, please contact your local Oracle Support
Services.

x

Preface

This manual describes the syntax and semantics of the statements and language
elements for the SQL (structured query language) interface to the Oracle Rdb
database software.

Intended Audience
To get the most out of this manual, you should be familiar with data processing
procedures, basic database management concepts and terminology, and the
OpenVMS operating system.

Operating System Information
You can find information about the versions of the operating system and optional
software that are compatible with this version of Oracle Rdb in the Oracle Rdb
Installation and Configuration Guide.

For information on the compatibility of other software products with this version
of Oracle Rdb, refer to the Oracle Rdb Release Notes.

Contact your Oracle representative if you have questions about the compatibility
of other software products with this version of Oracle Rdb.

Access to Oracle Support
Oracle customers that have purchased support have access to
electronic support through My Oracle Support. For information,
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Structure
This manual is divided into five volumes. Volume 1 contains Chapter 1 through
Chapter 5 and an index. Volume 2 contains Chapter 6 and an index. Volume
3 containsChapter 7 and an index. Volume 4 contains Chapter 8 and an index.
Volume 5 contains the appendixes and an index.

The index for each volume contains entries for the respective volume only and
does not contain index entries from the other volumes in the set.

The following table shows the contents of the chapters and appendixes in Volumes
1, 2, 3, 4, and 5 of the Oracle Rdb SQL Reference Manual:

xi

Chapter 1 Introduces SQL (structured query language) and briefly
describes SQL functions. This chapter also describes
conformance to the SQL database standard, how to read
syntax diagrams, executable and nonexecutable statements,
keywords and line terminators, and support for Multivendor
Integration Architecture.

Chapter 2 Describes the language and syntax elements common to many
SQL statements.

Chapter 3 Describes the syntax for the SQL module language and the
SQL module processor command line.

Chapter 4 Describes the syntax of the SQL precompiler command line.

Chapter 5 Describes SQL routines.

Chapter 6
Chapter 7
Chapter 8

Describe in detail the syntax and semantics of the SQL
statements. These chapters include descriptions of data
definition statements, data manipulation statements, and
interactive control commands.

Appendix A Describes the different types of errors encountered in SQL and
where they are documented.

Appendix B Describes the SQL standards to which Oracle Rdb conforms.

Appendix C Describes the SQL Communications Area, the message vector,
and the SQLSTATE error handling mechanism.

Appendix D Describes the SQL Descriptor Areas and how they are used in
dynamic SQL programs.

Appendix E Summarizes the logical names that SQL recognizes for special
purposes.

Appendix F Summarizes the obsolete SQL features of the current Oracle
Rdb version.

Appendix G Summarizes the SQL functions that have been added to
the Oracle Rdb SQL interface for compatibility with Oracle
Database SQL. This appendix also describes the SQL syntax
for performing an outer join between tables using Oracle
Database syntax.

Appendix H Describes the Oracle Rdb system tables.

Appendix I Describes information tables that can be used with Oracle Rdb.

Appendix J Describes the Database vault feature.

Related Manuals
For more information on Oracle Rdb, see the other manuals in this documentation
set, especially the following:

• Oracle Rdb Guide to Database Design and Definition

• Oracle Rdb7 Guide to Database Performance and Tuning

• Oracle Rdb Introduction to SQL

• Oracle Rdb Guide to SQL Programming

xii

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

Often in examples the prompts are not shown. Generally, they are shown where
it is important to depict an interactive sequence exactly; otherwise, they are
omitted.

The following conventions are also used in this manual:

.

.

.

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts of
the statement or command not directly related to the example have been
omitted.

e, f, t Index entries in the printed manual may have a lowercase e, f, or t
following the page number; the e, f, or t is a reference to the example,
figure, or table, respectively, on that page.

boldface
text

Boldface type in text indicates a new term.

< > Angle brackets enclose user-supplied names in syntax diagrams.

[] Brackets enclose optional clauses from which you can choose one or none.

$ The dollar sign represents the command language prompt. This symbol
indicates that the command language interpreter is ready for input.

References to Products
The Oracle Rdb documentation set to which this manual belongs often refers to
the following Oracle Corporation products by their abbreviated names:

• In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS. Version 7.4 of
Oracle Rdb software is often referred to as V7.4.

• Oracle CDD/Repository software is referred to as the dictionary, the data
dictionary, or the repository.

• Oracle ODBC Driver for Rdb software is referred to as the ODBC driver.

• OpenVMS I64 refers to HPE OpenVMS Industry Standard 64 for Integrity
Servers.

• OpenVMS means the OpenVMS I64 and OpenVMS Alpha operating systems.

xiii

A
Error Messages

This appendix describes:

• The types and format of error messages you can encounter when using SQL

• How to find and use the documentation for error messages

A.1 Types of Error Messages and Their Format
You can receive messages not only from SQL, but also from underlying software.

Messages you encounter while using SQL come from the following levels:

• The SQL interface itself. Messages generated by SQL are preceded by a
facility code of SQL. For example:

%SQL-E-CURALROPE, Cursor K was already open

In programs, you can use the message vector structure in the SQL_SIGNAL,
SQL_GET_ERROR_TEXT, SQL_GET_MESSAGE_VECTOR, and SQL$GET_
ERROR_TEXT routines, described in Section C.2, to signal errors and return
the corresponding message text.

• Common Operating System Interface (COSI) facility error messages. For
example:

%COSI-F-NOQUAL, qualifiers not allowed - supply only verb and parameters

• The underlying database product. The facility code for messages generated by
the underlying database depends on the database product with which you are
using SQL.

Oracle Rdb messages are preceded by a facility code of RDMS. For example:

%RDMS-F-INVDB_NAME, invalid database name

Refer to the appropriate documentation for other products.

• The repository. Messages generated by the repository are preceded by a
facility code of CDD. For example:

%CDD-E-ERRSHOW, error displaying object

Whatever the source of an error message, the format is the same. All error
messages contain the following elements:

• The facility name preceded by a percent sign (%) or a hyphen (-)

• The severity code followed by a hyphen (-)

Table A–1 lists the severity codes in order of increasing severity.

• The diagnostic error message name followed by a comma (,)

Error Messages A–1

This name identifies the message. In the documentation for error messages,
the messages are alphabetized within each facility by diagnostic error
message name.

• The diagnostic error message text

The text is a brief description of the problem. Error messages may contain
string substitutions that are specific to a user’s error. In the documentation
for error messages, these string substitutions are delimited by angle brackets
(< >) within a message. For example:

%SQL-F-CURNOTOPE, Cursor <str> is not opened

If you receive this message, SQL substitutes the actual string (in this case, a
cursor name) for <str>.

You can suppress the display of any or all elements of an error message with the
SET MESSAGE command in DCL.

Table A–1 Explanation of Error Message Severity Codes

Code Severity Explanation

S Success Indicates that your command executed successfully.

I Information Reports on actions taken by the software.

W Warning Indicates error conditions for which you may not need to take
corrective action.

E Error Indicates conditions that are not fatal, but that must be
handled or corrected.

F Fatal Indicates conditions that are fatal and must be handled or
corrected.

A.2 Error Message Documentation
Because error messages are updated frequently, documentation is provided in the
following text files:

• SQL messages:

In SYS$HELP:SQL$MSGnn.DOC

where nn is the current version number for Oracle Rdb.

This file contains the same text as the Help Errors help topic in interactive
SQL.

• RDB messages:

In SYS$HELP:RDB_MSGnn.DOC

where nn is the current version number for Oracle Rdb.

• RDMS messages:

In SYS$HELP:RDMS_MSG.DOC

• COSI messages:

In SYS$HELP:COSI_MSG.DOC

• SQL/Services messages:

In SYS$HELP:SQLSRV$MSG.DOC

• Repository messages:

A–2 Error Messages

In SYS$HELP:CDD_MSG.DOC

The message documentation for all the facilities follows the same format, with
messages alphabetized by message name. After the message name and text, the
documentation includes an explanation and suggested user action.

The online message documentation files may be updated even if you do not install
a new version of SQL. In particular, any installation of Oracle Rdb databases may
replace the RDB_MSG.DOC file with one that is more up-to-date.

You can print the online message documentation files for reference. In addition,
you can search the files for the message information you need.

A.3 Errors Generated When You Use SQL Statements
When you write application programs that use SQL, you must use one of the
following methods to return the error messages:

• The SQLCODE parameter, which stores a value that represents the execution
status of SQL statements.

• The SQLSTATE status parameter, a string of five characters, provides error
handling that complies with the ANSI/ISO SQL standard. See Appendix C
for more information on the SQLSTATE status parameter.

• The longword array RDB$MESSAGE_VECTOR, which stores information
about the execution status of SQL statements.

• The calls sql_signal, sql_get_error_text, and SQL$GET_ERROR_TEXT, which
use error information returned through the RDB$MESSAGE_VECTOR array.

• The call sql_get_message_vector, which retrieves information from the
message vector about the status of the last SQL statement.

• The SQL statement WHENEVER, which provides error handling for all SQL
statements that follow the WHENEVER statement. (However, you cannot use
this statement in programs that call procedures in an SQL module.)

For more information about handling errors using SQL options, see the Oracle
Rdb Guide to SQL Programming.

Table A–2 lists SQL statements and errors they commonly generate at run time.
This is not an exhaustive list. The second column lists the error message status
code and the third column lists the corresponding value of the SQLCODE field in
the SQLCA. See Appendix C for more information about SQLCODE values.

Table A–2 SQL Errors Generated at Run Time

SQL Statement Error Status Code2 SQLCODE Value

ALTER DOMAIN SQL$_BAD_LENGTH –1029

SQL$_BAD_SCALE –1030

SQL$_NO_SUCH_FIELD –1027

ALTER TABLE RDB$_DEADLOCK –913

RDB$_INTEG_FAIL –1001

2-1 is a general error SQLCODE value that does not correspond to any specific error. Use sql_signal
or sql_get_error_text to return a meaningful error.

(continued on next page)

Error Messages A–3

Table A–2 (Cont.) SQL Errors Generated at Run Time

SQL Statement Error Status Code2 SQLCODE Value

RDB$_LOCK_CONFLICT –1003

RDB$_NO_PRIV –1028

RDB$_READ_ONLY_REL –1031

RDB$_READ_ONLY_TRANS –817

RDB$_READ_ONLY_VIEW –1031

RDB$_REQ_NO_TRANS Not available1

SQL$_BAD_LENGTH –1029

SQL$_BAD_SCALE –1030

SQL$_COLEXISTS –1023

SQL$_FLDNOTDEF –1024

SQL$_FLDNOTINREL –1024

SQL$_NO_SUCH_FIELD –1027

ATTACH RDB$_REQ_WRONG_DB –1020

CLOSE SQL$_CURNOTOPE –501

COMMIT RDB$_DEADLOCK –913

RDB$_INTEG_FAIL –1001

RDB$_LOCK_CONFLICT –1003

SQL$_NO_TXNOUT –1005

CREATE DOMAIN SQL$_FIELD_EXISTS –1026

CREATE VIEW RDB$_DEADLOCK –913

RDB$_LOCK_CONFLICT –1003

SQL$_NO_SUCH_FIELD –1027

SQL$_REL_EXISTS –1025

DELETE RDB$_DEADLOCK –913

RDB$_INTEG_FAIL –1001

RDB$_LOCK_CONFLICT –1003

DELETE . . . WHERE RDB$_DEADLOCK –913

CURRENT OF . . . RDB$_INTEG_FAIL –1001

SQL$_CURNOTOPE –501 / –507

SQL$_FETNOTDON –508

FETCH RDB$_DEADLOCK –913

RDB$_LOCK_CONFLICT –1003

RDB$_STREAM_EOF 100

SQL$_CURNOTOPE –501

SQL$_NULLNOIND –305

INSERT RDB$_ARITH_EXCEPT –304

1No specific numeric value. Check the SQLCODE for negative values.
2-1 is a general error SQLCODE value that does not correspond to any specific error. Use sql_signal
or sql_get_error_text to return a meaningful error.

(continued on next page)

A–4 Error Messages

Table A–2 (Cont.) SQL Errors Generated at Run Time

SQL Statement Error Status Code2 SQLCODE Value

RDB$_DEADLOCK –913

RDB$_INTEG_FAIL –1001

RDB$_LOCK_CONFLICT –1003

RDB$_NO_DUP –803

RDB$_NO_PRIV –1028

RDB$_NOT_VALID –1002

RDB$_OBSOLETE_METADATA –1032

RDB$_READ_ONLY_REL –1031

RDB$_READ_ONLY_TRANS –817

RDB$_READ_ONLY_VIEW –1031

RDB$_REQ_NO_TRANS Not available1

RDB$_REQ_WRONG_DB –1020

RDB$_UNRES_REL –1033

OPEN RDB$_DEADLOCK –913

RDB$_LOCK_CONFLICT –1003

ROLLBACK SQL$_NO_TXNOUT –1005

SET TRANSACTION RDB$_DEADLOCK –913

RDB$_LOCK_CONFLICT –1003

SQL$_BAD_TXN_STATE –1004

singleton SELECT RDB$_DEADLOCK –913

RDB$_LOCK_CONFLICT –1003

SQL$_NULLNOIND –305

SQL$_SELMORVAL –811

UPDATE RDB$_DEADLOCK –913

RDB$_INTEG_FAIL –1001

RDB$_LOCK_CONFLICT –1003

RDB$_NO_DUP –803

RDB$_NOT_VALID –1002

RDB$_READ_ONLY_REL –1031

UPDATE . . . WHERE RDB$_DEADLOCK –913

CURRENT OF . . . RDB$_INTEG_FAIL –1001

RDB$_LOCK_CONFLICT –1003

RDB$_NO_DUP –803

RDB$_NOT_VALID –1002

SQL$_CURNOTOPE –501

SQL$_FETNOTDON –508

1No specific numeric value. Check the SQLCODE for negative values.
2-1 is a general error SQLCODE value that does not correspond to any specific error. Use sql_signal
or sql_get_error_text to return a meaningful error.

Error Messages A–5

A.4 Identifying Precompiler and Module Language Errors
The SQL precompiler and the SQL module language processor let you identify
(flag) syntax that is not ANSI/ISO SQL standard. See Chapter 3 and Chapter 4
for more information.

Error messages for SQL precompilers and SQL module language are flagged in
the following way:

EXEC SQL SELECT SUM(DISTINCT QTY), AVG(DISTINCT QTY) /* multiple distincts*/
%SQL-I-NONSTADIS, (1) The standard only permits one DISTINCT in a select expression

INTO :int1, :int2 FROM D.SP; /* in a query */

A–6 Error Messages

B
SQL Standards

This appendix describes the SQL standards to which Oracle Rdb conforms.

B.1 ANSI/ISO/IEC SQL 1999 Standard

• The SQL interface to Oracle Rdb is referred to as SQL. This interface is the
Oracle Rdb implementation of the SQL standard commonly referred to as the
ANSI/ISO SQL standard or SQL99.

• The new SQL standard adopted in 1999 consists of the following five parts:

ANSI/ISO/IEC 9075-1:1999, Information technology - Database language -
SQL - Part 1: Framework (SQL/Framework)

ANSI/ISO/IEC 9075-2:1999, Information technology - Database language -
SQL - Part 2: Foundation (SQL/Foundation)

ANSI/ISO/IEC 9075-3:1999, Information technology - Database language -
SQL - Part 3: Call-Level Interface (SQL/CLI)

ANSI/ISO/IEC 9075-4:1999, Information technology - Database language -
SQL - Part 4: Persistent Stored Modules (SQL/PSM)

ANSI/ISO/IEC 9075-5:1999, Information technology - Database language -
SQL - Part 5: Host Language Bindings (SQL/Bindings)

In general, the Oracle Rdb documentation refers to this standard as
SQL:1999. SQL:1999 supersedes the SQL92 standard.

The minimal conformance level for SQL:1999 is known as Core. Core
SQL:1999 is a superset of the SQL92 Entry Level specification. Oracle Rdb
is broadly compatible with the SQL:1999 Core specification. However, a
small number of SQL:1999 Core features are not currently implemented in
Oracle Rdb or differ from the Oracle Rdb implementation. Oracle Corporation
is committed to fully supporting SQL:1999 Core functionality in a future
release, while providing upward compatibility for existing applications.

Additionally, Oracle Rdb also complies to most of the ANSI/ISO/IEC 9075-4:1999
(Persistent Stored Modules) portion of the standard.

The following functionality described by SQL:1999 CORE is not currently
available in Oracle Rdb:

• SQL99 flagger

The flagger would alert the programmer to extensions to the SQL:1999 SQL
database language.

• Basic Information Schema, and Documentation Schema

A set of tables and views that describe the database definitions, similar in
content to the Rdb system tables.

SQL Standards B–1

• TIME and TIMESTAMP precision up to 6 fractional seconds

Oracle Rdb currently supports a maximum fractional second precision of 2.

• CREATE TYPE

The CREATE TYPE statement in the SQL:1999 CORE allows a user to define
a typed name, similar to a domain, but with strong typing rules.

• REVOKE . . . { RESTRICT | CASCADE }

These variations to REVOKE requires that a check be performed during
protection updates so that privilege changes do not effect the correct
execution of existing procedures and functions.

You can obtain a copy of ANSI standards from the following address:

American National Standards Institute
11 West 42nd Street
New York, NY 10036
USA
Telephone: 212.642.4900
FAX: 212.398.0023

Or from their web site:

http://webstore.ansi.org/ansidocstore/default.asp

A subset of ANSI standards, including the SQL standard, are X3 or NCITS
standards. You can obtain these from the National Committee for Information
Technology Standards (NCITS) at:

http://www.cssinfo.com/ncitsquate.html

The Core SQL:1999 features that Oracle Rdb fully supports are listed in
Table B–1.

B–2 SQL Standards

Table B–1 Fully Supported Core SQL:1999 Features

Feature ID Feature

E011 Numeric data types

E021 Character data types

E031 Identifiers

E051 Basic query specification

E061 Basic predicates and search conditions

E071 Basic query expressions

E081 Basic privileges

E091 Set functions

E101 Basic data manipulation

E111 Single row SELECT statement

E121 Basic cursor support

E131 Null value support (nulls in lieu of values)

E141 Basic integrity constraints

E151 Basic transaction support

E152 Basic SET TRANSACTION statement

E153 Updatable queries with subqueries

E161 SQL comments using leading double minus

E171 SQLSTATE support

E182 Module language

F041 Basic joined table

F081 UNION and EXCEPT in views

F131 Grouped operations

F181 Multiple module support

F201 CAST function

F221 Explicit defaults

F261 CASE expression

F311 Schema definition statement

F471 Scalar subquery values

F481 Expanded NULL predicate

Core SQL:1999 features that Oracle Rdb partially supports are listed in
Table B–2.

SQL Standards B–3

Table B–2 Partially Supported Core SQL:1999 Features

Feature ID Feature Partial Support

F031 Basic schema Oracle Rdb fully supports the following manipulation
subfeatures:

• F031-01, Clause 11, "Schema definition and
manipulation": Selected facilities as indicated by
the subfeatures of this Feature

• F031-02, CREATE VIEW statement

• F031-03, GRANT statement

• F031-04, ALTER TABLE statement: ADD COLUMN
clause

• F031-13, DROP TABLE statement: RESTRICT
clause

• F031-16, DROP VIEW statement: RESTRICT clause

Oracle Rdb does not support the following subfeature:

• F031-19, REVOKE statement: RESTRICT clause

F051 Basic date and time Oracle Rdb fully supports the following subfeatures:

• F051-01, DATE data type (including support of
DATE literal)

• F051-02, TIME data type (including support of TIME
literal) with fractional seconds precision of at least 0.

• F051-03, TIMESTAMP data type (including
support of TIMESTAMP literal) with the maximum
fractional seconds precision of 2

• F051-04, comparison predicate on DATE, TIME, and
TIMESTAMP data types

• F051-05, explicit CAST between datetime types and
character types

• F051-06, CURRENT_DATE

• F051-07, LOCALTIME

• F051-08, LOCALTIMESTAMP

Oracle Rdb does not support the following subfeature:

• F051-03, fractional seconds precision greater than 2

(continued on next page)

B–4 SQL Standards

Table B–2 (Cont.) Partially Supported Core SQL:1999 Features

Feature ID Feature Partial Support

T321 Basic SQL-invoked
routines

Oracle Rdb fully supports the following subfeatures:

• T321-01, user-defined functions with no overloading

• T321-02, user-defined stored procedures with no
overloading

• T321-03, function invocation

• T321-04, CALL statement

• T321-05, RETURN statement

Oracle Rdb does not support the following subfeatures:

• T321-06, ROUTINES view

• T321-07, PARAMETERS view

The Core SQL:1999 features that Oracle Rdb does not support are listed in
Table B–3.

Table B–3 Unsupported Core SQL:1999 Features

Feature ID Feature

F021 Basic information schema; you can get this information from the Oracle Rdb system
tables

F501 Features and conformance views

F812 Basic flagging; Oracle Rdb’s SQL flagger only shows up through SQL92

S011 Distinct data types

B.2 SQL:1999 Features in Rdb
Oracle Rdb includes the following SQL:1999 features to SQL:

• AND CHAIN clause for COMMIT and ROLLBACK

• LOCALTIME, LOCALTIMESTAMP, ABS functions

• START TRANSACTION statement

• ITERATE loop control statement

• WHILE looping statement using revised SQL:1999 syntax

• REPEAT looping statement

• Searched CASE statement

• DETERMINISTIC, and NOT DETERMINISTIC attributes

These clauses replace NOT VARIANT and VARIANT attributes, respectively.

• RETURNS NULL ON NULL INPUT and CALLED ON NULL INPUT clauses
for functions

• Support for module global variables which can be accessed by all routines in
a module.

SQL Standards B–5

• DEFAULT VALUES clause for INSERT

• DEFAULT keyword for INSERT and UPDATE

• Full SIGNAL statement syntax

• BETWEEN SYMMETRIC predicate support

• USER and ROLE support including the GRANT/REVOKE enhancements

• INITIALLY IMMEDIATE and INITIALLY DEFERRED clauses for constraints

• UNIQUE predicate

• TABLE query specification

This is a shorthand for SELECT * FROM

• DISTINCT keyword for UNION

• FOREIGN KEY reference semantics

The columns listed by the REFERENCES clause can be in a different order
to that of the matching PRIMARY KEY or UNIQUE constraint. Requires
SQL99 dialect.

• ALTER MODULE, ALTER PROCEDURE and ALTER FUNCTION
statements

• EXCEPT DISTINCT operator

• INTERSECT DISTINCT operator

• CORRESPONDING clause for UNION, EXCEPT and INTERSECT operators

• VAR_POP, VAR_SAMP, STDDEV_POP, STDDEV_SAMP statistical operators

• FILTER modifier for statistical functions

B.3 Establishing SQL:1999 Semantics
The following commands can be used to establish the SQL:1999 database
language standard semantics:

• SET DIALECT

• SET QUOTING RULES

• SET KEYWORD RULES

• SET DEFAULT DATE FORMAT

For example:

SQL> SET DIALECT ’SQL99’;

In most cases, the semantics of the SQL99 dialect are the same as SQL92. As
new features are added, these may have different semantics in these two dialects.

The following command displays the current settings for this connection:

SQL> SHOW CONNECTION <connectionname>

B–6 SQL Standards

For example:

SQL> show connection rdb$default_connection
Connection: RDB$DEFAULT_CONNECTION
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is JSMITH
Dialect: SQL99
Default character unit: CHARACTERS
Keyword Rules: SQL99
View Rules: ANSI/ISO
Default DATE type: DATE ANSI
Quoting Rules: ANSI/ISO
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: ON
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

The session variables DIALECT, DATE_FORMAT, QUOTING_RULES, and
KEYWORD_RULES can also return the string ’SQL99’.

For example:

SQL> declare :a, :b, :c, :d char(10);
SQL> get environment (session)
cont> :a = DIALECT,
cont> :b = DATE_FORMAT,
cont> :c = QUOTING_RULES,
cont> :d = KEYWORD_RULES;
SQL> print :a, :b, :c, :d;
A B C D
SQL99 SQL99 SQL99 SQL99

SQL Standards B–7

C
The SQL Communications Area (SQLCA) and

the Message Vector

The SQLCA and message vector are two separate host structures that SQL
declares when it precompiles an INCLUDE SQLCA statement.

Both the SQLCA and the message vector provide ways of handling errors:

• The SQLCA is a collection of parameters that SQL uses to provide
information about the execution of SQL statements to application programs.
The SQLCODE parameter in the SQLCA shows if a statement was successful
and, for some errors, the particular error when a statement is not successful.

To illustrate how the SQLCA works in applications, interactive SQL displays
its contents when you issue the SHOW SQLCA statement.

• The message vector is also a collection of parameters that SQL updates
after it executes a statement. It lets programs check if a statement was
successful, but provides more detail than the SQLCA about the type of error
if a statement is not successful. The message vector, for example, provides
a way to access any follow-on messages in addition to those containing the
facility code RDB or SQL.

You can use the following steps to examine the message vector:

Assign any value to the logical name SQL$KEEP_PREP_FILES.

Precompile any program that contains the line ‘‘EXEC SQL INCLUDE
SQLCA’’. (You can use the programs in the sample directory.)

Examine the generated host language program.

SQL updates the contents of the SQLCA and the message vector after completion
of every executable SQL statement (nonexecutable statements are the DECLARE,
WHENEVER, and INCLUDE statements).

You do not have to use the INCLUDE SQLCA statement in programs. However,
if you do not, you must explicitly declare the SQLCODE parameter to receive
values from SQL. SQLCODE is explicitly declared as an unscaled, signed
longword integer.

SQLCODE is a deprecated feature of the ANSI/ISO SQL standard and is replaced
by SQLSTATE. To comply with the ANSI/ISO SQL standard, you should explicitly
declare either SQLCODE or, preferably, SQLSTATE instead of using the
INCLUDE SQLCA statement. SQLCA (and the INCLUDE SQLCA statement) is
not part of the ANSI/ISO SQL standard. If you declare SQLCODE or SQLSTATE
but use the INCLUDE SQLCA statement, SQL uses the SQLCA.

The SQL Communications Area (SQLCA) and the Message Vector C–1

Programs that do not use the INCLUDE SQLCA statement will not have the
message vector declared by the precompiler. Such programs must explicitly
declare the message vector if they:

• Use the RDB$LU_STATUS field of the message vector in their error checking

• Use system calls such as SYS$PUTMSG

The message vector is not part of the ANSI/ISO SQL standard.

When the SQLCA structure is explicitly declared by a program, SQL does not
update the SQLERRD fields. If you want the SQLERRD fields updated, include
the SQLCA definitions in the program using the EXEC SQL INCLUDE SQLCA
statement.

Section C.1 and Section C.2 describe the SQLCA and the message vector in more
detail. Section C.3 shows the declarations SQL makes for them in different host
language programs.

C.1 The SQLCA
The only fields of interest in the SQLCA are the SQLCODE field and the second
through sixth elements of the SQLERRD array.

Example C–1 shows the interactive SQL display for the SQLCA after the
‘‘attempt to fetch past end of stream’’ error.

Example C–1 Fields in the SQLCA

SQL> SHOW SQLCA
SQLCA:

SQLCAID: SQLCA SQLCABC: 128
SQLCODE: 100
SQLERRD: [0]: 0

[1]: 0
[2]: 0
[3]: 0
[4]: 0
[5]: 0

SQLWARN0: 0 SQLWARN1: 0 SQLWARN2: 0
SQLWARN3: 0 SQLWARN4: 0 SQLWARN5: 0
SQLWARN6: 0 SQLWARN7: 0
SQLSTATE: 02000

SQLSTATE is not part of the SQLCA, although it appears in the display.

The remainder of this section describes the fields of the SQLCA.

Fields of the SQLCA
SQLCAID
An 8-character field whose value is always the character string SQLCA. The
FORTRAN SQLCA does not include this field.

SQLCABC
An integer field whose value is always the length, in bytes, of the SQLCA. The
value is always 128. The FORTRAN SQLCA does not include this field.

SQLCODE
An integer field whose value indicates the error status returned by the most
recently executed SQL statement. A positive value other than 100 indicates a

C–2 The SQL Communications Area (SQLCA) and the Message Vector

warning, a negative value indicates an error, and a zero indicates successful
execution.

Table C–1 shows the possible numeric and literal values that SQL returns to the
SQLCODE field and explains the meaning of the values.

Table C–1 Values Returned to the SQLCODE Field

Numeric
Value Literal Value Meaning

Success Status Code

0 SQLCODE_SUCCESS Statement completed successfully.

Warning Status Codes

100 SQLCODE_EOS SELECT statement or cursor came to the end of
stream.

1003 SQLCODE_ELIM_NULL1 Null value was eliminated in a set function.

1004 SQLCODE_TRUN_RTRV1 String truncated during assignment. This occurs
only during data retrieval.

Error Status Codes

–1 SQLCODE_RDBERR Oracle Rdb returned an error. The value of –1
is a general error SQLCODE value returned by
any error not corresponding to the other values
in this table. Use sql_signal or sql_get_error_
text to return a meaningful error.

–304 SQLCODE_OUTOFRAN Value is out of range for a host variable.

–305 SQLCODE_NULLNOIND Tried to store a null value into a host language
variable with no indicator variable.

–306 SQLCODE_STR_DAT_
TRUNC1

String data, right truncation.

–307 SQLCODE_INV_
DATETIME

Date-time format is invalid.

–501 SQLCODE_CURNOTOPE Cursor is not open.

–502 SQLCODE_CURALROPE Cursor is already open.

–507 SQLCODE_UDCURNOPE Cursor in an UPDATE or DELETE operation is
not opened.

–508 SQLCODE_UDCURNPOS Cursor in an UPDATE or DELETE operation is
not positioned on a row.

–509 SQLCODE_UDCURDEL Cursor in an UPDATE or DELETE operation is
positioned on a deleted row.

–803 SQLCODE_NO_DUP Updating would cause duplication on a unique
index.

–811 SQLCODE_SELMORVAL The result of a singleton select returned more
than one value.

–817 SQLCODE_ROTXN Attempt to update from a read-only transaction.

–880 SQLCODE_SVPTINVSPEC Savepoint is invalid.

1Only the SQL92 and SQL99 dialects return this value.

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C–3

Table C–1 (Cont.) Values Returned to the SQLCODE Field

Numeric
Value Literal Value Meaning

Error Status Codes

–881 SQLCODE_SVPTEXIST Savepoint already exists.

–882 SQLCODE_SVPTNOEXIST Savepoint does not exist.

–913 SQLCODE_DEADLOCK Request failed due to resource deadlock.

–1001 SQLCODE_INTEG_FAIL Constraint failed.

–1002 SQLCODE_NOT_VALID Valid-if failed.

–1003 SQLCODE_LOCK_
CONFLICT

NO WAIT request failed because resource was
locked.

–1004 SQLCODE_BAD_TXN_
STATE

Invalid transaction state–the transaction
already started.

–1005 SQLCODE_NO_TXN No transaction active.

–1006 SQLCODE_BAD_VERSION Version of the underlying system does not
support a feature that this query uses.

–1007 SQLCODE_TRIG_ERROR Trigger forced an error.

–1008 SQLCODE_NOIMPTXN No implicit distributed transaction outstanding.

–1009 SQLCODE_DISTIDERR Distributed transaction ID error.

–1010 SQLCODE_BAD_CTX_VER Version field in the context structure is defined
incorrectly.

–1011 SQLCODE_BAD_CTX_
TYPE

Type field in the context structure is defined
incorrectly.

–1012 SQLCODE_BAD_CTX_LEN Length field in the context structure is defined
incorrectly.

–1013 SQLCODE_BASROWDEL Row that contains the list has been deleted.

–1014 SQLCODE_DIFFDEFINV Invoker of the module is not the same as the
definer (the user who compiled the module).

–1015 SQLCODE_STMTNOTPRE Dynamic statement is not prepared.

–1016 SQLCODE_
NOSUCHCONN

Connection does not exist.

–1017 SQLCODE_CONNAMEXI Connection name already exists.

–1018 SQLCODE_
DBENVSYNERR

Database environment specification contains a
syntax error.

–1019 SQLCODE_
DBSPECSYNERR

Database specification contains a syntax error.

–1020 SQLCODE_ATTACHERR Error attaching to the database.

–1021 SQLCODE_
NOSUCHALIAS

Alias is not known.

–1022 SQLCODE_ALIASINUSE Alias is already declared.

–1023 SQLCODE_COLEXISTS Column already exists in the table.

–1024 SQLCODE_COLNOTDEF Column not defined in the table.

–1025 SQLCODE_TBLEXISTS Table already exists in the database or schema.

(continued on next page)

C–4 The SQL Communications Area (SQLCA) and the Message Vector

Table C–1 (Cont.) Values Returned to the SQLCODE Field

Numeric
Value Literal Value Meaning

Error Status Codes

–1026 SQLCODE_DOMEXISTS Domain already exists in the database or
schema.

–1027 SQLCODE_DOMNOTDEF Domain is not defined in the database or
schema.

–1028 SQLCODE_NO_PRIV No privilege for attempted operation.

–1029 SQLCODE_BAD_LENGTH Negative length specified for a column.

–1030 SQLCODE_BAD_SCALE Negative scale specified for a column.

–1031 SQLCODE_RO_TABLE Attempt to update a read-only table.

–1032 SQLCODE_
OBSMETADATA

Metadata no longer exists.

–1033 SQLCODE_UNRES_REL Table is not reserved in the transaction.

–1034 SQLCODE_CASENOTFND Case not found; WHEN not specified.

–1035 SQLCODE_CHKOPT_VIOL Integer failure with check option.

–1036 SQLCODE_UNTERM_C_
STR

Unterminated C string.

–1037 SQLCODE_INDIC_
OVFLOW

Indicator overflow.

–1038 SQLCODE_INV_PARAM_
VAL

Invalid parameter value.

–1039 SQLCODE_NULL_ELIMIN Null eliminated in the set function.

–1040 SQLCODE_INV_ESC_SEQ Invalid escape sequence.

–1041 SQLCODE_RELNOTDEF Table not defined in the database or schema.

–1045 SQLCODE_INV_
INTERVAL

Invalid interval format.

–1046 SQLCODE_INV_FRACSEC Time, Timestamp or interval has too many
fractional digits.

–1047 SQLCODE_INV_INTLEAD Interval leading field is too large.

–1048 SQLCODE_INC_CSET Incompatible character set.

–1049 SQLCODE_DATA_CVT_
ERROR

Data conversion error.

–20111 SQLCODE_SVPTBADLOC Cannot use SAVEPOINT from function or
trigger.

Programs can use the literal values to check for success, the end of record stream
warnings, or specific errors. Your program can check for particular error codes
and execute different sets of error-handling statements depending upon the error
code returned. However, because the values in Table C–1 do not reflect all the
possible errors or warnings, your program should check for any negative value.

SQL inserts the RDB message vector (see Section C.2) along with the SQLCA
structure when it executes an SQL statement.

The SQL Communications Area (SQLCA) and the Message Vector C–5

Also, string truncation conditions are only reported when the dialect is set to
SQL92 or SQL99 prior to a database attach in interactive SQL or when your
application is compiled. For example:

SQL> SET DIALECT ’SQL99’;
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> DECLARE :ln CHAR(10);
SQL> SELECT last_name INTO :ln FROM employees WHERE employee_id = ’00164’;
%RDB-I-TRUN_RTRV, string truncated during assignment to a variable or parameter
SQL> SHOW SQLCA
SQLCA:

SQLCAID: SQLCA SQLCABC: 128
SQLCODE: 1004
SQLERRD: [0]: 0

[1]: 0
[2]: 1
[3]: 0
[4]: 0
[5]: 0

SQLWARN0: 0 SQLWARN1: 0 SQLWARN2: 0
SQLWARN3: 0 SQLWARN4: 0 SQLWARN5: 0
SQLWARN6: 0 SQLWARN7: 0
SQLSTATE: 01004

%RDB-I-TRUN_RTRV, string truncated during assignment to a variable or parameter

For each language, SQL provides a file that contains the declarations of all the
error literals shown in Table C–1. You can include this file in precompiled SQL
and module language programs.

Table C–2 shows how to include this file in your program.

Table C–2 Including the Error Literals File in Programs

Precompiled or Module
Language Declaration

Ada with SQL_SQLCODE;
with SQL_SQLDA;
with SQL_SQLDA2; 1

BASIC %INCLUDE "sys$library:sql_literals.bas"

C #include "sys$library:sql_literals.h"

COBOL COPY ’SYS$LIBRARY:SQL_LITERALS’

FORTRAN INCLUDE ’SYS$LIBRARY:SQL_LITERALS.FOR’

Pascal %include ’sys$library:sql_literals.pas’

1You must compile the Ada package, SYS$LIBRARY:SQL_LITERALS.ADA, before you use it in a
program. Only declare SQL_SQLDA and SQL_SQLDA2 when you use dynamic SQL.

In addition to the error literals, the file contains declarations for the SQLTYPE
field in the SQLDA. See Appendix D for information about the SQLTYPE field.

Example C–2 shows how to include the error literals file in a COBOL program.

Example C–2 Including Error Literals in a COBOL Program

(continued on next page)

C–6 The SQL Communications Area (SQLCA) and the Message Vector

Example C–2 (Cont.) Including Error Literals in a COBOL Program

IDENTIFICATION DIVISION.
PROGRAM-ID. LITERAL-TESTS.
*
* This program tests the use of symbolic literals for SQLCODE and
* SQLDA_DATATYPE. All the literal definitions are part of a file that
* is used with the COPY command.
*
DATA DIVISION.
WORKING-STORAGE SECTION.
COPY SQL_LITERALS.
EXEC SQL INCLUDE SQLCA END-EXEC.
01 CDE PIC X(5).
01 DISP_SQLCODE PIC S9(9) DISPLAY SIGN LEADING SEPARATE.
01 GETERRVARS.

02 error-buffer-len PIC S9(9) COMP VALUE 132.
02 error-msg-len PIC S9(9) COMP.
02 error-buffer PIC X(132).

exec sql whenever sqlerror continue end-exec.

PROCEDURE DIVISION.

*
* test for sqlcode -501 SQLCODE_CURNOTOPE
*

exec sql declare A cursor for
select college_code from colleges
where college_name like ’D%’ order by 1

end-exec.
exec sql fetch A into :CDE end-exec.
if sqlcode = SQLCODE_CURNOTOPE
then

MOVE sqlcode to DISP_SQLCODE
DISPLAY "SQLCODE after attempt to fetch is ", DISP_SQLCODE

CALL "sql_get_error_text" USING BY REFERENCE error-buffer,
BY VALUE error-buffer-len,
BY REFERENCE error-msg-len.

DISPLAY BUFFER(1:error-msg-len)
end-if.
exec sql close A end-exec.

*
* test for SQLCODE 0 SQLCODE_SUCCESS
*

exec sql
insert into employees (employee_id, last_name, sex)

values (’00999’,’Jones’,’M’)
end-exec.
if sqlcode = SQLCODE_SUCCESS
then

MOVE sqlcode to DISP_SQLCODE
DISPLAY "SQLCODE after insert is ", DISP_SQLCODE

CALL "sql_get_error_text" USING BY REFERENCE error-buffer,
BY VALUE error-buffer-len,
BY REFERENCE error-msg-len.

DISPLAY BUFFER(1:error-msg-len)
end-if.

EXEC SQL ROLLBACK END-EXEC.
STOP RUN.

The SQL Communications Area (SQLCA) and the Message Vector C–7

SQLERRM
The SQLERRM is a structure containing two fields: a word field called
SQLERRML and a 70-character field called SQLERRMC.

