

1 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Understanding the Oracle APEX
Application Development Lifecycle

Oracle APEX Technical Paper

October 2022, Version 3
Copyright © 2022, Oracle and/or its affiliates

Public

2 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Purpose Statement

This document explains the Oracle APEX Application Development Lifecycle.
Examples have been validated using APEX 22.1 and SQLcl 22.3.1 releases.

Disclaimer

The following is intended to outline our general product direction. It is
intended for information purposes only and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality,
and should not be relied upon in making purchasing decisions. The
development, release, and timing of any features or functionality described
for Oracle’s products remains at the sole discretion of Oracle.

3 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Table of Contents

Purpose Statement 2
Disclaimer 2
Introduction 6
Overview of APEX Architecture and Application Artifacts 6

Workspaces Contain Apps Comprised of Components 6
Larger Solutions Can Be a Group of “Mini Apps” 7
Unique Architecture Enables Instant, Scalable Data Access 7
Metadata-Driven Execution Engine, Just Like the Database 8
Preserving the History of Your Definitions Is Up to You 8
APEX Development Lifecycle Follows Familiar File-Based Paradigm 9

Track Bugs and Features to Plan Milestones 9
APEX Team Development is Built Right In 9
Other Products Offer Kanban Boards for Agile Teams 10

Work on Fixes and Features in Parallel While Minimizing Conflicts 12
Understand APEX Multi-User Development 12

Multi-User Development for Components 12
Multi-User Development for Pages 12

Use Page Locking to Prevent Conflicting Changes 13
Lock a Page to Temporarily Take Exclusive Ownership 13
See What Pages are Locked in Your Application 13
View a Locked Page in Page Designer 14
Unlock a Page to Let Another Team Member to Edit It 14

Modularize Your App to Further Minimize Conflicts 14
Assemble Larger Solutions from Multiple “Mini Apps” 14
Share Components, Pages, and Packages from a Common App 14
Subscribe, Publish, and Refresh Your Common Components 15
Enable Authentication Across Mini Apps 15
Consider Separating Schema Objects by Mini App 16

Manage the History of Changes Using Source Control 16
Advantages of Using a Source Code Repository 16
Use Git to Manage Your Application Changes 16
Start By Periodically Committing an Application Export 16

Choose a Hosted Git Repository 16
Install the Latest Version of SQL Command Line (SQLcl) 17
Export an APEX Application Using SQLcl 17
Understand Strategies Available for Managing Database Objects 18
Export Database Schema Objects Using SQLcl 18
Create a Custom apexexport2git Utility 18
View the History of Application Changes 19

Test Business Logic, User Interfaces, and Measure Code Coverage 20

4 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Use utPLSQL to Write and Run Unit Tests for PL/SQL 20
Download and Install the utPLSQL Framework 20
Define Tests Using PL/SQL Packages with Annotation Comments 20
Implement Tests in the PL/SQL Package Body 21
Run Tests to Ensure Application Functionality Never Regresses 21
Measure Code Coverage to Improve Tests Over Time 22

Exercise End to End User Interface Tests with Cypress 23
Author UI Tests Using English-Like Commands 23
Run and Debug UI Tests Interactively 24

Build an Installable Application Archive to Deploy Later 24
Use zip or jar to Create a “Build” of Application Artifacts 24
Create a Custom apexgit2buildzip Utility 25
Apply a Tag to Your Artifacts to Mark a Release in the Repository 25

Install a Build of Your App in a Test or Production Environment 26
Use unzip or jar to Extract the Archive 26
Install the APEX Application in the Target Schema 26
Apply the Database Schema Changes to the Target Schema 27
Create a Custom apexinstallbuild Utility 27

Aspire to Maintain Separate Environments for Dev, Test, and Prod 28
Why Separate Environments Are a Best Practice 28
Use Environment Banners to Avoid Inadvertent Mistakes 28
Dev, Test, and Prod in Separate Workspaces in an APEX Instance 29
Dev, Test, and Prod in Separate APEX Instances 30
Connect to APEX on Oracle Autonomous Database Using a Wallet 31

Inspect Code for Performance, Security, or Quality Problems 31
Use APEX Advisor to Run Built-in Audits 31
Extract SQL and JavaScript Embedded Code for Your App 32
Highlight SQL Injection and Poor SQL Patterns with SQLcl 32
Perform Security and Quality Audits with SonarQube and ApexSec 32

Understand Team-Centric vs. Feature-Centric Development 32
Overview of Team-Centric Development Approach 32
Overview of Feature-Centric Development Approach 33
Work Privately Using a Git Branch and "Branch Instance" of APEX 33

Git Manages Parallel Changes to Files Using Branches 33
Branch Instance of APEX is Dedicated to a Single Feature or Fix 34
Walkthrough of Feature-Centric Development 34
Committing and Pushing Changes on a Branch 35
Resolving Merge Conflicts 36
Initiating Peer Review 38
Reviewing the Merge Request 38
Merging Approved Changes to Main 39
Updating the Central APEX DEV Instance with the Latest Build 39

5 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Automate the Build, Test, and Deployment Process 39
Understanding Automation Pipelines 40
Pipeline to Export and Commit an APEX App to the Git Repository 40
Pipeline to Create Build, Run Tests, and Deploy to Test Environment 42

Conclusion and Recommendations 45
Recommendations for Simple Apps and Small Teams 45
Recommendations for Mission-Critical Apps and Larger Teams 45

Downloading Scripts Mentioned in This Paper 46

6 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Introduction

Oracle APEX is the world’s most popular low-code application platform for enterprise apps. It’s free to use with
any Oracle database or database cloud service. Using a browser-based builder, you and your team create modern
data-centric web apps that are reliable, scalable, and secure. End users access them with desktop or mobile
browsers or install them like native apps in one click. Every day APEX developers the world over help each other
succeed. They produce everything from small departmental apps done by one or two people, to complex,
business critical systems engineered by a team of IT professionals.

As users get their work done with your application, they’ll often report bugs and suggest improvements to
enhance productivity or address new business requirements. Every development team aims to make steady,
incremental progress against a prioritized list of these issues and ideas. The development lifecycle is the process
of periodically selecting a set of bugs and features that will improve the app, dividing the work among teammates,
and testing the result before releasing it to end users. Delivering a few change requests at a time to end users by
producing a series of high-quality releases on a regular cadence is the goal.

In practice, to successfully accomplish this goal you need to understand how to:

• Track details of all bugs and features and which are planned for the current milestone

• Work on fixes or features in parallel while minimizing conflicts

• Manage the history of all changes to application artifacts in a source control repository

• Test application business logic, user interfaces, and measure code coverage

• Create an application archive to deploy later

• Deploy an application archive to a test or production environment, and

• Aspire to use separate APEX environments for development, testing, and production

In addition, larger teams working on more complex applications will benefit from learning how to:

• Inspect code for performance, security, or quality problems

• Isolate work on distinct features using source control branches and “branch instances” of APEX, and

• Automate the build, test, and deployment process to increase productivity.

This paper explains all these aspects of the APEX development lifecycle and highlights their use in popular
development lifecycle solutions like GitLab, GitHub, Oracle VB Studio, and Jenkins.

Overview of APEX Architecture and Application Artifacts

Since the APEX development lifecycle involves managing APEX application artifacts, this section briefly explains
the APEX architecture and the artifacts you and your team will create and enhance during APEX development.

Workspaces Contain Apps Comprised of Components

An APEX workspace contains applications made of components like pages, lists of values, and processes. APEX
apps let end users visualize, explore, find, and manage data, so each workspace has an associated database
schema. As shown in Figure 1, developers often organize database objects for Application A into a schema like
Schema A. It can contain tables, views, PL/SQL packages, and any other kind of schema object the Oracle
Database supports.

7 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Figure 1: A workspace contains apps comprised of components, and it references schemas

Larger Solutions Can Be a Group of “Mini Apps”

While smaller solutions don’t require it, you can build larger applications like the conference management system
shown in Figure 2 as a group of “mini apps.” One might handle conference speakers, sessions, and schedule.
Another manages sponsors and exhibitors. A third one lets attendees register and build an agenda. End users
login to the system and seamlessly access pages across mini apps to perform any functions they’re authorized to
do. Each mini app subscribes to a set of common components from a “library” app to ensure a consistent user
experience. These subscribed components can include menu navigation lists, templates, lists of values,
authentication schemes, and more. Many teams create a distinct workspace for each logical application to contain
the library app and all the mini apps that comprise it. But if you prefer a single workspace, you can group apps
using tags to easily focus your attention in the Builder on a subset that go together.

Figure 2: Logical app made of mini apps with component subscriptions

Unique Architecture Enables Instant, Scalable Data Access

Oracle APEX’s unique architecture enables instant access to local data, flexible access to remote data, and
automatic scaling and failover when running on Oracle Autonomous database. As shown in Figure 3, desktop or
mobile browsers send HTTPS requests to an Oracle REST Data Services (ORDS) listener that delegates them to the
Oracle APEX execution engine running inside the Oracle Database. The APEX engine assembles the response by
referencing application metadata for the requested page. In the process, it accesses local data, may retrieve

8 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

remote data over HTTP from REST services, and generates HTML, CSS, and JavaScript to present the data. The
ORDS listener relays the response back to the requesting device.

Figure 3: ORDS listener connects desktop & mobile clients to APEX apps executing inside the database, accessing remote REST data as needed

Metadata-Driven Execution Engine, Just Like the Database

APEX not only runs inside the Oracle database, but its metadata-driven execution engine mirrors the way the
database works, too. As you define the database schema objects your application requires, the database stores
metadata about them in its data dictionary and you can query it using dictionary views. For example, to see the
name and datatype of a particular table’s columns, you can query the USER_TAB_COLUMNS view. The APEX Builder
does the same thing while you define your APEX application components. It saves information about them into
the APEX data dictionary and lets you query it using APEX dictionary views. For example, to find the name and
type of items on a particular page in your application, you can query the APEX_APPLICATION_PAGE_ITEMS view.

Once you’ve defined the columns in a table, the database engine references that metadata when performing
operations on the table. You express what you want to do (e.g. SELECT, INSERT, UPDATE, etc.) while the engine
handles how to get the job done. As Oracle iteratively improves release after release, operations on your existing
tables get faster with no changes required to the definitions. The same holds for all APEX components, too.
Consider a chart component, for example. Once you’ve defined what data you want to see and the style of its
presentation, the APEX engine handles how to render that chart. Over time, APEX can continually improve how
the chart is implemented to embrace the latest techniques and technologies with no changes required to your
chart component’s definition. For example, the bars in your trusty bar chart might begin to animate up from the
x–axis in the latest APEX release, with no work required on your part to benefit from this improvement.