SQLERRD[x]
The SQLERRD is an array of 6 integer values. When displayed by the SHOW
SQLCA statement, these elements are numbered 0 through 5 and this same
convention is followed in this section. The contents of this array is dependent
on the successful execution of a SQL statement. These statements and its affect
on the SQLERRD are described in Table C–3. The values in the SQLERRD are
undefined for all other statements and after an error.

The SQLCA field SQLERRD[0] is updated with the statement type by the
PREPARE and EXECUTE IMMEDIATE statements for all dialects. Numeric
codes which describe the statement type are listed in the table Table C–4.

Table C–3 SQLERRD array setting by statement

SQL Statement Description

DELETE The DELETE statement updates the third element
(SQLERRD[2]) with the number of rows deleted by the
statement.

DESCRIBE The DESCRIBE statement updates the second element
(SQLERRD[1]) with the following values:

0: the statement is any SQL statement except a SELECT
statement or CALL statement.
1: the statement is a SELECT statement.
2: the statement is a CALL statement.

FETCH (list cursor) The FETCH statement updates the second element
(SQLERRD[1]) with the segment size in octets. The third
element (SQLERRD[2]) with the number of the segment on
which the cursor is currently positioned.

If you fetch a list element that is longer than the target you
specify, the fetched element will be truncated and the sixth
element (SQLERRD[5]) of the SQLERRD array will be set to
the length of the untruncated segment. If no truncation occurs,
the sixth element is set to zero.

FETCH (table cursor) The FETCH statement updates the third element
(SQLERRD[2]) with the number of the row on which the
cursor is currently positioned.

INSERT The INSERT statement updates the third element
(SQLERRD[2]) with the number of rows stored by the
statement.

OPEN (list cursor) The OPEN statement for a list cursor updates the second
element (SQLERRD[1]) with the length of the longest
actual segment for this column value. The fourth element
(SQLERRD[3]) with number of segments for this column value.
The fifth and sixth elements (SQLERRD[4,5]) are treated as
a single BIGINT (quadword) containing the total octets in all
segments for this column value.

(continued on next page)

C–8 The SQL Communications Area (SQLCA) and the Message Vector

Table C–3 (Cont.) SQLERRD array setting by statement

SQL Statement Description

OPEN (table cursor) The OPEN statement for a table cursor updates the third
element (SQLERRD[2]) with the estimated result table
cardinality. The fourth element (SQLERRD[3]) with the
estimated I/O operations.

PREPARE The PREPARE statement updates the first element
(SQLERRD[0]) with the statement type. The numeric codes,
along with the corresponding symbolic names and SQL
statements are listed in Table C–4. The third1 element
(SQLERRD[2]) will be the count of output parameters, and
the fourth1 element (SQLERRD[3]) will be the count of input
parameters. The values may be zero if there are no output or
input parameters in the statement, and CALL parameters of
INOUT mode will appear in both the input and output count.

REPLACE The REPLACE statement updates the third element
(SQLERRD[2]) with the number of rows stored by the
statement.

UPDATE The UPDATE statement updates the third element
(SQLERRD[2]) with the number of rows modified by the
statement.

SELECT The SELECT statement updates the third element
(SQLERRD[2]) with the number of rows in the result table
formed by the SELECT statement. Note: The SQLERRD[2]
field is not updated for dynamic SELECT statements.

1 The SQLCA was not updated by PREPARE prior to Rdb Release 7.1.3 so Oracle recommends that
the SQLERRD[2] and SQLERRD[3] values be set to a known value that can never normally be seen
(such as -1) prior to the PREPARE call. If after the PREPARE these values remain -1 then the
application must estimate the counts by examining the SQLDA.

SQLWARNx
A series of 1-character fields, numbered from 0 through 7.

If the statement being prepared is a SELECT statement containing an INTO
clause, then the SQLCA field SQLWARN6 will contain the character "I". Such
Singleton SELECT statements can be executed without using an cursor.

If the statement being prepared is a compound statement (BEGIN ... END), then
the SQLCA field SQLWARN6 will contain the character "B".

If the statement being dynamically executed was a compound statement, or a
CALL statement then it is possible that a COMMIT or ROLLBACK was executed
as part of the procedure body. In such cases, the SQLCA field SQLWARN6 will
contain the character "Y". Further if a transaction was activated prior to the
statement, then SQLWARN7 will contain the character "Y". This will indicate
that any cursors not declared as being preserved across COMMIT or ROLLBACK
using the ON HOLD clause or statement will have been closed.

The following simple program shows the effect of the PREPARE statement on
SQLCA. This program prepares a compound statement which requires both input
and output parameters.

The SQL Communications Area (SQLCA) and the Message Vector C–9

Example C–3 Values in SQLCA after PREPARE Statement

#include <stdio.h>
#include <sql_rdb_headers.h>

exec sql
declare alias filename ’db$:mf_personnel’;

exec sql
include SQLCA;

char * s1 = "begin insert into work_status values (?, ?, ?);\
select count(*) into ? from work_status; end";

void main ()
{
int i;
SQLCA.SQLERRD[2] = SQLCA.SQLERRD[3] = -1;
exec sql

prepare stmt from :s1;
if (SQLCA.SQLCODE != 0) sql_signal ();
printf("SQLCA:\n SQLCODE: %9d\n", SQLCA.SQLCODE);
for (i = 0; i < 6; i++)

printf(" SQLERRD[%d]: %9d\n", i, SQLCA.SQLERRD[i]);
printf(" SQLWARN0: %s\n", SQLCA.SQLWARN.SQLWARN0);
printf(" SQLWARN1: %s\n", SQLCA.SQLWARN.SQLWARN1);
printf(" SQLWARN2: %s\n", SQLCA.SQLWARN.SQLWARN2);
printf(" SQLWARN3: %s\n", SQLCA.SQLWARN.SQLWARN3);
printf(" SQLWARN4: %s\n", SQLCA.SQLWARN.SQLWARN4);
printf(" SQLWARN5: %s\n", SQLCA.SQLWARN.SQLWARN5);
printf(" SQLWARN6: %s\n", SQLCA.SQLWARN.SQLWARN6);
}

The results displayed by the program show that PREPARE has reported 3
input arguments (SQLERRD[3]) and 1 output argument (SQLERRD[2]) in
the statement. The field SQLWARN6 also indicates that this is a compound
statement.
SQLCA:
SQLCODE: 0
SQLERRD[0]: 0
SQLERRD[1]: 0
SQLERRD[2]: 1
SQLERRD[3]: 3
SQLERRD[4]: 0
SQLERRD[5]: 0
SQLWARN0:
SQLWARN1:
SQLWARN2:
SQLWARN3:
SQLWARN4:
SQLWARN5:
SQLWARN6: B

C–10 The SQL Communications Area (SQLCA) and the Message Vector

Table C–4 SQLCA SQLERRD[0] Values

Symbolic Name† Value SQL Statement

0 Statement is
unknown

SQL_K_OCTRDB_CONNECT -1 Rdb Connect

SQL_K_OCTRDB_ATTACH -2 Rdb Attach

SQL_K_OCTRDB_DISCONNECT -3 Rdb Disconnect

SQL_K_OCTRDB_CREATE_MODULE -4 Rdb Create
Module

SQL_K_OCTRDB_ALTER_MODULE -5 Rdb Alter Module

SQL_K_OCTRDB_DROP_MODULE -6 Rdb Drop Module

SQL_K_OCTRDB_CREATE_DOMAIN -7 Rdb Create
Domain

SQL_K_OCTRDB_ALTER_DOMAIN -8 Rdb Alter Domain

SQL_K_OCTRDB_DROP_DOMAIN -9 Rdb Drop Domain

SQL_K_OCTRDB_CREATE_CATALOG -10 Rdb Create
Catalog

SQL_K_OCTRDB_ALTER_CATALOG -11 Rdb Alter Catalog

SQL_K_OCTRDB_DROP_CATALOG -12 Rdb Drop Catalog

SQL_K_OCTRDB_ALTER_SCHEMA -13 Rdb Alter Schema

SQL_K_OCTRDB_DROP_SCHEMA -14 Rdb Drop Schema

SQL_K_OCTRDB_SET_SESSION -15 Rdb Set Session
Authorization

SQL_K_OCTCTB 1 create table

SQL_K_OCTINS 2 insert

SQL_K_OCTSEL 3 select

SQL_K_OCTCCL 4 create cluster

SQL_K_OCTACL 5 alter cluster

SQL_K_OCTUPD 6 update

SQL_K_OCTDEL 7 delete

SQL_K_OCTDCL 8 drop cluster

SQL_K_OCTCIX 9 create index

SQL_K_OCTDIX 10 drop index

SQL_K_OCTAIX 11 alter index

SQL_K_OCTDTB 12 drop table

SQL_K_OCTCSQ 13 create sequence

SQL_K_OCTASQ 14 alter sequence

SQL_K_OCTATB 15 alter table

SQL_K_OCTDSQ 16 drop sequence

†The positive values are defined for compatibility with Oracle 10g. Not all statements are supported
by Oracle Rdb therefore not all values will appear in the SQLCA. Negative values are Oracle Rdb
specific values.

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C–11

Table C–4 (Cont.) SQLCA SQLERRD[0] Values

Symbolic Name† Value SQL Statement

SQL_K_OCTGRA 17 grant

SQL_K_OCTREV 18 revoke

SQL_K_OCTCSY 19 create synonym

SQL_K_OCTDSY 20 drop synonym

SQL_K_OCTCVW 21 create view

SQL_K_OCTDVW 22 drop view

SQL_K_OCTVIX 23 validate index

SQL_K_OCTCPR 24 create procedure

SQL_K_OCTAPR 25 alter procedure

SQL_K_OCTLTB 26 lock table

SQL_K_OCTNOP 27 no operation

SQL_K_OCTRNM 28 rename

SQL_K_OCTCMT 29 comment

SQL_K_OCTAUD 30 audit

SQL_K_OCTNOA 31 noaudit

SQL_K_OCTCED 32 create database
link

SQL_K_OCTDED 33 drop database link

SQL_K_OCTCDB 34 create database

SQL_K_OCTADB 35 alter database

SQL_K_OCTCRS 36 create rollback
segment

SQL_K_OCTARS 37 alter rollback
segment

SQL_K_OCTDRS 38 drop rollback
segment

SQL_K_OCTCTS 39 create tablespace

SQL_K_OCTATS 40 alter tablespace

SQL_K_OCTDTS 41 drop tablespace

SQL_K_OCTASE 42 alter session

SQL_K_OCTAUR 43 alter user

SQL_K_OCTCWK 44 commit

SQL_K_OCTROL 45 rollback

SQL_K_OCTSPT 46 savepoint

SQL_K_OCTPLS 47 pl/sql execute

SQL_K_OCTSET 48 set transaction

SQL_K_OCTASY 49 alter system
switch log

†The positive values are defined for compatibility with Oracle 10g. Not all statements are supported
by Oracle Rdb therefore not all values will appear in the SQLCA. Negative values are Oracle Rdb
specific values.

(continued on next page)

C–12 The SQL Communications Area (SQLCA) and the Message Vector

Table C–4 (Cont.) SQLCA SQLERRD[0] Values

Symbolic Name† Value SQL Statement

SQL_K_OCTXPL 50 explain

SQL_K_OCTCUS 51 create user

SQL_K_OCTCRO 52 create role

SQL_K_OCTDUS 53 drop user

SQL_K_OCTDRO 54 drop role

SQL_K_OCTSER 55 set role

SQL_K_OCTCSC 56 create schema

SQL_K_OCTCCF 57 create control file

SQL_K_OCTATR 58 Alter tracing

SQL_K_OCTCTG 59 create trigger

SQL_K_OCTATG 60 alter trigger

SQL_K_OCTDTG 61 drop trigger

SQL_K_OCTANT 62 analyze table

SQL_K_OCTANI 63 analyze index

SQL_K_OCTANC 64 analyze cluster

SQL_K_OCTCPF 65 create profile

SQL_K_OCTDPF 66 drop profile

SQL_K_OCTAPF 67 alter profile

SQL_K_OCTDPR 68 drop procedure

SQL_K_OCTARC 70 alter resource cost

SQL_K_OCTCSL 71 create snapshot
log

SQL_K_OCTASL 72 alter snapshot log

SQL_K_OCTDSL 73 drop snapshot log

SQL_K_OCTCSN 74 create snapshot

SQL_K_OCTASN 75 alter snapshot

SQL_K_OCTDSN 76 drop snapshot

SQL_K_OCTCTY 77 create type

SQL_K_OCTDTY 78 drop type

SQL_K_OCTARO 79 alter role

SQL_K_OCTATY 80 alter type

SQL_K_OCTCYB 81 create type body

SQL_K_OCTAYB 82 alter type body

SQL_K_OCTDYB 83 drop type body

SQL_K_OCTDLB 84 drop library

SQL_K_OCTTTB 85 truncate table

SQL_K_OCTTCL 86 truncate cluster

†The positive values are defined for compatibility with Oracle 10g. Not all statements are supported
by Oracle Rdb therefore not all values will appear in the SQLCA. Negative values are Oracle Rdb
specific values.

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C–13

Table C–4 (Cont.) SQLCA SQLERRD[0] Values

Symbolic Name† Value SQL Statement

SQL_K_OCTCBM 87 create bitmapfile

SQL_K_OCTAVW 88 alter view

SQL_K_OCTDBM 89 drop bitmapfile

SQL_K_OCTSCO 90 set constraints

SQL_K_OCTCFN 91 create function

SQL_K_OCTAFN 92 alter function

SQL_K_OCTDFN 93 drop function

SQL_K_OCTCPK 94 create package

SQL_K_OCTAPK 95 alter package

SQL_K_OCTDPK 96 drop package

SQL_K_OCTCPB 97 create package
body

SQL_K_OCTAPB 98 alter package body

SQL_K_OCTDPB 99 drop package body

SQL_K_OCTCDR 157 create directory

SQL_K_OCTDDR 158 drop directory

SQL_K_OCTCLB 159 create library

SQL_K_OCTCJV 160 create java

SQL_K_OCTAJV 161 alter java

SQL_K_OCTDJV 162 drop java

SQL_K_OCTCOP 163 create operator

SQL_K_OCTCIT 164 create indextype

SQL_K_OCTDIT 165 drop indextype

SQL_K_OCTAIT 166 reserver for alter
indextype

SQL_K_OCTDOP 167 drop operator

SQL_K_OCTAST 168 associate statistics

SQL_K_OCTDST 169 disassociate
statistics

SQL_K_OCTCAL 170 call method

SQL_K_OCTCSM 171 create summary

SQL_K_OCTASM 172 alter summary

SQL_K_OCTDSM 173 drop summary

SQL_K_OCTCDM 174 create dimension

SQL_K_OCTADM 175 alter dimension

SQL_K_OCTDDM 176 drop dimension

SQL_K_OCTCCT 177 create context

SQL_K_OCTDCT 178 drop context

†The positive values are defined for compatibility with Oracle 10g. Not all statements are supported
by Oracle Rdb therefore not all values will appear in the SQLCA. Negative values are Oracle Rdb
specific values.

(continued on next page)

C–14 The SQL Communications Area (SQLCA) and the Message Vector

Table C–4 (Cont.) SQLCA SQLERRD[0] Values

Symbolic Name† Value SQL Statement

SQL_K_OCTASO 179 alter outline

SQL_K_OCTCSO 180 create outline

SQL_K_OCTDSO 181 drop outline

SQL_K_OCTAOP 183 alter operator

SQL_K_OCTCEP 184 create encryption
profile

SQL_K_OCTAEP 185 alter encryption
profile

SQL_K_OCTDEP 186 drop encryption
profile

SQL_K_OCTCSP 187 create spfile from
pfile

SQL_K_OCTCPS 188 create pfile from
spfile

SQL_K_OCTUPS 189 merge

SQL_K_OCTCPW 190 change password

SQL_K_OCTUJI 191 update join index

SQL_K_OCTASYN 192 alter synonym

SQL_K_OCTADG 193 alter disk group

SQL_K_OCTCDG 194 create disk group

SQL_K_OCTDDG 195 drop disk group

SQL_K_OCTALB 196 alter library

SQL_K_OCTPRB 197 purge user
recyclebin

SQL_K_OCTPDB 198 purge dba
recyclebin

SQL_K_OCTPTS 199 purge tablespace

SQL_K_OCTPTB 200 purge table

SQL_K_OCTPIX 201 purge index

SQL_K_OCTUDP 202 undrop object

SQL_K_OCTDDB 203 drop database

SQL_K_OCTFBD 204 flashback database

SQL_K_OCTFBT 205 flashback table

†The positive values are defined for compatibility with Oracle 10g. Not all statements are supported
by Oracle Rdb therefore not all values will appear in the SQLCA. Negative values are Oracle Rdb
specific values.

C.2 The Message Vector
When SQL precompiles a program, it declares a host structure for the message
vector immediately following the SQLCA. It calls the structure RDB$MESSAGE_
VECTOR.

The SQL Communications Area (SQLCA) and the Message Vector C–15

Programs most often use the message vector in two ways:

• By checking the message vector field RDB$LU_STATUS for the return status
value from the last SQL statement. The program can either check the low-
order bit of that field (successful if set) or use the entire field to determine the
specific return status value.

• By using the message vector in the sql_signal and sql_get_error_text routines:

The sql_signal routine uses the message vector to signal the error to the
OpenVMS condition handler.

The sql_get_error_text routine puts the message text corresponding to
the return status value in the message vector into a buffer the program
specifies.

For more information about sql_signal and sql_get_error_text, see Chapter 5.

Figure C–1 summarizes the fields of the message vector.

Figure C–1 Fields of the Message Vector

RDB$MESSAGE_VECTOR

RDB$LU_NUM_ARGUMENTS Number of arguments in the vector

RDB$LU_STATUS Number corresponding to return
status for the condition

RDB$ALU_ARGUMENTS An array containing information about FAO
arguments and follow-on messages related to
the primary message, if any

RDB$LU_ARGUMENTS [1] Number of FAO arguments to primary message

. Pointer to FAO arguments, if any

. Return status for follow-on message, if any

. Number of FAO arguments, for follow-on
message, if any

C.3 Declarations of the SQLCA and the Message Vector
This section shows the SQLCA and message vector declarations for the host
languages supported by the SQL precompiler and module processor.

Example C–4 shows the Ada SQLCA and message vector declaration.

Example C–4 Ada SQLCA and Message Vector Declaration

(continued on next page)

C–16 The SQL Communications Area (SQLCA) and the Message Vector

Example C–4 (Cont.) Ada SQLCA and Message Vector Declaration

Package SQL_ADA_CURSOR is
TYPE SQL_TYPE_1 IS NEW STRING(1..6);

type SQLERRM_REC is
record

SQLERRML : short_integer;
SQLERRMC : string (1..70);

end record;

type SQLERRD_ARRAY is array (1..6) of integer;

type SQLCA is
record

SQLCAID : string (1..8) := "SQLCA ";
SQLABC : integer := 128;
SQLCODE : integer;
SQLERRM : sqlerrm_rec;
SQLERRD : sqlerrd_array;
SQLWARN0 : character := ’ ’;
SQLWARN1 : character := ’ ’;
SQLWARN2 : character := ’ ’;
SQLWARN3 : character := ’ ’;
SQLWARN4 : character := ’ ’;
SQLWARN5 : character := ’ ’;
SQLWARN6 : character := ’ ’;
SQLWARN7 : character := ’ ’;
SQLEXT : string (1..8) := " ";

end record;

RDB_MESSAGE_VECTOR : SYSTEM.UNSIGNED_LONGWORD_ARRAY(1..20);
pragma PSECT_OBJECT(RDB_MESSAGE_VECTOR,"RDB$MESSAGE_VECTOR");

Example C–5 shows the BASIC SQLCA and message vector declaration.

Example C–5 BASIC SQLCA and Message Vector Declaration

RECORD SQLCA_REC
string SQLCAID = 8
long SQLCABC
long SQLCODE
GROUP SQLERRM
word SQLERRML
string SQLERRMC = 70

END GROUP SQLERRM
long SQLERRD(5)
string SQLWARN0 = 1
string SQLWARN1 = 1
string SQLWARN2 = 1
string SQLWARN3 = 1
string SQLWARN4 = 1
string SQLWARN5 = 1
string SQLWARN6 = 1
string SQLWARN7 = 1
string SQLEXT = 8

END RECORD SQLCA_REC

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C–17

Example C–5 (Cont.) BASIC SQLCA and Message Vector Declaration

DECLARE SQLCA_REC SQLCA

RECORD RDB$MESSAGE_VECTOR_REC
long RDB$LU_NUM_ARGUMENTS
long RDB$LU_STATUS
GROUP RDB$ALU_ARGUMENTS(17) ! Arrays in BASIC are always relative

long RDB$LU_ARGUMENT ! to 0. There are 18 array elements.
END GROUP RDB$ALU_ARGUMENTS

END RECORD RDB$MESSAGE_VECTOR_REC

COMMON (RDB$MESSAGE_VECTOR) &
RDB$MESSAGE_VECTOR_REC RDB$MESSAGE_VECTOR

Example C–6 shows the C SQLCA and message vector declaration.

Example C–6 C SQLCA and Message Vector Declaration

struct
{

char SQLCAID[8];
int SQLCABC;
int SQLCODE;
struct {

short SQLERRML;
char SQLERRMC[70];

} SQLERRM;
int SQLERRD[6];
struct {

char SQLWARN0[1];
char SQLWARN1[1];
char SQLWARN2[1];
char SQLWARN3[1];
char SQLWARN4[1];
char SQLWARN5[1];
char SQLWARN6[1];
char SQLWARN7[1];

} SQLWARN;
char SQLEXT[8];

} SQLCA = { {’S’,’Q’,’L’,’C’,’A’,’ ’,’ ’,’ ’},
128, 0,
{0, ""},
{0,0,0,0,0,0},
{"", "", "", "", "", "", "", ""},
"" };

extern
struct Rdb$MESSAGE_VECTOR_str
RDB$MESSAGE_VECTOR;

Example C–7 shows the COBOL SQLCA and message vector declaration.

Example C–7 COBOL SQLCA and Message Vector Declaration

(continued on next page)

C–18 The SQL Communications Area (SQLCA) and the Message Vector

Example C–7 (Cont.) COBOL SQLCA and Message Vector Declaration

01 SQLCA GLOBAL.
02 SQLCAID PIC X(8) VALUE IS "SQLCA ".
02 SQLCABC PIC S9(9) COMP VALUE IS 128.
02 SQLCODE PIC S9(9) COMP.
02 SQLERRM.

03 SQLERRML PIC S9(4) COMP VALUE IS 0.
03 SQLERRMC PIC X(70).

02 SQLERRD PIC S9(9) COMP OCCURS 6 TIMES.
02 SQLWARN.

03 SQLWARN0 PIC X.
03 SQLWARN1 PIC X.
03 SQLWARN2 PIC X.
03 SQLWARN3 PIC X.
03 SQLWARN4 PIC X.
03 SQLWARN5 PIC X.
03 SQLWARN6 PIC X.
03 SQLWARN7 PIC X.

02 SQLEXT PIC X(8).

01 Rdb$MESSAGE_VECTOR EXTERNAL GLOBAL.
03 Rdb$LU_NUM_ARGUMENTS PIC S9(9) COMP.
03 Rdb$LU_STATUS PIC S9(9) COMP.
03 Rdb$ALU_ARGUMENTS OCCURS 18 TIMES.

05 Rdb$LU_ARGUMENTS PIC S9(9) COMP.

Example C–8 shows the FORTRAN SQLCA and message vector declaration.

Example C–8 FORTRAN SQLCA and Message Vector Declaration

CHARACTER*1 SQLCA (128)
INTEGER*4 SQLCOD
EQUIVALENCE (SQLCOD, SQLCA(13))
INTEGER*2 SQLTXL
EQUIVALENCE (SQLTXL, SQLCA(17))
CHARACTER*70 SQLTXT
EQUIVALENCE (SQLTXT, SQLCA(19))
INTEGER*4 SQLERR(1:6)
EQUIVALENCE (SQLERR, SQLCA(89))
CHARACTER*1 SQLWRN(0:7)
EQUIVALENCE (SQLWRN, SQLCA(113))

INTEGER*4 Rdb$MESSAGE_VECTOR(20), Rdb$LU_NUM_ARGUMENTS
INTEGER*4 RdbLU_STATUS, RdbALU_ARGUMENTS(18)
COMMON /Rdb$MESSAGE_VECTOR/ Rdb$MESSAGE_VECTOR
EQUIVALENCE (Rdb$MESSAGE_VECTOR(1),Rdb$LU_NUM_ARGUMENTS)
EQUIVALENCE (Rdb$MESSAGE_VECTOR(2), Rdb$LU_STATUS)
EQUIVALENCE (Rdb$MESSAGE_VECTOR(3), Rdb$ALU_ARGUMENTS)

Example C–9 shows the Pascal SQLCA and message vector declaration.

Example C–9 Pascal SQLCA and Message Vector Declaration

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C–19

Example C–9 (Cont.) Pascal SQLCA and Message Vector Declaration

TYPE
RDB$LU_ARGUMENTS = [HIDDEN] INTEGER;
RDB$ALU_ARGUMENTS_ARRAY = [HIDDEN] ARRAY [1..18] OF RDB$LU_ARGUMENTS;
RDB$MESSAGE_VECTOR_REC = [HIDDEN] RECORD

RDB$LU_NUM_ARGUMENTS : INTEGER;
RDB$LU_STATUS : INTEGER;
RDB$ALU_ARGUMENTS : RDB$ALU_ARGUMENTS_ARRAY;

END;
VAR
RDB$MESSAGE_VECTOR : [HIDDEN, common(rdb$message_vector)]
RDB$MESSAGE_VECTOR_REC;
TYPE
SQL$SQLCA_REC = [HIDDEN] RECORD

SQLCAID : PACKED ARRAY [1..8] OF CHAR;
SQLCABC : INTEGER;
SQLCODE : INTEGER;
SQLERRM : RECORD

SQLERRML : SQL$SMALLINT;
SQLERRMC : PACKED ARRAY [1..70] OF CHAR;

END;
SQLERRD : ARRAY [1..6] OF INTEGER;
SQLWARN : RECORD

SQLWARN0 : CHAR;
SQLWARN1 : CHAR;
SQLWARN2 : CHAR;
SQLWARN3 : CHAR;
SQLWARN4 : CHAR;
SQLWARN5 : CHAR;
SQLWARN6 : CHAR;
SQLWARN7 : CHAR;

END;
SQLEXT : PACKED ARRAY [1..8] OF CHAR;

END;
VAR
RDB$DBHANDLE : [HIDDEN] INTEGER;
SQLCA : [HIDDEN] SQL$SQLCA_REC;

C.4 Using SQLCA Include Files
Use of the SQLCA include files such as the SQL_SQLCA.H file for C, are intended
for use with the host language files only. That is, only *.C should be included
in that file. Precompiled files (*.SC files) should use the EXEC SQL INCLUDE
SQLCA embedded SQL command in the declaration section of the module. In this
way the precompiler can properly define the structure to be used by the related
SQL generated code.

Remember that the SQLCA is always scoped at the module level, unlike the
SQLCODE or SQLSTATE variables which may be routine specific.

C.5 SQLSTATE
SQL defines a set of status parameters that can be part of the parameter list for
a procedure definition in a nonstored module. They are SQLSTATE, SQLCODE,
and SQLCA. An SQL procedure is required to contain at least one of these status
parameters in its parameter list. All status parameters are implicitly output
parameters.

C–20 The SQL Communications Area (SQLCA) and the Message Vector

The purpose of these status parameters is to return the status of each SQL
statement that is executed. Each status parameter gives information that allows
you to determine whether the statement completed execution or an exception has
occurred. These status parameters differ in the amount of diagnostic information
they supply, when an exception occurs as follows:

• SQLCODE—This is the original SQL error handling mechanism. It is an
integer value. SQLCODE differentiates among errors (negative numbers),
warnings (positive numbers), successful completion (0), and a special code
of 100, which means no data. SQLCODE is a deprecated feature of the
ANSI/ISO SQL standard.

• SQLCA—This is an extension of the SQLCODE error handling mechanism.
It contains other context information that supplements the SQLCODE value.
SQLCA is not part of the ANSI/ISO SQL standard. However, many databases
such as DB2 and Oracle Database have defined proprietary semantics and
syntax to implement it.

• SQLSTATE—This is the error handling mechanism for the ANSI/ISO SQL
standard. The SQLSTATE value is a character string that is associated with
diagnostic information.

This section covers the following SQLSTATE topics:

• Definition of the SQLSTATE status parameter

• Use of the SQLSTATE status parameter

C.5.1 Definition of the SQLSTATE Status Parameter
The value returned in an SQLSTATE status parameter is a string of five
characters. It comprises a two-character class value followed by a three-character
subclass value. Each class value corresponds to an execution condition such
as success, connection exception, or data exception. Each subclass corresponds
to a subset of its execution condition. For example, connection exceptions are
differentiated by ‘‘connection name in use’’, ‘‘connection not open’’, and ‘‘connection
failure’’ categories. A subclass of 000 means there is no subcondition.

Table C–5 shows the SQLSTATE values that SQL has defined with its
corresponding execution condition. The SQLSTATE classes beginning with
either the characters R or S are Oracle Rdb-specific SQLSTATE values.

Table C–5 SQLSTATE Status Parameter Values—Sorted by SQLSTATE Class
and Subclass

Class
/Subclass Condition Subcondition

00000 Successful completion No subcondition

01000 Warning No subcondition

01003 Null value eliminated
in aggregate function

01004 String data, right
truncation

02000 No data No subcondition

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C–21

Table C–5 (Cont.) SQLSTATE Status Parameter Values—Sorted by SQLSTATE
Class and Subclass

Class
/Subclass Condition Subcondition

08002 Connection exception Connection name in
use

08003 Connection does not
exist

08006 Connection failure

09000 Trigger action exception No subcondition

20000 Case not found for case statement No subcondition

21000 Singleton select returned more than one value No subcondition

22001 Data exception String data, right
truncation

22002 Null value, no
indicator parameter

22003 Numeric value out of
range

22004 Null value not
allowed

22005 Error in assignment

22006 Invalid fetch
orientation

22007 Invalid date-time
format

22008 Datetime field
overflow

22009 Invalid time
displacement value

22010 Invalid indicator
parameter value

22011 Substring error

22012 Division by zero

22015 Datetime field
overflow

22018 Invalid character
value for cast

22019 Invalid escape
character

22020 Invalid limit value

22021 Character not in
repertoire

22022 Indicator overflow

22023 Invalid parameter
value

(continued on next page)

C–22 The SQL Communications Area (SQLCA) and the Message Vector

Table C–5 (Cont.) SQLSTATE Status Parameter Values—Sorted by SQLSTATE
Class and Subclass

Class
/Subclass Condition Subcondition

22024 C string not
terminated

22025 Invalid escape
sequence

22027 Trim error

2201B Invalid regular
expression

2200F Zero length character
string

23000 Integrity constraint violation No subcondition

24000 Invalid cursor state No subcondition

25000 Invalid transaction state No subcondition

25001 Active SQL
transaction

25006 Read-only SQL
transaction

26000 Invalid SQL statement identifier No subcondition

2F000 SQL routine exception No subcondition

2F005 Function did not
execute return
statement

30000 Invalid SQL statement No subcondition

31000 Invalid target specification value No subcondition

32000 Invalid constraint mode state No subcondition

33000 Invalid SQL descriptor name No subcondition

34000 Invalid cursor name No subcondition

35000 Invalid condition number No subcondition

37000 Database specification syntax error No subcondition

38000 External procedure exception No subcondition

39000 External procedure call exception No subcondition

39001 Invalid SQLSTATE
returned

3B000 Savepoint exception No subcondition

3B001 Savepoint exception,
Invalid specification

3B002 Savepoint exception,
Too many savepoints

3B503 Savepoint exception,
Cannot use from
function or trigger

3C000 Ambiguous cursor name No subcondition

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C–23

Table C–5 (Cont.) SQLSTATE Status Parameter Values—Sorted by SQLSTATE
Class and Subclass

Class
/Subclass Condition Subcondition

3E000 Invalid catalog name No subcondition

3F000 Invalid schema name No subcondition

42000 Syntax error or access rule violation No subcondition

44000 With check option violation No subcondition

R10011 Lock error exception Deadlock encountered

R10021 Lock conflict

R20001 Duplicate value not allowed in index No subcondition

R30002 Trigger forced an ERROR statement No subcondition

R40001 Distributed transaction identification error No subcondition

R50001 Attempted to update a read-only table No subcondition

R60001 Metadata no longer available No subcondition

R70001 Table in request not reserved in transaction No subcondition

RR0001 Oracle Rdb returned an error No subcondition

S00001 No implicit transaction No subcondition

S10011 Context exception Bad version in context
structure

S10021 Bad type in context
structure

S10031 Bad length in context
structure

S20001 Row containing list deleted No subcondition

S30001 Invoker was not the definer No subcondition

S40011 Alias exception Alias unknown

S40021 Alias already declared

S70001 Base system does not support feature being
used

No subcondition

S60003 Case not found; WHEN or ELSE not specified No subcondition

S70001 Bad SQL version No subcondition

S50011 Negative length and scale for column Negative length
specified for column

S50021 Negative scale
specified for column

1Oracle Rdb specific SQLSTATE code
2Obsolete. Use SQLSTATE 09000 instead
3Obsolete. Use SQLSTATE 20000 instead

C.5.2 Use of the SQLSTATE Status Parameter
Table C–5 shows the SQLSTATE classes 00, 01, and 02 as completion conditions
of success, warning, and no data respectively. All other classes define exception
conditions.

C–24 The SQL Communications Area (SQLCA) and the Message Vector

When using embedded SQL, the embedded exception declaration defines the
following categories of exceptions:

• NOT FOUND: SQLSTATE class = 02

• SQLWARNING: SQLSTATE class = 01

• SQLEXCEPTION: SQLSTATE class > 02

• SQLERROR: SQLEXCEPTION or SQLWARNING

Example C–10 shows how to declare SQLSTATE as a parameter in a C program
and how to evaluate the SQLSTATE value using the string compare function.
When you declare SQLSTATE in a C program, you must type SQLSTATE in all
uppercase characters.

Example C–10 Declaring SQLSTATE in a C Program

char SQLSTATE[6];
long SQLCODE;

main()
{

EXEC SQL SELECT T_INT INTO :c1 FROM FOUR_TYPES
WHERE T_DECIMAL = 4.1;

printf ("SQLCODE should be < 0; its value is %ld\n", SQLCODE);
printf ("SQLSTATE should be ’22002’; its value is %s\n", SQLSTATE);
if (SQLCODE >= 0 || strncmp (SQLSTATE, "22002", 5) != 0)
flag = 0;

}

You can use the GET DIAGNOSTICS statement to return the SQLSTATE
information to your program. For more information, see the GET DIAGNOSTICS
Statement.

Note that Oracle Rdb provides a set of include file for the value of SQLSTATE.
These file are located in SYS$LIBRARY with the following names:

Table C–6 Include Files for SQLSTATE

File Name Description

SQLSTATE.BAS BASIC include file

SQLSTATE.FOR Fortran include file

SQLSTATE.H C or C++ header file

SQLSTATE.LIB COBOL include file

SQLSTATE.PAS Pascal include file

SQLSTATE.SQL SQL declare file

In addition a special script (SQLSTATE_TABLE.SQL) is provided to create a table
(SQLSTATE_TABLE) in a database and populate it with the values and symbolic
names.

Oracle Corporation will periodically add to these definition files as new
SQLSTATE values are used by Oracle Rdb, or as required by the ANSI and
ISO SQL database standard.

The SQL Communications Area (SQLCA) and the Message Vector C–25

D
The SQL Dynamic Descriptor Areas (SQLDA

and SQLDA2)

An SQL Descriptor Area (SQLDA) is a collection of parameters used only in
dynamic SQL programs. SQL provides two descriptor areas: SQLDA and
SQLDA2. Sections D.5 through D.5.2 include information specific to the SQLDA2.

Dynamic SQL lets programs accept or generate SQL statements at run time,
in contrast to SQL statements that are part of the source code for precompiled
programs or SQL module language procedures. Unlike precompiled SQL or SQL
module language statements, such dynamically executed SQL statements are
not necessarily part of a program’s source code, but can be generated while the
program is running. Dynamic SQL is useful when you cannot predict the type of
SQL statement your program will need to process.

To use an SQLDA, host languages must support pointer variables that provide
indirect access to storage by storing the address of data instead of directly storing
data in the variable. The languages supported by the SQL precompiler that
also support pointer variables are C, BASIC, and Ada. Any other language
that supports pointer variables can use an SQLDA, but must call SQL module
procedures containing SQL statements instead of embedding the SQL statements
directly in source code.

D.1 Purpose of the SQLDA
The SQLDA provides information about dynamic SQL statements to the program
and information about memory allocated by the program to SQL. Specifically,
SQL and host language programs use the SQLDA for the following purposes:

• SQL uses the SQLDA as a place to write information about parameter
markers and select list items in a prepared statement. SQL writes
information about the number and data types of input and output
parameter markers and select list items to the SQLDA when it processes
PREPARE . . . SELECT LIST INTO statements or DESCRIBE statements.

Parameter markers are question marks (?) that denote parameters in the
statement string of a PREPARE statement. SQL replaces parameter markers
with values in parameters or dynamic memory when it executes a dynamic
SQL statement.

The DESCRIBE statement writes information about select list items in a
prepared SELECT statement to the SQLDA so the host language program
can allocate storage (parameters or dynamic memory) for them. The storage
allocated by the program then receives values in rows of the prepared
SELECT statement’s result table in subsequent FETCH statements.

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–1

An SQLDA at any particular time can contain information about either input
or output parameter markers or select list items, but not about both:

SQL writes information about select list items to the SQLDA when it
executes DESCRIBE . . . SELECT LIST or PREPARE . . . SELECT LIST
statements.

SQL writes information about parameter markers to the SQLDA when it
executes DESCRIBE . . . MARKERS statements. If a prepared statement
has no parameter markers, a DESCRIBE . . . MARKERS statement puts
values in the SQLDA to indicate that there are no parameter markers.

• The program uses the SQLDA as a place to read the information SQL wrote
to the SQLDA about any select list items, or input or output parameter
markers in the prepared statement:

After either a DESCRIBE . . . SELECT LIST or DESCRIBE . . .
MARKERS statement, the program reads the number and data type of
select list items or parameter markers.

The program uses that information to allocate storage (either by declaring
parameters or allocating dynamic memory) for values that correspond to
the parameter markers or select list items.

• The program uses the SQLDA as a place to write the addresses of the storage
it allocated for parameter markers and select list items.

• SQL uses the SQLDA as a place to read information about parameter
markers or select list items:

In OPEN statements, SQL reads the addresses of a prepared SELECT
statement’s parameter markers to set up a cursor for the program to
process.

In FETCH statements, SQL reads the addresses of a prepared SELECT
statement’s select list items so it can write the values of the row being
fetched to the storage allocated by the program.

In EXECUTE statements, SQL reads the addresses of parameter markers
of any prepared statement other than a SELECT statement.

The OPEN and FETCH statements used to read information from the SQLDA
are not themselves dynamic statements used in a PREPARE statement, nor
is a DECLARE CURSOR statement that declares the cursor named in the
OPEN and FETCH statements. Although these statements use prepared
statements, they are among the SQL statements that cannot themselves be
prepared statements. See the PREPARE Statement for a list of statements
that cannot be dynamically executed.

• The behavior of dynamic SQL and the SQLDA in particular can be controlled
using the SET SQLDA Statement. For instance, parameter markers can be
named variables instead of simple question marks (?).

D–2 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

D.2 How SQL and Programs Use the SQLDA
The specific sequence of operations that uses the SQLDA depends on whether
a program can accept dynamically generated SELECT statements only, non-
SELECT statements only, or both. The following sequence describes in general
the steps a program follows in using the SQLDA. For specific examples, see the
chapter on using dynamic SQL in the Oracle Rdb Guide to SQL Programming
and the sample programs created during installation of Oracle Rdb in the
Samples directory.

1. The program uses the embedded SQL statement INCLUDE SQLDA to
automatically declare an SQLDA. In addition, the program must allocate
memory for the SQLDA and set the value of one of its fields, SQLN. The
value of SQLN specifies the maximum number of parameter markers or select
list items about which information can be stored in the SQLDA.

Programs can use more than one SQLDA but must explicitly declare
additional SQLDA structures with names other than SQLDA. Declaring
two SQLDAs can be useful for dynamic SQL programs that can accept both
SELECT and non-SELECT statements. One SQLDA stores information about
parameter markers and another stores information about select list items.
(An alternative to declaring multiple SQLDA structures in such programs
is to issue additional DESCRIBE . . . SELECT LIST statements after the
program finishes with parameter marker information in the SQLDA.)

Declaration and allocation of SQLDAs need to be done only once. The
remaining steps repeat as many times as the program has dynamic SQL
statements to process.

2. SQL writes the number and data types of any select list items (for a
DESCRIBE . . . SELECT LIST statement) or parameter markers (for a
DESCRIBE . . . MARKERS statement) of a prepared statement into the
SQLDA. SQL puts the number of select list items or parameter markers in
the SQLD field of the SQLDA, and stores codes denoting their data types in
the SQLTYPE fields.

3. If the program needs to determine if a particular prepared statement is
a SELECT statement, it reads the value of the second element of the
SQLCA.SQLERRD array after a DESCRIBE . . . SELECT LIST statement.
If the value is one, the prepared statement is a SELECT statement and the
program needs to allocate storage for rows generated during subsequent
FETCH statements.

4. When you use parameter markers in SQL statements, you should not
make any assumptions about the data types of the parameters. SQL may
convert the parameter to a data type that is more appropriate to a particular
operation. For example, when you use a parameter marker as one value
expression in a LIKE predicate, SQL returns a data type of VARCHAR for
that parameter even though the other value expression has a data type of
CHAR. The STARTING WITH predicate and the CONTAINING predicate
treat parameter markers in the same way. You can override the VARCHAR
data type in such predicates by explicitly setting the SQLTYPE field of the
SQLDA to CHAR.

5. The program reads information about the number, data type, and length of
any select list items (after a DESCRIBE . . . SELECT LIST statement) or
parameter markers (after a DESCRIBE . . . MARKERS statement) from the
SQLDA. The program then allocates storage (parameters or dynamic memory)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–3

for each of the select list items or parameters, and writes the addresses
for that storage to the SQLDA. The program puts the addresses into the
SQLDATA fields of the SQLDA.

If SQL uses a data type for the parameter marker or select list item that is
not supported by the programming language, the program must convert the
SQLTYPE and SQLLEN fields to an appropriate data type and length. The
program changes the values of SQLTYPE and SQLLEN that SQL returns
from the DESCRIBE statement to a data type and length that both SQL and
the host language support.

6. The program supplies values that will be substituted for parameter markers
and writes those values to the storage allocated for them.

7. SQL reads information about parameter markers from the SQLDA:

If the prepared statement is a prepared SELECT statement, SQL reads
the addresses of any parameter markers for that prepared SELECT
statement when it executes an OPEN statement that refers to the
SQLDA.

If the statement is any other prepared statement, SQL reads the
addresses of parameter markers for that statement when it executes an
EXECUTE statement that refers to the SQLDA.

SQL uses the addresses of parameter markers to retrieve the values in
storage (supplied by the program) and to substitute them for parameter
markers in the prepared statement.

8. Finally, for prepared SELECT statements only, SQL reads the addresses
of select list items when it executes a FETCH statement that refers to the
SQLDA. SQL uses the information to write the values from the row of the
result table to memory.

D.3 Declaring the SQLDA
Programs can declare the SQLDA in the following ways:

• By using the INCLUDE SQLDA statement embedded in Ada, or C, programs
to be precompiled. The INCLUDE SQLDA statement automatically inserts a
declaration of an SQLDA structure, called SQLDA, in the program when it
precompiles the program.

• In precompiled Ada programs, by specifying the SQLDA_ACCESS type in the
SQL definition package. Specifying SQLDA_ACCESS offers an advantage
over an embedded INCLUDE SQLDA statement because you can use it in
more than one declaration to declare multiple SQLDA structures.

• In precompiled C programs and C host language programs, you can use the
sql_sqlda.h header file. The following example shows how to include the file
in a C program:

#include <sql_sqlda.h>

The sql_sqlda.h header file includes typedef statements for the SQLDA
structure defining the SQL_T_SQLDA (or the SQL_T_SQLDA2) data type. In
addition, it defines the SQL_T_SQLDA_FULL (or SQL_T_SQLDA2_FULL)
data type as a superset to the definition of the SQLDA structure. The SQL_
T_SQLDA_FULL data type is identical in layout to the SQL_T_SQLDA data
type except that it contains additional unions with additional fields that SQL
uses when describing CALL statements.

D–4 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

For additional information on declaring SQLDA structures, see the Oracle
Rdb Guide to SQL Programming.

• By explicitly declaring the SQLDA in programs written in host languages
that support pointer variables. Such host languages can then take advantage
of dynamic SQL even though the SQL precompiler does not support them.
Instead of embedding SQL statements directly in the host language source
code, languages unsupported by the precompiler must call SQL module
language procedures that contain SQL statements to use dynamic SQL. See
Chapter 3 for more information about the SQL module language.

Programs that explicitly declare SQLDA structures (whether or not they have
precompiler support) supply a name for the SQLDA structure, which can
be SQLDA or any other valid name. Declaring two SQLDAs can be useful
for dynamic SQL programs that can accept both SELECT and non-SELECT
statements. One SQLDA stores information about parameter markers and
another stores information about select list items.

An SQLDA always includes four fields, and may sometimes include a fifth field.
The fifth field, SQLVAR, is a repeating field. For languages other than C, it
comprises five parameters that describe individual select list items or parameter
markers of a prepared statement. For C, it comprises six parameters.

The following examples show declarations of the SQLDA for different host
languages. For C, and Ada, the examples show the declaration SQL inserts
when it processes a program that contains the INCLUDE SQLDA statement. For
BASIC, the example shows the format a program should use when it declares the
SQLDA explicitly.

These sample declarations all use the name SQLDA as the name for the SQLDA
structure, but programs can use any valid name.

Example D–1 shows the declaration that SQL inserts when it processes a
program that contains the INCLUDE SQLDA statement.

Example D–1 Declaration of the SQLDA in Ada

type SQLNAME_REC is
record

NAME_LEN : standard.short_integer;
NAME_STR : standard.string (1..30);

end record;

type SQLVAR_REC is
record

SQLTYPE : standard.short_integer;
SQLLEN : standard.short_integer;
SQLDATA : system.address;
SQLIND : system.address;
SQLNAME : sqlname_rec;

end record;
type SQLVAR_ARRAY is array (1..255) of sqlvar_rec;

type SQLDA_RECORD;
type SQLDA_ACCESS is access SQLDA_RECORD;

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–5

Example D–1 (Cont.) Declaration of the SQLDA in Ada

type SQLDA_RECORD is
record

SQLDAID : standard.string (1..8) := ’SQLDA ’;
SQLDABC : standard.integer;
SQLN : standard.short_integer;
SQLD : standard.short_integer;
SQLVAR : sqlvar_array;

end record;

Example D–2 shows the format that BASIC programs should use when they
explicitly declare the SQLDA.

Example D–2 Declaration of the SQLDA in BASIC

RECORD SQLDA_REC
string SQLDAID = 8
long SQLDABC
word SQLN ! Program must explicitly
word SQLD ! set SQLN equal to the number
GROUP SQLVAR(100) ! of occurrences of SQLVAR

word SQLTYPE
word SQLLEN
long SQLDATA
long SQLIND
GROUP SQLNAME

word SQLNAME
string SQLNAMEC = 30

END GROUP SQLNAME
END GROUP SQLVAR

END RECORD SQLDA_REC

DECLARE SQLDA_REC SQLDA

Example D–3 shows the declaration that SQL inserts when it processes a C
program that contains the INCLUDE SQLDA statement.

Example D–3 Declaration of the SQLDA in C

struct SQLDA_STRUCT {
char SQLDAID[8];
int SQLDABC;
short SQLN;
short SQLD;
struct SQLVAR_STRUCT {
short SQLTYPE;
short SQLLEN;
char *SQLDATA;
short *SQLIND;
short SQLNAME_LEN;
char SQLNAME[30];

} SQLVAR[1];
} *SQLDA;

D–6 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

D.4 Description of Fields in the SQLDA
Table D–1 describes the different fields of the SQLDA and the ways SQL uses
the fields. Remember that the SQLDA, at any particular time, can contain
information about either select list items or parameter markers, but not both.

Table D–1 Fields in the SQLDA

Field Name Meaning of the Field Set by Used by

SQLDAID Character string field whose
value is always the character
string ‘‘SQLDA’’.

Program SQL to determine if the structure is an SQLDA or
an SQLDA2.

SQLDABC The length in bytes of the
SQLDA, which is a function
of SQLN (SQLDABC = 16 + (44
* SQLN)).

SQL Not used.

SQLN The total number of occurrences
of the SQLVAR group field
(the value must equal or
exceed the value in SQLD, or
the DESCRIBE statement).
Generates a run-time error.

Program SQL to determine if a program allocated enough
storage for the SQLDA.

SQLD Number of output items (if
DESCRIBE . . . OUTPUT)
or parameter markers (if
DESCRIBE . . . INPUT) in
prepared statement (if none, the
value is 0).

SQL Program to determine how many input or output
parameters for which to allocate storage.

SQLVAR A repeating group field, each
occurrence of which describes
a select list item or parameter
marker (not used if the value of
SQLD is 0).

No value See descriptions of subfields in the following
entries.

SQLVAR Subfields (Each Occurs Once for Each Select List Item or Parameter Marker)

Field Name Meaning of the Field Set by Used by

SQLTYPE A subfield of SQLVAR whose
value indicates the data type of
the select list item or parameter
marker (see Table D–2).

SQL Program to allocate storage with the appropriate
data type for the parameter.

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–7

Table D–1 (Cont.) Fields in the SQLDA

SQLVAR Subfields (Each Occurs Once for Each Select List Item or Parameter Marker)

Field Name Meaning of the Field Set by Used by

SQLLEN A subfield of SQLVAR whose
value indicates the length in
bytes of the select list item or
parameter marker.

For CHAR2 and CHARACTER
VARYING2, indicates the
declared length of the data
without length field overhead.

For fixed-length data types
(TINYINT, SMALLINT,
INTEGER, BIGINT, and
DECIMAL), SQLLEN is split
in half.

For TINYINT, SMALLINT,
INTEGER, and BIGINT, the low-
order byte of SQLLEN indicates
the length, and the high-order
byte indicates the scale (the
number of digits to the right of
the decimal point).

SQL unless
program
resets, except
DECIMAL
or H_FLOAT,
which can only
be set by user

Program to allocate storage with the appropriate
size for the select list item or parameter marker.

For DECIMAL, the low-order
byte indicates the precision, and
the high-order byte indicates the
scale. However, the SQLLEN
for a DECIMAL data type
can be set only by the user;
it is not returned by SQL on a
DESCRIBE statement.

List cursors cannot return data
in data types that require a scale
factor.

For floating-point data types, the
SQLLEN shows the length of the
field in bytes so that SQLLEN =
4 indicates the REAL data type,
SQLLEN = 8 indicates DOUBLE
PRECISION, and SQLLEN
= 16 indicates the H_FLOAT
data type. The floating point
representation of the data (VAX
versus IEEE) is determined by
the /FLOAT qualifier on the
SQL$PRE command line.

SQLDATA A subfield of SQLVAR whose
value is the address of the
storage allocated for the select
list item or parameter marker.

For CHARACTER VARYING 2,
allocate sufficient memory to
allow the length field (that is,
SQLLEN plus two octects).

Program SQL:

• In EXECUTE and OPEN statements, to
retrieve a value stored by the program and
substitute it for a parameter marker in the
prepared statement.

• In FETCH statements, to store a value from
a result table.

2Includes VARCHAR, VARCHAR2, NATIONAL CHARACTER VARYING, RAW, and LONG VARCHAR

(continued on next page)

D–8 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Table D–1 (Cont.) Fields in the SQLDA

SQLVAR Subfields (Each Occurs Once for Each Select List Item or Parameter Marker)

Field Name Meaning of the Field Set by Used by

SQLIND A subfield of SQLVAR whose
value is the address of the
indicator variable, a word (16
bits) in size (if program does not
set SQLIND, the value is 0).

Program Program or SQL:

• In FETCH statements, by SQL, to store the
value for an indicator variable associated
with a select list item.

• After FETCH statements, by the program.
to retrieve the value of a select list item’s
associated indicator variable.

• In EXECUTE and OPEN statements, by
SQL, to retrieve the value of a parameter
marker’s associated indicator variable.

SQLNAME A varying character string
subfield of SQLVAR whose value
is:

For output items, the name
of the column in the select
list of the prepared SELECT
statement.

For input, the name of the
column to which a parameter
marker is assigned (in INSERT
or UPDATE statements) or
compared (in basic predicates).

If the select list item,
assignment, or comparison
involves an arithmetic
expression or predicates other
than basic predicates; SQL does
not assign a value to SQLNAME.

SQL The program, optionally, to find out the name of
the column associated with a select list item or
parameter marker.

Table D–2 shows the numeric and literal values for the SQLTYPE subfield of
SQLVAR and the meaning of those values.

Table D–2 Codes for SQLTYPE Field of SQLDA and SQLDA2

Numeric
Value Literal Value Data Type

449 SQLDA_VARCHAR VARCHAR1, CHARACTER VARYING1

453 SQLDA_CHAR CHAR, CHARACTER

481 SQLDA_FLOAT FLOAT5, REAL, DOUBLE PRECISION

485 SQLDA_DECIMAL DECIMAL

497 SQLDA_INTEGER INTEGER

501 SQLDA_SMALLINT SMALLINT

503 SQLDA_DATE DATE VMS

1For the SQLDA2 structure, this data type has a longword length prefix.
5The floating point representation assumed by SQL for the floating point number is determined by the /FLOAT qualifier
on the SQL$MOD or SQL$PRE command line.

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–9

Table D–2 (Cont.) Codes for SQLTYPE Field of SQLDA and SQLDA2

Numeric
Value Literal Value Data Type

505 SQLDA_QUADWORD BIGINT

507 SQLDA_ASCIZ ASCIZ2

509 SQLDA_SEGSTRING LIST OF BYTE VARYING

515 SQLDA_TINYINT TINYINT

516 SQLDA_VARBYTE VARBYTE3�4

519 SQLDA2_DATETIME Date-time (ANSI)

521 SQLDA2_INTERVAL INTERVAL

909 SQLDA2_VARBINARY BINARY VARYING (VARBINARY)

913 SQLDA2_BINARY BINARY

2The SQLTYPE code for ASCIZ is never returned in the SQLDA by a DESCRIBE statement, but it can be used to
override the data type that is returned.
3This data type value is only valid for fetches of list elements.
4This data type does not allow null values.

SQL provides a file that contains the declarations of all the SQLTYPE literal
values. Table C–2 shows how to include this file in precompiled SQL and module
language programs.

There is some confusion over the use of ASCII and ASCIZ in dynamic SQL
and C programs. When a CHAR data type is written to the database using
INSERT or UPDATE, the string is not padded with blank spaces. It contains a
null-terminated character, which makes it difficult to access the data.

SQL does not know what the host language is when using dynamic SQL; it
returns the data type of the field as in the DESCRIBE statement, (CHAR(n)),
and not the data type of the user’s host variable. The interpretation of CHAR(n)
being ASCIZ is for host variables and not database variables.

If you change the SQLDA’s SQLTYPE from CHAR to ASCIZ and increase
SQLLEN by 1, no truncation occurs and the CHAR STRING fields will be padded
with blank spaces accordingly (where incrementing SQLLEN by 1 accounts for
the null terminator).

Note

SQL sets the value of SQLTYPE during the DESCRIBE statement.
However, your application program can change the value of SQLTYPE to
that of another data type.

For example, SQL does not support the DECIMAL data type in database
columns. This means that SQL will never return the code for the
DECIMAL data type in the SQLTYPE field in the SQLDA. However,
programs can set the code to that for DECIMAL, and SQL will convert
data from databases to DECIMAL, and data from DECIMAL parameters
in the program to the data type in the database.

However, SQL assumes that program parameters will correspond to the
data type indicated by the SQLTYPE code. If they do not, SQL may
generate unpredictable results.

D–10 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

D.5 Purpose of the SQLDA2
SQL provides an extended version of the SQLDA, called the SQLDA2, which
supports additional fields and field sizes.

You can use either the SQLDA or SQLDA2 in any dynamic SQL statement that
calls for a descriptor area. SQL assumes default values for SQLDA2 fields and
field sizes if you use an SQLDA structure to provide input parameters for an
application; however, SQL issues an error message if the application cannot
represent resulting values.

Use the SQLDA2 instead of the SQLDA when any of the following applies to the
parameter markers or select list items:

• The length of the column name is greater than 30 octets. (An octet is 8 bits.)

• The data type of the column is DATE, DATE VMS, DATE ANSI, TIME,
TIMESTAMP, or any of the interval data types.

• The data type is CHAR, CHAR VARYING, CHARACTER, CHARACTER
VARYING, VARCHAR, LONG VARCHAR, or RAW and any of the following is
true:

The character set is not the default 8-bit character set.

The maximum length in octets exceeds 32,767.

You can examine the SQLDA2 after SQL fills in the items on a PREPARE
statement. Oracle Rdb recommends this rather than setting the fields yourself.

Use one of the following methods to extract the data for your own use:

• The CAST function to convert the data to TEXT before using it

• The EXTRACT function to extract individual fields so you can format it

• The CAST function to convert to DATE VMS so that you can use OpenVMS
system services

The ANSI/ISO SQL standard specifies that the data is always returned to the
application program as CHAR data.

D.5.1 Declaring the SQLDA2
Programs can declare the SQLDA2 in the same way as they declare an SQLDA,
described in Section D.3.

To indicate to SQL that the structure is an SQLDA2 instead of an SQLDA, your
program must set the SQLDAID field to be the character string containing the
word SQLDA2 followed by two spaces.

The following examples show declarations of the SQLDA2 for different host
languages. For C, and Ada, the examples show the declaration SQL inserts when
it processes a program that contains the INCLUDE SQLDA statement. For other
languages, the examples show the format that programs should use when they
explicitly declare the SQLDA.

Example D–4 shows the declaration that SQL inserts when it processes an Ada
program that contains the INCLUDE SQLDA2 statement. In this example, N
stands for the maximum number of occurrences of SQLVAR2.

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–11

Example D–4 Declaration of the SQLDA2 in Ada

type SQLNAME_REC is
record

NAME_LEN : standard.short_integer;
NAME_STR : standard.string (1..128);

end record;
type SQLVAR_REC is

record
SQLTYPE : standard.short_integer;
SQLLEN : standard.integer;
SQLDATA : system.address;
SQLIND : system.address;
SQLCHRONO_SCALE: standard.integer;
SQL_CHRONO_PRECISION: standard.integer;
SQLNAME : sqlname_rec;
SQLCHAR_SET_NAME : standard.string(1..128);
SQLCHAR_SET_SCHEMA : standard.string(1..128);
SQLCHAR_SET_CATALOG : standard.string(1..128);

end record;
type SQLVAR_ARRAY is array (1..N) of sqlvar_rec;

type SQLDA_RECORD;
type SQLDA_ACCESS is access SQLDA_RECORD;
type SQLDA_RECORD is

record
SQLDAID : standard.string (1..8) := ’SQLDA2 ’;
SQLDABC : standard.integer;
SQLN : standard.short_integer;
SQLD : standard.short_integer;
SQLVAR : sqlvar_array;

end record;

Example D–5 shows the format that BASIC programs should use when they
explicitly declare the SQLDA2.

Example D–5 Declaration of the SQLDA2 in BASIC

RECORD SQLDA_REC
string SQLDAID = 8 ! Value must be "SQLDA2 ".
long SQLDABC
word SQLN ! Program must explicitly
word SQLD ! set SQLN equal to the number
GROUP SQLVAR(N) ! of occurrences of SQLVAR.

word SQLTYPE
long SQLLEN
long SQLOCTET_LEN
long SQLDATA
long SQLIND
long SQLCHRONO_SCALE
long SQLCHRONO_PRECISION

(continued on next page)

D–12 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Example D–5 (Cont.) Declaration of the SQLDA2 in BASIC

GROUP SQLNAME
word SQLNAME
string SQLNAMEC = 128

END GROUP SQLNAME
string SQLCHAR_SET_NAME = 128
string SQLCHAR_SET_SCHEMA = 128
string SQLCHAR_SET_CATALOG = 128

END GROUP SQLVAR
END RECORD SQLDA_REC

DECLARE SQLDA_REC SQLDA2

Example D–6 shows the declaration that SQL inserts when it processes a C
program that contains the INCLUDE SQLDA2 statement.

Example D–6 Declaration of the SQLDA2 in C

struct SQLDA_STRUCT {
char SQLDAID[8]; /*Value must be "SQLDA2 "*/
int SQLDABC; /* ignored. */
short SQLN;
short SQLD;
struct {
short SQLTYPE;
long SQLLEN;
long SQLOCTET_LEN
char *SQLDATA;
long *SQLIND;
long SQLCHRONO_SCALE
long SQLCHRONO_PRECISION
short SQLNAME_LEN;
char SQLNAME[128];
char SQLCHAR_SET_NAME[128];
char SQLCHAR_SET_SCHEMA[128];
char SQLCHAR_SET_CATALOG[128];

} SQLVAR[N]; /* N is maximum number of */
} *SQLDA; /* occurrences of SQLVAR. */

D.5.2 Description of Fields in the SQLDA2
The SQLVAR2 field for an SQLDA2 structure comprises the following parameters
that describe individual select list items or parameter markers of a prepared
statement:

• Length (SQLLEN and SQLOCTET_LEN fields)

Note

There is a major difference between the SQLLEN fields in the SQLDA
and the SQLDA2. In the SQLDA, the SQLLEN field contains the length
of the field in bytes. In the SQLDA2, the SQLLEN field either contains
the length of the field in characters or is a subtype field for certain data
types (INTERVAL and LIST OF BYTE VARYING). This is the case when
you issue the DESCRIBE statement to return information from SQL to
your program.

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–13

The SQLOCTET_LEN field in the SQLDA2 is analogous to the SQLLEN
field in the SQLDA. Use SQLOCTET_LEN instead of SQLLEN to allocate
dynamic memory for the SQLDATA field when using the SQLDA2.

• Data type (SQLTYPE)

• Scale and precision (SQLLEN or SQLCHRONO_SCALE and SQLCHRONO_
PRECISION)

• Character set information (SQLCHAR_SET_NAME, SQLCHAR_SET_
SCHEMA, SQLCHAR_SET_CATALOG)

• Data value (SQLDATA)

• Null indicator value (SQLIND)

• Name for resulting columns of a cursor specification (SQLNAME)

Table D–3 describes the different fields of the SQLDA2 and the ways in which
SQL uses the fields when passing them to dynamic SQL. Remember that the
SQLDA2 at any particular time can contain information about either select list
items or parameter markers, but not both.

Table D–3 Fields in the SQLDA2

Field Name Meaning of the Field Set by Used by

SQLDAID Character string field whose value is always the
character string ‘‘SQLDA2 ’’ (SQLDA2 followed
by two spaces).

Program SQL to determine if the
structure is an SQLDA or
an SQLDA2.

SQLDABC The length in bytes of the SQLDA2, which is
a function of SQLN (SQLDABC = 16+ (540 *
SQLN)).

SQL Not used.

SQLN The total number of occurrences of the
SQLVAR2 group field (the value must equal
or exceed the value in SQLD or the DESCRIBE
or PREPARE OUTPUT INTO statement).
Generates a run-time error.

Program SQL to determine if program
allocated enough storage for
the SQLDA.

SQLD Number of select list items (if DESCRIBE . . .
OUTPUT) or parameter markers (if
DESCRIBE . . . INPUT) in prepared statement
(if none, the value is 0).

SQL Program to determine
how many input or output
parameters for which to
allocate storage.

SQLVAR2 A repeating group field, each occurrence of
which describes a select list item or parameter
marker (not used if the value of SQLD is 0).

No value See descriptions of subfields in
following entries.

SQLVAR2 Subfields (Each Occurs Once for Each Select List Item or Parameter Marker):

Field Name Meaning of the Field Set by Used by

SQLTYPE A subfield of SQLVAR2 whose value indicates
the data type of the select list item or
parameter marker (see Table D–2).

SQL Program to allocate storage
with the appropriate data type
for the parameter.

(continued on next page)

D–14 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Table D–3 (Cont.) Fields in the SQLDA2

SQLVAR2 Subfields (Each Occurs Once for Each Select List Item or Parameter Marker):

Field Name Meaning of the Field Set by Used by

SQLLEN A subfield of SQLVAR2 whose value indicates
the length of the select list item or parameter
marker.

SQL, unless
the program
resets,
except for
DECIMAL,
which can
only be set
by the user.

For character types, CHAR, CHARACTER
VARYING types SQLLEN indicates the declared
size, not including length overheads. See
SQLOCTET_LEN.

For fixed-length data types (TINYINT,
SMALLINT, INTEGER, BIGINT, NUMERIC,
and DECIMAL), SQLLEN is split in half.

SQLSIZE—the low-order 16 bits

• For TINYINT, SMALLINT, INTEGER,
and BIGINT; SQLSIZE and SQLOCTET_
LENGTH indicate the length in bytes of
the select list item or parameter marker.

• For DECIMAL; SQLSIZE indicates the
precision. However, the SQLLEN for a
DECIMAL data type can only be set by
the user; it is not returned by SQL on a
DESCRIBE statement.

SQLSCALE—the high-order 16 bits

• SQLSCALE indicates the scale (the
number of digits to the right of the decimal
point).

• List cursors cannot return data in data
types that require a scale factor.

For floating-point data types, SQLLEN and
SQLOCTET_LEN are the size in octets of the
select list item or parameter marker.

For DATE, DATE ANSI, DATE VMS, TIME,
or TIMESTAMP, SQLLEN is the length of the
date-time data type.

For INTERVAL data types, SQLLEN is set to
one of the codes specified in Table D–4.

Program to allocate storage
with the appropriate size
for the select list item or
parameter marker.

SQLOCTET_LEN A subfield of SQLVAR2 whose value indicates
the length in octets of the select list item or
parameter marker.

If SQLTYPE indicates CHAR1, then
SQLOCTET_LEN is the maximum possible
length in octets of the character string.

SQL, unless
the program
resets.

Program or SQL.

1Includes CHARACTER, NCHAR, NATIONAL CHARACTER

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–15

Table D–3 (Cont.) Fields in the SQLDA2

SQLVAR2 Subfields (Each Occurs Once for Each Select List Item or Parameter Marker):

Field Name Meaning of the Field Set by Used by

If SQLTYPE2 indicates CHARACTER
VARYING, SQLOCTET_LEN is the maximum
possible length in octets required to represent
the character string, including the octets
required to represent the string length (that
is, 4 additional octets.)

If SQLTYPE indicates a fixed-scale or floating-
point numeric data type, SQLOCTET_LEN is
the size in octets of the numeric select list item
or parameter marker.

If SQLTYPE indicates a date-time or interval
data type, then dynamic SQL ignores
SQLOCTET_LEN.

SQLCHRONO_
SCALE

A longword subfield of SQLVAR2 whose value
indicates the specific date-time data type of the
column.

When SQLTYPE represents a date-time data
type, SQLCHRONO_SCALE contains a code
specified in Table D–5.

SQL, unless
the program
resets.

Program.

When SQLTYPE represents an interval data
type, SQLCHRONO_SCALE contains the
implied or specified interval leading field
precision.

When SQLTYPE represents a data type that is
neither date-time nor interval, SQLCHRONO_
SCALE contains 0.

SQLCHRONO_
PRECISION

A longword subfield of SQLVAR2 whose
value indicates the precision of the column
represented by SQLVAR2 when that column has
a date-time data type.

When SQLTYPE represents a TIME or
TIMESTAMP data type, SQLCHRONO_
PRECISION contains the time precision or
timestamp precision.

SQL, unless
the program
resets.

Program.

When SQLTYPE represents an interval data
type with a fractional seconds precision,
SQLCHRONO_PRECISION is set to that value.
Otherwise, SQLCHRONO_PRECISION is set to
0.

SQLCHAR_SET_
NAME

A 128-byte subfield of SQLVAR2 whose value
is the character set name if SQLTYPE is a
character string type, and spaces if SQLTYPE
is any other data type.

SQL, unless
the program
resets.

The SQLCHAR_SET_NAME
field indicates the character
set name of a select list item
or parameter marker if the
select list item or parameter
marker has a character data
type. Table D–6 shows
the possible values for the
SQLCHAR_SET_NAME field
when the SQLTYPE indicates
one of the character data
types.

2Includes VARCHAR, VARCHAR2, NATIONAL CHARACTER VARYING, RAW, and LONG VARCHAR

(continued on next page)

D–16 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Table D–3 (Cont.) Fields in the SQLDA2

SQLVAR2 Subfields (Each Occurs Once for Each Select List Item or Parameter Marker):

Field Name Meaning of the Field Set by Used by

SQLCHAR_SET_
SCHEMA

A 128-byte subfield of SQLVAR2 whose value
is the character set of the schema name if
SQLTYPE is a character string type, and spaces
if SQLTYPE is any other data type.

Reserved for
future use.

Reserved for future use.

SQLCHAR_SET_
CATALOG

A 128-byte subfield of SQLVAR2 whose value
is the character set of the catalog name if
SQLTYPE is a character string type, and spaces
if SQLTYPE is any other data type.

Reserved for
future use.

Reserved for future use.

SQLDATA A subfield of SQLVAR2 whose value is the
address of the storage allocated for the
select list item or parameter marker. Use
SQLOCTET_LEN to allocate memory for this
pointer.

Program. SQL:

• In EXECUTE and OPEN
statements, to retrieve
a value stored by the
program and substitute
it for a parameter
marker in the prepared
statement.

• In FETCH statements,
to store a value from a
result table.

SQLIND A subfield of SQLVAR2 whose value is the
address of a longword indicator variable, a
longword (32 bits) in size (if the program does
not set an indicator variable, the value is 0).

Program. Program or SQL:

• In FETCH statements,
by SQL to store the value
for an indicator variable
associated with a select
list item.

• After FETCH statements,
by program to retrieve
the value of a select
list item’s associated
indicator variable.

• In EXECUTE and OPEN
statements, by SQL to
retrieve the value of
a parameter marker’s
associated indicator
variable.

SQLNAME A varying character string subfield of SQLVAR2
whose value is:

• For select list items, the name of the
column in the select list of the prepared
SELECT statement.

• For parameter markers, the name of the
column to which a parameter marker
is assigned (in INSERT or UPDATE
statements) or compared (in basic
predicates).

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–17

Table D–3 (Cont.) Fields in the SQLDA2

SQLVAR2 Subfields (Each Occurs Once for Each Select List Item or Parameter Marker):

Field Name Meaning of the Field Set by Used by

If the select list item, assignment, or
comparison involves an arithmetic expression
or predicates other than basic predicates, SQL
does not assign a value to SQLNAME.

SQL. Program, optionally, to find
out the name of the column
associated with a select list
item or parameter marker.

SQLNAME_LEN A subfield of SQLVAR2 whose value is the
length in octets of the column named by
SQLNAME.

Table D–4 shows the possible values for the SQLLEN field when the SQLTYPE
indicates one of the interval data types.

Table D–4 Codes for Interval Qualifiers in the SQLDA2

Code Interval Qualifier Interval Subtype

1 YEAR SQLDA2_DT_YEAR

2 MONTH SQLDA2_DT_MONTH

3 DAY SQLDA2_DT_DAY

4 HOUR SQLDA2_DT_HOUR

5 MINUTE SQLDA2_DT_MINUTE

6 SECOND SQLDA2_DT_SECOND

7 YEAR TO MONTH SQLDA2_DT_YEAR_MONTH

8 DAY TO HOUR SQLDA2_DT_DAY_HOUR

9 DAY TO MINUTE SQLDA2_DT_DAY_MINUTE

10 DAY TO SECOND SQLDA2_DT_DAY_SECOND

11 HOUR TO MINUTE SQLDA2_DT_HOUR_MINUTE

12 HOUR TO SECOND SQLDA2_DT_HOUR_SECOND

13 MINUTE TO SECOND SQLDA2_DT_MINUTE_SECOND

Table D–5 shows the possible values for the SQLCHRONO_SCALE field when
SQLTYPE indicates the data type DATE, DATE ANSI, DATE VMS, TIME or
TIMESTAMP.

Table D–5 Codes for Date-Time Data Types in the SQLDA2

Code Date-Time Data Type Date-Time Subtypes

0 DATE VMS SQLDA2_DT_DATE_VMS

1 DATE ANSI SQLDA2_DT_DATE

2 TIME SQLDA2_DT_TIME

3 TIMESTAMP SQLDA2_DT_TIMESTAMP

4 TIME WITH TIME ZONE SQLDA2_DT_TIME_TZ

5 TIMESTAMP WITH TIME ZONE SQLDA2_DT_TIMESTAMP_TZ

Table D–6 shows the possible values for the SQLCHAR_SET_NAME field when
the SQLTYPE indicates one of the character data types.

D–18 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Table D–6 Values for the SQLCHAR_SET_NAME Field

Character Set Value Description

DEFAULT Database default character set

NATIONAL National character set

UNSPECIFIED The character set is unspecified. SQL does not check
for compatibility of data.

name-of-cset See Table 2-1 in Volume 1 for a list of supported
character set names.

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–19

E
Logical Names Used by SQL

Table E–1 lists the logical names that SQL recognizes for special purposes.

Table E–1 Summary of SQL Logical Names

Logical Name Function

RDB$CHARACTER_SET Specifies the database default and national character sets in addition to the
session default, identifier, literal, and national character sets. Table E–2
shows the valid equivalence names for the logical name.

The logical name is used by the EXPORT and IMPORT statements and by
the SQL precompiler and SQL module language to allow compatibility of most
recent versions with earlier versions of Oracle Rdb. This logical name sets the
attributes for the default connection.

This logical name is also deprecated and will not be supported in a future
release.

RDB$ROUTINES Specifies the location of an external routine image. If you do not specify
a location clause in a CREATE FUNCTION, CREATE PROCEDURE, or
CREATE MODULE statement, or if you specify the DEFAULT LOCATION
clause, SQL uses the RDB$ROUTINES logical name as the default image
location.

RDMS$BIND_OUTLINE_MODE When multiple outlines exist for a query, this logical name is defined to select
which outline to use.

RDMS$BIND_QG_CPU_TIMEOUT Specifies the amount of CPU time used to optimize a query for execution.

RDMS$BIND_QG_REC_LIMIT Specifies the number of rows that SQL fetches before the query governor stops
output.

RDMS$BIND_QG_TIMEOUT Specifies the number of seconds that SQL spends compiling a query before the
query governor aborts that query.

RDMS$BIND_SEGMENTED_STRING_
BUFFER

Allows you to reduce the overhead of I/O operations at run time when you are
manipulating a segmented string.

RDMS$DEBUG_FLAGS Allows you to examine database access strategies and the estimated cost of
those strategies when your program runs.

RDMS$SET_FLAGS Allows you to examine database access strategies and the estimated cost of
those strategies when your program runs. See the SET FLAGS Statement for
a list of valid keywords that can be used with this logical name.

RDMS$DIAG_FLAGS When defined to ’L’, prevents the opening of a scrollable list cursor when the
online format of lists is chained.

RDMS$RTX_SHRMEM_PAGE_CNT Specifies the size of the shared memory area used to manipulate server
site-bound, external routine parameter data and control data.

RDMS$USE_
OLD_CONCURRENCY

Allows applications to use the isolation-level behavior that was in effect for
V4.1.

RDMS$USE_OLD_SEGMENTED_
STRING

When defined to YES, the default online format for lists (segmented strings) is
chained.

RDMS$VALIDATE_ROUTINE Controls the validation of routines.

(continued on next page)

Logical Names Used by SQL E–1

Table E–1 (Cont.) Summary of SQL Logical Names

Logical Name Function

SQL$DATABASE Specifies the database that SQL declares if you do not explicitly declare a
database.

SQL$DISABLE_CONTEXT Disables the two-phase commit protocol. Useful for turning off distributed
transactions when you want to run batch-update transactions.

SQL$EDIT Specifies the editor that SQL invokes when you issue the EDIT statement in
interactive SQL. See the EDIT Statement for details.

SQLINI Specifies the command file that SQL executes when you invoke interactive
SQL.

SYS$CURRENCY Specifies the character that SQL substitutes for the dollar sign ($) symbol
in an EDIT STRING clause of a column or domain definition, or the EDIT
USING clause of a SELECT statement.

SYS$DIGIT_SEP Specifies the character that SQL substitutes for the comma symbol (,) in an
EDIT STRING clause of a column or domain definition, or the EDIT USING
clause of a SELECT statement.

SYS$LANGUAGE Specifies the language that SQL uses for date and time input and displays, or
the EDIT USING clause of a SELECT statement.

SYS$RADIX_POINT Specifies the character that SQL substitutes for the decimal point symbol (.)
in an EDIT STRING clause of a column or domain definition, or the EDIT
USING clause of a SELECT statement.

Table E–2 shows the valid equivalence names for the logical name
RDB$CHARACTER_SET.

Table E–2 Valid Equivalence Names for RDB$CHARACTER_SET Logical Name

Character Set Name of Character Set Equivalence Name

MCS DEC_MCS Undefined

Korean and ASCII DEC_KOREAN DEC_HANGUL

Hanyu and ASCII DEC_HANYU DEC_HANYU

Hanzi and ASCII DEC_HANZI DEC_HANZI

Kanji and ASCII DEC_KANJI DEC_KANJI

For more information on these and other logical names, see the Oracle Rdb7
Guide to Database Performance and Tuning.

E–2 Logical Names Used by SQL

F
Obsolete SQL Syntax

This appendix describes:

• Incompatible syntax

Certain SQL statements that were allowed in earlier versions of SQL now
have different behavior that is incompatible with earlier versions. You must
modify existing applications.

• Deprecated syntax

Certain SQL statements that were allowed in earlier versions of SQL will be
identified (flagged) with diagnostic messages. SQL refers to such statements
as deprecated features. Although these statements will process with expected
behavior for this release, SQL may not support them in future versions. You
should replace deprecated syntax with the new syntax in applications.

• Reserved words deprecated as identifiers

If any of the listed reserved words is used as an identifier without double
quotation marks ("), SQL flags the usage as being noncompliant with the
ANSI/ISO standard and issues a deprecated feature message.

• Punctuation changes

This section describes changes to punctuation marks used in SQL.

• Suppressing diagnostic messages

This section describes how to suppress the diagnostic messages about
deprecated features.

F.1 Incompatible Syntax
The following sections describe incompatible syntax.

F.1.1 Incompatible Syntax Containing the SCHEMA Keyword
Because one database may contain multiple schemas, the following incompatible
changes apply to SQL syntax containing the SCHEMA keyword.