Preserving the History of Your Definitions Is Up to You

While you will change your database objects and APEX application components over time, the respective data
dictionaries reflect only the current definitions of schema objects and APEX components in use right now.
Preserving the history of your team’s changes to these definitions requires a conscious effort on your part. This
entails archiving a point-in-time snapshot of simple text files representing the definitions each time the project
reaches a meaningful milestone. In addition to the SQL scripts, you may use to create your database schema
objects, every APEX application and component has an equivalent text file representation, too. You can easily
retrieve the text files representing your application at any time. As shown in Figure 4, exporting the current state
of your application produces a zip archive containing SQL scripts representing the application and each
component it contains. The export can also include optional YAML and code extract files that simplify comparing
what’s changed in the latest version and performing scans on any SQL, PL/SQL, or JavaScript code your
application components include. The text files comprising your database object definitions and those of your
APEX components are known as your application artifacts.

9 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Figure 4: Exporting an APEX application to produce archive of component files

APEX Development Lifecycle Follows Familiar File-Based Paradigm

Methodically storing the history of your application artifacts over time lets you install any version of your
application at any time on any target system for any purpose. Installing database schema object definitions
involves running the relevant SQL scripts in an opportune order to create tables, views, PL/SQL packages, and
more. Similarly, you install a particular version of your APEX application by importing an archive of application
and component scripts as shown in Figure 5.

The history of application artifact snapshots you’ve taken over time represents the “source of truth” for your
application. In your production environment, the version installed in the database is the current one end users are
using. In your testing environment, it might be the most recent weekly snapshot of your application’s next release.
And in your development environment, the version installed is undergoing active development. Read on for an
explanation of the best practices you and your team need to know to effectively deliver improved versions of your
APEX application over time, with high quality, a few changes at a time.

Figure 5: Importing APEX application from the file system into the database

Track Bugs and Features to Plan Milestones

It’s important to track any defects found in your app as well as any enhancements to improve it. An issue tracking
system lets you document the steps to reproduce a bug and provide background on the goals of a new feature,
attaching images and other documents to supplement teammates’ comments as needed. A flexible system helps
you classify, prioritize, and assign issues to developers on the team to tackle for an upcoming milestone. Above
all, having a system in place ensures that no good idea or annoying issue gets forgotten, even if the team can’t
address it immediately. Oracle APEX features a built-in issue tracker, while Oracle VB Studio provides more
complete support for agile teams. GitHub Issues, GitLab Issues, and Jira provide popular alternatives.

APEX Team Development is Built Right In

APEX comes with built-in Team Development that provides the basic functionality your team needs to manage
issues, label them in a flexible way, group them into milestones, and assign them to teammates. Figure 6 shows

10 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

the Team Development home page with issues tagged as bugs or feature requests. It also shows the associated
milestone and the team member who owns each issue.

Figure 6: APEX Team Development provides built-in issue-tracking with labels and milestones

All the issue tracking systems mentioned here let team members comment over time on issues, including basic
formatted text, attached documents, or images to enrich the discussion. Figure 7 shows what this looks like for an
APEX Team Development issue.

Figure 7: Issue details page with comment history including images, labels, milestone, and assignee

Developers can easily filter the list of issues assigned to them, optionally saving their filtered lists to reuse quickly
in the future. A similar facility allows teammates to see all the issues assigned to a particular milestone and who is
working on each issue.

Other Products Offer Kanban Boards for Agile Teams

In addition to supporting all the issue-tracking table stakes features, Oracle VB Studio’s issue tracker lets teams
follow an agile scrum methodology by visualizing their backlog and dragging issues into a milestone called a
“sprint”. As shown in Figure 8, team members use a Kanban board for each sprint with vertical “swim lanes”
showing issues to work on, ones currently in progress, and those already completed.

11 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Figure 8: Oracle VB Studio's issue tracker supports Kanban boards

Figure 9 shows Atlassian’s Jira, another popular issue tracker that supports agile Kanban boards and backlog
management.

Figure 9: Jira showing Kanban board of issues

As a final example, GitHub Issues shown in Figure 10 supplements the Kanban board view with an editable table
view of the sprint’s issues.

Figure 10: GitHub Issues offers a tabular view of project issues in addition to a Kanban board

Once you’ve chosen an issue tracker, entered your bugs and features into the system, defined an upcoming
milestone, and assigned issues to teammates, you and your team are ready to start making progress at
implementing the set of issues in the current “sprint”.

12 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Work on Fixes and Features in Parallel While Minimizing Conflicts

Oracle APEX lets teams of developers work in parallel on a shared development instance and provides page
locking and lost update protection to help them avoid stepping on each other’s toes. It is important to understand
how APEX multi-user development works, how to use page locking, and how you can modularize your application
to minimize conflicts.

Understand APEX Multi-User Development

Oracle APEX is a multi-user development environment with the current version of your application’s metadata
stored in the database. APEX developers use their web browser to create and modify application pages using the
Page Designer. They use wizards and edit pages to work on all other kinds of components. All aspects of the APEX
design-time experience are engineered so multiple team members can create and edit application components at
the same time. When potential conflicts arise between different developers' changes, APEX errs on the side of
caution so it’s good to be aware of how APEX will behave when you and a teammate might inadvertently bump
into each other in your daily work.

Multi-User Development for Components

While you and your team use APEX to implement your fixes or features, consider two situations that might arise
due to unlucky timing of two colleagues’ actions. Imagine that both you and a colleague perform the following
change at around the same time:

• Both create a List of Values named CUSTOMERS_LOV

• Both edit the same RecentPayments REST Data Source

In both scenarios, one of the developer’s changes will be saved first, and the other developer will receive an error
message saying for example:

• “CUSTOMERS_LOV: ORA-00001: Unique constraint violated”

• “Current version of data in database has changed since user initiated update process”

APEX raises these errors to prevent one developer’s changes from silently overwriting another’s change that was
made at nearly the same time. The developer receiving the error will need to try again, perhaps realizing in the
process that the work was already done by a colleague.

Multi-User Development for Pages

The Page Designer also prevents developers from overwriting each other’s work, but it enforces its protection at a
more granular level than the component wizards and edit pages. The Page Designer tracks changes to every
property of every page component and saves only what has changed. If two developers editing the same page at
the same time each change different page components, or change different properties of the same page
component, then both of their respective sets of changes will save correctly. The result will be the union of those
modifications. While teammates are making changes to the same page, they do not see each other’s unsaved
changes "live". But when a developer saves her own changes to the page, the Page Designer will refresh to reflect
any changes colleagues might have saved in the meantime.

However, if two colleagues working in Page Designer on the same page happen to both change the same
property of the same page component, then the one who saves first will succeed while the second one receives an
error “Saving changes failed! See messages for details.”

As shown in Figure 11, when this occurs the conflicting properties are identified with a circular red “x” icon in the
Property Editor and the Messages window indicates which property values have conflicted with recently saved
changes by a colleague. The developer encountering this situation won’t be able to save the page, but her original
values are preserved in case she wants to copy them to an alternative location before abandoning her current
edits and attempting to make the changes to the current page again.

13 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Figure 11: Page Designer showing multiple conflicting property changes

Use Page Locking to Prevent Conflicting Changes

After doing significant work on a page, imagine the frustration of clicking the Save button only to encounter a
“Saving changes failed!” message. While you are working on enhancing the page’s functionality, suppose a
colleague opens the same page and saves a quick edit to one of the same page component properties you are
busy changing. This would inadvertently cause the “Saving changes failed!” message when you later save the
page. In this scenario, you’d sadly be forced to abandon your changes to that page and to do them all again. While
the multi-user edit features described above offer useful protection, it’s best-practice to avoid making conflicting
edits in the first place.

Communicating with teammates using a wiki page, email, or Slack is one way to let others know what you’re
working on so you all can avoid unintentionally disrupting each other’s work. However, the page locking feature is
an even more effective way to develop defensively so your saves always go smoothly.

Lock a Page to Temporarily Take Exclusive Ownership

Oracle APEX page locking lets one developer claim exclusive edit rights to a page while they are working on some
important changes. The duration of the lock is flexible. It might be for mere minutes, or could be locked for weeks
to accommodate extensive enhancements to an existing page’s functionality. Other team members see the page
is locked and can still view the page in the Page Designer. However, they won’t be allowed to make edits again to it
until the page is unlocked. As shown in Figure 12, after clicking the lock icon to lock the page you can enter a
helpful comment to explain why you are doing it.

Figure 12: Providing a useful comment when locking a page

See What Pages are Locked in Your Application

On the application page list, in the View Report mode team members see a tabular list containing a Lock column
that shows an appropriate icon next to any locked pages as shown in Figure 13.

14 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Figure 13: Application page list shows locked pages with an icon

View a Locked Page in Page Designer

When a teammate visits the page you locked in Page Designer, the editor is view-only and the locked icon
confirms it. Hovering her mouse over it shows which colleague is currently working on the page. As shown in
Figure 14, she can also click the locked icon to see the comment explaining what her teammate is working on.

Figure 14: Colleagues see you locked the page and can view your lock comment

Unlock a Page to Let Another Team Member to Edit It

Once the developer who locked the page is done working on it, she can click the locked icon again in the Page
Designer to unlock it. When performing this step, she can adjust her original comment if necessary. After that,
another team member can lock the page and work on a new issue involving that page.

Modularize Your App to Further Minimize Conflicts

In addition to using page locking, you also can modularize a larger-size application into multiple, smaller “mini
apps” to further minimize conflicts between developers.

Assemble Larger Solutions from Multiple “Mini Apps”

While smaller ones don’t require it, creating your larger solutions as a set of smaller applications lets you to keep
each “mini app” to a reasonable number of pages for a small team to own. When the team working on an
application is small, each team member knows what the others are doing so it’s easier to avoid stepping on each
other’s toes. Changes to application logic in PL/SQL packages specific to a given mini app won’t risk conflicting
with changes made to the application logic of other mini apps.

Share Components, Pages, and Packages from a Common App

Of course, some pages, components, and application logic will be useful to all your mini apps so you can organize
those shared elements into a “common” app. Mini apps can subscribe to components from this library app,
branch to its pages, and invoke PL/SQL APIs from its packages. By clearly identifying common elements from the
outset, developers know changes to common components, pages, or code may affect everyone on the team.

15 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Subscribe, Publish, and Refresh Your Common Components

In a mini app, to subscribe to a component like a list from the common app, use the Copy button from the shared
component’s list page and indicate that you want to copy the list from another application. As shown in Figure 15,
select the common application in the Application list, pick the list to copy, and ensure the Subscribe switch is on.
Since a Navigation Menu is just a list used for this particular purpose, this is the procedure you’d follow in each
mini app to have them all share a common navigation menu list, for example.

Figure 15: Subscribing to a list from a common app

For other kinds of shared components like List of Values, you subscribe as part of the create wizard. After
indicating you want to create a copy of a List of Values from another application and choosing the common app,
Figure 16 shows how you can set the Copy and Subscribe action for the LOVs you want to subscribe to.

Figure 16: Subscribing to one or more List of Values from the common app

When someone on your team makes changes to the subscribed component in the common app, you decide when
to update the subscribing applications. Clicking the Publish button on the subscribed component updates its
definition in all the subscribing applications. Alternatively, each subscribing component has a Refresh button to
click to pull the updated component definition into that specific mini app.

Enable Authentication Across Mini Apps

By default, each APEX application authenticates its own distinct session. However, if you have modularized your
solution into separate mini apps, you’ll want end users to navigate seamlessly to any pages in the single logical
application they use to get their job done. To achieve this, as shown in Figure 17 set the Session Sharing type to
Workspace Sharing in the authentication scheme that your mini apps and common app are using. After
configuring this, end users login once and can visit any page across your modularized application.

Figure 17: Setting the Session Sharing type on your authentication scheme

16 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Consider Separating Schema Objects by Mini App

While not required, some teams prefer to have each mini app use its own separate database schema specific to
that module. They use appropriate grants and synonyms to let one mini app selectively expose its tables, views,
and PL/SQL packages to other modules as necessary. This approach gives mini app developers more control
over which schema objects they can consider “private” to their own module, and which they have made “public” to
other teams’ mini apps by granting appropriate privileges. A team adopting this technique can confidently make
changes to their module-private schema objects, knowing they won’t inadvertently impact other modules.

Manage the History of Changes Using Source Control

Nobody likes to lose work, so most developers and teams will create periodic backups of their work in progress. In
fact, Oracle APEX also systematically backs up your applications, too. However, tracking the history of changes to
application artifacts over time in a repository offers many additional advantages. As you’ll see in this section, it’s
easy to do by combining a source control management (SCM) system like Git with Oracle’s SQLcl tool.

Advantages of Using a Source Code Repository

A source code repository is like a time machine for your project. An SCM system automatically maintains
additional “bookkeeping” information about the project files so at any time, for any change to any application file
over the life of your project, you can easily answer questions like: Who made the change? What got added or
modified? When was it made? And perhaps most importantly, Why was it made? Your application’s source code
repository provides the historical context about who on the team fixed what bug or implemented which new
feature and knows the application artifacts that were added or changed in the process.

The repository becomes the source of truth for your project, letting you tag a particular set of artifacts that got
released to end users with a meaningful name like “Release 1.0.4” each time the team hits a major milestone. At
any time later, you can use a release tag name to go back in time to retrieve exactly the right set of application
artifact file versions to confidently apply an incremental bug fix to a previous version of the application. Seeing
the change history grouped by logical feature or fix also simplifies determining what changes are needed to
rollback a specific feature or to introduce that feature into an earlier version of your application.

Use Git to Manage Your Application Changes

Git is a free source control management system that is the de-facto standard for teams doing development all
over the world. It’s open-source nature and popularity among other open-source development projects has won it
well-earned trust since its debut in 2005. The permanent copy of the team repository resides on a server. It can be
“cloned” onto another machine for use as a local work area to add, change, or delete project artifacts without
immediately affecting the permanent team repository. When pending local changes to project artifacts in the
work area are ready to be made permanent, similar to a database transaction, they get “committed” along with a
log message explaining the bug fix or feature was implemented. As a final step, the committed changes get
“pushed” up to the permanent team server. The local working copy can be deleted at this point, or it can be kept
around and refreshed to include any later changes made to the permanent team repository by “pulling” those
changes on demand.

Start By Periodically Committing an Application Export

A survey of APEX developers in the summer of 2022 revealed that two thirds are using some form of source
control management system. However, this means that a third of APEX applications are missing a detailed change
tracking history. This section shows APEX developers not currently using Git how to get started by periodically
committing an application export to a hosted team repository.

Choose a Hosted Git Repository

While it’s possible to install the Git server software yourself on-premises, an even easier way to get started is to
create a private team repository on one of the Git hosting services available. Both GitHub and GitLab are popular
Git hosting services whose free tier offerings appeal to smaller teams. Larger teams can upgrade to paid options.
APEX projects using Oracle Cloud may appreciate evaluating its native options for a hosted Git repository: Oracle

17 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

VB Studio and OCI Dev Ops. A single provider for hosted app development lifecycle services may meet your needs
best, and both OCI-based options are free to OCI customers, who pay only for storage and compute for build jobs.

With a Git repository created, the job is half done. Each time the team reaches a meaningful milestone, just
nominate a team member to export the application definition from the shared APEX development workspace,
export the database object definitions from the development database, copy these exported application files to a
local Git work area, and commit the changes to the permanent team repository in Git. The commands to
accomplish these steps are described in the following sections and work the same way no matter where you’ve
chosen to host the permanent team repository.

Install the Latest Version of SQL Command Line (SQLcl)

Using the Oracle SQL Command Line utility (SQLcl) you can export your APEX application as well as database
schema object changes to text files on the file system. These can be copied to a Git work area to commit the
changes to a team repository. On all platforms, the simplest way to install SQLcl is to:

• ensure Java 11 is installed first, and then

• download and unzip the latest version from:
https://download.oracle.com/otn_software/java/sqldeveloper/sqlcl-latest.zip

The SQLcl utility is the sql program in the ./sqlcl/bin subdirectory, which you can add to the system path to
invoke sql from anywhere. Alternatively, on Mac if you use the brew package manager, you can brew install
sqlcl, or on Oracle Linux use yum sqlcl (OL7) or dnf sqlcl (OL8). The examples in this paper have been
validated using SQLcl version 22.3.1 and APEX 22.1.

Export an APEX Application Using SQLcl

After running SQLcl with the connection credentials of the database schema related to your APEX application, use
the apex export command to export an application into the current directory. Provide the application’s id
(e.g. 12345) using the -applicationid option as shown below

$ sql username/password@host:port/service
SQL> apex export -applicationid 12345

By default, it exports application 12345 as a single f12345.sql file. However, for source control purposes it’s best
practice to use the -split option to split the export into one file per component.

SQL> apex export -applicationid 12345 -split
This will create an f12345 subdirectory in the current directory containing both an install.sql file and an
application directory (and possibly a workspace directory, too). These directories will contain one file per
component nicely organized into further subdirectories based on the component type. These other export
options avoid unnecessary diffs in your files:

• -skipExportDate — avoid including the export date in each file
• -expOriginalIds — maintain consistency of application component across environments
• -expSupportingObjects — include supporting objects scripts you may have defined
• -expType — specify one or more export formats

The default export format is application source, so not mentioning an export type is equivalent to using
the -expType APPLICATION_SOURCE option. Other supported export type values include:

• READABLE_YAML — to understand more easily what’s changed, or

• EMBEDDED_CODE — to simplify external analysis of embedded SQL and JavaScript code.

The -expType option accepts a comma-separated value so one export operation can produce multiple formats.

18 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

A best-practice SQLcl command-line to export APEX application 12345 split into component files including both
the application source and the readable YAML formats looks like the example below:

$ sql username/password@host:port/service
SQL> apex export -applicationid 12345 -split -skipExportDate -expOriginalIds
-expSupportingObjects Y -expType APPLICATION_SOURCE,READABLE_YAML

Understand Strategies Available for Managing Database Objects

There are three main strategies you can adopt for managing the database schema objects your APEX app uses.
The first approach is the "fully manual" option. You create and maintain custom SQL scripts independent of the
APEX application definition. You run your own scripts to create tables, views, triggers, packages, and other objects
on first installation of your app, and to appropriately recreate or alter existing objects as your team delivers new
versions of the app to testers and production users. Using this approach, you edit the SQL scripts outside of the
APEX builder using your favorite editor and ensure they get added to your team's source control repository.

The second way is the "fully self-contained" option using APEX's Supporting Objects facility. You define
installation, upgrade, and deinstallation SQL scripts as part of your APEX app definition in the APEX Builder. At
application install time, APEX uses a query you provide to decide whether to run the installation scripts or the
upgrade scripts. Scripts can execute conditionally based on a condition you configure. Using this approach your
scripts get exported along with the rest of your APEX application file artifacts.

The third and simplest technique is the "fully automated" option using SQLcl's Liquibase features described in the
next section. SQLcl generates XML files representing all your database schema objects and can automatically
update a target database to make its schema objects match the definitions exported from a source environment.

Export Database Schema Objects Using SQLcl

While your team may be more familiar with maintaining custom SQL scripts to install and upgrade your app’s
database schema objects, you should at least be aware of what SQLcl could be doing for you automatically. It
offers by far the simplest approach to export database schema object definitions and apply any changes to other
environments. SQLcl includes Oracle-enhanced “Liquibase” features for tracking, versioning, and deploying
database changes. Based on the popular open-source change-tracking framework, exporting all database object
definitions from the current schema involves the single lb generate-schema command. As with APEX, we
employ the -split option to get a separate file for each database object definition, nicely organized into
subdirectories:

$ sql username/password@host:port/service
SQL> lb generate-schema -split

Running this command produces a controller.xml change log file in the current directory that acts as a table-
of-contents to the rest of the files created. All other files exported get saved in subdirectories named after the
kind of database schema object they represent. For example, running this command on a typical APEX application
might produce subdirectories like table, sequence, ref_constraint, index, trigger, view, package_spec, and
package_body. Each subdirectory will contain one or more text files describing a schema object of a similar type.

Create a Custom apexexport2git Utility

The simple apexexport2git script for Mac, Linux, and Windows in the Appendix combines the apex export and
lb generate-schema SQLcl commands with directory creation, file copying, and the git add command. It
exports an APEX app and its database schema definitions to a Git work area in a single command.