F.1.1.1 CREATE SCHEMA Meaning Incompatible
Use of the CREATE SCHEMA statement to create a database is deprecated. If
you use the CREATE SCHEMA statement to specify the physical attributes of
a database such as the root file parameters, SQL issues the deprecated feature
message and interprets the statement as it did in previous versions of SQL.

SQL> CREATE SCHEMA PARTS SNAPSHOT IS ENABLED;
%SQL-I-DEPR_FEATURE, Deprecated Feature: SCHEMA (meaning DATABASE)
SQL>

Obsolete SQL Syntax F–1

However, if you do not specify any physical attributes of a database, you must
enable multischema naming to use the CREATE SCHEMA statement.

SQL> CREATE SCHEMA PARTS;
%SQL-F-SCHCATMULTI, Schemas and catalogs may only be referenced with
multischema enabled

When you enable multischema naming, the CREATE SCHEMA statement creates
a new schema within the current catalog.

SQL> ATTACH ’ALIAS Q4 FILENAME INVENTORY MULTISCHEMA IS ON’;
SQL> CREATE SCHEMA PARTS;
SQL> SHOW SCHEMAS;
Schemas in database with alias Q4

RDB$SCHEMA
PARTS

F.1.1.2 SHOW SCHEMA Meaning Incompatible
If you use a SHOW SCHEMA statement when you are attached to a database
with the multischema attribute and have multischema naming enabled, SQL
shows all the schemas for the current catalog. To show a database, use the
SHOW DATABASE or SHOW ALIAS statement.

If you use a SHOW SCHEMA statement when you do not have multischema
enabled, SQL issues an error message.

F.1.1.3 DROP SCHEMA Meaning Incompatible
If you use a DROP SCHEMA statement when you are attached to a database
with the multischema attribute and have multischema naming enabled, SQL
deletes the named schema from that database.

If you use a DROP SCHEMA statement when you do not have multischema
enabled, SQL issues an error message.

If you use a DROP SCHEMA FILENAME statement, SQL interprets this as it
would have in V4.0 and prior versions; it deletes the database with the named file
name, and issues a deprecated feature error message.

F.1.2 DROP TABLE Now Restricts by Default
In V4.1 and higher, the default behavior of the DROP TABLE statement is a
restricted delete, not a cascading delete as in earlier versions. Only the table will
be deleted. If other items (views, constraints, indexes, or triggers) refer to the
specified table, the delete will fail, as shown in the following example:

SQL> DROP TABLE DEGREES;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-TRGEXI, relation DEGREES is referenced in trigger
COLLEGE_CODE_CASCADE_UPDATE
-RDMS-F-RELNOTDEL, relation DEGREES has not been deleted

If you specify the CASCADE keyword for SQL DROP TABLE statements, SQL
deletes all items that refer to the table or view, then deletes the table itself. The
following example shows a cascading delete:

F–2 Obsolete SQL Syntax

SQL> DROP TABLE JOB_HISTORY CASCADE;
View CURRENT_INFO is also being dropped.
View CURRENT_JOB is also being dropped.
Constraint JOB_HISTORY_FOREIGN1 is also being dropped.
Constraint JOB_HISTORY_FOREIGN2 is also being dropped.
Constraint JOB_HISTORY_FOREIGN3 is also being dropped.
Index JH_EMPLOYEE_ID is also being dropped.
Index JOB_HISTORY_HASH is also being dropped.
VIA clause on storage map JOB_HISTORY_MAP is also being dropped.
Trigger EMPLOYEE_ID_CASCADE_DELETE is also being dropped.

F.1.3 Database Handle Names Restricted to 25 Characters
The database handle name is called an alias in SQL. When sessions are enabled
by the OPTIONS=(CONNECT) qualifier on the SQL precompiler command line
or the CONNECT qualifier on the module language command line, the length of
an alias can be no more than 25 characters. The database handle was called an
authorization identifier in versions of SQL prior to V4.1.

F.1.4 Deprecated Default Semantics of the ORDER BY Clause
In V4.1 and previous versions, SQL had the following default semantics:

• The ANSI/ISO 1989 standard provides a different direction. In future
releases, SQL will assign the sort order of ASC to any key not specifically
qualified with DESC.

• SQL will issue a deprecated feature warning if any sort keys inherit the
DESC qualifier.

Note

If you do not specify ASC or DESC for the second or subsequent sort keys,
SQL uses the order you specified for the preceding sort keys. If you do
not specify the sorting order with the first sort key, the default order is
ascending.

F.1.5 Change to EXTERNAL NAMES IS Clause
The multischema EXTERNAL NAME IS clause has changed to the STORED
NAME IS clause to avoid confusion with ANSI/ISO SQL standards.

F.1.6 Comma statement separator in trigger body no longer supported
The syntax for trigger actions in the CREATE TRIGGER statement has, in
the past, supported the comma (,) as well as the semicolon (;) as statement
separators. The use of the comma separator has been problematic in Oracle Rdb
SQL because it conflicts in various places with the comma used as an element
separator within some statements. For example, the TRACE statement allows
a comma separated list of values, and the INSERT INTO ... SELECT ... FROM
statement allows a comma separated list of table names in the FROM clause.
In these cases a comma can not be used as a statement separator because the
current statement appears to be continued.

Future versions of Oracle Rdb are expected to include enhancements to the
TRIGGER action syntax which will allow other statements to include comma
as an element separator. Therefore, the comma statement separator is now no
longer supported. This functionality has been deprecated since Rdb V7.2.5.6 and
V7.3.2 (see the relevant release notes) and also reported by the SQL CREATE
TRIGGER statement.

Obsolete SQL Syntax F–3

Any scripts or applications that include the CREATE TRIGGER statement must
now be modified to use only the semicolon (;) as a separator.

This change does not affect existing database triggers, only new triggers
defined using the CREATE TRIGGER statement. RMU Extract Item=TRIGGER
command always generates semicolon separators in extracted CREATE TRIGGER
statements.

F.2 Deprecated Syntax
Table F–1 lists SQL statements that have been replaced by new syntax. These
statements will be allowed by SQL, but in some cases SQL flags the statement
with a deprecated feature message.

Table F–1 Deprecated Syntax for SQL

Deprecated Statement New Syntax Deprecated Feature Message?

ALTER CACHE . . .
LARGE MEMORY IS ENABLED

ALTER CACHE ... SHARED
MEMORY IS PROCESS RESIDENT

ALTER CACHE . . .
SHARED MEMORY IS SYSTEM

ALTER CACHE . . .
SHARED MEMORY IS PROCESS
RESIDENT

ALTER CACHE . . .
WINDOW COUNT IS . . .

None

ALTER SCHEMA ALTER DATABASE Yes

CREATE CACHE . . .
LARGE MEMORY IS ENABLED

CREATE CACHE . . . SHARED
MEMORY IS PROCESS RESIDENT

CREATE CACHE . . .
SHARED MEMORY IS SYSTEM

CREATE CACHE . . .
SHARED MEMORY IS PROCESS
RESIDENT

CREATE CACHE . . .
WINDOW COUNT IS . . .

None

CREATE SCHEMA CREATE DATABASE Yes1

DECLARE SCHEMA — module
language and precompiled SQL

DECLARE ALIAS Yes

DECLARE SCHEMA — dynamic and
interactive SQL

ATTACH In interactive SQL, but not in dynamic
SQL

DECLARE and SET TRANSACTION
— CONSISTENCY LEVEL 2, 3

ISOLATION LEVEL READ
COMMITTED
ISOLATION LEVEL REPEATABLE
READ
ISOLATION LEVEL
SERIALIZABLE

Yes

DROP SCHEMA FILENAME DROP DATABASE FILENAME Message only in precompiled SQL and
SQL module language

DROP SCHEMA PATHNAME DROP DATABASE PATHNAME Message only in precompiled SQL and
SQL module language

DROP SCHEMA AUTHORIZATION DROP DATABASE ALIAS Message only in precompiled SQL and
SQL module language

EXPORT SCHEMA FILENAME EXPORT DATABASE FILENAME No

1See Section F.1 for more information.

(continued on next page)

F–4 Obsolete SQL Syntax

Table F–1 (Cont.) Deprecated Syntax for SQL

Deprecated Statement New Syntax Deprecated Feature Message?

EXPORT SCHEMA PATHNAME EXPORT DATABASE PATHNAME No

EXPORT SCHEMA AUTHORIZATION EXPORT DATABASE ALIAS No

FINISH DISCONNECT DEFAULT Yes, if databases are declared with
DECLARE SCHEMA; otherwise, error
message on nonconforming usage

GRANT on SCHEMA
AUTHORIZATION

GRANT ON DATABASE ALIAS Yes

IMPORT SCHEMA AUTHORIZATION IMPORT DATABASE FROM
filespec WITH ALIAS

Yes

INTEGRATE INTEGRATE DATABASE Yes

PREPARE . . . SELECT LIST DESCRIBE . . . SELECT LIST Yes

REVOKE REVOKE ON DATABASE ALIAS Yes

SET ANSI SET DEFAULT DATE FORMAT
SET KEYWORD RULES
SET QUOTING RULES
SET VIEW UPDATE RULES

No

ALTER DATABASE . . .
JOURNAL IS . . .
[NO]CACHE FILENAME . . .

None Yes. Functionality no longer provides
benefit on new hardware

ALTER DATABASE . . .
JOURNAL IS . . .
NOTIFY

CREATE or ALTER DATABASE
NOTIFY

Yes. Feature no longer part of the
Alter journaling functionality.

WRITE ONCE storage area attribute None Yes. Functionality is no longer
available in hardware

VARIANT NOT DETERMINISTIC No. New syntax conforms to SQL:1999
Language Standard

NOT VARIANT DETERMINISTIC No. New syntax conforms to SQL:1999
Language Standard

GENERAL PARAMETER STYLE PARAMETER STYLE GENERAL No. New syntax conforms to SQL:1999
Language Standard

WHILE . . .
LOOP . . .
END LOOP

WHILE . . .
DO . . .
END WHILE

No. New syntax conforms to SQL:1999
Language Standard

F.2.1 Command Line Qualifiers
Certain qualifiers in the SQL module language and precompiler command lines
have been replaced. These are:

• The ANSI_AUTHORIZATION qualifier is replaced by the RIGHTS clause.

• The ANSI_DATE qualifier is replaced by the DEFAULT DATE FORMAT
clause.

• The ANSI_IDENTIFIERS qualifier is replaced by the KEYWORD RULES
clause.

• The ANSI_PARAMETERS qualifier is replaced by the PARAMETER COLONS
clause.

• The ANSI_QUOTING qualifier is replaced by the QUOTING RULES clause.

Obsolete SQL Syntax F–5

F.2.2 Deprecated Interactive SQL Statements
If you use the SET ANSI statement, SQL returns a deprecated feature message.
This statement has been replaced by:

• The SET ANSI DATE statement is replaced by the SET DEFAULT DATE
FORMAT statement. See the SET DEFAULT DATE FORMAT Statement for
more information.

• The SET ANSI IDENTIFIERS statement is replaced by the SET KEYWORD
RULES statement. See the SET KEYWORD RULES Statement for more
information.

• The SET ANSI QUOTING statement is replaced by the SET QUOTING
RULES statement. See the SET QUOTING RULES Statement for more
information.

F.2.3 Constraint Conformance to the ANSI/ISO SQL Standard
The location of the constraint name in the CREATE TABLE statement has
been changed for ANSI/ISO SQL conformance. Constraint names are expected
before the constraint rather than after. If you place a constraint name after the
constraint, you get the following deprecated feature message:

SQL> CREATE TABLE TEMP2
cont> (COL1 REAL NOT NULL CONSTRAINT C7);
%SQL-I-DEPR_FEATURE, Deprecated Feature: Constraint name clause following
constraint definition
%SQL-I-DEPR_FEATURE, Deprecated Feature: Default evaluation for constraints:
DEFERRABLE

The default evaluation time of DEFERRABLE for constraints has been
deprecated. If your dialect is SQLV40, constraints are still DEFERRABLE
by default. However, you will receive the following deprecated feature message if
you do not specify an evaluation time:

SQL> CREATE TABLE TEMP3
cont> (COL1 REAL CONSTRAINT C6 NOT NULL);
%SQL-I-DEPR_FEATURE, Deprecated Feature: Default evaluation for constraints:
DEFERRABLE

If your dialect is SQL92 or SQL99, constraints are NOT DEFERRABLE by
default, and you do not receive deprecated feature messages.

F.2.4 Obsolete Keywords
Table F–2 lists obsolete keywords and preferred substitutes for SQL statements.

Table F–2 Obsolete SQL Keywords

Obsolete Keyword Preferred Keyword

COMMIT_TIME COMMIT TIME

CREATETAB CREATE

DIAGNOSTIC CONSTRAINT

QUADWORD BIGINT

READ_ONLY READ ONLY

(continued on next page)

F–6 Obsolete SQL Syntax

Table F–2 (Cont.) Obsolete SQL Keywords

Obsolete Keyword Preferred Keyword

READ_WRITE READ WRITE

VERB_TIME VERB TIME

If you use the obsolete keywords, you receive the following diagnostic message:

SET TRANSACTION READ_ONLY;
1

%SQL-I-DEPR_FEATURE, (1) Deprecated Feature: READ_ONLY

F.2.5 Obsolete Built-in Functions
Several functions that were supplied as SQL or external routines in the
SYS$LIBRARY:SQL_FUNCTIONS library are now obsolete and have been
replaced with native SQL builtin functions.

• The function ABS was provided as an SQL function that accepted a DOUBLE
PRECISION argument and returned a DOUBLE PRECISION result.

The native SQL function supports a wider range of data types (numeric and
INTERVAL types) and is more generally useful.

• The functions LEAST and GREATEST were provided as SQL functions that
accepted only two integer arguments.

The native SQL functions allow for a wider range of data types, and support
a parameter list of arbitrary length.

• The functions LENGTH and LENGTHB were provided as SQL stored
functions that accepted a VARCHAR (2000) parameter and performed the
appropriate CHARACTER_LENGTH or OCTET_LENGTH operation on the
argument.

The native SQL functions allow for a wider range of character set values and
larger sizes for the character data types.

• The function SIGN was provided as a SQL function.

The native SQL function is more generally useful.

• The functions ROUND and TRUNC were provided as SQL functions that
accepted a DOUBLE PRECISION argument and returned a DOUBLE
PRECISION result.

The native SQL functions support a wider range of data types (TINYINT,
SMALLINT, INTEGER, BIGINT, and FLOAT) and are more generally useful.

Note that the ROUND or TRUNC applied to date/time types (DATE, DATE
VMS, TIMESTAMP) requires the use of OCI support libraries provided by
OCI Services for Rdb.

Now that SQL implements these functions directly these definitions in
SYS$LIBRARY:SQL_FUNCTIONS are no longer required. However, they are
retained in the database for existing applications but new applications will now
automatically use new native functions in Oracle Rdb.

Obsolete SQL Syntax F–7

F.3 Deprecated Logical Names
The following sections describe deprecated logical names and, if applicable, the
logical name replacement.

See Appendix E for more information regarding any new logical names.

F.3.1 RDB$CHARACTER_SET Logical Name
The logical name RDB$CHARACTER_SET has been deprecated. It is used by
SQL to allow compatibility for databases and applications from V4.1 and V4.0.

When you are using versions higher than V4.1 and V4.0, Oracle Rdb recommends
that you use the following clauses and statements in place of the logical name:

• The DEFAULT CHARACTER SET and NATIONAL CHARACTER SET
clauses in the DECLARE ALIAS statement.

• The IDENTIFIER CHARACTER SET, DEFAULT CHARACTER SET, and
NATIONAL CHARACTER SET clauses of the SQL module header (Section
3.2) or the DECLARE MODULE statement.

• The SET IDENTIFIER CHARACTER SET statement, SET DEFAULT
CHARACTER SET statement, and the SET NATIONAL CHARACTER SET
statement for dynamic SQL.

• The IDENTIFIER CHARACTER SET, DEFAULT CHARACTER SET,
and NATIONAL CHARACTER SET clauses in the CREATE DATABASE
statement or the ALTER DATABASE statement.

F.4 Reserved Words Deprecated as Identifiers
The following lists contain reserved words from the:

• ANSI/ISO 1989 SQL standard

• ANSI/ISO 1992 SQL standard

• ANSI/ISO 1999 SQL standard

If these reserved words are used as identifiers without double quotation marks
("), SQL flags their use as being noncompliant with the ANSI/ISO 1989 standard
and issues a deprecated feature message.

Oracle Rdb does not recommend using reserved words as identifiers because this
capability is a deprecated feature and might not be supported in future versions
of SQL. However, if you must use reserved words as identifiers, then you must
enclose them within double quotation marks to be compliant with the ANSI/ISO
1989 standard. SQL does not allow lowercase letters, spaces, or tab stops within
the double quotation marks.

For example, if you want to use the ANSI/ISO 1989 reserved word SELECT as a
table identifier, the statement would be written as follows:

SELECT * FROM "SELECT";

F–8 Obsolete SQL Syntax

F.4.1 ANSI/ISO 1989 SQL Standard Reserved Words

ALL AND ANY

AS ASC AUTHORIZATION

AVG BEGIN BETWEEN

BY CHAR CHARACTER

CHECK CLOSE COBOL

COMMIT CONTINUE COUNT

CREATE CURRENT CURSOR

DEC DECIMAL DECLARE

DEFAULT DELETE DESC

DISTINCT DOUBLE END

ESCAPE EXEC EXISTS

FETCH FLOAT FOR

FOREIGN FORTRAN FOUND

FROM GO GOTO

GRANT GROUP HAVING

IN INDICATOR INSERT

INT INTEGER INTO

IS KEY LANGUAGE

LIKE MAX MIN

MODULE NOT NULL

NUMERIC OF ON

OPEN OPTION OR

ORDER PASCAL PLI

PRECISION PRIMARY PRIVILEGES

PROCEDURE PUBLIC REAL

REFERENCES ROLLBACK SCHEMA

SECTION SELECT SET

SMALLINT SOME SQL

SQLCODE SQLERROR SUM

TABLE TO UNION

UNIQUE UPDATE USER

VALUES VIEW WHENEVER

WHERE WITH WORK

F.4.2 ANSI/ISO 1992 SQL Standard Reserved Words
In addition to the reserved words listed for the ANSI/ISO 1989 standard, the
ANSI/ISO SQL standard also includes the following reserved words:

ABSOLUTE ACTION ADD

ALLOCATE ALTER ARE

ASSERTION AT BIT

BIT_LENGTH BOTH CASCADE

Obsolete SQL Syntax F–9

CASCADED CASE CAST

CATALOG CHAR_LENGTH CHARACTER_LENGTH

COALESCE COLLATE COLLATION

COLUMN CONNECT CONNECTION

CONSTRAINT CONSTRAINTS CONVERT

CORRESPONDING CROSS CURRENT_DATE

CURRENT_TIME CURRENT_
TIMESTAMP

CURRENT_USER

DATE DAY DEALLOATE

DEFERRABLE DEFERRED DESCRIBE

DESCRIPTOR DIAGNOSTICS DISCONNECT

DOMAIN DROP ELSE

END-EXEC EXCEPT EXCEPTION

EXECUTE EXTERNAL EXTRACT

FALSE FIRST FULL

GET GLOBAL HOUR

IDENTITY IMMEDIATE INITIALLY

INNER INPUT INSENSITIVE

INTERSECT INTERVAL ISOLATION

JOIN LAST LEADING

LEFT LEVEL LOCAL

LOWER MATCH MINUTE

MONTH NAMES NATIONAL

NATURAL NCHAR NEXT

NO NULLIF OCTET_LENGTH

ONLY OUTER OUTPUT

OVERLAPS PAD PARTIAL

POSITION PREPARE PRESERVE

PRIOR READ RELATIVE

RESTRICT REVOKE RIGHT

ROWS SCROLL SECOND

SESSION SESSION_USER SIZE

SPACE SQLSTATE SUBSTRING

SYSTEM_USER TEMPORARY THEN

TIME TIMESTAMP TIMEZONE_HOUR

TIMEZONE_MINUTE TRAILING TRANSACTION

TRANSLATE TRANSLATION TRIM

TRUE UNKNOWN UPPER

USAGE USING VALUE

VARCHAR VARYING WHEN

WRITE YEAR ZONE

F–10 Obsolete SQL Syntax

F.4.3 ANSI/ISO 1999 SQL Standard Reserved Words
In addition to the reserved words listed for the ANSI/ISO 1989 standard and the
ANSI/ISO SQL 1992 standard, the ANSI/ISO SQL 1999 standard includes the
following reserved words.

ADMIN AFTER AGGREGATE

ALIAS ARRAY BEFORE

BINARY BLOB BOOLEAN

BREADTH CALL CLASS

CLOB COMPLETION CONDITION

CONSTRUCTOR CUBE CURRENT_PATH

CURRENT_ROLE CYCLE DATA

DEPTH DEREF DESTROY

DESTRUCTOR DETERMINISTIC DICTIONARY

DO DYNAMIC EACH

ELSEIF EQUALS EVERY

EXIT FREE FUNCTION

GENERAL GROUPING HANDLER

HOST IF IGNORE

INITIALIZE INOUT ITERATE

LARGE LATERAL LEAVE

LESS LIMIT LIST

LOCALTIME LOCALTIMESTAMP LOCATOR

LONG LOOP MAP

MODIFIES MODIFY NCLOB

NEW NONE NUMBER

OBJECT OFF OLD

OPERATION ORDINALITY OUT

PARAMETER PARAMETERS PATH

POSTFIX PREFIX PREORDER

RAW READS RECURSIVE

REDO REF REFERENCING

REPEAT RESIGNAL RESULT

RETURN RETURNS ROLE

ROLLUP ROUTINE ROW

SAVEPOINT SCOPE SEARCH

SENSITIVE SEQUENCE SETS

SIGNAL SIMILAR SPECIFIC

SPECIFICTYPE SQLEXCEPTION SQLWARNING

START STATEMENT STATIC

STRUCTURE TERMINATE THAN

Obsolete SQL Syntax F–11

TREAT TRIGGER TYPE

UNDER UNDO UNNEST

UNTIL VARIABLE WHILE

WITHOUT

F.4.4 Words From ANSI/ISO SQL3 Draft Standard No Longer Reserved
In previous releases, the following words were listed as reserved words according
to the ANSI/ISO SQL3 draft standard but did not become part of the final
ANSI/ISO 1999 SQL standard. The following words are no longer reserved by
Oracle Rdb as previously documented:

ACTOR ASYNC ELEMENT

INSTEAD MOVE MULTISET

NEW_TABLE OID OLD_TABLE

OPERATORS OTHERS PENDANT

PRIVATE PROTECTED REPRESENTATION

TEMPLATE TEST THERE

TUPLE VARIANT VIRTUAL

VISIBLE WAIT

F.5 Punctuation Changes
The following changes apply to punctuation marks used in SQL.

F.5.1 Single Quotation Marks Required for String Literals
Use single (’) instead of double (") quotation marks to delimit a string literal.
SQL flags literals enclosed within double quotation marks with an informational,
compile-time, diagnostic message stating that this is nonstandard usage. This
message will appear even when you have specified that SQL not notify you of
syntax that is not ANSI/ISO SQL standard.

F.5.2 Double Quotation Marks Required for ANSI/ISO SQL Delimited Identifiers
The leftmost name pair in a qualified name for a multischema object is a
delimited identifier. You must enclose a delimited identifier within double
quotation marks and use only uppercase characters. You must enable ANSI/ISO
SQL quoting rules to use delimited identifiers. For more information, see Section
2.2.11.

F.5.3 Colons Required Before Host Language Variables in SQL Module
Language

In SQL module language statements, Oracle Rdb recommends that you precede
parameters with a colon (:) to distinguish them from column or table names.
These colons are currently optional in SQL, but are required by the ANSI/ISO
SQL standard. SQL may require these colons in a future version of Oracle Rdb.

F–12 Obsolete SQL Syntax

F.6 Suppressing Diagnostic Messages
In interactive SQL, use the SET WARNING NODEPRECATE statement
to suppress the diagnostic messages about deprecated features. For more
information, see the SET Statement.

If you are using the SQL precompiler, you can suppress the diagnostic messages
about deprecated features by using the
SQLOPTIONS=WARN=(NODEPRECATE) qualifier in the precompiler command
line. For details, see Section 4.3.

If you are using SQL module language, you can suppress the diagnostic messages
about deprecated features by using the WARN=(NODEPRECATE) qualifier in the
module language command line. For details, see Section 3.6.

Obsolete SQL Syntax F–13

G
Oracle Database Compatibility

G.1 Oracle Database Functions
SQL functions have been added to the OpenVMS Oracle Rdb SQL interface for
compatibility with Oracle SQL. Complete descriptions of these functions can be
found in the Oracle Database SQL Language Reference Manual.

G.1.1 Optional Oracle SQL Functions
Optionally, you can install the functions listed in Table G–1 in your database
from interactive SQL as shown in the following examples.
The file is named SQL_FUNCTIONSnn.SQL, where ‘‘nn’’ is the version number.
For example, use the following statement:

SQL> ATTACH ’FILENAME mydatabase’;
SQL> @SYS$LIBRARY:SQL_FUNCTIONS72.SQL

If you wish to use a character set other than DEC_MCS with the installable
functions, you must first define the RDB$ORACLE_SQLFUNC_VCHAR_DOM
domain as a character type using the desired character set before executing the
preceding statements. Similarly, if you wish to use a date data type other
than DATE VMS with the installable functions, you must first define the
RDB$ORACLE_SQLFUNC_DATE_DOM domain as a date data type before
executing the preceding statements.

For example,

SQL> ATTACH ’FILENAME mydatabase’;
SQL> CREATE DOMAIN RDB$ORACLE_SQLFUNC_VCHAR_DOM VARCHAR(2000)
cont> CHARACTER SET KANJI;
SQL> CREATE DOMAIN RDB$ORACLE_SQLFUNC_DATE_DOM DATE ANSI;
SQL> @SYS$LIBRARY:SQL_FUNCTIONS72.SQL

If you choose, you may remove the installable functions from your database
at a later time. However, you must release any dynamic SQL statements and
disconnect any sessions that reference any of these functions before you can
remove the functions. Use the following statements from interactive SQL if you
wish to remove the installable functions from your database:

SQL> ATTACH ’FILENAME mydatabase’;
SQL> @SYS$LIBRARY:SQL_FUNCTIONS_DROP72.SQL

The file SYS$LIBRARY:SQL_FUNCTIONS_DROPnn.SQL, where ‘‘nn’’ is the
version number.

Table G–1 gives a brief description of each of the functions that you can optionally
install in your database.

Oracle Database Compatibility G–1

Table G–1 Optional Oracle SQL Functions

Function Name Description Restrictions

ADD_MONTHS (d,n) Returns the date d plus n
months.

d must be of the same
date data type as the
RDB$ORACLE_SQLFUNC_
DATE_DOM domain, which
is bound when you install
the Oracle SQL functions.

ACOS (n) Returns the arc cosine of n. n must be in the range of
-1 to 1, and the function
returns a DOUBLE
PRECISION value in the
range of 0 to pi, expressed
in radians. If the passed
expression results in NULL
then the result of ACOS will
be NULL.

The following example returns the arc cosine of .3:

SQL> SELECT ACOS(.3) "Arc_Cosine" FROM Rdb$DATABASE;
Arc_Cosine

1.266103672779499E+000
1 row selected

ACOSH (n) Returns the hyperbolic arc
cosine of n.

n must be equal to or
greater than 1. The
function returns a DOUBLE
PRECISION value. If either
passed expression results
in NULL then the result of
ACOSH will be NULL.

SQL> SELECT ACOSH(1.0) "Hyperbolic Arc Cosine" FROM Rdb$DATABASE;
Hyperbolic Arc Cosine
0.000000000000000E+000

1 row selected

ASCII (str) Returns the decimal
representation of the first
character of its argument.

str must be of the same
character set as the
RDB$ORACLE_SQLFUNC_
VCHAR_DOM domain,
which is bound when you
install the Oracle SQL
functions.

ASIN (n) Returns the arc sine of n. n must be in the range of -1
to 1. The function returns a
DOUBLE PRECISION value
in the range of -pi/2 to pi/2,
expressed in radians. If the
passed expression results
in NULL then the result of
ASIN will be NULL.

(continued on next page)

G–2 Oracle Database Compatibility

Table G–1 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

The following example returns the arc sine of .3:

SQL> SELECT ASIN(.3) "Arc_Sine" FROM Rdb$DATABASE;
Arc_Sine

3.046926540153975E-001
1 row selected

ASINH (n) Returns the hyperbolic arc
sine of n.

The function returns a
DOUBLE PRECISION
value. If either passed
expression results in NULL
then the result of ASINH
will be NULL.

SQL> SELECT ASINH (-90.0) "Hyperbolic Arc Sine" FROM Rdb$DATABASE;
Hyperbolic Arc Sine

-5.192987713658941E+000
1 row selected

ATAN (n) Returns the arc tangent of
n.

n can be in an unbounded
range and returns a value
in the range of -pi/2 to pi/2,
expressed in radians. If the
passed expression results
in NULL then the result of
ATAN will be NULL.

The following example returns the arc tangent of .3:

SQL> SELECT ATAN(.3) "Arc_Tangent" FROM Rdb$DATABASE;
Arc_Tangent

2.914567944778671E-001
1 row selected

ATANH (n) Returns the hyperbolic arc
tangent of n (in radians).

n must be in the range of -1
to 1. The function returns
a DOUBLE PRECISION
value. If either passed
expression results in NULL
then the result of ATANH
will be NULL.

SQL> SELECT ATANH(0.905148254) "Hyperbolic Arc Tangent" FROM Rdb$DATABASE;
Hyperbolic Arc Tangent
1.500000001965249E+000

1 row selected

(continued on next page)

Oracle Database Compatibility G–3

Table G–1 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

ATAN2 (n,m) Returns the arc tangent of
n and m.

n can be in an unbounded
range and returns a value
in the range of -pi to pi,
depending on the signs of n
and m, expressed in radians.
ATAN2(n,m) is the same as
ATAN(n/m). If either passed
expression results in NULL
then the result of ATAN2
will be NULL.

SQL> SELECT ATAN2(.3, .2) "Arc_Tangent2" FROM Rdb$DATABASE;
Arc_Tangent2

9.827937232473291E-001
1 row selected

BITAND (expr1,expr2) BITAND computes an
AND operation on the bits
of expr1 and expr2, both
of which must resolve to
integers, and returns an
integer.

This function is commonly
used with the DECODE
function. If the passed
expression results in NULL
then the result of the
BITAND will be null.

Example 1: Checking bits in RDB$FLAGS column

The first bit of the mask stored in the column RDB$FLAGS of the table Rdb$RELATIONS
indicates that this relation is a view definition. This query displays the names of any
views in the database.

SQL> -- Which objects in Rdb$RELATIONS are views?
SQL> select rdb$relation_name from rdb$relations where bitand(rdb$flags, 1) = 1;

RDB$RELATION_NAME
RDBVMS$COLLATIONS
RDBVMS$INTERRELATIONS
RDBVMS$PRIVILEGES
RDBVMS$RELATION_CONSTRAINTS
RDBVMS$RELATION_CONSTRAINT_FLDS
RDBVMS$STORAGE_MAPS
RDBVMS$STORAGE_MAP_AREAS
RDBVMS$TRIGGERS
8 rows selected

(continued on next page)

G–4 Oracle Database Compatibility

Table G–1 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

Example 2: Using BITAND with DECODE

This example uses the result of the BITAND in a DECODE list to display attributes of an
Rdb database.

SQL> select
cont> DECODE (BITAND (rdb$flags,1), 0, ’No Dictionary’, ’Dictionary’),
cont> DECODE (BITAND (rdb$flags,2), 0, ’ACL Style’, ’ANSI Style’),
cont> DECODE (BITAND (rdb$flags,64), 0, ’No Multischema’, ’Multischema’)
cont> from
cont> Rdb$DATABASE;

No Dictionary ACL Style Multischema
1 row selected
SQL>

BITANDNOT (numeric-
expression,numeric-
expression)

BITANDNOT is used
to clear bits in the first
expression that are set in
the second expression. First
a bitwise NOT (BITNOT)
is performed on the second
numeric value expression
and then a bitwise AND
(BITAND) is performed
of the first numeric value
expression with the result.

If either of the passed
expressions results in
NULL, then the result of
BITANDNOT will be NULL.
Note that BITANDNOT is
equivalent to BITAND (exp1,
BITNOT (ex2)) but is more
efficient.

BITNOT (numeric-
expression)

BITNOT returns the
bitwise NOT of the passed
numeric value expression.

If the passed expression
results in NULL, then the
result of BITNOT will be
NULL.

BITOR (numeric-
expression, numeric-
expression)

BITOR returns the bitwise
OR of the passed numeric
value expressions.

If either of the passed
expressions results in
NULL, then the result of
BITOR will be NULL.

BITXOR (numeric-
expression, numeric-
expression)

BITXOR Returns the
bitwise XOR of the passed
numeric value expressions.

If either of the passed
expressions results in
NULL, then the result of
BITXOR will be NULL.

CEIL (n) Returns the smallest
integer greater than or
equal to n.

CHR (n) Returns the character
having the binary
equivalent to n.

The returned value is of type
RDB$ORACLE_SQLFUNC_
VCHAR_DOM, the character
set of which is bound when
you install the Oracle SQL
functions. In addition, only
1 octet (byte) of data is
encoded.

COS (n) Returns the cosine of n (an
angle expressed in radians).

(continued on next page)

Oracle Database Compatibility G–5

Table G–1 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

COSH (n) Returns the hyperbolic
cosine of n (an angle
expressed in radians).

COT (n) COT returns the cotangent
of n.

The function returns a
DOUBLE PRECISION
value. If either passed
expression results in NULL
then the result of COT will
be NULL.

SQL> SELECT COT (3.14159265358979/4) "Cotangent" FROM Rdb$DATABASE;
Cotangent

1.000000000000002E+000
1 row selected

EXP (n) Returns e raised to the nth
power (e=2.71828183 . . .).

FLOOR (n) Returns the largest integer
equal to or less than n.

HEXTORAW (str) Converts its argument
containing hexadecimal
digits to a raw character
value.

str must be of the same
character set as the
RDB$ORACLE_SQLFUNC_
VCHAR_DOM domain,
which is bound when
you install the Oracle
SQL functions. The
value returned is of type
RDB$ORACLE_SQLFUNC_
VCHAR_DOM.

INITCAP (str) Returns the string
argument, with the first
letter of each word in
uppercase, all other letters
in lowercase. Words
are delimited by non-
alphanumeric characters.

str must be of the same
character set as the
RDB$ORACLE_SQLFUNC_
VCHAR_DOM domain,
which is bound when
you install the Oracle
SQL functions. The
value returned is of type
RDB$ORACLE_SQLFUNC_
VCHAR_DOM.

INSTR (s1,s2[,n[,m]]) Searches s1 beginning
with its nth character
and returns the character
position of the mth
occurrence of s2 or 0 if
s2 does not occur m times.
If n < 0, the search starts at
the end of s1.

s1 and s2 must be of the
same character set as the
RDB$ORACLE_SQLFUNC_
VCHAR_DOM domain,
which is bound when you
install the Oracle SQL
functions. If either n or m is
omitted, they default to 1.

(continued on next page)

G–6 Oracle Database Compatibility

Table G–1 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

INSTRB (s1,s2[,n[,m]]) Searches s1 beginning with
its nth octet and returns
the octet position of the mth
occurrence of s2 or 0 if s2
does not occur m times. If n
< 0, the search starts at the
end of s1.

s1 and s2 must be of the
same character set as the
RDB$ORACLE_SQLFUNC_
VCHAR_DOM domain,
which is bound when you
install the Oracle SQL
functions. If either n or m is
omitted, they default to 1.

LAST_DAY (d) Returns the last day of the
month that contains d.

d must be of the same
date data type as the
RDB$ORACLE_SQLFUNC_
DATE_DOM domain, which
is bound when you install
the Oracle SQL functions.
The value returned is of type
RDB$ORACLE_SQLFUNC_
DATE_DOM.

LN (n) Returns the natural
logarithm of n where n
is greater than 0.

LOG (m,n) Returns the logarithm base
m of n. The base m can be
any positive number other
than 0 or 1 and n can be
any positive number.

LPAD (s,l,p) Returns s left-padded to
length l with the sequence
of characters in p. If s is
longer than l, this function
returns that portion of s
that fits in l.

s and p must be of the
same character set as the
RDB$ORACLE_SQLFUNC_
VCHAR_DOM domain,
which is bound when
you install the Oracle
SQL functions. The
value returned is of type
RDB$ORACLE_SQLFUNC_
VCHAR_DOM. There is no
default for p as with Oracle.

LTRIM (s1[,s2]) Removes characters from
the left of s1, with initial
characters removed up to
the first character not in s2.

s1 and s2 must be of
the same character set
as the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which is
bound when you install the
Oracle SQL functions. The
value returned is of type
RDB$ORACLE_SQLFUNC_
VCHAR_DOM. If omitted,s2
defaults to space.

MOD (m,n) Returns the remainder of m
divided by n. Returns m if
n is 0.

(continued on next page)

Oracle Database Compatibility G–7

Table G–1 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

MONTHS_BETWEEN
(d1,d2)

Returns the number of
months between dates d1
and d2.

d1 and d2 must be of the
same date data type as the
RDB$ORACLE_SQLFUNC_
DATE_DOM domain, which
is bound when you install
the Oracle SQL functions.

NEW_TIME (d1,z1,z2) Returns the date and time
in time zone z2 when the
date and time in time zone
z1 is d. Time zones z1 and
z2 can be: AST, ADT, BST,
BDT, CST, CDT, EST, EDT,
GMT, HST, HDT, MST,
MDT, NST, PST, PDT, YST,
or YDT.

d1 must be of the same
date data type as the
RDB$ORACLE_SQLFUNC_
DATE_DOM domain,
which is bound when you
install the Oracle SQL
functions. z1 and z2 must
be of the same character
set as the RDB$ORACLE_
SQLFUNC_VCHAR_DOM
domain, which is also
bound when you install
the Oracle SQL functions.
The value returned is of type
RDB$ORACLE_SQLFUNC_
DATE_DOM.

NEXT_DAY (d,dayname) Returns the date of the
first weekday named by
dayname that is later than
the date d.

d must be of the same
date data type as the
RDB$ORACLE_SQLFUNC_
DATE_DOM domain,
which is bound when you
install the Oracle SQL
functions. dayname must
be of the same character
set as the RDB$ORACLE_
SQLFUNC_VCHAR_DOM
domain, which is also
bound when you install
the Oracle SQL functions.
The value returned is of type
RDB$ORACLE_SQLFUNC_
DATE_DOM.

POWER (m,n) Returns m raised to the
nth power. The base m
and the exponent n can
be any number but if m
is negative, n must be an
integer.

RAWTOHEX (str) Converts its raw argument
to a character value
containing its hexadecimal
equivalent.

str must be of the same
character set as the
RDB$ORACLE_SQLFUNC_
VCHAR_DOM domain,
which is also bound when
you install the Oracle
SQL functions. The
value returned is of type
RDB$ORACLE_SQLFUNC_
VCHAR_DOM.

(continued on next page)

G–8 Oracle Database Compatibility

Table G–1 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

REPLACE (s1[,s2[,s3]]) Returns s1 with every
occurrence of s2 replaced by
s3.

s1, s2, and s3 must be of
the same character set
as the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which is
bound when you install the
Oracle SQL functions. The
value returned is of type
RDB$ORACLE_SQLFUNC_
VCHAR_DOM. If omitted, s2
and s3 default to an empty
string.