19 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

For example, to export APEX application 500 to the Git work area in the greatapp directory, you would type:

$ apexexport2git 500 /home/teamdev/greatapp username/password@host:port/service
Figure 18 illustrates the six steps the script performs. Step 1 creates a temporary staging directory and makes it
the current directory. Steps 2 and 3 use SQLcl to run the apex export command to save the APEX application
definitions and the lb generate-schema command to write out the database schema object definitions to the
current directory. Step 4 copies the APEX application artifacts to the Git work area. Step 5 copies the database
object artifacts to a database subdirectory in the Git work area. Step 6 asks git to add any files that have been
added or changed or deleted to the worklist so they can be committed when the time is right.

Figure 18: apexexport2git exports APEX app and DB schema definitions to Git

With a script like this in place, a team member can easily export the file artifacts for the team’s APEX application
and database schema objects to a Git work area at whatever cadence makes sense. These changes can then be
committed to Git and pushed up to the team’s permanent repository to become part of the historical record of
team progress on the application. Teams will do this on an ad hoc basis when team members finish a set of
features or fixes that on which they want to allow their teammates in QA to begin testing.

View the History of Application Changes

With a Git repository as the source of truth for your application, it’s easy to get a bird’s eye view of all the changes
to the project. Many tools support Git, and one particularly popular one is the free Visual Studio Code editor. By
installing the free Git Graph extension, as shown in Figure 19, you can quickly visualize the history of all changes
made to your application. It’s organized chronologically by commit transactions, and the helpful comment
provided at the time each commit was made lets you see what bugs and features were added over time. Clicking
on a particular commit expands it to show the files changed as part of that work item.

Figure 19: Git Graph in VS Code showing Git history log for an APEX application

20 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Clicking on any filename for any commit, you can easily see what the developer changed in that file. Figure 20
shows the Visual Studio Code file comparison tab that opens when clicking on the p00003.yaml file in the above
Git Graph screenshot for the expanded commit with message “Correct prediction query to use actual claim
values”. It uses color to highlight the changes made to the SQL statement related to a classic report in Page 3 to
implement the display of a machine learning prediction based on actual insurance claim data instead of the hard-
coded values that were previously used. Even if Page 3 may have been changed many times since the feature
related to this commit was implemented, Git and Visual Studio Code cooperate to show the changes based on the
previous version of the Page 3 metadata as it existed in the repository at the time the change was made.

Figure 20: Side-by-side diff of the Page 3 readable YAML file changed in a particular commit

Test Business Logic, User Interfaces, and Measure Code Coverage

While ad hoc testing is invaluable, nothing gives a development team more confidence to innovate than a broad
set of unit tests they can run regularly to ensure all key application functionality continues to work as advertised.
Best practice dictates the lion’s share of application business logic should be organized into PL/SQL packages,
and the tests should exercise all aspects of these packages. Code coverage metrics inform future testing efforts so
teams can steadily raise the percent of all code paths their unit tests exercise over time. Where possible,
automated user interface testing can shoulder some of the burden to let your team’s manual testing focus on
more complicated scenarios.

Use utPLSQL to Write and Run Unit Tests for PL/SQL

The open-source utPLSQL framework is the most popular way to unit test PL/SQL code. Tests are easy to write,
easy to run, and easy to automate: a compelling combination that inspires team members to create lots of tests.

Download and Install the utPLSQL Framework

After downloading the utPLSQL.zip file for the latest release from the utPLSQL GitHub Releases Page, unzip it
and run the install_headless.sql script as a DBA user for the most typical installation. This ensures the
utPLSQL test runner lives in its own schema (UT3), is usable by all other database schemas, and keeps a clean
separation between your own application’s database schema objects and utPLSQL own objects. See the Install
Guide in the distribution for an explanation of other ways it can be installed.

Define Tests Using PL/SQL Packages with Annotation Comments

A test suite is a group of related tests. You define one by creating a PL/SQL package specification that identifies
which procedures are test cases using special comments as annotations. They include a percent sign right after
the double-hyphen, immediately followed by an annotation name.

21 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

For example, this is the annotation to assign a descriptive name to the test suite package. Note the blank line
following it. It is important!

--%suite(APEX Apps Person Tests)

The annotation that precedes a procedure to identify it as a test case is:

--%test
Other frequently used annotations include:

• beforeall for suite setup and afterall for suite cleanup
• beforeach for test setup and aftereach for test cleanup
• rollback to define suite or test rollback behavior

The PL/SQL package specification below defines a test suite with two tests:

create or replace package ut_person_pkg is
 --%suite(APEX Apps Person Tests)

 --%test
 procedure try_validating_date_not_in_the_future;
 --%test
 procedure try_validating_us_phone_number;
end;

Implement Tests in the PL/SQL Package Body

You implement a test suite by writing the procedure bodies defined in the PL/SQL package spec. The package
body below shows the two test procedures defined by the --%test annotations above. The test case procedures
use utPLSQL’s ut.expect() function and chained functions to_be_true(), to_be_false(), and to_be_null()
to assert the expected values different expressions should have. These are just three examples of many such
to_be_*() functions available. The test succeeds if all of its assertions are true and fails if any is false.

create or replace package body ut_person_pkg is
 procedure try_validating_date_not_in_the_future is
 l_tomorrow date := sysdate + 1;
 begin
 ut.expect(person_pkg.validate_date_not_in_the_future(l_tomorrow)).to_be_false();
 end;
 procedure try_validating_us_phone_number is
 begin
 ut.expect(person_pkg.validate_us_phone_number('(123) 456-7899')).to_be_true();
 ut.expect(person_pkg.validate_us_phone_number('1234567890')).to_be_false();
 ut.expect(person_pkg.validate_us_phone_number('')).to_be_null();
 ut.expect(person_pkg.validate_us_phone_number(null)).to_be_null();
 end;
end;

Run Tests to Ensure Application Functionality Never Regresses

You can run all the utPLSQL test suites defined in the current database schema using the ut.run() procedure.
You can use it directly in the APEX SQL Commands window like this:

begin ut.run(); end;

Alternatively, from the command line you can use SQLcl to run them like this:

$ sql username/password@host:port/service
SQL> set serveroutput on
SQL> exec ut.run

22 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

The results print to the console like this:

APEX Apps Person Tests
 try_validating_date_not_in_the_future [.002 sec]
 try_validating_us_phone_number [.002 sec]

Finished in .018424 seconds
2 tests, 0 failed, 0 errored, 0 disabled, 0 warning(s)

The utPLSQL framework also offers a convenient utplsql command line utility to run tests. It also comes with
optional formatters to produce your test results in a format that popular build automation solutions like Jenkins,
Oracle VB Studio, and others can turn into HTML pages. The example below runs the unit tests and spools XML-
formatted test results into a file results.xml in the current directory. Notice the optional argument
ut_junit_reporter() passed to the ut.run() procedure.

$ sql username/password@host:port/service
SQL> set serveroutput on
SQL> set feedback off
SQL> spool results.xml
SQL> exec ut.run(ut_junit_reporter())
SQL> spool off

Measure Code Coverage to Improve Tests Over Time
The utPLSQL framework comes with a built-in code coverage reporting engine. By simply using a different test
formatter, you can easily see how well your unit tests are exercising the different code paths in your PL/SQL
business logic. The ut_coverage_html_reporter() in the example below produces an HTML page showing your
unit tests’ code coverage.

$ sql username/password@host:port/service
SQL> set serveroutput on
SQL> set feedback off
SQL> spool coverage.html
SQL> exec ut.run(ut_coverage_html_reporter())
SQL> spool off

The output of the report for our simple two-testcase suite looks like Figure 21.

Figure 21: utPLSQL code coverage summary report

Clicking on the name of a PL/SQL program unit in the code coverage report like the person_pkg package, you
can see exactly which lines the unit tests have exercised and more importantly which lines have not been covered.
You can see by the grey highlight in Figure 22 that no unit test invoked the validate_integer() function. This
identifies an opportunity to add a new testcase and improve the overall code coverage for your application.

Figure 22: utPLSQL code coverage detail line coverage for a program unit

23 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Exercise End to End User Interface Tests with Cypress

Internal teams at Oracle building Oracle APEX applications find the free, open-source Cypress UI testing tool a
productive way to create repeatable, end-to-end tests of their application user interfaces. It supports popular
modern browsers like Chrome, Edge, Firefox, and Electron, and offers intuitive inspection tools to help developers
quickly write and debug tests. Your Cypress tests complement your unit tests as part of a quality assurance check.

Author UI Tests Using English-Like Commands

Cypress provides a rich set of built-in functions that make test scripts easy to write and read. Using English-like
functions, your tests visit web pages, interact with the UI components on those pages, and make assertions about
what should have happened after doing that. Developers love Cypress because it contains automatic “wait and
retry” behavior that dramatically simplifies writing web application tests, where often the timing of interactions
with the server can be unpredictable.

Developers use their favorite code editor like Visual Studio Code to author test scripts. VS Code provides excellent
code-completion support for quickly entering the Cypress commands, and Cypress provides multiple ways to
create reusable commands to avoid repeating yourself for commonly used steps. The test shown in Figure 23,
visits a simple APEX application named HR by providing its URL, reads the username and password from
environment variables, types those into the fields of the APEX login page, then clicks the Login button. After
ensuring the browser changed to the /home page as expected, the test types a multi-word search blake Manager
KING into the Interactive Report search box and presses [Enter] to perform the search. It validates the search
worked as expected by checking the region before and after the search for text like BLAKE and ADAMS. Before the
search, both should be present in the page but after the search only BLAKE should remain.

Figure 23: Simple Cypress UI test code in Visual Studio Code

Notice that all the Cypress commands start with cy and follow a pattern: call cy.get() to access a UI component
by id or locator, then use functions like type() or click() or select() to interact with the component like an
end-user would do. Assertions about what should have happened used the should() function and those about
values expected use the expect() function. This allows the test to read almost like an English paragraph.