RPAD (s[,l[,p]]) Returns s left-padded to
length l with the sequence
of characters in p. If s is
longer than l, this function
returns that portion of s
that fits in l.

s and p must be of the
same character set as the
RDB$ORACLE_SQLFUNC_
VCHAR_DOM domain,
which is also bound when
you install the Oracle
SQL functions. The
value returned is of type
RDB$ORACLE_SQLFUNC_
VCHAR_DOM. If omitted, p
defaults to a space.

RTRIM (s1[,s2]) Returns s2 with final
characters after the last
character not in s2.

s1 and s2 must be of
the same character set
as the RDB$ORACLE_
SQLFUNC_VCHAR_DOM
domain, which is also
bound when you install
the Oracle SQL functions.
The value returned is of type
RDB$ORACLE_SQLFUNC_
VCHAR_DOM. If omitted, s2
defaults to a space.

SIN (n) Returns the sine of n (an
angle expressed in radians).

SINH (n) Returns the hyperbolic sine
of n (an angle expressed in
radians).

SQRT (n) Returns the square root of
n. The value of n cannot be
negative. SQRT returns a
double precision result.

(continued on next page)

Oracle Database Compatibility G–9

Table G–1 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

SUBSTR (s[,p[,l]]) Returns a portion of s, l
characters long, beginning
at character position p. If p
is negative, SUBSTR counts
backward from the end of s.

s must be of the same
character set as the
RDB$ORACLE_SQLFUNC_
VCHAR_DOM domain,
which is also bound when
you install the Oracle
SQL functions. The
value returned is of type
RDB$ORACLE_SQLFUNC_
VCHAR_DOM. If omitted, l
defaults to zero (0).

SUBSTRB (s[,p[,l]]) Same as SUBSTR, except
p and l are expressed in
octets (bytes) rather than
characters.

s must be of the same
character set as the
RDB$ORACLE_SQLFUNC_
VCHAR_DOM domain,
which is also bound when
you install the Oracle
SQL functions. The
value returned is of type
RDB$ORACLE_SQLFUNC_
VCHAR_DOM. If omitted, l
defaults to zero (0).

TAN (n) Returns the tangent of
n (an angle expressed in
radians).

TANH (n) Returns the hyperbolic
tangent of n (an angle
expressed in radians).

G.2 Oracle Style Outer Join
Oracle Rdb supports the SQL Database Language Standard syntax for performing
outer join between two or more tables, namely the LEFT, RIGHT, and FULL
OUTER JOIN clauses. Oracle Rdb also supports alternative syntax and
semantics that conform to those available in Oracle RDMS SQL language to
enhance the compatibility between these two products. The special operator (+)
can be placed in the WHERE clause to instruct SQL to join tables using outer
join semantics.

An outer join extends the result of a simple join. An outer join returns all rows
that satisfy the join condition and those rows from one table for which no rows
from the other satisfy the join condition. Such rows are not returned by a simple
join. To write a query that performs an outer join of tables A and B and returns
all rows from A, apply the outer join operator (+) to all columns of B in the join
condition. For all rows in A that have no matching rows in B, Oracle Rdb returns
NULL for any select list expressions containing columns of B.

Outer join queries are subject to the following rules and restrictions:

• The (+) operator can appear only in the WHERE clause and can be applied
only to a column of a table or view.

G–10 Oracle Database Compatibility

• If A and B are joined by multiple join conditions, you must use the (+)
operator in all of these conditions. If you do not, Oracle Rdb will return
only the rows resulting from a simple join, but without a warning or error to
advise you that you do not have the results of an outer join.

• The (+) operator can be applied only to a column, not to an arbitrary
expression. However, an arbitrary expression can contain a column marked
with the (+) operator.

• A condition containing the (+) operator cannot be combined with another
condition using the OR logical operator.

• A condition cannot use the IN comparison operator to compare a column
marked with the (+) operator with an expression.

• A condition cannot compare any column marked with the (+) operator with a
subquery.

If the WHERE clause contains a condition that compares a column from table B
with a constant, the (+) operator must be applied to the column so that Oracle
Rdb returns the rows from table A for which it has generated NULLs for this
column. Otherwise Oracle Rdb will return only the results of a simple join.

In a query that performs outer joins of more than two pairs of tables, a single
table can be the NULL-generated table for only one other table. For this reason,
you cannot apply the (+) operator to columns of B in the join condition for A and
B and the join condition for B and C.

G.2.1 Outer Join Examples
The examples in this section extend the results of this inner join (Equijoin)
between EMP and DEPT tables.

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept
cont> WHERE emp.deptno = dept.deptno;
EMP.ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
King President 10 Accounting
Blake Manager 30 Sales
Clark Manager 10 Accounting
Jones Manager 20 Research
Ford Analyst 20 Research
Smith Clerk 20 Research
Allen Salesman 30 Sales
Ward Salesman 30 Sales
Martin Salesman 30 Sales
Scott Analyst 20 Research
Turner Salesman 30 Sales
Adams Clerk 20 Research
James Clerk 30 Sales
Miller Clerk 10 Accounting
14 rows selected

The following query uses an outer join to extend the results of this Equijoin
example above:

Oracle Database Compatibility G–11

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept
cont> WHERE emp.deptno (+) = dept.deptno;
EMP.ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
King President 10 Accounting
Clark Manager 10 Accounting
Miller Clerk 10 Accounting
Jones Manager 20 Research
Ford Analyst 20 Research
Smith Clerk 20 Research
Scott Analyst 20 Research
Adams Clerk 20 Research
Blake Manager 30 Sales
Allen Salesman 30 Sales
Ward Salesman 30 Sales
Martin Salesman 30 Sales
Turner Salesman 30 Sales
James Clerk 30 Sales
NULL NULL 40 Operations
15 rows selected

In this outer join, Oracle Rdb returns a row containing the OPERATIONS
department even though no employees work in this department. Oracle Rdb
returns NULL in the ENAME and JOB columns for this row. The join query in
this example selects only departments that have employees.

The following query uses an outer join to extend the results of the preceding
example:

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept
cont> WHERE emp.deptno (+) = dept.deptno
cont> AND job (+) = ’Clerk’;
EMP.ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
Miller Clerk 10 Accounting
Smith Clerk 20 Research
Adams Clerk 20 Research
James Clerk 30 Sales
NULL NULL 40 Operations
5 rows selected

In this outer join, Oracle Rdb returns a row containing the OPERATIONS
department even though no clerks work in this department. The (+) operator
on the JOB column ensures that rows for which the JOB column is NULL are
also returned. If this (+) were omitted, the row containing the OPERATIONS
department would not be returned because its JOB value is not ’CLERK’.

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept
cont> WHERE emp.deptno (+) = dept.deptno
cont> AND job = ’Clerk’;
EMP.ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
Miller Clerk 10 Accounting
Smith Clerk 20 Research
Adams Clerk 20 Research
James Clerk 30 Sales
4 rows selected

This example shows four outer join queries on the CUSTOMERS, ORDERS,
LINEITEMS, and PARTS tables. These tables are shown here:

G–12 Oracle Database Compatibility

SQL> SELECT custno, custname
cont> FROM customers
cont> ORDER BY custno;

CUSTNO CUSTNAME
1 Angelic Co
2 Believable Co
3 Cables R Us

3 rows selected
SQL>
SQL> SELECT orderno, custno, orderdate
cont> FROM orders
cont> ORDER BY orderno;

ORDERNO CUSTNO ORDERDATE
9001 1 1999-10-13
9002 2 1999-10-13
9003 1 1999-10-20
9004 1 1999-10-27
9005 2 1999-10-31

5 rows selected
SQL>
SQL> SELECT orderno, lineno, partno, quantity
cont> FROM lineitems
cont> ORDER BY orderno, lineno;

ORDERNO LINENO PARTNO QUANTITY
9001 1 101 15
9001 2 102 10
9002 1 101 25
9002 2 103 50
9003 1 101 15
9004 1 102 10
9004 2 103 20

7 rows selected
SQL>
SQL> SELECT partno, partname
cont> FROM parts
cont> ORDER BY partno;

PARTNO PARTNAME
101 X-Ray Screen
102 Yellow Bag
103 Zoot Suit

3 rows selected

The customer Cables R Us has placed no orders, and order number 9005 has no
line items.

The following outer join returns all customers and the dates they placed orders.
The (+) operator ensures that customers who placed no orders are also returned:

SQL> SELECT custname, orderdate
cont> FROM customers, orders
cont> WHERE customers.custno = orders.custno (+)
cont> ORDER BY customers.custno, orders.orderdate;
CUSTOMERS.CUSTNAME ORDERS.ORDERDATE
Angelic Co 1999-10-13
Angelic Co 1999-10-20
Angelic Co 1999-10-27
Believable Co 1999-10-13
Believable Co 1999-10-31
Cables R Us NULL
6 rows selected

Oracle Database Compatibility G–13

The following outer join builds on the result of the previous one by adding the
LINEITEMS table to the FROM clause, columns from this table to the select list,
and a join condition joining this table to the ORDERS table to the where_clause.
This query joins the results of the previous query to the LINEITEMS table and
returns all customers, the dates they placed orders, and the part number and
quantity of each part they ordered. The first (+) operator serves the same purpose
as in the previous query. The second (+) operator ensures that orders with no line
items are also returned:

SQL> SELECT custname, orderdate, partno, quantity
cont> FROM customers, orders, lineitems
cont> WHERE customers.custno = orders.custno (+)
cont> AND orders.orderno = lineitems.orderno (+)
cont> ORDER BY customers.custno, orders.orderdate, lineitems.partno;
CUSTOMERS.CUSTNAME ORDERS.ORDERDATE LINEITEMS.PARTNO LINEITEMS.QUANTITY
Angelic Co 1999-10-13 101 15
Angelic Co 1999-10-13 102 10
Angelic Co 1999-10-20 101 15
Angelic Co 1999-10-27 102 10
Angelic Co 1999-10-27 103 20
Believable Co 1999-10-13 101 25
Believable Co 1999-10-13 103 50
Believable Co 1999-10-31 NULL NULL
Cables R Us NULL NULL NULL
9 rows selected

The following outer join builds on the result of the previous one by adding the
PARTS table to the FROM clause, the PARTNAME column from this table to the
select list, and a join condition joining this table to the LINEITEMS table to the
where_clause. This query joins the results of the previous query to the PARTS
table to return all customers, the dates they placed orders, and the quantity
and name of each part they ordered. The first two (+) operators serve the same
purposes as in the previous query. The third (+) operator ensures that rows with
NULL part numbers are also returned:

SQL> SELECT custname, orderdate, quantity, partname
cont> FROM customers, orders, lineitems, parts
cont> WHERE customers.custno = orders.custno (+)
cont> AND orders.orderno = lineitems.orderno (+)
cont> AND lineitems.partno = parts.partno (+)
cont> ORDER BY customers.custno, orders.orderdate, parts.partno;
CUSTOMERS.CUSTNAME ORDERS.ORDERDATE LINEITEMS.QUANTITY PARTS.PARTNAME
Angelic Co 1999-10-13 15 X-Ray Screen
Angelic Co 1999-10-13 10 Yellow Bag
Angelic Co 1999-10-20 15 X-Ray Screen
Angelic Co 1999-10-27 10 Yellow Bag
Angelic Co 1999-10-27 20 Zoot Suit
Believable Co 1999-10-13 25 X-Ray Screen
Believable Co 1999-10-13 50 Zoot Suit
Believable Co 1999-10-31 NULL NULL
Cables R Us NULL NULL NULL
9 rows selected

G–14 Oracle Database Compatibility

H
System Tables

This appendix describes the Oracle Rdb system tables.

Oracle Rdb stores information about the database as a set of special system
tables. The system tables are the definitive source of Oracle Rdb metadata.
Metadata defines the structure of the database; for example, metadata defines
the fields that comprise a particular table and the fields that can index that table.

The definitions of most system tables are standard and are likely to remain
constant in future versions of Oracle Rdb.

In each description for a particular system table, BLR refers to binary language
representation. This is low-level syntax used internally to represent Oracle Rdb
data manipulation operations.

The following sections describe the usage of system tables with respect to
particular versions of Oracle Rdb or in relation to other database constructs,
operations, or products.

H.1 Using Data Dictionary
Although you can store your data definitions in the data dictionary, the database
system refers only to the system tables in the database file itself for these
definitions. In a sense, the system tables are an internal data dictionary for the
database. This method improves performance as Oracle Rdb does not have to
access the data dictionary at run time.

H.2 Modifying System Tables
When you create a database, Oracle Rdb defines, populates, and manipulates the
system tables. As the user performs data definition operations on the database,
Oracle Rdb reads and modifies the system tables to reflect those operations. You
should not modify any of the Oracle Rdb system tables using data manipulation
language, nor should you define any domains based on system table fields.
However, you can use regular Oracle Rdb data manipulation statements to
retrieve the contents of the system tables. This means that your program can
determine the structure and characteristics of the database by retrieving the
fields of the system tables.

H.3 Updating Metadata
When you use the SQL SET TRANSACTION . . . RESERVING statement to
lock a set of tables for an Oracle Rdb operation, you normally exclude from the
transaction all the tables not listed in the RESERVING clause. However, Oracle
Rdb accesses and updates system tables as necessary, no matter which tables you
have locked with the SQL SET TRANSACTION statement.

System Tables H–1

When your transaction updates database metadata, Oracle Rdb reserves the
system tables involved in the update in the EXCLUSIVE share mode. Other
users are unable to perform data definition operations on these tables until you
complete your transaction. For example:

• When you refer to a domain (global field) in an update transaction that
changes data definitions, Oracle Rdb locks an index for the system table,
RDB$RELATION_FIELDS. No other users can refer to the same domain
until you commit your transaction.

• When you change a relation (table) or domain definition, Oracle Rdb locks
an index in the system table, RDB$FIELD_VERSIONS. No other users can
change table or global field definitions until you commit your transaction.

• When you change a table definition, Oracle Rdb locks an index in the system
table, RDB$RELATION_FIELDS. No other users can change tables in the
same index node until you commit your transaction.

H.4 LIST OF BYTE VARYING Metadata
Oracle Rdb has supported multiple segment LIST OF BYTE VARYING data types
for user-defined data. However in previous versions, Oracle Rdb maintained
its own LIST OF BYTE VARYING metadata columns as single segments. This
restricted the length to approximately 65530 bytes. An SQL CREATE TRIGGER
or CREATE MODULE statement could fail due to this restriction.

This limit was lifted by changing the way Oracle Rdb stores its own metadata.

• For columns containing binary data, such as the binary representation of
query, routine, constraint, trigger action, computed by column, or query
outline, Oracle Rdb breaks the data into pieces that best fit the system
storage area page size. Thus, the segments are all the same size with a
possible small trailing segment.

The LIST OF BYTE VARYING column value is no longer fragmented,
improving performance when reading system metadata.

• For columns containing text data such as the SQL source (for elements such
as triggers and views) and user-supplied comment strings, Oracle Rdb breaks
the text at line boundaries (indicated by ASCII carriage returns and line
feeds) and stores the text without the line separator. Thus, the segments are
of varying size with a possible zero length for blank lines.

An application can now easily display the LIST OF BYTE VARYING column
value and the application no longer needs to break up the single text segment
for printing.

No change is made to the LIST OF BYTE VARYING column values when
a database is converted (using the RMU Convert command, RMU Restore
command, or SQL EXPORT/IMPORT statements) from a previous version.

Applications that read the Oracle Rdb system LIST OF BYTE VARYING column
values must be changed to understand multiple segments. Applications that do
not read these system column values should see no change to previous behavior.
Tools such as the RMU Extract command and the SQL SHOW and EXPORT
statements handle both the old and new formats of the system metadata.

H–2 System Tables

H.5 Read Only Access
The following is a list of fields of various system tables that are set to read-only
access.

• RDB$ACCESS_CONTROL

• RDB$COLLATION_CREATOR

• RDB$CONSTRAINT_CREATOR

• RDB$DATABASE_CREATOR

• RDB$FIELD_CREATOR

• RDB$FLAGS

• RDB$INDEX_CREATOR

• RDB$MODULE_CREATOR

• RDB$MODULE_OWNER

• RDB$OUTLINE_CREATOR

• RDB$PROFILE_CREATOR

• RDB$RELATION_CREATOR

• RDB$ROUTINE_CREATOR

• RDB$ROUTINE_OWNER

• RDB$SEQUENCE_CREATOR

• RDB$SYNONYM_CREATOR

• RDB$TRIGGER_CREATOR

The following BASIC program uses an SQL Module to query system tables

PROGRAM SYSTEM_RELATION
! This BASIC program interactively prompts a user to enter a name
! of a system table (table). Next, the program calls an SQL
! Module which uses a cursor to read the system table that the
! user entered. Upon reading the fields (domains) of the system
! table, the program displays a message to the user as to whether
! the fields in a system table can be updated.
OPTION TYPE = EXPLICIT, SIZE = INTEGER LONG
ON ERROR GOTO ERR_ROUTINE
!
! Declare variables and constants
!
DECLARE STRING Column_name, Table_name
DECLARE INTEGER Update_yes, sqlcode
DECLARE INTEGER CONSTANT TRIM_BLANKS = 128, UPPER_CASE = 32
EXTERNAL SUB SET_TRANSACTION (LONG)
EXTERNAL SUB OPEN_CURSOR(LONG,STRING)
EXTERNAL SUB FETCH_COLUMN(LONG,STRING,INTEGER)
EXTERNAL SUB CLOSE_CURSOR(LONG)
EXTERNAL SUB COMMIT_TRANS (LONG)
!
! Prompt for table name
!
INPUT ’Name of Table’; Table_name
Table_name = EDIT$(Table_name, UPPER_CASE)
PRINT ’Starting query’

System Tables H–3

PRINT ’In ’; Table_name; ’ Table, columns:’
!
! Call the SQL module to start the transaction.
!
CALL SET_TRANSACTION(Sqlcode)
!
! Open the cursor.
!
CALL OPEN_CURSOR(Sqlcode, Table_name)
GET_LOOP:
WHILE (Sqlcode = 0)
!
! Fetch each column
!
CALL FETCH_COLUMN(Sqlcode, Column_name, Update_yes)

IF (Sqlcode = 0)
THEN

!
! Display returned column
!
PRINT ’ ’; EDIT$(Column_name, TRIM_BLANKS);
IF (update_yes = 1)
THEN

PRINT ’ can be updated’
ELSE

PRINT ’ cannot be updated’
END IF

END IF
NEXT

ERR_ROUTINE:
IF Sqlcode = 100
THEN

PRINT "No more rows."
RESUME PROG_END

ELSE
PRINT "Unexpected error: ", Sqlcode, Err
RESUME PROG_END

END IF
PROG_END:
!
! Close the cursor, commit work and exit
!
CALL CLOSE_CURSOR(Sqlcode)
CALL COMMIT_TRANS(Sqlcode)
END PROGRAM

The following module provides the SQL procedures that are called by the
preceding BASIC program.

-- This SQL module provides the SQL procedures that are called by the
-- preceding BASIC program, system table

-- Header Information Section

MODULE SQL_SYSTEM_REL_BAS -- Module name
LANGUAGE BASIC -- Language of calling program
AUTHORIZATION SQL_SAMPLE -- Authorization ID

--
-- DECLARE Statements Section
--
DECLARE ALIAS FILENAME ’MF_PERSONNEL’ -- Declaration of the database.

H–4 System Tables

DECLARE SELECT_UPDATE CURSOR FOR
SELECT RDB$FIELD_NAME, RDB$UPDATE_FLAG
FROM RDB$RELATION_FIELDS
WHERE RDB$RELATION_NAME = table_name
ORDER BY RDB$FIELD_POSITION

--
-- Procedure Section
--
-- Start a transaction.
PROCEDURE SET_TRANSACTION

SQLCODE;

SET TRANSACTION READ WRITE;

-- Open the cursor.
PROCEDURE OPEN_CURSOR

SQLCODE
table_name RDB$RELATION_NAME;

OPEN SELECT_UPDATE;

-- Fetch a row.
PROCEDURE FETCH_COLUMN

SQLCODE
field_name RDB$FIELD_NAME
update_flag RDB$UPDATE_FLAG;

FETCH SELECT_UPDATE INTO :field_name, :update_flag;

-- Close the cursor.
PROCEDURE CLOSE_CURSOR

SQLCODE;

CLOSE SELECT_UPDATE;

-- Commit the transaction.
PROCEDURE COMMIT_TRANS

SQLCODE;

COMMIT;

H.6 All System Tables
The Oracle Rdb system tables are as follows:

RDB$CATALOG_SCHEMA Contains the name and definition of
each SQL catalog and schema. This
table is present only in databases
with the SQL multischema feature
enabled.

RDB$COLLATIONS The collating sequences used by this
database.

RDB$CONSTRAINTS Name and definition of each
constraint.

RDB$CONSTRAINT_RELATIONS Name of each table that participates
in a given constraint.

RDB$DATABASE Database-specific information.

RDB$FIELD_VERSIONS One row for each version of each
column definition in the database.

RDB$FIELDS Characteristics of each domain in the
database.

System Tables H–5

RDB$GRANTED_PROFILES Description of roles and profiles
granted to users and other roles.

RDB$INDEX_SEGMENTS Columns that make up an index.

RDB$INDICES Characteristics of the indexes for each
table.

RDB$INTERRELATIONS Interdependencies of entities used in
the database.

RDB$MODULES Module definition as defined by a user,
including the header and declaration
section.

RDB$OBJECT_SYNONYMS When synonyms are enabled, this
system table is created to describe the
synonym name, type, and target.

RDB$PARAMETERS Interface definition for each routine
stored in RDB$ROUTINES. Each
parameter to a routine (procedure
or function) is described by a row in
RDB$PARAMETERS.

RDB$PRIVILEGES Protection for the database objects.

RDB$PROFILES Description of any profiles, roles or
users in the database.

RDB$QUERY_OUTLINES Query outline definitions used by the
optimizer to retrieve known query
outlines prior to optimization.

RDB$RELATION_CONSTRAINTS Lists all table-specific constraints.

RDB$RELATION_CONSTRAINT_FLDS Lists the columns that participate
in unique, primary, or foreign
key declarations for table-specific
constraints.

RDB$RELATION_FIELDS Columns defined for each table.

RDB$RELATIONS Tables and views in the database.

RDB$ROUTINES Description of each function and
procedure in the database. The
routine may be standalone or part
of a module.

RDB$SEQUENCES Characteristics of any sequences
defined for the database.

RDB$STORAGE_MAPS Characteristics of each storage map.

RDB$STORAGE_MAP_AREAS Characteristics of each partition of a
storage map.

RDB$SYNONYMS Connects an object’s user-specified
name to its internal database name.
This table is only present in databases
with the SQL multischema feature
enabled.

RDB$TRIGGERS Definition of a trigger.

RDB$VIEW_RELATIONS Interdependencies of tables used in
views.

RDB$WORKLOAD Collects workload information.

RDB$TRIGGER_ACTIONS Collects workload information.

H–6 System Tables

H.6.1 RDB$CATALOG_SCHEMA
The RDB$CATALOG_SCHEMA system table contains the name and definition of
each SQL catalog and schema. This table is present only in databases that have
the SQL multischema feature enabled. The following table provides information
on the columns of the RDB$CATALOG_SCHEMA system table.

Column Name Data Type Summary Description

RDB$PARENT_ID integer For a schema, this is the
RDB$CATALOG_SCHEMA_ID of the
catalog to which this schema belongs.
For a catalog, this column is always 0.

RDB$CATALOG_SCHEMA_
NAME

char(31) The name of the catalog or schema.

RDB$CATALOG_SCHEMA_ID integer A unique identifier indicating whether
this is a catalog or a schema.

Schema objects have positive
identifiers starting at 1 and
increasing. Catalog objects have
negative identifiers starting at -1 and
decreasing. 0 is reserved.

RDB$DESCRIPTION list of byte
varying

A user-supplied description of the
catalog or schema.

RDB$SCHEMA_AUTH_ID char(31) The authorization identifier of the
creator of the schema.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CREATED date vms Set when the schema or catalog is
created.

RDB$LAST_ALTERED date vms Set when SQL ALTER CATALOG or
ALTER SCHEMA statement is used
(future).

RDB$CATALOG_SCHEMA_
CREATOR

char(31) Creator of this schema or catalog.

H.6.2 RDB$COLLATIONS
The RDB$COLLATIONS system table describes the collating sequence to be used
in the database. The following table provides information on the columns of the
RDB$COLLATIONS system table.

Column Name Data Type Summary Description

RDB$COLLATION_NAME char(31) Supplies the name by which the
database’s collating sequences are
known within the database.

RDB$COLLATION_SEQUENCE list of byte
varying

Internal representation of the collating
sequence.

RDB$DESCRIPTION list of byte
varying

A user-supplied description of the
collating sequence.

System Tables H–7

Column Name Data Type Summary Description

RDB$FLAGS integer A bit mask where the following bits
are set:

• Bit 0

If an ASCII collating sequence.

• Bit 1

If a DEC_MCS collating sequence.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CREATED date vms Set when the collating sequence is
created.

RDB$LAST_ALTERED date vms Reserved for future use.

RDB$COLLATION_CREATOR char(31) Creator of this collating sequence.

H.6.3 RDB$CONSTRAINTS
The RDB$CONSTRAINTS system table contains the name and definition of
each constraint. The following table provides information on the columns of the
RDB$CONSTRAINTS system table.

Column Name Data Type Summary Description

RDB$CONSTRAINT_NAME char(31) The system-wide unique name of the
constraint.

RDB$CONSTRAINT_BLR list of byte
varying

The BLR that defines the constraint.

RDB$CONSTRAINT_SOURCE list of byte
varying

The user’s source for the constraint.

RDB$DESCRIPTION list of byte
varying

A user-supplied description of this
constraint.

RDB$EVALUATION_TIME integer A value that represents when a
constraint is evaluated, as follows:

• 0

At commit time (deferred initially
deferred).

• 1

At verb time (deferrable initially
immediate).

• 2

At verb time (not deferrable).

RDB$EXTENSION_
PARAMETERS

list of byte
varying

Reserved for future use.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CREATED date vms Set when the constraint is created.

RDB$LAST_ALTERED date vms Reserved for future use.

RDB$CONSTRAINT_CREATOR char(31) Creator of this constraint.

H–8 System Tables

Column Name Data Type Summary Description

RDB$FLAGS integer Flags.

H.6.3.1 RDB$FLAGS
Represents flags for RDB$CONSTRAINTS system table.

Bit Position Description

0 Currently disabled.

1 Currently enabled without validation.

2 Tracking if SQL generated the name.

3 A not null constraint.

4 A primary key constraint.

5 A foreign key constraint.

6 A check constraint.

7 A unique constraint.

H.6.4 RDB$CONSTRAINT_RELATIONS
The RDB$CONSTRAINT_RELATIONS system table lists all tables that
participate in a given constraint. The following table provides information on
the columns of the RDB$CONSTRAINT_RELATIONS system table.

Column Name Data Type Summary Description

RDB$CONSTRAINT_NAME char(31) The system-wide unique name of the
constraint.

RDB$RELATION_NAME char(31) The name of a table involved in the
constraint.

RDB$FLAGS integer Flags.

RDB$CONSTRAINT_CONTEXT integer The context variable of the table
involved in the constraint.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.4.1 RDB$FLAGS
Represents flags for RDB$CONSTRAINT_RELATIONS system table.

Bit Position Description

0 Reserved for future use.

1 Reserved for future use.

2 If the constraint is on the specified table.

3 If the constraint evaluates with optimization by dbkey lookup.

4 If the constraint checks for existence.

5 If the constraint checks for uniqueness.

6 If the constraint needs to evaluate on store of specified table row.

7 If the constraint need not evaluate on store of specified table row.

System Tables H–9

Bit Position Description

8 If the constraint needs to evaluate on erase of specified table row.

9 If the constraint need not evaluate on erase of specified table row.

H.6.5 RDB$DATABASE
The RDB$DATABASE system table contains information that pertains to the
overall database. This table can contain only one row. The following table
provides information on the columns of the RDB$DATABASE system table.

Column Name Data Type Summary Description

RDB$CDD_PATH char(256) The dictionary path name for the
database.

RDB$FILE_NAME char(255) Oracle Rdb returns the file
specification of the database root
file. [1]

RDB$MAJ_VER integer Derived from the database major
version.

RDB$MIN_VER integer Derived from the database minor
version.

RDB$MAX_RELATION_ID integer The largest table identifier assigned.
Oracle Rdb assigns the next table an
ID of MAX_RELATION_ID + 1.

RDB$RELATION_ID integer The unique identifier of the
RDB$RELATIONS table. If you drop
a table, that identifier is not assigned
to any other table.

RDB$RELATION_ID_ROOT_
DBK

char(8) A pointer (database key or dbkey)
to the base of the RDB$REL_
REL_ID_NDX index on column
RDB$RELATION_ID.

RDB$RELATION_NAME_
ROOT_DBK

char(8) A pointer (dbkey) to the base of the
RDB$REL_REL_NAME_NDX index
on column RDB$RELATION_NAME.

RDB$FIELD_ID integer The identifier of the
RDB$FIELD_VERSIONS table.

RDB$FIELD_REL_FLD_ROOT_
DBK

char(8) A pointer (dbkey) to the base of the
RDB$VER_REL_ID_VER_NDX index
on columns RDB$RELATION_ID and
RDB$VERSION.

RDB$INDEX_ID integer The identifier of the RDB$INDICES
table.

RDB$INDEX_NDX_ROOT_DBK char(8) A pointer (dbkey) to the base of the
RDB$NDX_NDX_NAME_NDX index
on column RDB$INDEX_NAME.

RDB$INDEX_REL_ROOT_DBK char(8) A pointer (dbkey) to the base of the
RDB$NDX_REL_NAM_NDX index on
column RDB$RELATION_ID.

RDB$INDEX_SEG_ID integer The identifier of the
RDB$INDEX_SEGMENTS table.

H–10 System Tables

Column Name Data Type Summary Description

RDB$INDEX_SEG_FLD_ROOT_
DBK

char(8) A pointer (dbkey) to the base of the
RDB$NDX_SEG_NAM_FLD_POS_
NDX index on columns RDB$INDEX_
NAME and RDB$FIELD_POSITION.

RDB$SEGMENTED_STRING_
ID

integer The logical area ID that contains the
segmented strings.

RDB$ACCESS_CONTROL list of byte
varying

The access control policy for the
database.

RDB$DESCRIPTION list of byte
varying

A user-supplied description of the
database.

RDB$DATABASE_
PARAMETERS

list of byte
varying

Reserved for future use.

RDB$EXTENSION_
PARAMETERS

list of byte
varying

Reserved for future use.

RDB$FLAGS integer Flags.

RDBVMS$MAX_VIEW_ID integer The largest view identifier assigned
to the RDB$RELATION_ID column in
the RDB$RELATIONS system table.
Oracle Rdb assigns the next view an
ID of MAX_VIEW_ID + 1.

RDBVMS$SECURITY_AUDIT integer A bit mask that indicates the
privileges that will be audited for
the database, as specified in the RMU
Set Audit command.

RDBVMS$SECURITY_ALARM integer A bit mask that indicates the
privileges that will produce alarms
for the database, as specified in the
RMU Set Audit command.

RDBVMS$SECURITY_USERS list of byte
varying

An access control list that identifies
users who will be audited or who will
produce alarms for DAC (discretionary
access control) events when DACCESS
(discretionary access) auditing is
enabled for specific database objects.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDBVMS$SECURITY_AUDIT2 integer Reserved for future use.

RDBVMS$SECURITY_ALARM2 integer Reserved for future use.

RDBVMS$CHARACTER_SET_
ID

integer Value is the character set ID used for
the identifier character set.

RDBVMS$CHARACTER_SET_
NATIONAL

integer Value is the character set ID used for
all NCHAR (also called NATIONAL
CHAR or NATIONAL CHARACTER)
data types and literals.

RDBVMS$CHARACTER_SET_
DEFAULT

integer Value is the character set ID used for
the default character set.

RDB$MAX_ROUTINE_ID integer Maintains a count of the modules and
routines added to the database. Value
is 0 if no routines or modules have
been added to the database.

RDB$CREATED date vms Set when the database is created.

System Tables H–11

Column Name Data Type Summary Description

RDB$LAST_ALTERED date vms Set when SQL ALTER DATABASE
statement is used.

RDB$DATABASE_CREATOR char(31) Creator of this database.

RDB$DEFAULT_STORAGE_
AREA_ID

integer Default storage area used for
unmapped, persistent tables and
indices.

RDB$DEFAULT_TEMPLATE_
AREA_ID

integer Reserved for future use.

Footnote:

[1] The root file specification is not stored on disk (an RMU Dump command
with the Areas qualifier shows that this field is blank) and is only returned
to queries at runtime. Therefore, the root file specification remains correct
after you use the RMU Move_Area, RMU Copy_Database, and RMU Backup
commands, and the SQL EXPORT and IMPORT statements.

The following ALTER DATABASE clauses modify the RDB$LAST_ALTERED
column in the RDB$DATABASE system table:

• CARDINALITY COLLECTION IS {ENABLED | DISABLED}

• DICTIONARY IS [NOT] REQUIRED

• DICTIONARY IS NOT USED

• METADATA CHANGES ARE {ENABLED | DISABLED}

• MULTISCHEMA IS {ON | OFF}

• SECURITY CHECKING IS EXTERNAL (PERSONA SUPPORT IS
{ENABLED | DISABLED})

• SECURITY CHECKING IS INTERNAL (ACCOUNT CHECK IS {ENABLED
| DISABLED})

• SYNONYMS ARE ENABLED

• WORKLOAD COLLECTION IS {ENABLED | DISABLED}

The following SQL statements modify the RDB$LAST_ALTERED column in the
RDB$DATABASE system table:

• GRANT statement

• REVOKE statement

• COMMENT ON DATABASE statement

H.6.5.1 RDB$FLAGS
Represents flags for RDB$DATABASE system table.

Bit Position Description

0 If dictionary required.

1 If ANSI protection used.

2 If database file is a CDD$DATABASE database.

3 Reserved for future use.

H–12 System Tables

Bit Position Description

4 Reserved for future use.

5 Reserved for future use.

6 Multischema is enabled.

7 Reserved for future use.

8 System indexes use run length compression.

9 The optimizer saves workload in RDB$WORKLOAD system table.

10 The optimizer is not updating table and index cardinalities.

11 All metadata changes are disabled.

12 Oracle Rdb uses database for user and role names.

13 When true use PERSONA services.

14 Synonyms are supported.

15 Prefix cardinalities are not collected for system indexes.

16 If collecting, use full algorithm for system indexes.

17 Use sorted ranked index for system indexes.

H.6.6 RDB$FIELD_VERSIONS
The RDB$FIELD_VERSIONS system table is an Oracle Rdb extension. This
table contains one row for each version of each column definition in the database.
The following table provides information on the columns of the RDB$FIELD_
VERSIONS system table.

Column Name Data Type Summary Description

RDB$RELATION_ID integer The identifier for a table within the
database.

RDB$FIELD_ID integer An identifier used internally to name
the column represented by this row.

RDB$FIELD_NAME char(31) The name of the column.

RDB$VERSION integer The version number for the table
definition to which this column
belongs.

RDB$FIELD_TYPE integer The data type of the column
represented by this row. This data
type must be interpreted according to
the rules for interpreting the DSC$B_
DTYPE field of class S descriptors
(as defined in the OpenVMS Calling
Standard).

Segmented strings require a unique
field type identifier. This identifier is
currently 261.

RDB$FIELD_LENGTH integer The length of the column represented
by this row. This length must be
interpreted according to the rules for
interpreting the DSC$W_LENGTH
field within class S and SD descriptors
(as defined in the OpenVMS Calling
Standard).

System Tables H–13

Column Name Data Type Summary Description

RDB$OFFSET integer The byte offset of the column from the
beginning of the row.

RDB$FIELD_SCALE integer For numeric data types, the scale
factor to be applied when interpreting
the contents of the column represented
by this row.

This scale factor must be interpreted
according to the rules for interpreting
the DSC$B_SCALE field of class
SD descriptors (as defined in the
OpenVMS Calling Standard).

For date-time data types,
RDB$FIELD_SCALE is fractional
seconds precision. For other non-
numeric data types,
RDB$FIELD_SCALE is 0.

RDB$FLAGS integer Flags.

RDB$VALIDATION_BLR list of byte
varying

The BLR that represents the SQL
check constraint clause defined in this
version of the column.

RDB$COMPUTED_BLR list of byte
varying

The BLR that represents the SQL
clause, COMPUTED BY, defined in
this version of the column.

RDB$MISSING_VALUE list of byte
varying

The BLR that represents the SQL
clause, MISSING_VALUE, defined in
this version of the column.

RDB$SEGMENT_LENGTH integer The length of a segmented string
segment. For date-time interval fields,
the interval leading field precision.

RDBVMS$COLLATION_NAME char(31) The name of the collating sequence for
the column.

RDB$ACCESS_CONTROL list of byte
varying

The access control list for the column.

RDB$DEFAULT_VALUE2 list of byte
varying

The SQL default value.

RDBVMS$SECURITY_AUDIT integer A bit mask that indicates the
privileges that will be audited for
the database, as specified in the RMU
Set Audit command.

RDBVMS$SECURITY_ALARM integer A bit mask that indicates the
privileges that will produce alarms
for the database, as specified in the
RMU Set Audit command.

RDB$FIELD_SUB_TYPE integer A value that describes the data
subtype of RDB$FIELD_TYPE as
shown in Help topic RDB$FIELD_
SUB_TYPE.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H–14 System Tables

H.6.6.1 RDB$FLAGS
Represents flags for RDB$FIELD_VERSIONS system table.

Bit Position Description

0 Not used.

1 Not used.

2 Not used.

3 Used by Oracle Rdb internally.

4 Set if column references a local temporary table (usually a COMPUTED
BY column).

5 Use SQL semantics for check constraint processing.

6 AUTOMATIC set on insert.

7 AUTOMATIC set on update.

8 If check constraint fails, use name in message.

9 Column is computed by an IDENTITY sequence.

10 View column is based on a read-only, or dbkey column.

H.6.7 RDB$PARAMETER_SUB_TYPE
For details, see the Help topic RDB$FIELD_SUB_TYPE.

H.6.8 RDB$FIELD_SUB_TYPE
The following table lists the values for the RDB$FIELD_SUB_TYPE and the
RDB$PARAMETER_SUB_TYPE columns.

RDB$FIELD_TYPE = DSC$K_DTYPE_ADT

RDB$FIELD_SUB_TYPE [1] Summary Description

Less than 0 Reserved for future use.
Equal to 0 Traditional OpenVMS timestamp,

which includes year, month, day, hour,
minute, second.

7 DATE ANSI, which includes year,
month, day.

56 TIME, which includes hour, minute,
second.

63 TIMESTAMP, which includes year,
month, day, hour, minute, second.

513 INTERVAL YEAR.

514 INTERVAL MONTH.

515 INTERVAL YEAR TO MONTH.

516 INTERVAL DAY.

520 INTERVAL HOUR.

524 INTERVAL DAY TO HOUR.

528 INTERVAL MINUTE.

536 INTERVAL HOUR TO MINUTE.

System Tables H–15

RDB$FIELD_TYPE = DSC$K_DTYPE_ADT

RDB$FIELD_SUB_TYPE [1] Summary Description

540 INTERVAL DAY TO MINUTE.

544 INTERVAL SECOND.

560 INTERVAL MINUTE TO SECOND.

568 INTERVAL HOUR TO SECOND.

572 INTERVAL DAY TO SECOND.

RDB$FIELD_TYPE = DSC$K_DTYPE_T or DSC$K_DTYPE_VT

RDB$FIELD_SUB_TYPE Summary Description

Equal to 0 ASCII or DEC_MCS character set.
Greater than 0 Character set other than ASCII or

DEC_MCS.

Less than 0 Special use of character data.

RDB$FIELD_TYPE = DSC$K_DTYPE_BLOB [2]

RDB$FIELD_SUB_TYPE Summary Description

Less than 0 User-specified.
Equal to 0 Default.

Equal to 1 BLR (query) type.

Equal to 2 Character type.

Equal to 3 MBLR (definition) type.

Equal to 4 Binary type.

Equal to 5 OBLR (outline) type.

Greater than 5 Reserved for future use.

Footnotes:

[1] When RDB$FIELD_SUB_TYPE is not equal to 0, then RDB$SEGMENT_
LENGTH can hold the interval leading field precision for intervals, and
RDB$FIELD_SCALE can hold the fractional seconds precision for interval,
time, or timestamp.

[2] RDB$SEGMENT_LENGTH is the suggested size for a single binary large object
(BLOB) segment.

H.6.9 RDB$FIELDS
The RDB$FIELDS system table describes the global (generic) characteristics of
each domain in the database. There is one row for each domain in the database.
The following table provides information on the columns of the RDB$FIELDS
system table.

Column Name Data Type Summary Description

RDB$FIELD_NAME char(31) The name of the domain represented
by this row. Each row within
RDB$FIELDS must have a unique
RDB$FIELD_NAME value.

H–16 System Tables

Column Name Data Type Summary Description

RDB$FIELD_TYPE integer The data type of the domain
represented by this row. This data
type must be interpreted according to
the rules for interpreting the DSC$B_
DTYPE field of class S descriptors
(as defined in the OpenVMS Calling
Standard).

Segmented strings require a unique
field type identifier. This identifier is
261.

RDB$FIELD_LENGTH integer The length of the field represented
by this row. This length must be
interpreted according to the rules for
interpreting the DSC$W_LENGTH
field within class S and SD descriptors
(as defined in OpenVMS Calling
Standard). For strings, this field
contains the length in octets (8-bit
bytes), not in characters.

RDB$FIELD_SCALE integer For numeric data types, the scale
factor to be applied when interpreting
the contents of the field represented
by this row.

This scale factor must be interpreted
according to the rules for interpreting
the DSC$B_SCALE field of class
SD descriptors (as defined in the
OpenVMS Calling Standard). For
date-time data types, RDB$FIELD_
SCALE is fractional seconds precision.
For other non-numeric data types,
RDB$FIELD_SCALE is 0.

RDB$SYSTEM_FLAG integer A bit mask where the following bits
are set:

• If Bit 0 is clear, this is a user-
defined domain.

• If Bit 0 is set, this is a system
domain.

RDB$VALIDATION_BLR list of byte
varying

The BLR that represents the
validation expression to be checked
each time a column based on this
domain is updated.

RDB$COMPUTED_BLR list of byte
varying

The BLR that represents the
expression used to calculate a value
for the column based on this domain.

RDB$EDIT_STRING varchar(255) The edit string used by interactive
SQL when printing the column based
on this domain. RDB$EDIT_STRING
can be null.

System Tables H–17

Column Name Data Type Summary Description

RDB$MISSING_VALUE list of byte
varying

The value used when the missing
value of the column based on this
domain is retrieved or displayed.
RDB$MISSING_VALUE does not store
any value in a column; instead, it flags
the column value as missing.

RDB$FIELD_SUB_TYPE integer A value that describes the data
subtype of RDB$FIELD_TYPE as
shown in the RDB$FIELD_SUB_
TYPE Help topic.

RDB$DESCRIPTION list of byte
varying

A user-supplied description of this
domain.

RDB$VALIDATION_SOURCE list of byte
varying

The user’s source text for the
validation criteria.

RDB$COMPUTED_SOURCE list of byte
varying

The user’s source used to calculate a
value at execution time.

RDB$QUERY_NAME char(31) The query name of this
domain. Column attributes in
RDB$RELATION_FIELDS take
precedence over attributes in
RDB$FIELDS.

If the attribute value is missing in
RDB$RELATION_FIELDS, the value
from RDB$FIELDS is used.
RDB$QUERY_NAME can be null.

RDB$QUERY_HEADER list of byte
varying

The query header of the domain is
used by interactive SQL. Column
attributes in
RDB$RELATION_FIELDS take
precedence over attributes in
RDB$FIELDS.

If the attribute value is missing in
RDB$RELATION_FIELDS, the value
from RDB$FIELDS is used.

RDB$DEFAULT_VALUE list of byte
varying

The default value used by non-SQL
interfaces when no value is specified
for a column during a STORE clause.
It differs from RDB$MISSING_
VALUE in that it holds an actual
column value.

Column attributes in
RDB$RELATION_FIELDS take
precedence over attributes in
RDB$FIELDS.

If the attribute value is missing in
RDB$RELATION_FIELDS, the value
from RDB$FIELDS is used.

RDB$SEGMENT_LENGTH integer The length of a segmented string
segment. For date-time interval fields,
the interval leading field precision.

RDB$EXTENSION_
PARAMETERS

list of byte
varying

Reserved for future use.

H–18 System Tables

Column Name Data Type Summary Description

RDB$CDD_NAME list of byte
varying

The fully qualified name of the
dictionary entity upon which the
domain definition is based, as
specified in the SQL clause, FROM
PATHNAME.

RDBVMS$COLLATION_NAME char(31) The name of the collating sequence for
the domain.

RDB$DEFAULT_VALUE2 list of byte
varying

The BLR for the SQL default value.
This value is used when no value
is provided in an SQL INSERT
statement.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$FLAGS integer Flags.

RDB$CREATED date vms Set when the domain is created.

RDB$LAST_ALTERED date vms Set when SQL ALTER DOMAIN
statement used.

RDB$FIELD_CREATOR char(31) Creator of this domain.

H.6.9.1 RDB$FLAGS
Represents flags for RDB$FIELDS system table.

Bit Position Description

0 A SQL CHECK constraint is defined on this domain.

1 AUTOMATIC set on insert.

2 AUTOMATIC set on update.

3 If check constraint fails, use name in message.

4 Column is computed an IDENTITY sequence.

5 View column is based on a read-only, or dbkey column.

6 Domain is hidden by user.

H.6.10 RDB$GRANTED_PROFILES
The RDB$GRANTED_PROFILES system table contains information about each
profile, and role granted to other roles and users. The following table provides
information on the columns of the RDB$GRANTED_PROFILES system table.
See also the related RDB$PROFILES system table.

Column Name Data Type Summary Description

RDB$GRANTEE_PROFILE_ID integer This is a unique identifier generated
for the parent RDB$PROFILES row.

RDB$PROFILE_TYPE integer Class of profile information: role (1),
default role (2), profile (0).

RDB$PROFILE_ID integer Identification of the profile or role
granted to this user.

System Tables H–19

H.6.11 RDB$INDEX_SEGMENTS
The RDB$INDEX_SEGMENTS system table describes the columns that make
up an index’s key. Each index must have at least one column within the key.
The following table provides information on the columns of the RDB$INDEX_
SEGMENTS system table.

Column Name Data Type Summary Description

RDB$INDEX_NAME char(31) The name of the index of which this
row is a segment.

RDB$FIELD_NAME char(31) The name of a column that
participates in the index key. This
column name matches the name in
the RDB$FIELD_NAME column of the
RDB$RELATION_FIELDS table.

RDB$FIELD_POSITION integer The ordinal position of this key
segment within the total index key.
No two segments in the key may have
the same RDB$FIELD_POSITION.

RDB$FLAGS integer A bit mask where Bit 0 is set for
descending segments, otherwise the
segments are ascending.

RDB$FIELD_LENGTH integer Shortened length of text for
compressed indexes.

RDBVMS$FIELD_MAPPING_
LOW

bigint Shows the lower limit of the mapping
range.

RDBVMS$FIELD_MAPPING_
HIGH

bigint Shows the higher limit of the mapping
range.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CARDINALITY bigint Prefix cardinality for this and all prior
key segments (assumes sorting by
ordinal position).

H.6.11.0.1 RDB$FLAGS Represents flags for RDB$INDEX_SEGMENTS system
table.

Bit Position Description

0 Is set for descending segments.

H.6.12 RDB$INDICES
The RDB$INDICES system table contains information about indexes in the
database. The following table provides information on the columns of the
RDB$INDICES system table.

Column Name Data Type Summary Description

RDB$INDEX_NAME char(31) A unique index name.

RDB$RELATION_NAME char(31) The name of the table in which the
index is used.

H–20 System Tables

Column Name Data Type Summary Description

RDB$UNIQUE_FLAG integer A value that indicates whether
duplicate values are allowed in
indexes, as follows:

• 0

If duplicate values are allowed.

• 1

If no duplicate values are allowed.

RDB$ROOT_DBK char(8) A pointer to the base of the index.

RDB$INDEX_ID integer The identifier of the index.

RDB$FLAGS integer Flags.

RDB$SEGMENT_COUNT integer The number of segments in the key.

RDB$DESCRIPTION list of byte
varying

A user-supplied description of this
index.

RDB$EXTENSION_
PARAMETERS

list of byte
varying

Stores NODE SIZE value, PERCENT
FILL value, compression algorithm,
and compression run length for this
index. Also reserved for other future
use.

RDB$CARDINALITY bigint The number of unique entries for a
non-unique index. For a unique index,
the number is 0.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CREATED date vms Set when the index is created.

RDB$LAST_ALTERED date vms Set when SQL ALTER INDEX
statement is used.

RDB$INDEX_CREATOR char(31) Creator of this index.

RDB$KEY_CLUSTER_FACTOR bigint(7) Sorted Index: The ratio of the number
of clump changes that occur when you
traverse level-1 index nodes and the
duplicate node chains to the number
of keys in the index. This statistic is
based on entire index traversal. This
means last duplicate node of current
key is compared with first duplicate
node of next key for clump change.

Hash Index: The average number of
clump changes that occur when you go
from system record to hash bucket to
overflow hash bucket (if fragmented),
and traverse the duplicate node chain
for each key. This statistic is based on
per key traversal.

System Tables H–21

Column Name Data Type Summary Description

RDB$DATA_CLUSTER_
FACTOR

bigint(7) Sorted Index: The ratio of the number
of clump changes that occur between
adjacent dbkeys in duplicate chains of
all keys to the number of keys in the
index. For unique index, the dbkeys
of adjacent keys are compared for
clump change. This statistic is based
on entire index traversal. This means
last dbkey of current key is compared
with first dbkey of next key for clump
change.

Hashed Index: The average number
of clump changes that occur between
adjacent dbkeys in a duplicate chain
for each key. For a unique index, this
value will be always 1. This statistic
is based on per key traversal.

RDB$INDEX_DEPTH integer Sorted Index: The depth of the B-tree.

Hashed Index: This column is not
used for hashed indices and is left as
0.

H.6.12.1 RDB$FLAGS
Represents flags for RDB$INDICES system table.

Bit Position Description

0 HASHED index. (If bit is clear, SORTED index.)

1 Index segments are numeric with MAPPING VALUES compression.

2 HASHED ORDERED index. (If bit is clear, HASHED SCATTERED.)

3 Reserved for future use.

4 Run-length compression.

5 Index is disabled or enabled deferred.

6 Build pending (enabled deferred).

7 Reserved for future use.

8 Reserved for future use.

9 Reserved for future use.

10 Reserved for future use.

11 Internal use only.

12 SORTED RANKED index.

13 Prefix cardinalities disabled.

14 Use the full collection algorithm for prefix cardinality.

15 Index generated for a constraint when SET FLAGS ’AUTO_INDEX’
was enabled.

H–22 System Tables

H.6.13 RDB$INTERRELATIONS
The RDB$INTERRELATIONS system table contains information that indicates
the interdependencies of objects in the database. The RDB$INTERRELATIONS
table can be used to determine if an object can be dropped or if some other
object depends upon its existence in the database. The following table provides
information on the columns of the RDB$INTERRELATIONS system table.

Column Name Data Type Summary Description

RDB$OBJECT_NAME char(31) The name of the object that cannot be
dropped or altered because it is used
by some other entity in the database.

RDB$SUBOBJECT_NAME char(31) The name of the associated sub-object
that cannot be dropped or altered
because it is used by another entity in
the database.

RDB$ENTITY_NAME1 char(31) The name of the entity that depends
on the existence of the object identified
by the RDB$OBJECT_NAME and
RDB$SUBOBJECT_NAME.

RDB$ENTITY_NAME2 char(31) If used, the name of the entity,
together with RDB$ENTITY_NAME1,
that depends on the existence of the
object specified in RDB$OBJECT_
NAME and RDB$SUBOBJECT_
NAME.

RDB$USAGE char(31) The relationship among
RDB$OBJECT_NAME,
RDB$SUBOBJECT_NAME,
RDB$ENTITY_NAME1, and
RDB$ENTITY_NAME2.

RDB$USAGE contains a short
description.

RDB$FLAGS integer Flags.

RDB$CONSTRAINT_NAME char(31) This column is the name of a
constraint that is referred to
from another system table. The
value in this column equates to a
value for the same column in the
RDB$CONSTRAINTS system table.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.13.1 RDB$USAGE
Describes the field values for RDB$USAGE fields for the
RDB$INTERRELATIONS system table.

The table Rdb$INTERRELATIONS records much of the dependency information
when one object references another in the database. Such information is used
by DROP ... RESTRICT statements to prevent an object being deleted when it
is required by some other object. For instance, a function may use one or more
columns from a table in a query. That table and its columns will be recorded with
a value in RDB$USAGE of ’Storage Map’.

System Tables H–23

Many reported errors include text from the RDB$USAGE field to explain the
type of dependency preventing the DROP from succeeding. These text strings are
described in the following table.

Field value Description

Computed Field A Computed by or Automatic column references this
table, view, column or function.

Constraint Constraint definition references table, view, column,
sequence or function.

Storage Map Storage map references table and column.

View View definition requires table, view, column, sequence
or function.

View Field View column requires table, view, column, sequence or
function.

Trigger Trigger definition requires table, view, column,
sequence or function.

RelConstraint A table (relation) constraint references a table.

Domain Constraint (VALID IF) A domain constraint (or VALID IF) references this
routine or sequence.

Requires This table, temporary table (with module name), or
index is used by a query outline.

Procedure Procedure definition requires table, view, column,
sequence or function.

Function Function definition requires table, view, column,
sequence or function.

Default Txn Reserving A stored module DECLARE TRANSACTION
references a table or view in the RESERVING clause.

Default Txn Evaluating A stored module DECLARE TRANSACTION
references a constraint in the EVALUATING clause.

Lang Semantics A stored function, procedure or trigger uses wildcard
for column list. This includes SELECT * or INSERT
with an omitted column list.

Cast As Domain A CAST function referenced a domain name.

Temp Table Using Domain A DECLARE LOCAL TEMPORARY TABLE used a
domain for a column’s data type.

Computed Column in Temp
Table

A computed by or automatic column defined by
a DECLARE LOCAL TEMPORARY TABLE or
DECLARE LOCAL TEMPORARY VIEW references
this object.

Module Variable Default Value A module global DECLARE statement used a
DEFAULT clause. Table, view, function, domain
and sequence dependencies are recorded.

Referenced by Synonym When a synonym is created, a dependency is stored.

Default Value A table column uses a DEFAULT clause. Table, view,
function, domain and sequence dependencies are
recorded.

Constraint Index When SET FLAGS ’AUTO_INDEX’ is active, any
constraint definition will define an index matching the
columns of the constraint.

Module Variable This module variable uses this domain.

H–24 System Tables

Field value Description

Routine Parameter Not currently used. Reserved for future use.

Temp Table Reference A DECLARE LOCAL TEMPORARY TABLE references
this table in the LIKE clause.

Storage Map Function When CREATE STORAGE MAP is executed, a system
routine is created to reflect the mapping. Those
column dependencies are recorded.

H.6.13.2 RDB$FLAGS
Represents flags for RDB$INTERRELATIONS system table.

Bit Position Description

0 Entity is a module.

1 Object is a module.

2 Entity is a routine.

3 Object is a routine.

4 Entity is a trigger.

5 Object is a trigger.

6 Entity is a constraint.

7 Object is a constraint.

8 Reserved.

9 Reserved.

10 Reserved.

11 Reserved.

12 Reserved.

13 Reserved.

14 Entity is a sequence.

15 Object is a sequence.

16 Entity is a variable.

17 Object is a variable.

18 Entity is an index.

19 Object is an index.

H.6.14 RDB$MODULES
The RDB$MODULES system table describes a module as defined by a user. A
module can contain a stored procedure or an external function. Each module
has a header, a declaration section, and a series of routines. The header and
declaration section are defined in RDB$MODULES. (Each routine is defined by
an entry in RDB$ROUTINES.) A row is stored in the RDB$MODULES table for
each module that is defined by a user. The following table provides information
on the columns of the RDB$MODULES system table.

Column Name Data Type Summary Description

RDB$MODULE_NAME char(31) Name of the module.

System Tables H–25

Column Name Data Type Summary Description

RDB$MODULE_OWNER char(31) Owner of the module. If the module is
an invoker rights module, this column
is set to NULL. Otherwise, definers
username from this column is used for
definers rights checking.

RDB$MODULE_ID integer Unique identifier assigned to this
module by Oracle Rdb.

RDB$MODULE_VERSION char(16) Module version and checksum. Allows
runtime validation of the module with
respect to the database.

RDB$EXTENSION_
PARAMETERS

list of byte
varying

Encoded information for module level
declarations.

RDB$MODULE_HDR_SOURCE list of byte
varying

Source of the module header as
provided by the definer.

RDB$DESCRIPTION list of byte
varying

Description of the module.

RDB$ACCESS_CONTROL list of byte
varying

Access Control List (ACL) to control
access to the module. This value can
be NULL.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CREATED date vms Set when the module is created.

RDB$LAST_ALTERED date vms Set when module is altered by the
ALTER, RENAME, DROP, GRANT
and REVOKE statements.

RDB$MODULE_CREATOR char(31) Creator of this module.
Differentiates between OWNER and
AUTHORIZATION.

RDB$VARIABLE_COUNT integer Number of global variables.

RDB$FLAGS integer Flags.

H.6.15 RDB$OBJECT_SYNONYMS
The RDB$OBJECT_SYNONYMS system table is created with synonyms are
enabled to record the synonym name, type, and target. The following table
provides information on the columns of the RDB$OBJECT_SYNONYMS system
table.

Column Name Data Type Summary Description

RDB$CREATED date vms Time and date when synonym entry
was created.

RDB$LAST_ALTERED date vms Time and date when synonym entry
was last altered.

RDB$DESCRIPTION list of byte
varying

A user-supplied description of the
synonym.

RDB$EXTENSION_
PARAMETERS

list of byte
varying

Reserved for future use.

RDB$FLAGS integer Flags.

RDB$OBJECT_TYPE integer The type of synonym.

H–26 System Tables

Column Name Data Type Summary Description

RDB$SYNONYM_NAME char(31) The synonym to be used by queries.
This name is unique within the
RDB$OBJECT_SYNONYMS system
table.

RDB$SYNONYM_VALUE char(31) name of the object for which the
synonym is defined.

RDB$SYNONYM_CREATOR char(31) Creator of the synonym entry.

H.6.15.1 RDB$FLAGS
Represents flags for RDB$OBJECT_SYNONYMS system table.

Bit Position Description

0 When set, this bit indicates that this synonym references another
synonym.

1 Reserved for future use.

2 Indicates that the synonym was created by RENAME statement.

H.6.16 RDB$PARAMETERS
The RDB$PARAMETERS system table defines the routine interface for each
routine stored in RDB$ROUTINES. Each parameter to a routine (procedure
or function) is described by a row in RDB$PARAMETERS. The following table
provides information on the columns of the RDB$PARAMETERS system table.

Column Name Data Type Summary Description

RDB$PARAMETER_NAME char(31) Name of the parameter.

RDB$PARAMETER_SOURCE char(31) Source (domain or table) to the routine
containing the parameter.

RDB$ROUTINE_ID integer Unique identifier assigned to the
routine containing this parameter by
Oracle Rdb.

RDB$ORDINAL_POSITION integer Position in parameter list. Position 0
indicates function result description.

RDB$PARAMETER_TYPE integer Data type of the parameter.

RDB$PARAMETER_SUB_TYPE integer A value that describes the data
subtype of RDB$PARAMETER_TYPE
as shown in RDB$FIELD_SUB_TYPE
Help topic.

RDB$PARAMETER_LENGTH integer Length of the parameter.

RDB$PARAMETER_SCALE integer Scale of the data type.

RDB$PARAMETER_SEG_
LENGTH

integer The length of the segmented string
segment. For date-time interval fields,
the interval leading field precision.

RDB$DEFAULT_VALUE2 list of byte
varying

Parameter default.

RDB$FLAGS integer Flags.

RDB$DESCRIPTION list of byte
varying

Description of the parameter.

System Tables H–27

Column Name Data Type Summary Description

RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.16.1 RDB$FLAGS
Represents flags for RDB$PARAMETERS system table.

Bit Position Description

0 IN (read) INOUT (modify).

1 OUT (write) INOUT (modify).

2 Reserved for future use.

3 BY DESCRIPTOR (default is BY REFERENCE).

4 BY VALUE (Bit number 3 is ignored).

5 Reserved for future use.

6 Set if parameter mode is undefined.

If Bits 0 and 1 are both clear, then the parameter is the RETURN
TYPE of a function.

H.6.17 RDB$PRIVILEGES
The RDB$PRIVILEGES system table describes the protection for the database
objects. There is one row per grantor, grantee, and privileges combination per
entity in the database.

A row is stored in the RDB$PRIVILEGES table for each user who grants another
user privileges for a database object.

If the privilege for a database object was granted without the SQL GRANT
option, the row of the grantor and grantee is modified.

The privilege change takes effect at commit time of the command.

Note

The RDB$PRIVILEGES system table is used only in ANSI databases.

The following table provides information on the columns of the
RDB$PRIVILEGES system table.

Column Name Data Type Summary Description

RDB$SUBOBJECT_ID integer The id of the column or routine
for which protection is defined. If
protection is on a database, module,
table, or view, this column is NULL.
The value stored in this column must
be unique within the database.

H–28 System Tables

Column Name Data Type Summary Description

RDB$OBJECT_ID integer The id of the module, table, sequence,
or view for which protection is defined.
The column is NULL if the protection
is defined for the database. The value
stored in this column must be unique
within the database.

RDB$GRANTOR integer The binary format UIC of the person
who defined or changed the privileges.
This is usually the UIC of the person
who executed the protection command.

For an SQL IMPORT statement,
the UIC is that of the person who
originally defined the protection for
the user; not necessarily the person
who performed the SQL IMPORT
statement.

RDB$GRANTEE list of byte
varying

The binary format of the UICs of the
persons who hold privileges on the
database object.

RDB$PRIV_GRANT integer Specifies the access mask of privileges
that the grantee has that he can grant
to other users.

RDB$PRIV_NOGRANT integer Specifies the access mask of privileges
that the grantee has that he can use
himself but cannot give to other users.

RDB$FLAGS integer Flags.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.17.1 RDB$FLAGS
Represents flags for RDB$PRIVILEGES system table.

Bit Position Description

0 Privilege is defined for a module and procedure.

1 The data is related to sequences.

H.6.18 RDB$PROFILES
The RDB$PROFILES system table contains information about each profile, user
and role defined for the database. The following table provides information
on the columns of the RDB$PROFILES system table. See also the related
RDB$GRANTED_PROFILES system table.

Column Name Data Type Summary Description

RDB$CREATED date vms time and date when profile entry was
created.

RDB$LAST_ALTERED date vms time and date when profile entry was
last altered.

RDB$DESCRIPTION list of byte
varying

Comment for this entry.

System Tables H–29

Column Name Data Type Summary Description

RDB$EXTENSION_
PARAMETERS

list of byte
varying

Extra definitions such as default
transaction.

RDB$SYSTEM_FLAG integer Set to TRUE (1) if this is a system
define role or user, otherwise it
is set to FALSE (0). When the
RDB$SYSTEM_FLAG is set these
entries may not be deleted by a DROP
statement.

RDB$FLAGS integer Flags.

RDB$DEFINE_ACCESS bigint Which objects can be defined.

RDB$CHANGE_ACCESS bigint Which objects can be changed.

RDB$DELETE_ACCESS bigint Which objects can be deleted.

RDB$PROFILE_ID integer This is a unique identifier generated
for each USER, PROFILE and ROLE
added to the database.

RDB$PROFILE_TYPE integer Class of profile information: role (1),
user (3), profile (0).

RDB$PROFILE_NAME char(31) Name of the user, profile or role.
This name is unique within the
RDB$PROFILES table.

RDB$PROFILE_CREATOR char(31) Creator of entry.

H.6.18.1 RDB$FLAGS
Represents flags for RDB$PROFILES system table.

Bit Position Description

0 The user entry is disabled (ACCOUNT LOCK).

1 Means that the user/role is identified externally.

2 Reserved for future use.

3 This is a system role.

4 Means the user is assigned a profile.

H.6.19 RDB$QUERY_OUTLINES
The RDB$QUERY_OUTLINES system table contains query outline definitions
that are used by the optimizer to retrieve known query outlines prior to
optimization. The following table provides information on the columns of the
RDB$QUERY_OUTLINES system table.

Column Name Data Type Summary Description

RDB$OUTLINE_NAME char(31) The query outline name.

RDB$BLR_ID char(16) The BLR hashed identifier. This
identifier is generated by the optimizer
whenever a query outline is created.

RDB$MODE integer The query mode (MANDATORY or
OPTIONAL).

RDB$FLAGS integer Flags.

H–30 System Tables

Column Name Data Type Summary Description

RDB$DESCRIPTION list of byte
varying

A user-supplied description of this
outline.

RDB$OUTLINE_BLR list of byte
varying

The compiled query outline.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CREATED date vms Set when the outline is created.

RDB$LAST_ALTERED date vms Reserved for future use.

RDB$OUTLINE_CREATOR char(31) Creator of this outline.

H.6.19.1 RDB$FLAGS
Represents flags for RDB$QUERY_OUTLINES system table.

Bit Position Description

0 This outline has been invalidated by some action, such as dropping a
required table or index.

H.6.20 RDB$RELATION_CONSTRAINTS
The RDB$RELATION_CONSTRAINTS system table lists all table-specific
constraints. The following table provides information on the columns of the
RDB$RELATION_CONSTRAINTS system table.

Column Name Data Type Summary Description

RDB$CONSTRAINT_MATCH_
TYPE

integer The match type associated with a
referential integrity table-specific
constraint. This column is reserved for
future use. The value is always 0.

RDB$CONSTRAINT_NAME char(31) The name of the constraint
defined by the table specified by
RDB$RELATION_NAME.

The value in this column equates to a
value for the same column in the
RDB$CONSTRAINTS system table.

RDB$CONSTRAINT_SOURCE list of byte
varying

This text string contains the source
of the constraint from the table
definition.

RDB$CONSTRAINT_TYPE integer The type of table-specific constraint
defined. The values are shown in
the RDB$CONSTRAINT_TYPE Help
topic.

RDB$ERASE_ACTION integer The type of referential integrity
erase action specified. This column
is reserved for future use. The value
is always 0.

RDB$FIELD_NAME char(31) The name of the column for which a
column-level, table-specific constraint
is defined. The column is blank for a
table-level constraint.

RDB$FLAGS integer Flags.

System Tables H–31

Column Name Data Type Summary Description

RDB$MODIFY_ACTION integer The type of referential integrity
modify action specified. This column is
reserved for future use. The value is
always 0.

RDB$REFD_CONSTRAINT_
NAME

char(31) The name of the unique or primary
key constraint referred to by a
referential integrity foreign key
constraint.

If the constraint is not a referential
integrity constraint or no referential
integrity constraint was specified,
this column will be null. Otherwise,
the value in this column will equate
to a value for the same columns
in the RDB$CONSTRAINTS and
RDB$RELATION_CONSTRAINT_
FLDS system tables.

This column is used to determine the
foreign key referenced table name and
referenced column names.

RDB$RELATION_NAME char(31) The name of the table on which the
specified constraint is defined. The
value in this column equates to a
value for the same column in the
RDB$RELATIONS system table.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.20.1 RDB$FLAGS
Represents flags for RDB$RELATION_CONSTRAINTS system table.

Bit Position Description

0 This is SQL standard UNIQUE constraint which allows unique values
and ignores NULL.

H.6.20.2 RDB$CONSTRAINT_TYPE
The following table lists the values for the RDB$CONSTRAINT_TYPE column.

Value Symbol Meaning

1 RDB$K_CON_CONDITION Requires conditional
expression constraint.

2 RDB$K_CON_PRIMARY_KEY Primary key constraint.

3 RDB$K_CON_REFERENTIAL Referential (foreign key)
constraint.

4 RDB$K_CON_UNIQUE Unique constraint.

5 Reserved for future use.

6 RDB$K_CON_NOT_NULL Not null (missing)
constraint.

H–32 System Tables

H.6.21 RDB$RELATION_CONSTRAINT_FLDS
The RDB$RELATION_CONSTRAINT_FLDS system table lists the columns
that participate in unique, primary, or foreign key declarations for table-specific
constraints.

There is one row for each column that represents all or part of a unique, primary,
or foreign key constraint.

The following table provides information on the columns of the RDB$RELATION_
CONSTRAINT_FLDS system table.

Column Name Data Type Summary Description

RDB$CONSTRAINT_NAME char(31) The name of a constraint for which the
specified column participates.

RDB$FIELD_NAME char(31) The name of the column that is all or
part of the specified constraint. The
value in this column is the same as
that stored in the RDB$RELATION_
FIELDS system table.

RDB$FIELD_POSITION integer The ordinal position of the specified
column within the column list that
declares the unique, primary or
foreign key constraint.

For column-level constraints, there
will always be only one column in
the list. The first column in the list
has position value 1, the second has
position value 2, and so on.

RDB$FLAGS integer Reserved for future use.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.22 RDB$RELATION_FIELDS
The RDB$RELATION_FIELDS system table contains one row for each column
in each table. The following table provides information on the columns of the
RDB$RELATION_FIELDS system table.

Column Name Data Type Summary Description

RDB$RELATION_NAME char(31) The name of the table that contains
the column represented by this row.

RDB$FIELD_NAME char(31) The name of the column represented
by this row within the table. Each
RDB$RELATION_FIELDS row that
has the same RDB$RELATION_
NAME must have a unique
RDB$FIELD_NAME.

RDB$FIELD_SOURCE char(31) The name of the domain (from the
RDB$FIELD_NAME column within
the
RDB$FIELDS table) that supplies the
definition for this column.

System Tables H–33

Column Name Data Type Summary Description

RDB$FIELD_ID integer An identifier that can be used
within the BLR to name the column
represented by this row. Oracle Rdb
assigns each column an id that is
permanent for as long as the column
exists within the table.

RDB$FIELD_POSITION integer The ordinal position of the column
represented by this row, relative to the
other columns in the same table.

RDB$QUERY_NAME char(31) The query name of this column.
RDB$QUERY_NAME can be null.

RDB$UPDATE_FLAG integer A value that indicates whether a
column can be updated:

• 0

If column cannot be updated.

• 1

If column can be updated.

RDB$QUERY_HEADER list of byte
varying

The query header of this column
for use by SQL. Column attributes
in RDB$RELATION_FIELDS take
precedence over RDB$FIELDS.

If the attribute value is missing in
RDB$RELATION_FIELDS, SQL uses
the value from RDB$FIELDS.

RDB$DESCRIPTION list of byte
varying

A user-supplied description of the
contents of this row.

RDB$VIEW_CONTEXT integer For view tables, this column identifies
the context variable used to qualify
the view column.

This context variable must be
defined within the row selection
expression that defines the view.
The context variable appears
in the BLR represented by the
column RDB$VIEW_BLR in
RDB$RELATIONS.

RDB$BASE_FIELD char(31) The local name of the column used
as a component of a view. The name
is qualified by the context variable
identified in RDB$VIEW_CONTEXT.

RDB$DEFAULT_VALUE list of byte
varying

The default value used by non-SQL
interfaces when no value is specified
for a column during a STORE clause.

It differs from RDB$MISSING_
VALUE in that it holds an actual
column value. Column attributes in
RDB$RELATION_FIELDS take
precedence over attributes in
RDB$FIELDS.

If the attribute value is missing in
RDB$RELATION_FIELDS, the value
from RDB$FIELDS is used.

H–34 System Tables

Column Name Data Type Summary Description

RDB$EDIT_STRING varchar(255) The edit string to be used by
interactive SQL when printing the
column. RDB$EDIT_STRING can be
null.

RDB$EXTENSION_
PARAMETERS

list of byte
varying

Reserved for future use.

RDB$ACCESS_CONTROL list of byte
varying

The access control list for the column.

RDB$DEFAULT_VALUE2 list of byte
varying

The BLR for SQL default value.
This value is used when no value
is provided in an SQL INSERT
statement.

RDBVMS$SECURITY_AUDIT integer A bit mask that indicates the
privileges that will be audited for
the database, as specified in the RMU
Set Audit command.

RDBVMS$SECURITY_ALARM integer A bit mask that indicates the
privileges that will produce alarms
for the database, as specified in the
RMU Set Audit command.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.23 RDB$RELATIONS
The RDB$RELATIONS system table names all the tables and views within the
database. There is one row for each table or view. The following table provides
information on the columns of the RDB$RELATIONS system table.

Column Name Data Type Summary Description

RDB$RELATION_NAME char(31) The name of a table within
the database. Each row within
RBB$RELATIONS must have a
unique RDB$RELATION_NAME.

RDB$RELATION_ID integer An identification number used within
the BLR to identify a table.

RDB$STORAGE_ID integer A pointer to the database logical area
where the data for this table is stored.

RDB$SYSTEM_FLAG integer A value that indicates whether a table
is a system table or a user-defined
table:

• 0

If a user table.

• 1

If a system table.

System Tables H–35

Column Name Data Type Summary Description

RDB$DBKEY_LENGTH integer The length in bytes of the database
key. A database key for a row in a
table is 8 bytes, and "n times 8 " for a
view row, where "n" is the number of
tables referred to in the view.

If the view does not contain a dbkey,
RDB$DBKEY_LENGTH is 0. This
occurs when the view uses GROUP
BY, UNION, or returns a statistical
value.

RDB$MAX_VERSION integer The number of the current version of
the table definition.

This value is matched with the
RDB$VERSION column in
RDB$FIELD_VERSIONS to determine
the current row format for the table.

RDB$CARDINALITY bigint The number of rows in the table
(cardinality).

RDB$FLAGS integer Flags.

RDB$VIEW_BLR list of byte
varying

The BLR that describes the row
selection expression used to select the
rows for the view. If the table is not a
view, RDB$VIEW_BLR is missing.

RDB$DESCRIPTION list of byte
varying

A user-supplied description of this
table or view.

RDB$VIEW_SOURCE list of byte
varying

The user’s source text for the view
definition.

RDB$ACCESS_CONTROL list of byte
varying

The access control policy for the table.

RDB$EXTENSION_
PARAMETERS

list of byte
varying

Reserved for future use.

RDB$CDD_NAME list of byte
varying

The fully qualified name of the
dictionary entity upon which the table
definition is based, as specified in the
SQL clause, FROM PATHNAME.

RDBVMS$SECURITY_AUDIT integer A bit mask that indicates the
privileges that will be audited for
the table, as specified in the RMU Set
Audit command.

RDBVMS$SECURITY_ALARM integer A bit mask that indicates the
privileges that produce alarms for
the table, as specified in the RMU Set
Audit command.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDBVMS$SECURITY_AUDIT2 integer Reserved for future use.

RDBVMS$SECURITY_ALARM2 integer Reserved for future use.

RDB$CREATED date vms Set when the table or view is created
(for system tables it will be the same
as the database creation timestamp).

H–36 System Tables

Column Name Data Type Summary Description

RDB$LAST_ALTERED date vms Set when SQL ALTER TABLE,
CREATE/ALTER STORAGE MAP,
ALTER DOMAIN, GRANT, or
REVOKE statements cause changes to
this system table.

RDB$RELATION_CREATOR char(31) Creator of this system table.

RDB$ROW_CLUSTER_FACTOR bigint(7) The ratio of the number of clump
changes that occur when you
sequentially read the rows to the
number of rows in a table. If a row is
fragmented and part of its fragment
is located in a clump different than
the current one or immediate next one
then it should be counted as a clump
change.

RDB$TYPE_ID integer Reserved for future use.

H.6.23.1 RDB$FLAGS
Represents flags for RDB$RELATIONS system table.

Bit Position Description

0 This table is a view.

1 This table is not compressed.

2 The SQL clause, WITH CHECK OPTION, is used in this view
definition.

3 Indicates a special internal system table.

4 This view is not an ANSI updatable view.

5 Reserved for future use.

6 Reserved for future use.

7 Reserved for future use.

8 Ignore Bit 1 and use RDB$STORAGE_MAPS for compression
information.

9 Set for temporary table.

10 Set for global temporary table; clear for local temporary table.

11 Set for delete data on commit; clear for preserve data on commit.

12 Reserved for future use.

13 Set if view or table references a local temporary table.

14 Special read-only information table.

15 System table has storage map.

16 View references only temporary table.

H.6.24 RDB$ROUTINES
The RDB$ROUTINES system table describes each routine that is part of a stored
module or a standalone external routine. An external routine can either be part
of a module or standalone (outside the context of a module). The following table
provides information on the columns of the RDB$ROUTINES system table.

System Tables H–37

Column Name Data Type Summary Description

RDB$ROUTINE_NAME char(31) Name of the routine.

RDB$GENERIC_ROUTINE_
NAME

char(31) Reserved for future use.

RDB$MODULE_ID integer The identifier of the module that
contains this routine. If routine is
standalone, value is 0.

RDB$ROUTINE_ID integer Unique identifier assigned to this
routine.

RDB$ROUTINE_VERSION char(16) Routine version and checksum. Allows
runtime validation of the routine with
respect to the database.

RDB$PARAMETER_COUNT integer The number of parameters for this
routine.

RDB$MIN_PARAMETER_
COUNT

integer Minimum number of parameters for
this routine.

RDB$ROUTINE_BLR list of byte
varying

The BLR for this routine. If the
routine is external, this column is set
to NULL.

RDB$ROUTINE_SOURCE list of byte
varying

Source of the routine as provided by
the definer.

RDB$FLAGS integer Flags.

RDB$SOURCE_LANGUAGE integer The RDB$SOURCE_LANGUAGE
section lists the values for this column.

RDB$DESCRIPTION list of byte
varying

Description of the routine.

RDB$ACCESS_CONTROL list of byte
varying

The access control list (ACL) to control
access to the routine. This value can
be NULL.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$EXTENSION_
PARAMETERS

list of byte
varying

Stores interface information about
the routine. This includes parameter
mappings, the shareable image name,
and entry point name.

RDB$TYPE_ID integer Reserved for future use.

RDB$ROUTINE_OWNER char(31) Owner of the routine. This column
is only used when the routine is
standalone (when RDB$MODULE_ID
is 0) otherwise the value is NULL.

RDB$CREATED date vms Set when the routine is created (the
same as the parent module’s creation
timestamp).

RDB$LAST_ALTERED date vms Set when the routine is modified by
the ALTER, RENAME, GRANT, and
REVOKE statements.

RDB$ROUTINE_CREATOR char(31) Creator of this routine. Differentiates
between AUTHORIZATION and
OWNER.

H–38 System Tables

H.6.24.1 RDB$FLAGS
Represents flags for RDB$ROUTINES system table.

Bit Position Description

0 Routine is a function. (Call returns a result.)

1 Routine is not valid. (Invalidated by a metadata change.)

2 The function is not deterministic (that is, the routine is variant). A
subsequent invocation of the routine with identical parameters may
return different results.