24 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

 it('Exercise search on home page', () => {
 const username = Cypress.env('username')
 const password = Cypress.env('password')
 cy.get('#P9999_USERNAME').type(username)
 cy.get('#P9999_PASSWORD').type(password, { log: false })
 expect(username,'username was set').to.be.a('string').and.not.be.empty
 cy.get('[data-cy="login_button"]').click()
 cy.url().should('include', '/hr/home')
 // Before using row search both blake and adams are visible
 cy.get('#R47030934458136523065_worksheet_region').should("contain","ADAMS")
 cy.get('#R47030934458136523065_worksheet_region').should("contain","BLAKE")
 // enter a multi-word search in combination of case
 cy.get('#R47030934458136523065_search_field').type("blake Manager KING{enter}")
 // make sure only blake is visible after the search
 cy.get('#R47030934458136523065_worksheet_region').should("not.contain","ADAMS")
 cy.get('#R47030934458136523065_worksheet_region').should("contain","BLAKE")
 })

Run and Debug UI Tests Interactively

Running and debugging Cypress tests interactively is a joy as well. As shown in Figure 24, your application runs in
the browser of choice. The results of each test step display in the left panel while your application runs in the right
panel. Cypress provides tools to interactively select UI elements in the web page to quickly copy the right
cy.get() command to the clipboard so you can paste it into the test you are writing in another window. It
monitors the filesystem for changes so as soon as you save an updated test file, the Cypress browser window
refreshes to re-run your test. As it runs, Cypress records the state of the browser at each step so you can “time-
travel” back to any step in the test just by clicking on it. When you do this, you can see what the browser looked
like at that step. This radically simplifies debugging tests that are not working as expected. Finally, while running
the test interactively is best for test authors, you can also easily run Cypress test suites as part of an automated
process to incorporate both your utPLSQL unit tests and Cypress end-to-end UI tests in quality assurance checks.

Figure 24: Running Cypress UI test interactively in Edge browser on Mac

Build an Installable Application Archive to Deploy Later

During the development cycle of your app’s next release, team members add new features and fix bugs as they
complete their assigned issues for the current milestone. At meaningful intervals, someone on the team will run
the apexexport2git script and commit the team’s progress into the permanent team repository. At the same
time, teams typically create a “build” containing the current installable snapshot of their app and upload the build
archive to a well-known location on a server. This lets other colleagues easily download a particular build and
install it later. It’s also customary to tag the artifacts in the repository with a release label at the end of a milestone
when a final build passes all testing and gets delivered to end-users.

Use zip or jar to Create a “Build” of Application Artifacts

Solutions written in Java, Swift, or C need to be compiled to produce a runnable app. In contrast, the APEX engine
runs your app’s page and component definitions from its runtime dictionary. To produce a runnable build of your

25 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

APEX application, just create a zip file containing its application artifacts. Two popular ways to accomplish this are
the zip utility on Mac and Linux, or the jar utility that comes with every Java Developer’s Kit (JDK).

Assuming you’ve used the apexexport2git utility described earlier, your Git work area will consist of a root
directory like greatapp containing an install.sql file, an application folder containing the APEX file artifact
files, a workspace folder if your app references workspace artifacts, a readable folder containing the readable
YAML files, and a database directory containing the database schema object definitions files. The readable YAML
files are of value to simplify understanding what changed, but the readable directory need not be part of the
runnable application archive. Therefore, to create a zip file containing the runtime artifacts, use the following
command on Mac or Linux (assuming the Git work area is in /home/teamdev/greatapp):

$ cd /home/teamdev
$ zip -r greatapp_2208312149.zip greatapp/install.sql greatapp/application
greatapp/workspace greatapp/database

 On Windows or any platform with a Java JDK installed, the equivalent command would be:

$ cd /home/teamdev
$ jar cvfM greatapp_2208312149.zip greatapp/install.sql greatapp/application
greatapp/workspace greatapp/database

You’ll learn below how to install a build into a test or production environment.

Create a Custom apexgit2buildzip Utility

The simple apexgit2buildzip script for Mac, Linux, and Windows in the Appendix uses the zip or jar command
from the previous section to create a zip file (e.g. greatapp_2208312149.zip) in the current directory named
after the Git work area directory plus the current date and time. The zip file will contain the install.sql file along
with the application, workspace, and database directories and their contents, all inside a directory named after
the Git work area root directory. For example, to create a build zip file from the APEX Git work area
/home/teamdev/greatapp, you would type:

$ apexgit2buildzip /home/teamdev/greatapp

Figure 25 illustrates the single step the script performs. Step 1 creates a zip file in the current directory containing
the installable contents of the Git work area.

Figure 25: apexgit2buildzip creates a zip file with the installable file artifacts from Git

With a script like this in place, a team member can easily create a build archive of the Git work area whenever a
new set of team changes gets committed to the permanent repository.

Apply a Tag to Your Artifacts to Mark a Release in the Repository
When your team reaches the end of a milestone and is happy with the quality of the latest build, it's a best practice
to tag the file artifacts comprising the current state of the team repository with a meaningful name like “v1.0.3”
using a Git tag. You do this with the command:

$ cd /home/teamdev/greatapp
$ git tag v1.0.3
$ git push --tags

Should you later need to work on a bug fix based on the set of file artifacts comprising version 1.0.3, you can
reference the v1.0.3 tag in the git checkout command after cloning the team repository into a new work area
directory.

26 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

$ cd /home/teamdev/newwork area
$ git checkout -b bugfix v1.0.3

Install a Build of Your App in a Test or Production Environment

Whenever necessary, you can install a build of your APEX application into a target environment. Recall that the
build is a zip file containing the file artifacts for your application definition and its database schema object
definitions. To install the app, unzip the build archive and use SQLcl to install the APEX application and update the
database object definitions in a target database schema following the instructions below.

Use unzip or jar to Extract the Archive

Assume you’ve downloaded the file greatapp_2208312149.zip containing the build of your APEX application
from on August 31st, 2022 at 21:49. Two popular ways to extract the contents of the archive are the unzip utility
on Mac and Linux, or the jar utility that comes with every Java Developer’s Kit (JDK).

On Mac or Linux, use the commands:

$ cd /home/teamdev/Downloads
$ unzip greatapp_2208312149.zip

On Windows or any platform with a Java JDK installed, the equivalent command would be:

$ cd /home/teamdev/Downloads
$ jar xvf greatapp_2208312149.zip

This results in creating the greatapp subdirectory containing the file artifacts to install.

Install the APEX Application in the Target Schema

After extracting an application build archive, to install the APEX application definition into workspace
teamworkspace using application id 500, for example, use SQLcl to connect to the target database schema and
run the following PL/SQL block to configure the desired application id and workspace name, followed by running
the install.sql script in the root directory:

$ cd /home/teamdev/Downloads/greatapp
$ sql username/password@host:port/service
SQL> begin
 2 apex_application_install.set_workspace('teamworkspace');
 3 apex_application_install.set_application_id(500);
 4 apex_application_install.set_auto_install_sup_obj(
 5 p_auto_install_sup_obj => true);
 6 end;
 7* /
PL/SQL procedure successfully completed.
SQL> @install.sql

The install.sql script runs all the SQL scripts to install every component and page of your app.

The PL/SQL block above is a simplified version of the pre-installation setup that’s perfect for when the application
id in the target environment remains the same as the application id it had when it was exported from the
development environment. However, if you are installing a build of your app into another workspace in the same
APEX instance, then you’ll need to assign a new application id and new application alias at installation time since
these must be unique across the whole APEX instance. The different workspace will also have a distinct schema
name to keep database objects separate from those in the original workspace's schema. In this situation, the pre-
installation block requires three additional calls to procedures in the apex_application_install package:

27 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

$ cd /home/teamdev/Downloads/greatapp
$ sql username/password@host:port/service
SQL> begin
 2 apex_application_install.set_workspace('otherteamworkspace');
 3 -- Exported app has id 500, so pick new id to make it unique
 4 apex_application_install.set_application_id(1500);
 5 apex_application_install.set_auto_install_sup_obj(
 6 p_auto_install_sup_obj => true);
 7 apex_application_install.generate_offset;
 8 -- Exported app has schema SMUENCH, so need distinct schema
 9 apex_application_install.set_schema('SMUENCH_TEST');
 10 -- Exported app has alias "greatapp", so need distinct alias
 10 apex_application_install.set_application_alias('greatapptest');
 6 end;
 7* /
PL/SQL procedure successfully completed.
SQL> @install.sql

Apply the Database Schema Changes to the Target Schema

After extracting an application build archive, to apply the database schema object definitions to the target
environment use SQLcl to connect to the target database schema and run the lb update command, referencing
the controller.xml change log file in the database subdirectory:

$ cd /home/teamdev/Downloads/greatapp
$ sql username/password@host:port/service
SQL> lb update -changelog-file database/controller.xml

SQLcl’s Liquibase functionality automatically performs appropriate DDL operations to make the target schema’s
objects match what’s in the schema definition files referenced in the controller.xml change log file.

The lb update command above is perfect for when the target environment's database schema exactly mirrors
the one used in the development environment: same schema name, same tablespace name, etc. However, if you
are installing a build of your app into another environment whose schema name is different or anything about the
database might be different, then configure SQLcl to avoid using the original schema name, storage clauses,
partitioning settings, segment information, and tablespace name. This requires adding the following set ddl
options before the call to lb update:

$ cd /home/teamdev/Downloads/greatapp
$ sql username/password@host:port/service
SQL> set ddl storage off
SQL> set ddl partitioning off
SQL> set ddl segment_attributes off
SQL> set ddl tablespace off
SQL> set ddl emit_schema off
SQL> lb update -changelog-file database/controller.xml

Create a Custom apexinstallbuild Utility

The simple apexinstallbuild script for Mac, Linux, and Windows in the Appendix combines the steps from the
previous two sections with file unzipping to install an APEX app and its database schema definitions from a build
archive zip file in a one-line command. For example, to install the build archive of your great app from August
31st, 2022 at 21:49 on a target system where using the same application id 500 and app alias is ok, you would
type:

$ apexinstallbuild greatapp_2208312149.zip 500 teamworkspace username/password@host:port/service

Figure 26 illustrates the four steps the script performs. Step 1 creates a temporary staging directory, copies the
build archive to it, and makes it the current directory. Step 2 extracts the contents of the build archive zip file into
the temporary directory. Step 3 runs the PL/SQL block to set the workspace name and application id followed by
running the install.sql script to install the APEX application definition. Step 4 updates the database schema
object definitions using the lb update command, using the database/controller.xml file as the change log.

28 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Figure 26: apexinstallbuild installs APEX app and DB schema definitions to target workspace

The same script also accepts an optional fifth parameter to provide an alternative application alias if you are
installing into an environment in which you need to provide a new application id and alias. In that case, the
command you type would look like:

$ apexinstallbuild greatapp_2208312149.zip 1500 otherwksp username/password@host:port/service otheralias

With a script like this in place, a team member can easily install any build of your application into any target
environment for testing or production use.

Aspire to Maintain Separate Environments for Dev, Test, and Prod

Developers want to work without worry of disrupting people in production or teammates doing testing. Whenever
possible, isolating the development, testing, and production environments simplifies the lives of every
stakeholder. With separate DEV, TEST, and PROD APEX instances, each can have the same workspace name,
workspace id, and schema to keep things simple. When that's not possible or not practical, then in a single APEX
instance you can still use separate workspaces with distinct database schemas to achieve the same benefit.

Why Separate Environments Are a Best Practice

Many teams have members who focus on quality assurance (QA). While developers typically write the unit tests,
often it’s their QA colleagues who do interactive testing and write Cypress tests to validate end-to-end use cases.
It can be frustrating for testers to work in the same environment where active development occurs. End users of
your team’s app are even less forgiving of hiccups. Your app is a tool they must use to get their job done.

By giving developers, testers, and end users their own dedicated environment, each group stays most productive.
Developers can iterate until their features or bug fixes are ready for testing. Testers can focus on finding problems
with a recent stable build of the developers’ in-progress milestone. And end users can keep getting their job done
until the QA team decides the latest milestone’s features and fixes meets or exceeds their quality bar.

You can deploy an APEX application to another environment using the Remote Deployment facility in APEX
Builder using just a few clicks. Alternatively, you can export an application in the Builder and import it into another
APEX workspace interactively. However, in this paper wen focus on a command-line approach that lends itself
more easily to automation.

Use Environment Banners to Avoid Inadvertent Mistakes

Regardless of the multi-environment approach you choose, assign a distinctly colored banner to each
environment so developers are always aware of which environment they're using. A green banner helps
communicate that changes are allowed in the DEV environment. In the TEST environment, an ice blue banner
helps convey that features are frozen there. A red banner in the PROD environment reminds developers that no
changes are allowed there. Figure 27 shows this idea applied to three workspaces named apex_dev, apex_test,
and apex_prod in a single APEX instance.

29 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Figure 27: Separate DEV, TEST, and PROD environments using distinct banners

As shown in Figure 28, to configure your workspace's environment banner, click the Administration icon followed
by Manage Service > Define Environment Banner. You can choose the banner text, color, and whether it appears
in a stripe across the top or along the left side of the window.

Figure 28: Defining an environment banner

Dev, Test, and Prod in Separate Workspaces in an APEX Instance

In one APEX instance you can create multiple workspaces, and you can associate a distinct database schema with
each workspace. So, consider setting up your DEV, TEST, and PROD environments as shown in Figure 29 if you
have a single APEX instance to work with.

Figure 29: Three workspaces for DEV, TEST, and PROD in a single APEX instance

In this setup, developers work in the APEX_DEV workspace. At meaningful milestones someone on the team runs
apexexport2git to export the team's shared progress to a Git work area and commit it to the permanent
repository. They also create a zip file containing the APEX application and database schema object definitions to
store in the location where the team keeps their build archives.

When the QA team is ready to install the latest build for testing, a team member downloads the build zip file from
this location and install it into the APEX_TEST workspace using apexinstallbuild. Assume that in the
APEX_DEV workspace the application in question has id 500 and an application alias of "greatapp". Since the
application id and alias must be unique across the entire APEX instance, it's not possible to install it into the
APEX_TEST workspace with the same app id and alias. Choose a new application id like 1500 and a new alias like
greatapptest and pass them to the apexinstallbuild utility when installing into the APEX_TEST workspace:

30 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

$ apexinstallbuild greatapp_2209141355.zip 1500 apex_test apex_test/password@host:port/service greatapptest

Similarly, when the QA team has signed off on the quality of the final milestone build and it's time to install the
build into the production environment, again you'll need to choose a unique application id and alias for this using
a command like:

$ apexinstallbuild greatapp_2209161532.zip 2500 apex_prod apex_prod/password@host:port/service greatappprod

Dev, Test, and Prod in Separate APEX Instances

You can even further simplify your life by using separate APEX instances for your Dev, Test, and Prod
environments. This lets you maintain the same application id and alias everywhere, and as shown in Figure 30,
each workspace can use the same name, workspace id, and same schema name. Of course, the distinctly colored
environment banners are still a great idea to remind developers which environment they are working in.

Figure 30: Three APEX instances for DEV, TEST, and PROD environments simplifies deployment

This lets you install a build into your Test environment using the command:

$ apexinstallbuild greatapp_2209161532.zip 500 apexapp wksp_apexapp/password@apextest:port/service

Using the same command, you install a build into Production as well, changing only the host name:

$ apexinstallbuild greatapp_2209161532.zip 500 apexapp wksp_apexapp/password@apexprod:port/service

31 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Connect to APEX on Oracle Autonomous Database Using a Wallet

Our commands above to export and install an APEX application used a database connect string of the familiar
form username/password@host:port/service This is the usual way developers connect to databases managed
by their own team or internal IT department. However, every day more and more APEX development teams
provision their environments on Oracle Cloud Infrastructure (OCI) to benefit from the Oracle Autonomous
Database's lower cost of operation, nimble provisioning, automatic backup, patching and upgrades, smart
indexing, auto-scaling, and other features. Your first OCI experience was likely its Always Free Tier, that let you
provision two free-forever Autonomous Databases to experiment with. Each Autonomous Database comes with a
fully managed APEX instance. Perhaps you even use Free Tier APEX instances for smaller-sized production apps!

The default way to connect to an APEX application schema in the secure Oracle Cloud environment requires using
a "wallet" containing security certificates, signing keys, and SQL Net service definitions. The wallet is a zip file you
download from the OCI console on the Details page of your Autonomous Database. As shown in Figure 31, click
the DB Connection button on this page, then on the Download wallet button on the Database Connection drawer
that slides open from the right side of the window. After entering a wallet password on the window that appears,
click the Download button to complete the process.

Figure 31: Downloading a wallet for connecting to OCI Autonomous Database

If your Autonomous Database is named apextest as in the figure above, the wallet file name will be named
Wallet_apextest.zip by default. You can add the file into your permanent source code repository so any team
member or build automation can reference it from a well-known location as needed. An Autonomous Database
predefines several service names that reflect the name of the database. One of these will be named apextest_tp
for normal transaction processing and development use. When connecting with a wallet, start SQLcl with the
/nolog option and set the cloud configuration wallet file before connecting using the predefined service name:

$ sql /nolog
SQL> set cloudconfig Wallet_apextest.zip
SQL> connect wksp_apexapp@apextest_tp
Connected.
SQL>

Inspect Code for Performance, Security, or Quality Problems

As part of your team's development process, consider adopting some of the tools mentioned in this section to
inspect your application for performance, security or quality issues. While a deep dive into each tool's specifics is
beyond the scope of this paper, it's important to be aware of the resources available so you can evaluate them for
use in your own project.

Use APEX Advisor to Run Built-in Audits

The APEX Advisor is part of the APEX Builder on the application-level Utilities page. It can perform 36 different
audits on your APEX application to highlight various kinds of errors, security concerns, potential performance
issues, and violations of best practices in the areas of usability, accessibility, and more. You can select which
audits to apply, and it produces an interactive list of issues so you can easily navigate to each place in your
application where it has highlighted a potential problem to correct.

32 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Extract SQL and JavaScript Embedded Code for Your App

In the Export an APEX Application Using SQLcl section, you learned about three different export types you can use
with the apex export command. Recall that one of them is EMBEDDED_CODE that produces an embedded_code
directory containing *.sql and *.js files for each page and component that contains SQL or JavaScript,
respectively. These code-only extract files can be useful to feed into static analysis tools that do further code
inspection or other kinds of SQL or JavaScript audits as part of your development lifecycle.

Highlight SQL Injection and Poor SQL Patterns with SQLcl

You can enable SQLcl's code scanning features using the SET CODESCAN ON command. When this mode is
enabled, it checks every statement it processes for possible SQL injection vulnerabilities as well as SQL coding
patterns that lead to poor performance. The SQL Performance Troubleshooting appendix of the SQLcl
documentation lists the many anti-patterns it can detect. Figure 32 shows an example of a SQLcl warning about a
SQL injection vulnerability and an example of its highlighting a construct leading to poor SQL performance.

Figure 32: Two examples of warnings using SET CODESCAN ON in SQLcl

Perform Security and Quality Audits with SonarQube and ApexSec

SonarQube is a free, open-source framework that enables a flexible set of static analysis rules to check the quality
and security of code in over 25 different programming languages. It can be run interactively or incorporated into
build automation jobs. Any future static code analysis features from Oracle will aim to be compatible with the
widely popular SonarQube ecosystem.

ApexSec is an automated security analysis product from Recx Ltd. that performs security scans of your APEX
applications. It reports potential vulnerabilities and provides recommendations on the changes required to avoid
them. Teams at Oracle building APEX apps use both third-party products as part of their development lifecycle.

Understand Team-Centric vs. Feature-Centric Development

By modularizing apps, using page locking, and keeping work items focused, smaller teams can work productively
on a shared APEX development instance, regularly committing team-wide progress to the Git repository. This
development approach is team-centric since the periodic commits pushed to the repository reflect changes made
by the whole team since the previous commit. In contrast, some teams prefer a feature-centric approach with a
more formal review process for the changes made to fix a bug or add a feature. If your project needs code
accountability at the feature level, APEX supports working that way, too.

Overview of Team-Centric Development Approach

As shown in Figure 33, in a team-centric approach, colleagues work on assigned tasks directly in the shared APEX
development environment. An issue "ticket" number like app-1234 identifies each work item. Periodically, the
team's progress is exported to a Git work area, committed, and pushed to the permanent team repository. Most
developers on the team don't need to directly interact with the file artifacts since another team member playing

33 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

the role of a build manager adds their work to the Git repository. This approach works well for smaller teams. By
design, each Git commit reflects the changes the whole team has made since the previous checkpoint. However,
the more developers contributing to the team effort, the more challenging it becomes to review changes made for
a particular feature or by a particular developer.

Figure 33: Team-centric development source controls regular progress of team as a whole

Overview of Feature-Centric Development Approach

With a feature-centric development approach, each colleague works on one bug or feature at a time in a private
work area using a private APEX instance where they are the only developer making changes. They work as long as
necessary to complete their task and testing. Before submitting their changes for peer review, they update their
private area to merge in any approved changes colleagues have made to application artifacts in the meantime.
This proactively ensures any conflicts with their own changes get resolved. When ready, they submit their
changes for peer review.