3 Routine can change the transaction state.

4 Routine is in a secured shareable image.

5 Reserved for future use.

6 Routine is not valid. (Invalidated by a metadata change to the object
upon which this routine depends. This dependency is a language
semantics dependency.)

7 Reserved for future use.

8 External function returns NULL when called with any NULL
parameter.

9 Routine has been analyzed (used for trigger dependency tracking).

10 Routine inserts rows.

11 Routine modifies rows.

12 Routine deletes rows.

13 Routine selects rows.

14 Routine calls other routines.

15 Reserved for future use.

16 Routine created with USAGE IS LOCAL clause.

17 Reserved for future use.

18 Reserved for future use.

19 Routine is a SYSTEM routine.

20 Routine generated by Oracle Rdb.

21 BLR$K_TRANSACTION can change SAVEPOINT state.

Other bits are reserved for future use.

H.6.24.2 RDB$SOURCE_LANGUAGE
The following table lists the values for the RDB$SOURCE_LANGUAGE column.

Value Language

0 Language undefined

1 Ada

2 C or C++

3 COBOL

4 FORTRAN

5 Pascal

6 Reserved for future use.

System Tables H–39

Value Language

7 BASIC

8 GENERAL

9 PL/I

10 SQL - default for stored functions and stored procedures

H.6.25 RDB$SEQUENCES
The RDB$SEQUENCES system table contains information about each
sequence. The following table provides information on the columns of the
RDB$SEQUENCES system table.

Column Name Data Type Summary Description

RDB$CREATED date vms Time sequence was created.

RDB$LAST_ALTERED date vms Last time sequence was altered.

RDB$ACCESS_CONTROL list of byte
varying

Access control list for this sequence.

RDB$DESCRIPTION list of byte
varying

Description provided for this sequence.

RDB$START_VALUE bigint Starting value for the sequence.

RDB$MINIMUM_SEQUENCE bigint Minimum value for the sequence.

RDB$MAXIMUM_SEQUENCE bigint Maximum value for the sequence.

RDB$NEXT_SEQUENCE_
VALUE

bigint Next value available for use for the
sequence. This column is a read only
COMPUTED BY column. When the
sequence is first defined this column
returns NULL.

RDB$INCREMENT_VALUE integer Increment value for the sequence. A
positive value indicates an ascending
sequence, and a negative value
indicates a descending sequence.

RDB$CACHE_SIZE integer Number of sequence numbers to
allocate and hold in memory. If one
(1), then NOCACHE was specified and
the values will be allocated one at a
time.

RDB$FLAGS integer Flags.

RDB$SEQUENCE_ID integer Unique number assigned to this
sequence object. This value is for
internal use only.

RDB$SEQUENCE_NAME char(31) Unique name of the sequence.

RDB$SEQUENCE_CREATOR char(31) Creator of this sequence.

H.6.25.1 RDB$FLAGS
Represents flags for RDB$SEQUENCES system table.

Bit Position Description

0 Sequence will cycle.

H–40 System Tables

Bit Position Description

1 Sequence is ordered.

2 Sequence is random.

3 Indicates that this is a system sequence and may not be dropped.

4 Indicates that there was no minimum value specified.

5 Indicates that there was no maximum value specified.

6 Indicates that this is a column IDENTITY sequence.

7 Indicates that this sequence will wait for locks.

8 Indicates that this sequence will not wait for locks.

H.6.26 RDB$STORAGE_MAPS
The RDB$STORAGE_MAPS system table contains information about each
storage map. The following table provides information on the columns of the
RDB$STORAGE_MAPS system table.

Column Name Data Type Summary Description

RDB$MAP_NAME char(31) The name of the storage map.

RDB$RELATION_NAME char(31) The name of the table to which the
storage map refers.

RDB$INDEX_NAME char(31) The name of the index specified in
the SQL clause, PLACEMENT VIA
INDEX, of the storage map.

RDB$FLAGS integer Flags.

RDB$MAP_SOURCE list of byte
varying

The user’s source text for the storage
map definition.

RDB$DESCRIPTION list of byte
varying

A user-supplied description of the
storage map.

RDB$EXTENSION_
PARAMETERS

list of byte
varying

Lists the column names for vertical
record partitioning.

RDB$VERTICAL_PARTITION_
INDEX

integer A counter that indicates the number of
vertical record partitions.

If vertical record partitioning is used,
there is one RDB$STORAGE_MAPS
for each vertical partition.

RDB$VERTICAL_PARTITION_
NAME

char(31) Name of the vertical record partition.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.26.1 RDB$FLAGS
Represents flags for RDB$STORAGE_MAPS system table.

Bit Position Description

0 If map is for a mixed format area.

1 If map enables compression.

2 Partition key cannot be updated.

System Tables H–41

Bit Position Description

3 Reserved for future use.

4 User named this partition.

5 Override used for strict partitioning - NO REORGANIZE.

H.6.27 RDB$STORAGE_MAP_AREAS
The RDB$STORAGE_MAP_AREAS system table contains information about
each storage area to which a storage map refers. The following table provides
information on the columns of the RDB$STORAGE_MAP_AREAS system table.

Column Name Data Type Summary Description

RDB$MAP_NAME char(31) The name of the storage map.

RDB$AREA_NAME char(31) The name of the storage area referred
to by the storage map.

RDB$ROOT_DBK char(8) A pointer to the root of the SORTED
index, if it is a SORTED index.

RDB$ORDINAL_POSITION integer The order of the storage area
represented by this row in the map.

RDB$STORAGE_ID integer For a table, a pointer to the database
logical area. For a hashed index, a
pointer to the system record.

RDB$INDEX_ID integer A pointer to the index logical area.

RDB$STORAGE_BLR list of byte
varying

The BLR that represents the SQL
clause, WITH LIMIT OF, in the
storage map definition.

RDB$DESCRIPTION list of byte
varying

Description of this partition.

RDB$EXTENSION_
PARAMETERS

list of byte
varying

Lists table names and column names
that are referenced by segmented
string storage maps.

RDB$VERTICAL_PARTITION_
INDEX

integer For LIST storage maps, the value
indicates the relationship between
areas of a LIST storage map area set.

RDB$FLAGS integer Flags.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$PARTITION_NAME char(31) Name of the index or storage map
partition.

H.6.27.1 RDB$FLAGS
Represents flags for RDB$STORAGE_MAP_AREAS system table.

Bit Position Description

0 If Bit 0 is clear, the LIST storage area set is filled randomly.

If Bit 0 is set, the LIST storage area set is filled sequentially.

1 User named this partition.

2 BUILD PARTITION is required.

H–42 System Tables

Bit Position Description

3 Deferred build using NOLOGGING.

4 Cardinality needs to be updated on build.

H.6.28 RDB$SYNONYMS
The RDB$SYNONYMS system table connects the user-visible name of an object
to the stored name of an object. The user-visible name of an object might be
replicated in multiple schemas, whereas the stored name of an object is unique
across all schemas and catalogs. This table is present only in databases that have
the SQL multischema feature enabled.

Unlike rows in other system tables, the rows in the RDB$SYNONYMS system
table are compressed. The following table provides information on the columns of
the RDB$SYNONYMS system table.

Column Name Data Type Summary Description

RDB$SCHEMA_ID integer The RDB$CATALOG_SCHEMA_ID
of the schema to which this object
belongs.

RDB$USER_VISIBLE_NAME char(31) The name of an object as it appears to
the user.

System Tables H–43

Column Name Data Type Summary Description

RDB$OBJECT_TYPE integer A value that represents the type of an
object, as follows:

• 8

A constraint.

• 19

A domain (global field).

• 26

An index.

• 31

A system table.

• 36

A view.

• 60

A sequence.

• 67

A storage map.

• 81

A trigger.

• 117

A collating sequence.

• 180

An outline.

• 192

A type.

RDB$STORED_NAME char(31) The name of an object as is actually
stored in the database.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.29 RDB$TRIGGERS
The RDB$TRIGGERS system table describes the definition of a trigger. The
following table provides information on the columns of the RDB$TRIGGERS
system table.

Column Name Data Type Summary Description

RDB$DESCRIPTION list of byte
varying

A user-supplied text string
describing the trigger.

RDB$FLAGS integer Flags.

H–44 System Tables

Column Name Data Type Summary Description

RDB$RELATION_NAME char(31) The name of the table for which
this trigger is defined. The trigger
may be selected on an update
to the named table (qualified
by the columns described in the
RDB$TRIGGER_FIELD_NAME_
LIST).

This table is used as a subject table
for all contexts that refer to it.

RDB$TRIGGER_ACTIONS list of byte
varying

A text string containing all the sets
of triggered actions defined for this
trigger. The string consists of one
or more sets of clumplets, one set
for each triggered action.

RDB$TRIGGER_CONTEXTS integer The context number used within
the triggered action BLR to map
the triggered action BLR to the
current context of the triggering
update statement.

RDB$TRIGGER_FIELD_NAME_
LIST

list of byte
varying

A text string composed of a count
field and one or more counted
strings. The count is an unsigned
word that represents the number
of strings in the list.

The counted strings are ASCIC
names that represent column
names. If the trigger is of event
type UPDATE, it will be evaluated
if one or more of the specified
columns has been modified.

RDB$TRIGGER_NAME char(31) The name of a trigger. This name
must be a unique trigger name
within the database.

RDB$TRIGGER_NEW_
CONTEXT

integer A context number used within the
triggered action’s BLR to refer to
the new row values for the subject
table for an UPDATE event.

RDB$TRIGGER_OLD_
CONTEXT

integer A context number used within
the triggered action’s BLR to
refer to the old row values of the
subject table that existed before an
UPDATE event.

RDB$TRIGGER_SOURCE list of byte
varying

An optional text string for the
trigger definition. The string is not
used by the database system.

It should reflect the full definition
of the trigger. This column is used
by the interfaces to display the
trigger definition.

System Tables H–45

Column Name Data Type Summary Description

RDB$TRIGGER_TYPE integer The type of trigger, as defined
by the combination of the trigger
action time and the trigger event.
Action times are BEFORE and
AFTER, and events are INSERT,
DELETE, and UPDATE.

The values that represent the
type of trigger are shown in the
RDB$TRIGGER_TYPE Values
section below.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CREATED date vms Set when the trigger is created.

RDB$LAST_ALTERED date vms Set when SQL ALTER TRIGGER
statement is used.

RDB$TRIGGER_CREATOR char(31) Creator of this trigger.

RDB$EXTENSION_
PARAMETERS

list of byte
varying

Extension parameters.

RDB$TRIGGER_ID integer Unique id for trigger with child
records.

H.6.29.1 RDB$FLAGS
Represents flags for RDB$TRIGGERS system table.

Bit Position Description

0 Trigger is currently disabled.

1 Invalid due to changed schema.

2 Referenced table was altered.

H.6.29.2 RDB$TRIGGER_TYPE Values
The following table lists the values for the RDB$TRIGGER_TYPE column of the
RDB$TRIGGERS system table and the different types of triggers they represent.

Numeric Value Symbolic Value Description

1 RDB$K_BEFORE_STORE Trigger is evaluated before an
INSERT.

2 RDB$K_BEFORE_ERASE Trigger is evaluated before a
DELETE.

3 RDB$K_BEFORE_MODIFY Trigger is evaluated before an
UPDATE.

4 RDB$K_AFTER_STORE Trigger is evaluated after an
INSERT.

5 RDB$K_AFTER_ERASE Trigger is evaluated after a
DELETE.

6 RDB$K_AFTER_MODIFY Trigger is evaluated after an
UPDATE.

H–46 System Tables

H.6.30 RDB$VIEW_RELATIONS
The RDB$VIEW_RELATIONS system table lists all the tables that participate
in a given view. There is one row for each table or view in a view definition.
The following table provides information on the columns of the RDB$VIEW_
RELATIONS system table.

Column Name Data Type Summary Description

RDB$VIEW_NAME char(31) Names a view or table that uses
another table. The value of
RDB$VIEW_NAME is normally a view
name, but might also be the name of a
table that includes a column computed
using a statistical expression.

RDB$RELATION_NAME char(31) The name of a table used to form the
view.

RDB$VIEW_CONTEXT integer An identifier for the context
variable used to identify a table
in the view. The context variable
appears in the BLR represented
by the column RDB$VIEW_BLR in
RDB$RELATIONS.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.31 RDB$TRIGGER_ACTIONS
The RDB$TRIGGER_ACTIONS system table describes a single trigger action for
a trigger.

Note

Triggers created by prior versions of Oracle Rdb are stored wholly in
the RDB$TRIGGERS table. Only new triggers created with Rdb V7.3
and later (which includes IMPORT DATABASE) are stored as multiple
RDB$TRIGGER_ACTION rows.

The following table provides information on the columns of the RDB$TRIGGER_
ACTIONS system table.

Column Name Data Type Summary Description

RDB$ACTION_BLR list of byte
varying

Trigger actions BLR

RDB$CONDITION_BLR list of byte
varying

Trigger condition (boolean) BLR

RDB$DESCRIPTION list of byte
varying

Description text

RDB$TRIGGER_ID integer Unique id for trigger

RDB$ORDINAL_POSITION integer Assigned order of the trigger action
within the trigger definition

RDB$FLAGS integer Flags. See definitions below.

System Tables H–47

Column Name Data Type Summary Description

RDB$ACTION_NAME char(31) Unique name of the trigger action.
This value may be system assigned

H.6.31.1 RDB$FLAGS
Represents flags for RDB$TRIGGER_ACTIONS system table.

Bit Position Description

0 Action is executed for EACH ROW if true, otherwise just once EACH
STATEMENT

1 Action does not trigger further actions

2 TRACE statement is enabled always

All other flags are reserved for future use

H.6.32 RDB$WORKLOAD
The RDB$WORKLOAD system table is an optional system table (similar to
RDB$SYNONYMS and RDB$CATALOG_SCHEMA). It is created when the
database attribute WORKLOAD COLLECTION IS ENABLED is specified on an
SQL CREATE or ALTER DATABASE statement. Once created, this system table
can never be dropped.

The following table provides information on the columns of the
RDB$WORKLOAD system table.

Column Name Data Type Summary Description

RDB$CREATED date vms Time workload entry was created.

RDB$LAST_ALTERED date vms Last time statistics were updated.

RDB$DUPLICITY_FACTOR bigint(7) Value ranges from 1.0 to table
cardinality. Number of duplicate
values for an interesting column group
(RDB$FIELD_GROUP).

RDB$NULL_FACTOR integer(7) Value ranges from 0.0 to 1.0. This is
the proportion of table rows that have
NULL in one or more columns of an
interesting column group.

RDB$RELATION_ID integer Base table identifier.

RDB$FLAGS integer Reserved for future use.

RDB$FIELD_GROUP char(31) Contains up to 15 sorted column
identifiers.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H–48 System Tables

I
Information Tables

I.1 Introduction to Information Tables
Information tables display internal information about storage areas, after-image
journals, row caches, database users, the database root, and database character
sets. Once the information tables are created, you can query them with the SQL
interface.

Information tables are special read-only tables that can be created in an Oracle
Rdb database and used to retrieve database attributes that are not stored in
the existing relational tables. Information tables allow interesting database
information, which is currently stored in an internal format, to be displayed as a
relational table.

The script, INFO_TABLES.SQL, is supplied as a part of the Oracle Rdb kit. The
INFO_TABLES.SQL file is in the SQL$SAMPLE directory. Table I–1 lists the
information tables that are supported in Oracle Rdb.

Table I–1 Supported Information Tables

RDB$CACHES Displays information about the database row caches.

RDB$CHARACTER_SETS Displays information about the Oracle Rdb character
sets.

RDB$DATABASE_JOURNAL Displays information about the default journal.

RDB$DATABASE_ROOT Displays information about the database root.

RDB$DATABASE_USERS Displays information about the database users.

RDB$JOURNALS Displays information about the database journal files.

RDB$LOGICAL_AREAS Displays information about the logical areas.

RDB$NLS_CHARACTER_SETS Displays the mapping of Oracle NLS character sets to
Oracle Rdb character sets.

RDB$SESSION_PRIVILEGES Displays the names of the enabled privileges for this user
session.

RDB$STORAGE_AREAS Displays information about the database storage areas.

For additional information about these information tables on OpenVMS, see the
ORACLE_RDBnn topic and select the Information_Tables subtopic (where nn is
the version number if using multiversion) in the Oracle Rdb command-line Help
or see the next section of this chapter.

Information Tables I–1

Examples
Example 1: Querying an information tables

The following example shows how to query one of the information tables created
by the INFO_TABLES.SQL script.

SQL> SELECT * FROM RDB$LOGICAL_AREAS WHERE RDB$LOGICAL_AREA_NAME=’JOBS’;
RDB$LOGICAL_AREA_ID RDB$AREA_ID RDB$RECORD_LENGTH RDB$THRESHOLD1_PERCENT
RDB$THRESHOLD2_PERCENT RDB$THRESHOLD3_PERCENT RDB$ORDERED_HASH_OFFSET

RDB$RECORD_TYPE RDB$LOGICAL_AREA_NAME
95 7 41 0

0 0 0
1 JOBS

1 row selected

Example 2: Queries to detect growth of storage area files

The database administrator can list storage areas where the current allocation of
an area has exceeded the initial allocation. This information can be vital when
managing performance in mixed areas. With mixed areas every storage area
extension causes extra I/O for HASHED index access.

SQL> select RDB$AREA_NAME as NAME edit using ’T(15)’,
cont> RDB$INITIAL_ALLOCATION as INITIAL edit using ’Z(9)’,
cont> RDB$CURRENT_ALLOCATION as CURRENT edit using ’Z(9)’,
cont> RDB$EXTEND_COUNT as EXTENDS edit using ’Z(9)’,
cont> RDB$LAST_EXTEND as LAST_EXT_DATE
cont> from RDB$STORAGE_AREAS
cont> where (RDB$CURRENT_ALLOCATION > RDB$INITIAL_ALLOCATION + 1)
cont> and (RDB$AREA_NAME <> ’ ’);
NAME INITIAL CURRENT EXTENDS LAST_EXT_DATE
RDB$SYSTEM 102 3724 15 14-AUG-2003 13:53:36.81
SALARY_HISTORY 270 1270 1 6-AUG-2003 11:47:11.00
2 rows selected

This query shows that the system area has extended by almost 37 percent since
the database was created. Why is that? Are developers creating tables without
mapping the data to user defined storage areas? Area SALARY_HISTORY is a
mixed area that has extended. The initial allocation is no longer adequate for this
area. Was there a period in August where a lot of data was inserted into these
areas? The database administrator can schedule maintenance time to resize the
SALARY_HISTORY storage area.

Note

The query adds one to the initial allocation to eliminate areas where
a spam page has been added and the current allocation is the initial
allocation plus one block. The comparison of RDB$AREA_NAME to a
blank space eliminates snapshot areas from the query.

A similar query that shows snapshot files that have grown beyond the initial
allocation is:

I–2 Information Tables

SQL> select RDB$AREA_FILE as SNAP_NAME edit using ’T(50)’,
cont> RDB$INITIAL_ALLOCATION as INITIAL edit using ’Z(9)’,
cont> RDB$CURRENT_ALLOCATION as CURRENT edit using ’Z(9)’
cont> from RDB$STORAGE_AREAS
cont> where (RDB$CURRENT_ALLOCATION > RDB$INITIAL_ALLOCATION)
cont> and (RDB$AREA_NAME = ’ ’);
SNAP_NAME INITIAL CURRENT
DKD300:[SQLUSER71]MF_PERS_DEFAULT.SNP;1 50 1623
DKD300:[SQLUSER71]DEPARTMENTS.SNP;1 10 5000
2 rows selected

Large snapshot files are mainly caused by old active transactions, or an initial
allocation size that was too small. This query gives the database administrator
pointer to an area that needs investigation. Queries such as these can be
executed at regular intervals to detect growth trends.

Example 3: Comparing table cardinality with cache sizes

Queries can be run periodically to check that the allocated cache sizes are
adequate for the current table size. Know that a cache was too small for the
table and taking corrective action can reduce cache collisions.

SQL> select A.RDB$CACHE_NAME, A.RDB$CACHE_SIZE, B.RDB$CARDINALITY
cont> from RDB$CACHES A, RDB$RELATIONS B
cont> where A.RDB$CACHE_NAME = B.RDB$RELATION_NAME;
A.RDB$CACHE_NAME A.RDB$CACHE_SIZE B.RDB$CARDINALITY
EMPLOYEES 100 103
DEPARTMENTS 26 26
DEGREES 20 165
TOO_BIG 500 10000
TOO_SMALL 1000 100
5 rows selected

In this example the tables TOO_BIG and DEGREES can only cache 5 percent
and 12 percent respectively of the total table. Perhaps the cache size needs to be
increased? Conversely, table TOO_SMALL appears to have a cache far too large.
Maybe this cache was incorrectly configured or the table has shrunk over time?
The current cache size is probably wasting memory.

Example 4: Converting logical DBKEY areas to names

Tools such as RMU Verify or RMU Show Statistics often display a logical area
DBKEY. For example consider this output from a stall message screen in RMU
Show Statictics:

202003A5:5 16:25:18.51 waiting for record 79:155:6

The database administrator can use RMU /DUMP/LAREA=RDB$AIP to get a list
of all the logical areas and their area numbers. However, the following simple
query on the RDB$LOGICAL_AREAS information table can be used instead.

SQL> select rdb$logical_area_id, rdb$area_id, rdb$logical_area_name
cont> from rdb$logical_areas
cont> where rdb$logical_area_id=79;
RDB$LOGICAL_AREA_ID RDB$AREA_ID RDB$LOGICAL_AREA_NAME

79 3 EMPLOYEES
1 row selected

The query shows that this stall is on table EMPLOYEES and it resides in
physical area number 3. The database administrator can use this information
to dump the database page.

$ RMU/DUMP/AREA=3/START=155/END=155/OUTPUT=t.t mf_personnel

Information Tables I–3

I.1.1 Restrictions for Information Tables
The following restrictions apply to information tables:

• You cannot alter the information tables. The table names and column names
must remain unchanged.

• You may not use ALTER TABLE on an Information Table. An exception will
be raised.

SQL> alter table RDB$DATABASE_USERS add new_col int;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-NOMETSYSREL, operation illegal on system defined metadata

• Information tables are READ ONLY and in general the information is
translated from other (non-table) internal data structures.

• Repeatable reads are not guaranteed for these tables. They reflect the current
active database. For instance, repeated queries on RDB$DATABASE_USERS
will show the set of users as they attach and disconnect from the database.

I.2 All Information Tables
Listed below are all of the current information tables.

I.2.1 All_Information_Tables
Included with each information table is a list of the columns in that table and
their description.

I.2.1.1 RDB$STORAGE_AREAS
Displays information about the database storage areas.

Column Name Data Type Description

RDB$LAST_BACKUP date vms Date of last backup

RDB$LAST_INCREMENT_
RESTORE

date vms Date of last restore

RDB$INITIAL_ALLOCATION integer Allocation

RDB$CURRENT_ALLOCATION integer Maximum page number

RDB$AREA_ACCESS_MODE integer Access mode

RDB$THRESHOLD1_BYTES integer First threshold value

RDB$THRESHOLD2_BYTES integer Second threshold value

RDB$THRESHOLD3_BYTES integer Third threshold value

RDB$PAGE_SIZE integer Page size

RDB$AREA_MIN_EXTENT integer Minimum page extent

RDB$AREA_MAX_EXTENT integer Maximum page extent

RDB$AREA_PERCENT_
EXTENT

integer Percent growth

RDB$EXTEND_COUNT integer Number of times area has been
extended

RDB$SPAM_INTERVAL integer Number of pages per SPAM page

RDB$JOURNAL_SEQUENCE integer AIJ recovery version number

I–4 Information Tables

Column Name Data Type Description

RDB$MAX_PAGE_FREE_
SPACE

integer Maximum free space on new page

RDB$MAX_ROW_LENGTH integer Largest segment that can be stored on
a page

RDB$SEQUENCE integer Sequence number

RDB$AREA_ID integer Area ID

RDB$LINKED_AREA_ID integer For live storage area, ID of snapshot
area. For snapshot area, ID of live
storage area

RDB$FLAGS integer Flags

RDB$THRESHOLD1_PERCENT integer First threshold percent value

RDB$THRESHOLD2_PERCENT integer Second threshold percent value

RDB$THRESHOLD3_PERCENT integer Third threshold percent value

RDB$AREA_FILE char(255) Storage area file name

RDB$CACHE_ID integer Row cache ID

RDB$AREA_NAME char(31) Storage area name

RDB$CLUMP_PAGE_COUNT integer The number of pages per logical area
clump (UNIFORM area)

RDB$PAGE_LENGTH integer Page length in bytes

RDB$PAGES_PER_SPAM_
PAGE_P1

integer Number of data pages per SPAM page
+ 1

RDB$SPAM_PAGE_VECTOR_
LENGTH

integer SPAM page vector length in bytes

RDB$PAGE_PAD_LENGTH integer Page padding length in bytes

RDB$MAX_SEGMENT_
LENGTH

integer Largest length to which an existing
segment can grow

RDB$BACKUP_STATISTICS bigint Backup-specific statistics

RDB$SNAPS_ENABLED_TSN bigint TSN of oldest snapshots. If this is a
live storage area that has snapshots
allowed, this field contains the TSN
of the most recent transaction that
enabled snapshots for or performed
exclusive updates to this area

RDB$COMMIT_TSN bigint TSN to which this area is consistent.
If the area is marked inconsistent, this
is the TSN level to which the area is
currently consistent

RDB$BACKUP_TSN bigint TSN of last full area backup. If this
field contains zero, this area has not
been backed up

RDB$INCR_BACKUP_TSN bigint TSN of last incremental area backup.
If this field contains zero, this area
has not been incrementally backed up

RDB$LAST_EXTEND date vms Date of last area extend

Information Tables I–5

I.2.1.1.1 RDB$FLAGS Represents flags for RDB$STORAGE_AREAS
information table.

Bit Position Description

0 Page format is mixed

1 Checksum calculation is enabled

2 This is a snapshot area

3 Area has snapshots

4 Snapshots are enabled

5 Area has space management pages

6 SPAM pages are enabled

7 Allow multi-volume disk extents

8 Extent is enabled

9 Area is corrupt

10 Area is inconsistent

11 Reserved for future use

12 Page level locking

13 Reserved for future use

14 Reserved for future use

15 Row cache is enabled

16 Area has been restructured. If TRUE, this area has been restructured
and may only be readied by a restructuring process

17 Roll forward quiet-point is enabled

18 Area is corrupt due to Hot Standby. If TRUE, this storage area may
have been corrupted by an aborted batch update transaction

I.2.1.2 RDB$JOURNALS
Displays information about the database journal files.

Column Name Data Type Description

RDB$LAST_BACKUP date vms Date of last AIJ backup

RDB$STATUS integer AIJ file is inaccessible

RDB$ALLOCATION integer Allocation

RDB$EXTENT integer Extent

RDB$FLAGS integer Flags

RDB$JOURNAL_NAME char(31) Journal name

RDB$LAST_BACKUP_
SEQUENCE

integer Last version number backed up

RDB$LAST_ACTIVATED date vms Date last activated

RDB$BACKUP_EDIT_STRING varchar(255) Backup editname file

RDB$DEFAULT_FILENAME char(255) Default journal name

RDB$FILENAME char(255) Journal name

RDB$BACKUP_FILENAME char(255) Backup file name

I–6 Information Tables

Column Name Data Type Description

RDB$SEQUENCE_NUMBER integer Current AIJ sequence number

RDB$STATE char(31) State ("Current" or "Latent")

I.2.1.2.1 RDB$FLAGS Represents flags for RDB$JOURNALS information table.

Bit Position Description

0 Initialization in progress

1 Backup in progress

2 AIJ file has been modified

3 AIJ restored from existing file

4 Hard data loss resulted from fail over

5 Soft data loss resulted from fail over

6 New version of journal created

7 Journal has been overwritten

8 Backup failed prematurely

9 Journal created due to switch-over suspension

10 AIJ file block has been assigned

11 Journal created for recovery synchronization

12 Extensible AIJ truncation error on backup

I.2.1.3 RDB$CACHES
Displays information about the database row caches.

Column Name Data Type Description

RDB$ALLOCATION integer Allocation

RDB$EXTENT integer Extent

RDB$CACHE_ID integer Cache ID

RDB$FLAGS integer Flags

RDB$ROW_LENGTH integer Row length

RDB$CACHE_SIZE integer Cache size

RDB$WINDOW_COUNT integer Window count

RDB$NUM_RESERVED_ROWS integer Number of reserved rows

RDB$NUM_SWEEP_ROWS integer Number of sweep rows

RDB$CACHE_NAME char(31) Cache name

RDB$LOCATION char(255) Cache location

RDB$SNAP_CACHE_SIZE integer Number of snapshot record slots in
cache

RDB$PHYSICAL_MEMORY bigint Physical memory in bytes

RDB$SWEEP_FREE_PCT integer Percent of slots to free during sweep

RDB$SWEEP_BATCH_COUNT integer Number of records to batch write

RDB$MAX_WS_COUNT integer Maximum working set count

Information Tables I–7

Column Name Data Type Description

RDB$SWEEP_THRESH_HIGH integer % of marked slots to start sweep

RDB$SWEEP_THRESH_LOW integer % of marked slots to stop sweep

I.2.1.3.1 RDB$FLAGS Represents flags for RDB$CACHES information table.

Bit Position Description

0 Shared memory is system

1 Large memory is enabled

2 Row replacement is enabled

3 Device/directory is defined

4 Updated rows to database

5 Updated rows to backing file

6 All rows to backing file

7 Snapshots are enabled

8 Use memory-resident section for cache

I.2.1.4 RDB$DATABASE_ROOT
Displays information about the database root.

Column Name Data Type Description

RDB$CREATED date vms Date of database creation

RDB$LAST_FULL_BACKUP_
TIME

date vms Date of last complete full backup

RDB$MAJOR_VERSION integer Major software version

RDB$MINOR_VERSION integer Minor software version

RDB$PRIOR_MAJOR_
VERSION

integer Major software version for database
converted with /nocommit

RDB$PRIOR_MINOR_VERSION integer Minor software version for database
converted with /nocommit

RDB$FLAGS integer Flags

RDB$MAX_USERS integer Number of users

RDB$MAX_CLUSTER_NODES integer Number of cluster nodes

RDB$DEFAULT_NUM_OF_
BUFFERS

integer Number of buffers

RDB$MAX_RECOVERY_
BUFFERS

integer Number of recover buffers

RDB$BUFFER_SIZE integer Buffer size

RDB$GLOBAL_BUFFER_
COUNT

integer Number of global buffers

RDB$ALG_COUNT integer Adjustable lock granularity count

RDB$LOCK_TIMEOUT_
INTERVAL

integer Lock timeout interval in seconds

RDB$CHECKPOINT_
INTERVAL_BLKS

integer Checkpoint block interval

I–8 Information Tables

Column Name Data Type Description

RDB$CHECKPOINT_TIMED_
SECONDS

integer Checkpoint time interval

RDB$TRANSACTION_
INTERVAL

integer Commit transaction interval

RDB$CLOSE_MODE integer Close mode

RDB$CLOSE_INTERVAL integer Close interval

RDB$ASYNC_PREFETCH_
DEPTH

integer Async prefetch depth

RDB$D_ASYNC_PREFETCH_
DEPTH

integer Detected async prefetch depth

RDB$D_ASYNC_PREFETCH_
THRESHOLD

integer Detected async prefetch threshold

RDB$CLEAN_BUFFER_COUNT integer Clean buffer count

RDB$MAX_BUFFER_COUNT integer Maximum buffer count

RDB$MIN_PAGE_SIZE_
BLOCKS

integer Minimum area page block count

RDB$MAX_PAGE_SIZE_
BLOCKS

integer Maximum area page block count

RDB$TRANSACTION_MODE_
FLAGS

integer Transaction mode

RDB$ALG_FACTOR_0 integer Adjustable locking granularity factor 0

RDB$ALG_FACTOR_1 integer Adjustable locking granularity factor 1

RDB$ALG_FACTOR_2 integer Adjustable locking granularity factor 2

RDB$ALG_FACTOR_3 integer Adjustable locking granularity factor 3

RDB$ALG_FACTOR_4 integer Adjustable locking granularity factor 4

RDB$ALG_FACTOR_5 integer Adjustable locking granularity factor 5

RDB$ALG_FACTOR_6 integer Adjustable locking granularity factor 6

RDB$ALG_FACTOR_7 integer Adjustable locking granularity factor 7

RDB$AUDIT_FILENAME char(255) Audit journal file name

RDB$ROOT_FILENAME char(255) Database root file name

RDB$RUJ_LOCATION char(255) Default recovery-unit journal file name

RDB$CACHE_LOCATION char(255) Default device/directory specification
for record cache files

RDB$MAX_PAGES_IN_
BUFFER

integer Maximum number of pages in a buffer

RDB$RCS_SWEEP_INTERVAL integer Row cache server (RCS) sweep interval
(in seconds)

RDB$RCS_CKPT_TIME integer Time interval to force row cache
server (RCS) to checkpoint. This field
contains the number of seconds that
pass before RCS is forced to perform
another checkpoint

RDB$LAST_FULL_RESTORE date vms Date of last complete full restore

RDB$AIJ_ACTIVATION_ID bigint AIJ journaling activation identifier

RDB$RCVR_ACTIVATION_ID bigint RCVR journaling activation identifier

Information Tables I–9

Column Name Data Type Description

RDB$OPER_CLASS integer Operator notification classes

RDB$PRESTART_TXN_
TIMEOUT

integer Seconds until prestarted transaction
is abandoned. Zero means no abandon
timer

RDB$DB_REPLICATED integer AIJ log roll forward server started

RDB$UNIQUE_VERSION date vms Physical database create time-and-
date. This field contains the time-
and-date stamp when this physical
database was created / restored /
copied

RDB$AUDIT_FLAGS integer Audit event class flags

I.2.1.4.1 RDB$FLAGS Represents flags for RDB$DATABASE_ROOT
information table.

Bit Position Description

0 Single file database

1 Open mode

2 Log server mode

3 Snapshots are deferred

4 Global buffers are enabled

5 Carryover locks are enabled

6 Statistics collection is enabled

7 Fast commit is enabled

8 AIJ commit optimization is enabled

9 RUJ is corrupt

10 Database is corrupt

11 Fast incremental backup is enabled

12 Async prefetch is enabled

13 Async batch writes are enabled

14 Lock partitioning is enabled

15 Page transfer via memory

16 Detected async prefetch is enabled

17 Shared memory is system

18 Database has been modified (TSN allocated)

19 Database conversion has been committed

20 Row cache server (RCS) checkpoints to database

21 RCS checkpoints to backing store files

22 RCS checkpoints marked and unmarked to RDC

23 Global buffers should be in VLM

24 Row cache RUJ global buffers are disabled

25 LogMiner feature is enabled

26 Prestarted transactions are enabled

I–10 Information Tables

Bit Position Description

27 VMS Galaxy shared memory is enabled

28 Use of P1 memory enabled for PIO code

29 A change has been made that precludes an incremental backup

30 Security audit enabled

31 Security alarm enabled flag

32 Audit/alarm on first access only

33 Audit synchronous flush flag

34 Standby database is opened read-only

35 Roll-forward quiet-point enabled

36 Database has been modified while LSS inactive

37 Continuous LogMiner feature enabled

38 AIJ buffer objects enabled

39 OBJMAN buffer objects enabled

40 Page buffer objects enabled

41 RUJ buffer objects enabled

I.2.1.5 RDB$DATABASE_JOURNAL
Displays information about the default journal information.

Column Name Data Type Description

RDB$CONDITION integer AIJ status

RDB$DEFAULT_ALLOCATION integer Default allocation in blocks

RDB$DEFAULT_EXTENT integer Default extension in blocks

RDB$CURRENT_BACKUP_
SEQUENCE

integer Backup sequence number

RDB$CURR_RECOVERY_
SEQUENCE

integer Recovery sequence number

RDB$DATABASE_BACKUP_
SEQUENCE

integer Database backup sequence number

RDB$ALLOCATION integer Number of allocated AIJ file blocks

RDB$SHUTDOWN_TIME_MIN integer Shutdown time in minutes

RDB$OPERATOR_CLASSES integer Operator class

RDB$FLAGS integer Flags

RDB$DEFAULT_BACKUP_
FILENAME

char(255) Default backup file name

RDB$CACHE_FILENAME char(255) Cache file name

RDB$STANDBY_FILENAME char(255) Standby database file name

RDB$SERVER_NAME char(31) Server name

RDB$BACKUP_EDIT_STRING varchar(255) Backup editname file

RDB$REMOTE_NODE_NAME char(31) Remote node name

RDB$CUR_ACTIVE_AIJ integer Current active AIJ journal index

Information Tables I–11

Column Name Data Type Description

RDB$MASTER_FILENAME char(255) When database replication is active
on the standby database, this field
contains the file name of the master
database

RDB$LSS_NETTYPE integer Network transport (DECnet, TCP/IP)

RDB$LSS_SYNCED_TAD date vms LSS Replication sychronized date/time

I.2.1.5.1 RDB$FLAGS Represents flags for RDB$DATABASE_JOURNAL
information table.

Bit Position Description

0 Journaling is enabled

1 Overwrite is enabled

2 Backup mode

3 New journal version

4 ABS uses quiet-point AIJ backup

5 Replicated as master

6 Replicated as standby

7 Master replication database

8 Database replication online

9 Hot Standby quiet-point

10 Hot Standby is enabled

11 Database changes made when AIJ disabled

12 One or more journals overwritten

13 Hard data loss resulted from fail over

14 Full quiet-point AIJ backup required

I.2.1.6 RDB$DATABASE_USERS
Displays information about the database users.

Column Name Data Type Description

RDB$PROCESS_ID integer Process ID number

RDB$STREAM_ID integer Stream ID number

RDB$MONITOR_ID integer Monitor ID number

RDB$ATTACH_ID integer Attach ID number

RDB$FLAGS integer Flags

I.2.1.6.1 RDB$FLAGS Represents flags for RDB$DATABASE_USERS
information table.

Bit Position Description

0 Client server process

1 AIJ log server

I–12 Information Tables

Bit Position Description

2 Process is being recovered

3 Database server process

4 Database utility process

5 Catch-up server

6 AIJ roll forward server

7 Row cache server

8 Log shipping server

9 Backup server

10 Continuous LogMiner Server

11 This process is binding to the database

I.2.1.7 RDB$LOGICAL_AREAS
Displays information about the logical areas.

Column Name Data Type Description

RDB$LOGICAL_AREA_ID integer Logical area ID

RDB$AREA_ID integer Physical area ID

RDB$FLAGS integer Flags

RDB$RECORD_LENGTH integer Record length

RDB$THRESHOLD1_PERCENT integer First threshold percent value

RDB$THRESHOLD2_PERCENT integer Second threshold percent value

RDB$THRESHOLD3_PERCENT integer Third threshold percent value

RDB$ORDERED_HASH_
OFFSET

integer Ordered hash offset

RDB$RECORD_TYPE integer AIP record type

RDB$LOGICAL_AREA_NAME char(31) Logical area name

I.2.1.7.1 RDB$FLAGS Represents flags for RDB$LOGICAL_AREAS
information table.

Bit Position Description

0 Logical area uses hash ordered index

1 Logical area modified with unjournaled records

2 Nologging is enabled

3 Use full quadword modulo for hashing (otherwise use longword modulo)

4 SPAM thresholds should be rebuilt

I.2.1.7.2 RDB$RECORD_TYPE Represents AIP record types for
RDB$LOGICAL_AREAS information table.