During the peer review process, colleagues can make constructive suggestions about changes required before the
feature or fix is ready to be formally admitted into the application's main source code area. After addressing
feedback from teammates, the developer submits her changes again for review. Eventually the changes pass
inspection, are approved, and the changes get merged into the team's main source code area in the repository.
That's represented in Figure 34 by the developer's branch line track rejoining the main branch line. At that time, a
new build of the application gets created and installed in the central APEX development instance, which is
intended to always reflect an up-to-date, runnable version of the in-development milestone.

Figure 34: Feature-centric development approach teammates work on each feature in a private area

Work Privately Using a Git Branch and "Branch Instance" of APEX

A feature-centric approach requires a private developer work area for file artifacts, and Git's ability to easily
manage changes in a "branch" off the main code line delivers half of the solution. Since the web-based APEX
Builder operates on an application definition installed in its runtime dictionary in the database, this approach
requires pairing a Git branch with a branch instance of APEX. This is an APEX installation dedicated to a single
developer (or tiny team) while they are working on changes for a single bug fix or feature.

Git Manages Parallel Changes to Files Using Branches

34 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Git's ability to easily manage parallel changes to source code files made it the world's favorite SCM system. When
you initialize a Git repository for a project, it starts with one primary or "main" area in which to maintain the
history of project files over time. However, with Git it's easy to create secondary areas where you can make
experimental changes to project files in a private "sandbox". These changes don't affect the main area.

Sometimes the experiments are just that, and the secondary area just gets deleted. On other occasions, the
experiments produce fruit and make sense to incorporate (or "merge") back into the main area. Git calls these
independently tracked secondary areas "branches". This name evokes how a primary train line can have parallel
"branch lines" on which a train can travel independently of other trains on the main line. It also suggests how a
branch sprouted from a tree can grow independently of the trunk.

Branches live in the team repository for as long as necessary, so an experimental change can lie dormant and be
revived in the future when the team gets time to pursue it again. Git facilitates:

• listing existing branches with git branch

• creating a new branch with git checkout -b newbranchname

• switching to work on an existing branch with git checkout existingbranchname

• merging changes from the main area into the current branch with git merge main

In contrast, merging changes from a branch back into the main area is done as the last step of the peer review
process that GitLab calls a "merge request" and GitHub calls a "pull request". Often teams adopt the convention of
deleting the branch at the same time its changes have been incorporated into the main area. In practice, this main
area is just a branch named main which is special by convention since it acts as the primary location for project file
version history.

When beginning new work on a feature or fix, the widely adopted convention is to create a Git branch named after
the issue tracking ticket being worked on. So, for example, when beginning to work on ticket number app-1234, a
team member creates a Git branch named app-1234 and the project files on the branch initially reflect the current
state of the files from the main branch at the time the app-1234 branch is created. Any changes made to this
initial set of files stay private to the branch.

Branch Instance of APEX is Dedicated to a Single Feature or Fix

A "branch instance" of APEX is a private installation used by one developer (or a small group) collaborating on
adding one feature or fixing one bug. Development in the branch instance must occur in a workspace of the same
name, with the same workspace id, and same APEX version (including patch level) as the team's shared
development environment. This requirement prevents uninteresting differences from polluting the file artifacts
and guarantees branch file artifacts only contain changes related to fixing the bug or implementing the feature.

When beginning work on a new feature or fix, after creating the "feature branch" (e.g. app-1234) the
corresponding branch instance of APEX needs to reflect the current state of the application definition as reflected
in the main branch of the repository and the team's central APEX Development environment. There are two
primary ways to setup the private branch instance:

• Clone the pluggable database (PDB) from the central team DEV environment, or

• Create a matching workspace name with identical workspace id in any Oracle database with matching
version and patch level of APEX installed, and then install the latest build of the application into it

After performing one of these alternatives, the developer uses the web-based APEX Builder in their private branch
instance to implement the feature or fix. At any time, they can export the application to their Git work area. When
they commit and push their changes, their work is saved on a "side track" represented by branch app-1234 on the
team's Git server. When ready, the developer initiates a peer review by creating a "merge request" in Git. Once
approved, the changes in the branch are merged into the main branch and officially become part of the
application. The next section walks through an example.

Walkthrough of Feature-Centric Development

35 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

To better understand a "day in the life" of a developer doing feature-centric APEX development, let's walk
through a scenario where developer Gina is assigned ticket app-1234 to implement a new feature. Figure 35
shows the high-level steps she follows to complete her assignment. In Step 1, she creates a Git branch named
app-1234 to mirror the issue tracking ticket she's about to work on. In Step 2, she runs a script that clones the
pluggable database of the central DEV instance and provides her the login credentials for the GINA user in the
APEXAPP workspace on the branch instance where she'll do her development. In Step 3, Gina uses the APEX
Builder in the branch instance to implement the feature, add her utPLSQL unit tests, add a Cypress UI test, and
run all the tests to make sure everything is passing. In Step 4, Gina runs apexexport2git to retrieve the file
artifacts for the application, copy them to her Git work area, and add the changed files to the Git work list. She
proceeds to merge the current state of the team's main branch into her local app-1234 branch to make sure there
are no conflicts with changes other teammates that have been admitted into the main branch in the meantime. In
Step 5, she commits and pushes her Git branch's changes and creates a merge request to start the peer review.

Figure 35: High-level steps for working on a APEX fix or feature in a Git branch

Two of her colleagues, Ruggero and Daisy get an email that there's a new merge request requiring peer review.
They review Gina's changes and highlight some potential gotchas she should consider. After Gina addresses their
feedback by repeating steps 3, 4, and 5 above, Ruggero and Daisy get an email notification about the new set of
changes from Gina. Figure 36 shows the steps Daisy goes through to approve and merge Gina's changes. In
Step 1, she approves the merge request after seeing Gina addressed all their concerns. She clicks a button to let
Git merge Gina's changes into the main branch and delete the app-1234 branch as it's no longer needed. In
Step 2, she creates a new build of the application based on the latest changes merged to the main branch, and in
Step 3 she runs a script to install that build into the central APEX DEV instance.

Figure 36: High-level steps involved in approving a merge request

Committing and Pushing Changes on a Branch

Figure 37 zooms in on the concrete commands Gina ran each time she wanted to save her work in progress to the
team repository. Since Git keeps her changes in branch app-1234 cleanly separated from the main branch, Gina

36 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

can follow this process any number of times to checkpoint her work on the team's Git repository server. She runs
the apexexport2git command to get the changed file artifacts from her APEX branch instance into her Git work
area in /home/gina/greatapp, then uses git commit to save those changes to Git's history with a helpful
comment, and finally git push to push the commit up to the team server.

Figure 37: Exporting APEX app & DB schema changes to Git work area before commit and push

Resolving Merge Conflicts

Figure 38 highlights the concrete commands Gina runs as she prepares to submit her changes for peer review.
While working in the context of her branch app-1234, she starts by using git commit to save her pending
changes to her local Git repository. Then she refreshes her local copy of the main branch to pull in any changes
that colleagues have made in the meantime while she's been working on her feature. She does that by using git
checkout main to switch the focus of her work area to the main branch. The git pull command pulls down all
the latest changes on the main branch from the remote repository. Then she switches the focus of her work area
back to her feature branch with git checkout apex-1234. Next, she explicitly merges the main branch into her
local app-1234 branch using git merge main to proactively check for any conflicts.

Figure 38: Merging changes from main into local branch to check for conflicts

Using the popular, free Visual Studio Code IDE, let's study three situations that might occur when merging the
changes that other colleagues have made in the meantime into your private branch. Figure 39 shows VS Code's
three-way merge view of a conflict for Page 3 in the APEX application. Gina's local changes appear on the right in
the area titled "Yours", and the version of the same p00003.yaml page YAML file coming in from the team's main
branch appears on the left in the area titled "Theirs". The editor shows that a team member has added a new
APEX page item named P3_SAL in the page, while Gina has added a page item to the same Page 3 named
P3_COMM. Git couldn't determine automatically if the overall intent was to include both page items in the page, or if
only one was meant and a developer needs to decide which one is the one to keep.

In this case, let's suppose that both P3_SAL and P3_COMM should remain in the page, so Gina first ticks the
checkbox at line 130 in the "Theirs" editor, then she clicks the checkbox next to line 130 in the "Yours" editor.
Notice the single checkmark in the "Theirs" change and the double-checkmark in the "Yours" change. This

37 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

indicates that first the "Theirs" change will be included followed by the "Yours" change to produce what's shown
below: the union both changes in the resolved version of the YAML file. Gina lets VS Code know that she's done
resolving the conflicts by clicking on the Accept Merge button in the "Result" editor below.

Figure 39: Resolving merge conflict by accepting both changes

Other times when resolving merge conflicts, you'll need to pick a winner for two clashing changes that can't both
be included. For example, in Figure 40 we see in the "Theirs" editor that a teammate has changed the heading of
the JOB column in an interactive report region on Page 3 to be "Occupation" while in Gina's local changes in her
app-1234 branch she has changed the same JOB column's heading to be "Work Role". By checking only the
checkbox at line 275 in the "Theirs" editor, Gina indicates that her teammates change is the "winning" one, and
only the "Occupation" label remains in the resolved version of the file.

Figure 40: Resolving merge conflict by picking a winner for a clashing change

A third interesting situation that can arise during merge conflict resolution requires you to merge the elements of
a delimited list. Figure 41 shows the SQL file for Page 3 and shows in the "Theirs" editor that a teammate had
added the SAL column into the list of columns visible by default in the interactive report region. In Gina's local
copy, she's added her COMM column into the same list as part of her feature. Since the intent is that both SAL and
COMM be included in the default column list, the resolved file version editor below shows how she's carefully
changed the colon-separated string value to include both SAL and COMM to resolve the conflict.

38 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Figure 41: Resolving a merge conflict by combining delimited-list elements

Initiating Peer Review

After Gina resolves all the conflicts and all her local test runs are passing, she commits and pushes the branch to
the remote server. Then she creates a merge request to kick off the peer review process. If colleagues find issues,
she addresses them in her branch, and repeats the process of:

1. Merging changes from main into your branch and addressing any conflicts

2. Running the tests to make sure all is good

3. Committing and pushing branch changes to seek merge approval or get next round of feedback

The process of creating a merge request will look different depending on what solution your team adopts for
issue tracking and team collaboration, but Figure 42 shows what the process looks like using GitLab.