AIP Record Types Description

0 Unknown

Information Tables I–13

AIP Record Types Description

1 Table

2 Sorted index

3 Hashed index

4 System record

5 Large object

I.2.1.8 RDB$CHARACTER_SETS
Displays information about the Oracle Rdb character sets.

Column Name Data Type Description

RDB$LOWCASE_MAPPING list of byte
varying

Segmented string containing a 256
byte table used for lowercasing
characters

RDB$UPCASE_MAPPING list of byte
varying

Segmented string containing a 256
byte table used for uppercasing
characters

RDB$ASSOCIATED_
CHARACTER_SET

integer Identifier of the associated character
set

RDB$CHARACTER_SET_ID integer Character set identifier

RDB$CHARACTER_SET_NAME char(31) Character set name

RDB$CHARACTER_
WILDCARD

integer Character used as wildcard character

RDB$FLAGS integer Character set flags

RDB$FORM_OF_USE integer Character set form-of-use indicator

RDB$IDENTIFIER_
CHARACTER_SET

integer Character set ID of the indentifier
character set

RDB$MAXIMUM_OCTETS integer Maximum number of octets per
character

RDB$MINIMUM_OCTETS integer Minimum number of octets per
character

RDB$REPERTOIRE integer Character set repertoire

RDB$SPACE_CHARACTER integer Character used as space

RDB$STRING_WILDCARD integer Character used as string wildcard

RDB$VERSION integer Version number of character set entry

I.2.1.8.1 RDB$REPERTOIRE Represents the repertoire values for
RDB$CHARACTER_SETS information table.

Value Name Description

0 OTHER Non-specific repertoire

1 LATIN Contains mainly Latin characters

2 JAPANESE Contains mainly Japanese characters

3 SIMPLE_CHINESE Contains mainly simplified Chinese
characters

4 KOREAN Contains mainly Korean characters

I–14 Information Tables

Value Name Description

5 OLD_CHINESE Contains mainly traditional Chinese
characters

6 UNIVERSAL Contains universal characters; for example,
UNICODE

7 INDIAN Contains mainly Indian characters

8 ARABIC Contains mainly Arabic characters

9 GREEK Contains mainly Greek characters

10 CYRILLIC Contains mainly Cyrillic characters

11 HEBREW Contains mainly Hebrew characters

I.2.1.8.2 RDB$FORM_OF_USE Represents the form-of-use values for
RDB$CHARACTER_SETS information table.

Note: MIXED are odd flags, FIXED are even.

Value Name Description

0 FIXED_OCTET Fixed octet

1 MIXED_OCTET Mixed octet with DEC_KANJI style encoding

2 FIXED_NO_UP Fixed octet, no uppercasing allowed

3 MIXED_SS2 As in MIXED_OCTET plus <SS2> as
introducer to alternate single octet encoding

4 FIXED_UP_G1 Fixed octet, uppercasing only 7-bit characters

5 MIXED_SS3 As in MIXED_SS2 plus <SS3> as introducer
to alternate double octet encoding

6 FIXED_OTHER Fixed octet, other

7 MIXED_C2CB As in MIXED_OCTET plus hex ’C2CB’ as
introducer to alternate double octet encoding

9 MIXED_TAG Mixed octet with leading tag, compound
string

11 MIXED_SHIFT Mixed octet with coding table shifted; for
example, SHIFT_JIS

13 MIXED_110 Mixed octet with binary pattern of high order
bits specifying char size

15 MIXED_GB18030 Mixed octet with 2nd octet in range HEX(30)
- HEX(39) specifying 4 octet

I.2.1.8.3 RDB$FLAGS Represents flags for RDB$CHARACTER_SETS
information table.

Bit Position Name Description

0 CONTAINS_ASCII Character set contains 7-bit
ASCII characters

1 SPACE_OCTET_REPEATS All octets of the multi-octet
space character are the same
value

Information Tables I–15

I.2.1.9 RDB$NLS_CHARACTER_SETS
Represents the mapping of Oracle NLS character sets to Oracle Rdb character
sets.

Column Name Data Type Description

RDB$CHARACTER_SET_ID integer Character set identifier

RDB$NLS_ID integer Oracle NLS identifier of character set

RDB$NLS_NAME char(31) Oracle NLS character set name

I.2.1.10 RDB$SESSION_PRIVILEGES
Represents the mapping of the enabled privileges for this user session.

Column Name Description

RDB$PRIVILEGE String describing an assigned privilege.

I–16 Information Tables

J
Guide to Database Management: Database

Vault

DATABASE VAULT is a feature introduced in Oracle Rdb Release 7.4. This
appendix is an addition to the Oracle Rdb Guide to Database Design and
Definition Chapter 9: Defining Database Protection.

For details on database auditing, please refer to Oracle Rdb Guide to Database
Management Chapter 3: Security Auditing on OpenVMS. This appendix includes
the description of a new DBVAULT Event Type and that information would
normally fall into Section 3.2: Security Auditing on OpenVMS.

The examples in this appendix use RMU commands, qualifiers, and SQL
language from Oracle Rdb Release 7.4 and later versions.

J.1 Overview of Security Checking
Traditionally, Oracle Rdb augments the privileges granted to a user via an
access control list (or ACL) within the database with various OpenVMS process
privileges to derive the active database privileges set.

The SQL GRANT and REVOKE statements are used to manage privileges on the
database and objects within that database (tables, sequences, modules, functions
and procedures). Within a table, there are also a limited set of column level
privileges.

Each entry of an access control list contains a reference to a user or role and a
granted set of access privileges.

An entry, formally called an access control entry (or ACE), is stored in a list
(ACL) within each database object definition. These ACLs will be interpreted
differently depending on the protection scheme in use by the database; known as
PROTECTION IS ACL or PROTECTION IS ANSI.

Protection is ACL
This type of protection is based on the OpenVMS access control scheme. This is
the default and most widely used protection scheme. It can be explicitly enabled
using the CREATE DATABASE or ALTER DATABASE statements.

SQL> create database filename ... protection is ACL;
SQL>

This protection scheme locates the first matching ACE in the list and applies that
as the access privileges for this user. In many cases, the first matching ACE may
be for PUBLIC. If no entry matches, then the user is assigned NO PRIVILEGES
from the ACL.

Guide to Database Management: Database Vault J–1

Matching requires that an entry is equal to the users user identification code
(UIC), or is equal to a rights identifier granted to a process (also known as a role),
or matches a wildcard UIC. There are also optional modifiers to those entries that
must also be matched.

A modifier may be a granted rights identifier or an inherited system identifier
that describes the environment. For example, an ACE might be defined for an
identifier of SMITH+BATCH+MANAGER. This is interpreted as user SMITH
when granted the MANAGER rights identifier and is executing in a BATCH
process will be granted some specific access. The implication is that SMITH
running as an INTERACTIVE user would not match that entry but may match
some other ACE in the list. Similarly, if the rights identifier MANAGER is
revoked from SMITH, then the entry will not match.

Protection is ANSI
This type of protection is based on the ANSI and ISO Standard Database
Language scheme. It must be explicitly enabled using the CREATE DATABASE
or ALTER DATABASE statements.

SQL> create database filename ... protection is ANSI;
SQL>

For the PROTECTION IS ANSI scheme, the access privileges from each matching
ACE are merged together. Typically, this will be a match for the current user
plus any ACE for PUBLIC. If the ACL includes roles (rights identifiers), then any
privileges from granted roles will also be inherited.

Note that more complex identifiers that include modifiers (as shown above
for PROTECTION IS ACL) are not permitted for the PROTECTION IS ANSI
scheme.

J.1.1 OpenVMS Privileges as Database Overrides
In both schemes, the following OpenVMS process privileges are used to augment
the granted access: BYPASS, IMPERSONATE, OPER, READALL, SECURITY
and SYSPRV.

There are two SQL commands that display ACL and ACE details for the active
database privileges; SHOW PROTECTION and SHOW PRIVILEGES.

The access control list created by a sequence of GRANT and REVOKE statements
is displayed by the SHOW PROTECTION statement. The consolidated privileges,
including OpenVMS overrides, are displayed for the current user using the
SHOW PRIVILEGES statement.

These statements operate on named database objects as shown in the example
below. In particular, note the difference between the output of these two
commands when executed by database user JJONES. The first command (SHOW
PROTECTION) displays the ACL as defined in the database.

SQL> show protection on database rdb$dbhandle;
Protection on Alias RDB$DBHANDLE

(IDENTIFIER=[ADMIN,HENNINGS],ACCESS=SELECT)
(IDENTIFIER=[ADMIN,JJONES],ACCESS=NONE)
(IDENTIFIER=[ADMIN,ADMINUSER2],ACCESS=SELECT+SHOW+CREATE)
(IDENTIFIER=[ADMIN,ADMINUSER1],ACCESS=SELECT)
(IDENTIFIER=[ADMIN,ADMIN_EXECUTE],ACCESS=SELECT+INSERT+UPDATE+
DELETE+SHOW+CREATE+ALTER+DROP+DBCTRL+OPERATOR+DBADM+REFERENCES)
(IDENTIFIER=[*,*],ACCESS=NONE)

SQL>

J–2 Guide to Database Management: Database Vault

The next command shows the augmented ACE after applying the process
privileges for user JJONES.

SQL> show privileges on database rdb$dbhandle;
Privileges on Alias RDB$DBHANDLE

(IDENTIFIER=[ADMIN,JJONES],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+
CREATE+ALTER+DROP+DBCTRL+OPERATOR+DBADM+SECURITY+DISTRIBTRAN)

SQL>

J.1.1.1 From the GRANT Statement Documentation
The Oracle Rdb SQL Reference Manual includes the following description of
OpenVMS privilege override:

Users with the OpenVMS SYSPRV privilege implicitly receive the same privileges
as users with the DBADM database privilege.

Users with the OpenVMS OPER privilege implicitly receive the SELECT,
INSERT, UPDATE and DELETE database privileges.

Users with the OpenVMS SECURITY privilege implicitly receive the same
privileges as users with the SECURITY database privilege.

Users with the OpenVMS BYPASS privilege implicitly receive all privileges
except the Oracle Rdb DBADM and SECURITY database privileges and the
DBCTRL database and table privileges.

Users with the OpenVMS READALL privilege implicitly receive Oracle Rdb
SELECT and SHOW database and table privileges.

J.1.1.2 From the CREATE MODULE Statement documentation
In addition to the OpenVMS privileges used to augment the ACE, Oracle Rdb
additionally uses IMPERSONATE when executing the CREATE MODULE
statement with the AUTHORIZATION clause. The IMPERSONATE privilege
is not used to augment the access privilege of the user.

The Oracle Rdb SQL Reference Manual includes the following description of
OpenVMS privilege override during the CREATE MODULE Statement:

When the AUTHORIZATION clause is used, the definer of the module is granting
their own privileges to the specified username so that tables, columns, sequences,
procedures and functions are accessed as though referenced by the definer.

The AUTHORIZATION is expected to be the session user, or an OpenVMS rights
identifier granted to that user (when SECURITY CHECKING IS EXTERNAL). If
the session is run with one of the following OpenVMS privileges, then any user or
rights identifier can be referenced: SYSPRV, BYPASS or IMPERSONATE.

J.2 Goals of the DATABASE VAULT Feature
The goal of DATABASE VAULT is to avoid accidental database access by an
OpenVMS privileged user when the database security policy (ACL) should
prevent such access.

It should be understood that an OpenVMS privileged user is a power user and
can do much on a VMS system. As an OpenVMS layered product, there is
nothing Rdb can do to prevent a power user from accidental or malicious actions
on the database files. However, Rdb can limit the effects of these privileges under
normal usage. This feature allows the database administrator to enforce an
access policy for all attached database users.

Guide to Database Management: Database Vault J–3

J.3 Establishing the Database Vault Environment
The database can be altered to use DATABASE VAULT security semantics (i.e.
not use OpenVMS privilege overrides) using either SQL ALTER DATABASE
FILENAME ... DATABASE VAULT IS ENABLED statement or RMU/SET
DATABASE /DATABASE_VAULT=ENABLED command.

As a safeguard, the database administrator must be granted the OpenVMS rights
identifier RDBVMS$DATABASE_VAULT_MANAGER. This rights identifier can
be created in the system UAF (User Authorization File). For example:

$ run sys$system:authorize
UAF> ADD/IDENTIFIER/ATTRIBUTES=DYNAMIC RDBVMS$DATABASE_VAULT_MANAGER

It should then be granted to any database administrators who are authorized to
establish or change the DATABASE VAULT policy for databases, for example:

UAF> GRANT/IDENTIFIER RDBVMS$DATABASE_VAULT_MANAGER jjones
UAF> GRANT/IDENTIFIER RDBVMS$DATABASE_VAULT_MANAGER klee
UAF> GRANT/IDENTIFIER RDBVMS$DATABASE_VAULT_MANAGER pparker

Having this rights identifier enabled does not enable OpenVMS privilege usage
nor any additional Oracle Rdb database privileges. Its sole purpose is to allow
the setting of the database vault attribute in the database.

$ SET RIGHTS_LIST /ENABLED RDBVMS$DATABASE_VAULT_MANAGER
$
$ rmu/set database mf_personnel/database_vault=disable
%RMU-I-MODIFIED, Database state modified
%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery
$
$ SET RIGHTS_LIST /DISABLED RDBVMS$DATABASE_VAULT_MANAGER

The Database_Vault attribute can be displayed using various commands; the
RMU/EXTRACT /ITEM=DATABASE command, the Interactive SQL SHOW
DATABASE statement and the RMU/DUMP/HEADER command will display the
current setting.

$ rmu/dump/header=security sql$database
*---
* Oracle Rdb V7.4-00 31-MAR-2020 21:48:30.59
*
* Dump of Database header
* Database: ADMIN_1:[JJONES.DATABASES.V74]PERSONNEL.RDB;1
*
*---

Database Parameters:
Security Auditing...
- Security auditing is disabled
- Security alarm is disabled
- No audit journal filename is specified
- No alarm name is specified
- Synchronous audit record flushing is disabled
- Audit every access
- Database Vault is enabled

Note that the user must have been granted access to the database to be permitted
to execute RMU/EXTRACT. In the example below, the current user isn’t granted
SELECT on the DATABASE and so cannot attach to the database even though
they may possess OpenVMS privileges that would permit Rdb to override the lack
of granted access on other databases.

J–4 Guide to Database Management: Database Vault

$ rmu/extract/item=data sql$database
%RDB-E-NO_PRIV, privilege denied by database facility
%RMU-F-FATALERR, fatal error on EXTRACT
%RMU-F-FTL_RMU, Fatal error for RMU operation at 31-MAR-2020 21:46:42.17

After enabling this user to attach to the database, the RMU/EXTRACT command
works as expected.

$ rmu/extract/item=data sql$database
.
.
.

security checking is EXTERNAL
database vault is ENABLED

.

.

.
; -- end create database

J.3.1 RMU Interface
The Oracle Rdb RMU/SET DATABASE command can be used to enable and
disable database vault.

$ RMU/SET DATABASE/DATABASE_VAULT=ENABLED database-name

This command requires the RMU$SECURITY privilege to execute. If the user
is granted the OpenVMS SECURITY privilege, it will override the lack of
RMU privileges. Please note that this use of OpenVMS privileges only controls
execution of the RMU command, not the successful execution of the operation;
that requires the granted rights identifier RDBVMS$DATABASE_VAULT_
MANAGER.

To disable the feature, the DISABLED keyword should be used on RMU/SET
DATABASE command.

$ RMU/SET DATABASE/DATABASE_VAULT=DISABLED database-name

Database commands such as RMU/BACKUP, RMU/RESTORE, and
RMU/RECOVER do not alter the logical structure of the database or affect
the data. Therefore, DATABASE VAULT has no affect on the execution of
those commands. However, some RMU commands such as RMU/COLLECT
OPTIMIZER_STATISTICS, RMU/EXTRACT, RMU/LOAD, RMU/UNLOAD, and
some functions of RMU/VERIFY do require access to the database and will be
under the purview of the DATABASE VAULT restrictions.

J.3.2 SQL Interface
The CREATE DATABASE and IMPORT DATABASE statements can be used to
enable DATABASE VAULT. The ALTER DATABASE statement can be used to
enable or disable DATABASE VAULT. The user must be granted the special rights
identifier RDBVMS$DATABASE_VAULT_MANAGER in all cases. Additionally,
the user will require the ALTER privilege at the database level to execute the
ALTER DATABASE statement.

SQL> alter database filename ... database vault is enabled;
SQL>

To disable the feature, the DISABLED keyword should be used.

SQL> alter database filename ... database vault is disabled;
SQL>

Guide to Database Management: Database Vault J–5

J.3.3 Auditing
All RMU commands will be audited under the RMU audit class. For example,
the RMU/SET DATABASE command will be audited as an RMU command.
However, the DATABASE_VAULT enabling or disabling is audited under
the new DBVAULT audit class; this includes actions of the RMU/SET
DATABASE/DATABASE_VAULT command and the SQL ALTER DATABASE
... DATABASE VAULT statement. If database auditing is currently in use, then
Oracle recommends that the DBVAULT class be included.

$ RMU/SET AUDIT/ENABLE=DBVAULT database-name

If AUDIT is not yet enabled, then the /ENABLE=ALL qualifier will enable all
classes, including the DBVAULT class.

By enabling the AUDIT of DBVAULT, the customer can be alerted through
the audit journal or operator alarms when the DATABASE VAULT attribute is
modified for a specific database. Ideally, the DBVAULT class will seldom be used
for database alarms so any notifications will not be lost amid the many RMU
class alarms.

The audit records written for DBVAULT will appear with other
Oracle Rdb specific records in the OpenVMS audit journal. The
RMU/DUMP/AUDIT/FORMAT=XML will display an entry similar to the following
example.

$ rmu/dump/audit -
/type=DBVAULT -
/format=XML -
/since=&start_ts -
/before=&end_ts -
/output=DATABASE_VAULT_LOG.XML -
AUDIT_DATABASE_VAULT_4_DB -
sys$manager:security.audit$journal

.

.

.
<audit_record type="DBVAULT">
<database_name>..database file specification..</database_name>
<audit_name>SECURITY</audit_name>
<system_id>44268</system_id>
<image_name>..image name..</image_name>
<process_id>600404191</process_id>
<process_name>TESTER_9986</process_name>
<system_name>DBSYS1</system_name>
<time_stamp>2018-09-13T00:25:49.3595702</time_stamp>
<tsn>672</tsn>
<subject_owner>[ADMIN,JJONES]</subject_owner>
<username>JJONES </username>
<message_type>Database Vault change</message_type>
<access_desired>1</access_desired>
<final_status>%RDB-E-NO_PRIV</final_status>
<rmu_command>RMU/SET DATABASE /DATABASE_VAULT=ENABLED</rmu_command>

</audit_record>)

Other tools such as RMU/LOAD/AUDIT can also be used to extract audit records
from the OpenVMS audit journal and load those values into a database. It is
then possible to write reports on the audit data. Refer to the Oracle Rdb RMU
Reference Manual for details; see RMU/LOAD/AUDIT, and RMU/DUMP/AUDIT.

J–6 Guide to Database Management: Database Vault

J.4 General Questions

o Does DATABASE VAULT control RMU command privilege?

No. DATABASE VAULT is an attribute of the database, and is enforced
during the database attach and subsequent access to database objects. RMU
access is determined prior to accessing the database through Oracle Rdb.

RMU provides many command functions that don’t require a database attach,
such as RMU/DUMP, RMU/BACKUP, RMU/RESTORE, etc. Therefore,
access to the RMU command is separately managed. In many cases, the
elevated OpenVMS privileges might be legitimately required to carry out the
command.

In addition to RMU privileges required to run commands, some commands
will additionally attach to the database and will be under the control
of the DATABASE VAULT feature. For example, RMU/COLLECT
OPTIMIZER_STATISTICS, RMU/EXTRACT, RMU/LOAD, RMU/UNLOAD,
RMU/POPULATE_CACHE, and RMU/VERIFY each execute Rdb attaches as
part of their functionality.

o Will our procedures using RMU run unchanged?

Not necessarily. For example, if database restructuring was done in the
past by a privileged user, then the security policy in the database, once
DATABASE VAULT is enabled, must allow that user (or some granted
role) to perform operations on the tables referenced by commands such as
RMU/LOAD and RMU/COLLECT OPTIMIZER_STATISTICS.

Operations such as RMU/BACKUP, RMU/RESTORE and RMU/RECOVER
do not attach to the database to perform their functions and are mostly
unaffected by the DATABASE VAULT feature. The one exception is the
CDD_INTEGRATE qualifier of RMU/RESTORE command.

o What if you need to perform maintenance on the database and
DATABASE VAULT does not allow the database administrator access?

If this change in policy is acceptable, then a simple RMU/SET DATABASE
command (as described above) can disable the DATABASE VAULT feature.
When the maintenance is completed, the feature can be re-enabled.

o Is the DATABASE VAULT attribute saved by the SQL EXPORT
DATABASE statement and restored by the IMPORT DATABASE
statement?

Yes. It is one of the database attributes that is carried through the EXPORT
and IMPORT operations.

Please note that the IMPORT DATABASE statement is related to the
CREATE DATABASE statement and will therefore accept the DATABASE
VAULT IS ENABLED clause. However, unless the database policy allows
the user executing IMPORT DATABASE statement to create and access the
database objects, then the IMPORT DATABASE statement may fail as now
the DATABASE VAULT restrictions will be enabled prior to adding database
tables, loading data and defining other objects.

o Are the auditing attributes saved by SQL’s EXPORT DATABASE
statement and restored by the IMPORT DATABASE statement?

Guide to Database Management: Database Vault J–7

The EXPORT DATABASE statement saves all the database auditing settings
for the database and each database object. The IMPORT DATABASE
statement will restore the attributes that were saved in the interchange file.

o What commands can we use to display the audit settings for the
database?

RMU/SHOW AUDIT can be used to list the setting in the database. Refer
to the Oracle Rdb RMU Reference Manual, or DCL HELP RMU74 SHOW
AUDIT for further details.

RMU/EXTRACT/ITEM=SECURITY will generate a DCL script that includes
a set of RMU commands to establish the current auditing policy.

Interactive SQL provides a SHOW AUDIT statement that will display details
for each object, as well as the complete settings for the database.

o Can Oracle SQL Services be used with a database defined using
DATABASE VAULT?

Yes. Any service can be created to access a database with DATABASE VAULT
enabled.

o Can Oracle OCI Services for Rdb (part of Oracle SQL Services) be
used with a database defined using DATABASE VAULT?

As noted above, Oracle Rdb may use the OpenVMS SYSPRV, BYPASS or
IMPERSONATE privilege when executing the CREATE MODULE statement
with the AUTHORIZATION clause. This can happen when the rights
identifier referenced by the CREATE MODULE statement is not granted to
the current process.

The database PREPARE and UPGRADE operations performed by OCI
Services for Rdb adds modules to the database that use the rights identifier
SQLNET4RDB. This is often performed with elevated privileges.

Therefore, the process executing SYS$LIBRARY:RDB_NATCONNnn.COM
(where nn is the version number) must be granted this rights identifier or
DATABASE VAULT must be disabled during the PREPARE or UPGRADE
step.

o We still use some applications created using RDO, RDBPRE and
RDML. Are these applications similarly controlled by DATABASE
VAULT?

Yes. Any application that attaches to the Oracle Rdb server will be under
the control of DATABASE VAULT. This also means applications using Oracle
SQL/Services, Oracle ODBC Driver for Rdb, JDBC for Oracle Rdb, and so on.

J–8 Guide to Database Management: Database Vault

Index

A
ACOS function, G–2
ACOSH function, G–2
Ada language

declaring the SQLDA, D–5
SQLCA, C–16

ADD_MONTHS function, G–2
ANSI_AUTHORIZATION qualifier

See also RIGHTS clause in SQL Module
Language Syntax and under DECLARE
MODULE Statement

replaced by RIGHTS clause, F–5
ANSI_DATE qualifier

See also DEFAULT DATE FORMAT clause
in SQL Module Language Syntax and
DECLARE MODULE Statement

replaced by DEFAULT DATE FORMAT clause,
F–5

ANSI_IDENTIFIERS qualifier
See also KEYWORD RULES clause in SQL

Module Language Syntax and DECLARE
MODULE Statement

replaced by KEYWORD RULES clause, F–5
ANSI_PARAMETERS qualifier

See also PARAMETER COLONS clause in
DECLARE MODULE Statement

replaced by PARAMETER COLONS clause,
F–5

ANSI_QUOTING qualifier
See also QUOTING RULES clause in SQL

Module Language Syntax and DECLARE
MODULE Statement

replaced by QUOTING RULES clause, F–5
ASCII function, G–2
ASCII in C programs

restriction, D–10
ASCII in dynamic SQL

restriction, D–10
ASCIZ in C programs

restriction, D–10
ASCIZ in dynamic SQL

restriction, D–10
ASIN function, G–2

ASINH function, G–3
ATAN2 function, G–3
ATAN function, G–3
ATANH function, G–3

B
BASIC language

declaring the SQLDA, D–6, D–12
SQLCA, C–17

BITAND function, G–4
BITANDNOT function, G–5
BITNOT function, G–5
BITOR function, G–5
BITXOR function, G–5
Built-in function, G–1

C
CALL statement

dynamic SQL and
determing, C–8

Cascading delete, F–2
CEIL function, G–5
Character set

logical name
RDB$CHARACTER_SET, E–1
specifying, E–1

CHR function, G–5
C language

declaring the SQLDA, D–6, D–13
declaring the SQLDA2, D–13
SQLCA, C–18

COBOL language
SQLCA, C–18
using error literals, C–6

CONTAINING predicate
returning data types for parameter markers,

D–3
Conversion

of data types
in dynamic SQL, D–10

COS function, G–5
COSH function, G–5
COT function, G–6

Index–1

D
Database system tables, H–1
Database Vault, J–1

Auditing, J–6
Auditing Display, J–8
Disabling with RMU, J–5
Disabling with SQL, J–5
Enabling, J–4
Establishing the Environment, J–4
RDBVMS$DATABASE_VAULT_MANAGER

rights identifier, J–4
Data type

conversion
in dynamic SQL, D–10

determining for dynamic SQL, D–9
Declaring the SQLDA

in Ada, D–5
in BASIC, D–6, D–12

Declaring the SQLDA2
in C, D–13

DELETE statement
number of rows deleted, C–8

Deprecated feature
of command line qualifiers, F–5
of constraint in CREATE TABLE statement,

F–6
of ORDER BY clause, F–3
SQLOPTIONS=ANSI_AUTHORIZATION, F–5
SQLOPTIONS=ANSI_DATE, F–5
SQLOPTIONS=ANSI_IDENTIFIERS, F–5
SQLOPTIONS=ANSI_PARAMETERS, F–5
SQLOPTIONS=ANSI_QUOTING, F–5
UNIQUE predicate, F–7

DESCRIBE statement
MARKERS clause, D–2
SELECT LIST clause, D–2
SQLDA, D–7

Dynamic SQL
and date-time data types, D–11
CALL statement

determining if, C–8
data type conversion by setting SQLTYPE field,

D–10
declaring the SQLDA

for Ada, D–5
for BASIC, D–6, D–12
for C, D–6

declaring the SQLDA2
for C, D–13

declaring the SQLDA2 for Ada, D–11
declaring the SQLDA2 for BASIC, D–12
description of SQLDA2 fields, D–13
description of SQLDA fields, D–7
determining data types, D–9
distinguishing SELECT from other statements,

D–3

Dynamic SQL (cont’d)
EXECUTE statement, D–2
FETCH statement, D–2
INCLUDE statement, D–3
multiple

SQLDA declarations, D–3
OPEN statement, D–2
parameter markers, D–1
purpose of SQLDA, D–1
select lists, D–1
SELECT statement

determining if, C–8
SQLDA, D–1, D–3
SQLDERRD array

and SELECT, C–9
SQLERRD array, C–8
SQLTYPE field, D–9
structure of SQLDA, D–4

E
Error handling

error messages, A–1
flagging, A–6
online message documentation, A–1
RDB$LU_STATUS, C–16
return codes in SQLCA, C–3
sql_get_error_text routine, C–16
sql_signal routine, C–16
with message vector, C–1
with SQLCA, C–1
with SQLSTATE, C–20

Error literals
COBOL, C–6

Error message
flagging of precompiler and module language,

A–6
format of, A–1
locations of online documentation, A–2
online documentation locations, A–2
types of, A–1

EXECUTE statement
parameter markers, D–2
SQLDA, D–2, D–7

EXP function, G–6

F
FETCH statement

current row, C–8
SQLERRD field and, C–8
using select lists, D–2
using SQLDA, D–2, D–7

FLOOR function, G–6
FORTRAN language

SQLCA, C–19

Index–2

Function
ACOS, G–2
ACOSH, G–2
ADD_MONTHS, G–2
ASCII, G–2
ASIN, G–2
ASINH, G–3
ATAN, G–3
ATAN2, G–3
ATANH, G–3
BITAND, G–4
BITANDNOT, G–5
BITNOT, G–5
BITOR, G–5
BITXOR, G–5
built-in, G–1
CEIL, G–5
CHR, G–5
COS, G–5
COSH, G–5
COT, G–6
EXP, G–6
external

logical name for location, E–1
FLOOR, G–6
HEXTORAW, G–6
INITCAP, G–6
INSTR, G–6
INSTRB, G–6
LAST_DAY, G–7
LN, G–7
LOG, G–7
LPAD, G–7
LTRIM, G–7
MOD, G–7
MONTHS_BETWEEN, G–7
NEW_TIME, G–8
NEXT_DAY, G–8
Oracle, G–1
POWER, G–8
RAWTOHEX, G–8
REPLACE, G–8
RPAD, G–9
RTRIM, G–9
SIN, G–9
SINH, G–9
SQRT, G–9
SUBSTR, G–9
SUBSTRB, G–10
TAN, G–10
TANH, G–10

H
Handling errors

online message documentation, A–1
RDB$LU_STATUS, C–16
sql_get_error_text routine, C–16
sql_signal routine, C–16
with message vector, C–1
with SQLCA, C–1
with SQLSTATE, C–20

HEXTORAW function, G–6

I
INCLUDE statement

SQLDA, D–3, D–5, D–6
SQLDA2, D–13

Incompatible syntax changes, F–1
Information Tables, I–1
INITCAP function, G–6
INSERT statement

number of rows stored, C–8
INSTRB function, G–6
INSTR function, G–6

L
LAST_DAY function, G–7
LIKE predicate

returning data types for parameter markers,
D–3

Limits and parameters
maximum length of SQLNAME field, D–7

List
length of longest element, C–8
number of elements, C–8

LN function, G–7
LOG function, G–7
Logical name, E–1

RDB$CHARACTER_SET, E–1
RDB$ROUTINES, E–1
RDMS$BIND_OUTLINE_MODE, E–1
RDMS$BIND_QG_CPU_TIMEOUT, E–1
RDMS$BIND_QG_REC_LIMIT, E–1
RDMS$BIND_QG_TIMEOUT, E–1
RDMS$BIND_SEGMENTED_STRING_

BUFFER, E–1
RDMS$DEBUG_FLAGS, E–1
RDMS$DIAG_FLAGS, E–1
RDMS$RTX_SHRMEM_PAGE_CNT, E–1
RDMS$SET_FLAGS, E–1
RDMS$USE_OLD_CONCURRENCY, E–1
RDMS$USE_OLD_SEGMENTED_STRING,

E–1
RDMS$VALIDATE_ROUTINE, E–1
SQL$DATABASE, E–2
SQL$DISABLE_CONTEXT, E–2

Index–3

Logical name (cont’d)
SQL$EDIT, E–2
SQLINI, E–2
SYS$CURRENCY, E–2
SYS$DIGIT_SEP, E–2
SYS$LANGUAGE, E–2
SYS$RADIX_POINT, E–2

LPAD function, G–7
LTRIM function, G–7

M
MARKERS clause of DESCRIBE statement, D–2
Messages, A–1
Message vector, C–1

in Ada, C–16
in BASIC, C–17
in C, C–18
in COBOL, C–18
in FORTRAN, C–19
in INCLUDE statement, C–1
in Pascal, C–19
RDB$LU_STATUS, C–16
sql_get_error_text routine, C–16
sql_signal routine, C–16

Metadata
system tables, H–1

MOD function, G–7
MONTHS_BETWEEN function, G–7
Multiple SQLDA declarations, D–3

N
NEW_TIME function, G–8
NEXT_DAY function, G–8

O
Obsolete SQL syntax, F–1
OPEN statement

parameter markers, D–2
SQLERRD field and, C–8, C–9
using SQLDA, D–2, D–7

Oracle Database functions, G–1

P
Parameter

message vector, C–15
SQLCA, C–2

Parameter markers
data types returned, D–3
determining data types, D–9
in DESCRIBE statement, D–2
in EXECUTE statement, D–2
in OPEN statement, D–2
in SELECT statement, D–2
in SQLDA, D–1

Pascal language
SQLCA, C–19

POWER function, G–8
Predicate

UNIQUE, F–7
PREPARE statement

SELECT LIST clause, D–2
SQLDA, D–7

Previously reserved words
SQL3, F–12

Q
Query cost estimate

SQLCA values, C–9

R
RAWTOHEX function, G–8
RDB$CHARACTER_SET logical name, E–1
RDB$LU_STATUS field of message vector, C–16
RDB$MESSAGE_VECTOR structure, C–15

in Ada, C–16
in BASIC, C–17
in C, C–18
in COBOL, C–18
in FORTRAN, C–19
in INCLUDE statement, C–1
in Pascal, C–19
RDB$LU_STATUS field, C–16
sql_get_error_text routine, C–16
sql_signal routine, C–16

RDB$ROUTINES logical name, E–1
RDMS$BIND_OUTLINE_MODE logical name,

E–1
RDMS$BIND_QG_CPU_TIMEOUT logical name,

E–1
RDMS$BIND_QG_REC_LIMIT logical name, E–1
RDMS$BIND_QG_TIMEOUT logical name, E–1
RDMS$BIND_SEGMENTED_STRING_BUFFER

logical name, E–1
RDMS$DEBUG_FLAGS logical name, E–1
RDMS$DIAG_FLAGS logical name, E–1
RDMS$RTX_SHRMEM_PAGE_CNT logical name,

E–1
RDMS$SET_FLAGS logical name, E–1
RDMS$USE_OLD_CONCURRENCY logical name,

E–1
RDMS$USE_OLD_SEGMENTED_STRING logical

name, E–1
RDMS$VALIDATE_ROUTINE logical name, E–1
REPLACE function, G–8
REPLACE statement

number of rows stored, C–9
Reserved word

ANSI89, F–9
SQL92 Standard, F–9
SQL:1999, F–11

Index–4

Restriction
ASCII in C programs, D–10
ASCII in dynamic SQL, D–10
ASCIZ in C programs, D–10
ASCIZ in dynamic SQL, D–10

Routine
sql_get_error_text, C–16
sql_signal, C–16

RPAD function, G–9
RTRIM function, G–9

S
SELECT LIST clause

of DESCRIBE statement, D–2
of PREPARE statement, D–2

Select lists
DESCRIBE statement, D–2
determining data types, D–9
for SELECT statements, D–2
in dynamic SQL, D–1
PREPARE statement, D–2
used by FETCH statements, D–2

SELECT statement
dynamic SQL and

determing, C–8
number of rows in result table, C–9
parameter markers, D–2
select lists, D–2

SIN function, G–9
SINH function, G–9
SQL$DATABASE logical name, E–2
SQL$DISABLE_CONTEXT logical name, E–2
SQL$EDIT logical name, E–2
SQL$GET_ERROR_TEXT routine

See also sql_get_error_text routine, C–16
SQL$SIGNAL routine

See sql_signal routine
SQL3 draft standard

previously reserved words, F–12
SQLABC field of SQLCA, C–2
SQLAID field of SQLCA, C–2
SQLCA, C–1

and string truncation, C–6
declaring explicitly, C–2
description of fields, C–2
error return codes, C–3
in Ada, C–16
in BASIC, C–17
in C, C–18
in COBOL, C–18
in FORTRAN, C–19
in INCLUDE statement, C–1
in Pascal, C–19
list information in SQLERRD array, C–8
query cost estimates in SQLERRD array, C–9
SQLABC field, C–2

SQLCA (cont’d)
SQLAID field, C–2
SQLCODE field, C–1, C–2
SQLERRD array, C–8

and counts, C–8, C–9
and dynamic SELECT, C–9
and OPEN list cursor, C–8
and OPEN table cursor, C–9
dynamic SQL and, C–8

SQLERRD field, C–2
SQLWARN fields, C–9

SQLCHRONO_SCALE field of SQLDA2
codes for date-time data types, D–18

SQLCODE field, C–2
declaring explicitly, C–1
error status code, C–3
value of return code, C–3

SQLDA, D–1
data types returned for parameter markers,

D–3
declared by INCLUDE, D–3
declaring for

Ada, D–5
BASIC, D–6, D–12
C, D–6

description of fields, D–7
for date-time data types

See SQLDA2
in DESCRIBE statement, D–7
in EXECUTE statement, D–2, D–7
in FETCH statement, D–2, D–7
information about select lists, D–1
in OPEN statement, D–2, D–7
in PREPARE statement, D–7
in programs, D–3
parameter markers, D–1
purpose, D–1
setting SQLTYPE field to convert data types,

D–10
SQLDABC field, D–7
SQLDAID field, D–7
SQLDATA field, D–7
SQLD field, D–7
SQLIND field, D–7
SQLLEN field, D–7
SQLNAME field, D–7
SQLTYPE field, D–7
SQLVAR field, D–7
structure, D–4
using multiple, D–3

SQLDA2, D–11
codes for date-time data types, D–18
codes for interval data types, D–18
declaring for

C, D–13
description of fields, D–13

Index–5

SQLDABC field of SQLDA, D–7
SQLDAID field of SQLDA, D–7
SQLDATA field

allocating dynamic memory for, D–13
SQLDATA field of SQLDA, D–7
SQLD field of SQLDA, D–7
SQLERRD array of SQLCA, C–8

dynamic SELECT and, C–9
list information, C–8
query cost estimates, C–9

SQLIND field of SQLDA, D–7
SQLINI command file

logical name, E–2
SQLLEN field

of SQLDA, D–7
of SQLDA2

codes for interval data types, D–18
use in SQLDA contrasted with use in SQLDA2,

D–13
SQL module processor

command line qualifiers, F–5
SQLN

SQLDABC field, D–7
SQLNAME field of SQLDA, D–7
SQLN field of SQLDA, D–7
SQL precompiler

sql_get_error_text routine, C–16
sql_signal routine, C–16

SQLSTATE, C–20
SQLTYPE field of SQLDA, D–7, D–9

setting to convert data types, D–10
SQLVAR field of SQLDA, D–7
SQLWARN fields of SQLCA, C–9
sql_get_error_text routine, C–16
sql_signal routine, C–16
SQRT function, G–9
Standards, B–1

STARTING WITH predicate
returning data types for parameter markers,

D–3
String truncation

and SQLCA, C–6
SUBSTRB function, G–10
SUBSTR function, G–9
Syntax

incompatible changes, F–1
SYS$CURRENCY logical name, E–2
SYS$DIGIT_SEP logical name, E–2
SYS$LANGUAGE logical name, E–2
SYS$RADIX_POINT logical name, E–2
System table, H–1

detailed, H–1

T
Tables

system, H–1
TAN function, G–10
TANH function, G–10
Truncating

strings, C–6

U
UNIQUE predicate, F–7
UPDATE statement

number of rows modified, C–9

V
Variable

SQLDA, D–1
SQLDA2, D–11

Index–6