Figure 42: Creating a merge request using GitLab

Reviewing the Merge Request

The process of reviewing a merge request is similar regardless of what solution you adopt for team collaboration.
Solutions like GitHub, GitLab, Oracle VB Studio, and others allow reviewers to view the changes in every file
artifact that pertains to the feature or fix that's been made. Reviewers can make comments related to specific lines
of code very easily and carry on a threaded discussion with the developer, who may need to iterate on her
changes to address the merge request review feedback. Figure 43 shows what the process looks like using
GitHub, where merge requests are call "pull requests" instead.

39 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Figure 43: Inspecting changes in file artifacts while reviewing a pull request in GitHub

Merging Approved Changes to Main

The process of approving and merging the changes pertaining to merge request is similar regardless of what
solution you adopt for team collaboration. Solutions like Oracle VB Studio, GitLab, GitHub, and others allow
selected teammates to approve the merge when the developer has addressed all open comments. The web-based
interfaces of all these solutions make doing the final merge back to the main branch a one-click operation. Figure
44 shows what approving and merging a merge request looks like in Oracle VB Studio.

Figure 44: Approving and merging Merge Request changes with Oracle VB Studio

Updating the Central APEX DEV Instance with the Latest Build

Once a merge request has been approved and included back into your team's main branch, you need to reflect
these latest changes in the central APEX development instance. You can accomplish this with a combination of
running the apexgit2buildzip and apexinstallbuild commands we've seen above. This will ensure that the
central APEX Development instance always mirrors the latest state of the main branch in the repository.

Automate the Build, Test, and Deployment Process

You've learned the building blocks to be an informed practitioner of the Oracle APEX development lifecycle. Next,
you'll put them to use in a build automation system to further simplify your daily work. It lets the changes your
team commits to your Git repository automatically trigger the execution of a sequence of actions, or you can
manually run an automation job whenever needed.

40 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Below we explore two examples using the popular Jenkins open-source automation server. However, the
concepts are applicable to similar solutions like Oracle OCI Dev Ops, GitHub Actions, GitLab, Oracle VB Studio, and
others. A build automation platform helps your team become a more agile software assembly line. It lets you
integrate and deliver a high-quality app, one feature and bug fix at a time, using a more predictable, continuous
approach. These continuous integration and continuous delivery processes are often shortened to CI/CD.

Understanding Automation Pipelines

In CI/CD, a pipeline is a sequence of actions your team needs to perform on your application artifacts. These steps
can include creating build archives, running tests, performing security scans, deploying a build to a target server,
sending emails, and waiting for approvals, just to name a few common activities. Since a pipeline automates
actions on source code, it is usually associated with a Git repository. Your team's Git repo and your build
automation server collaborate to enable the software assembly line. When a new commit adds a set of changes to
the repository on the main or other branch, the Git server can notify the build automation server about that event.
You can configure a pipeline to start automatically in response to an event like that, or at other times, you may
simply run a pipeline on-demand.

A pipeline consists of one or more named stages that, in turn, contain specific steps. Jenkins queues up pipelines
for execution and manages a pool of servers called build executors that carry out the work a particular pipeline
requires. The first stage in most pipelines involves "checking out" a copy of an associated Git repository to create
a local Git work area. This ensures the build executor has the latest copy of your application source. Other stages
process the source code in a particular branch of the local Git work area. Figure 45 shows the Jenkins dashboard
with two pipelines. ExportDevToGit is an on-demand pipeline that exports an app and database schema objects
from the APEX Development environment and commits any changes to the Git repository's main branch. The
greatapp project contains a main pipeline triggered by a new commit on the main branch in that same repository.
It creates a new build, runs the unit tests, and if they pass, deploys the build to the APEX Test environment so QA
engineers can perform more hands-on testing. In the lower left corner of the figure, you can see there are no
pipelines waiting to be executed in the build queue, and the status is idle of each of the two build executors.

Figure 45: Jenkins dashboard showing on-demand pipeline ExportDevToGit and Git-triggered pipeline greatapp

Pipeline to Export and Commit an APEX App to the Git Repository

You define a Jenkins pipeline by creating a text file named Jenkinsfile in a convenient directory in your source
code work area, committing it, and pushing it to the permanent repository. In the Jenkins web console, you
define a new SCM-based pipeline, configure the associated Git repository URL and credentials, and mention the
relative path to this new Jenkinsfile. In the case of the ExportDevToGit pipeline, the relative path name in the
repository happens to be pipelines/ExportDevToGit/Jenkinsfile. Figure 46 shows the declarative syntax of
the Jenkins pipeline ExportDevToGit in the Visual Studio Code editor. Notice how easy the syntax is to read. In
the options section, it expresses a preference to check out the Git source code to a greatapp subdirectory of the

41 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

root pipeline workspace directory. The environment section defines some environment variables. It's easy to see
that there are three stages in the pipeline "Setup", "Export APEX App", and "Git Commit/Push".

Figure 46: Declarative ExportDevToGit pipeline syntax in VS Code

Notice in the ExportDevToGit Jenkinsfile source code below that two of the stages have a step that runs a shell
script using the sh command. Each step in every stage executes in the context of a pipeline workspace directory
created by Jenkins on the build executor machine. The actual directory name is unimportant since you can
reference it using the predefined environment variable $WORKSPACE. The Git repo checked out into
$WORKSPACE/greatapp contains a utils directory with small bash scripts to make the Jenkinsfile more readable.

In the Setup stage, the setupLatestSQLcl shell script downloads a zip file from oracle.com containing the latest
release of SQLcl and unzips it in the pipeline workspace directory. In subsequent stages, anytime the pipeline
needs to run SQLcl it can reference the $SQLCL variable defined in the environment section to run this handy sql
utility from the unzipped $WORKSPACE/sqlcl/bin directory. In the Export APEX App stage, we securely reference
the encrypted credential for the APEX Development instance in an environment variable named DEVDB, and then
use the apexexport2git script you learned about earlier in this paper to export application 597 from the APEX
Dev database, copy it to the $GIT_WORKAREA directory, and add any changed files to the Git worklist. Finally, In the
Git Commit/Push stage, the commitAndPushToGit commits the Git work area with a commit message of "Latest
export (build $BUILD_NUMBER)" and pushes the commit up to the permanent repo.

42 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

pipeline {
 agent any
 options {
 checkoutToSubdirectory('greatapp')
 }
 tools {
 jdk 'JDK11'
 }
 environment {
 GIT_WORKAREA = "$WORKSPACE/greatapp"
 UTILS = "$GIT_WORKAREA/utils"
 SQLCL = "$WORKSPACE/sqlcl/bin/sql"
 DB = 'localhost:1521/apextrunk'
 }
 stages {
 stage('Setup') {
 steps {
 sh '$UTILS/setupLatestSQLcl'
 }
 }
 stage('Export APEX App') {
 environment {
 DEVDB = credentials('apex-dev-credential')
 }
 steps {
 sh '$UTILS/apexexport2git 597 $GIT_WORKAREA $DEVDB_USR/$DEVDB_PSW@$DB'
 }
 }
 stage ('Git Commit/Push') {
 environment {
 GIT_AUTH = credentials('git-repo-credential')
 }
 steps {
 sh '$UTILS/commitAndPushToGit'
 }
 }
 }
}

Pipeline to Create Build, Run Tests, and Deploy to Test Environment

The Jenkinsfile in the root of the application's Git repository defines the main pipeline for the multi-branch
pipeline project greatapp. The project's name derives from the associated Git repo. This greatapp/main pipeline
creates a build zip file, runs the unit tests by deploying that build to an APEX instance dedicated to unit testing,
and if the tests are successful, it deploys the build to the APEX Test environment. Figure 47 shows the simple
visual diagram the Jenkins console provides to help you initially setup the pipeline stages and steps, but the
declarative syntax is so simple that you'll likely prefer editing the pipeline in its textual format in your favorite
editor. The Jenkins console has a handy Pipeline Syntax page that reminds you of all available steps and helps
you get the correct declarative syntax for any steps you need to use, configured with appropriate options. Then
you can just copy the command to paste into your pipeline file.

Figure 47: Visual diagram of greatapp/main pipeline to build, test, and deploy the APEX app

43 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Every pipeline has a status page that shows the history of that pipeline's runs over time. Since the greatapp/main
pipeline formats unit test results and archives the build zip file, Figure 48 shows the archived build zip is
downloadable from the Last Successful Artifacts section at the top, a Latest Test Result link appears next to the
clipboard icon at the bottom, and a test result trend graph appears above. The table presents the explicit and
average timing of the pipeline stages.

Figure 48: greatapp/main pipeline status page with downloadable build, test results link, and trend graph

The Jenkinsfile source for the greatapp/main pipeline appears below. It follows a similar pattern to the one
you saw above but adds an additional step to its Setup stage to also download and unzip the latest version of the
utPLSQL command line test runner. In the Create Build step, it runs a slightly modified version of the
apexgit2buildzip script you learned about earlier, changed only to accept the name of the build zip as a
command line parameter. In the Run Unit Tests step, it uses the apexinstallbuild command from above to
install the build into an APEX instance dedicated to unit test runs, using encrypted credentials. The second step in
this stage runs the utPLSQL unit tests with the utplsql command line utility, downloaded in the Setup stage.
Finally, the Deploy to Test stage uses the apexinstallbuild command but targets the APEX Test environment.
This stage only executes if all the tests in the previous stage passed. The pipeline ends with a post section that
contains commands to archive the build zip file, format and archive the unit tests, and clean up the workspace.

44 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

pipeline {
 agent any
 options {
 checkoutToSubdirectory('greatapp')
 }
 tools {
 jdk 'JDK11'
 }
 environment {
 GIT_WORKAREA = "$WORKSPACE/greatapp"
 UTILS = "$GIT_WORKAREA/utils"
 SQLCL = "$WORKSPACE/sqlcl/bin/sql"
 UTPLSQL = "$WORKSPACE/utPLSQL-cli/bin/utplsql"
 TESTS_DIR = "$WORKSPACE/tests"
 TESTS_XML = "$WORKSPACE/tests/results.xml"
 BUILD_DIR = "$WORKSPACE/build"
 BUILD_ZIP = "$BUILD_DIR/build_${BUILD_NUMBER}.zip"
 DB = 'localhost:1521/apextrunk'
 }
 stages {
 stage('Setup') {
 steps {
 sh '$UTILS/setupLatestSQLcl'
 sh '$UTILS/setupLatestTestRunner'
 }
 }
 stage('Create Build') {
 steps {
 sh '$UTILS/apexgit2buildzip $GIT_WORKAREA'
 }
 }
 stage('Run Unit Tests') {
 environment {
 UNITDB = credentials('apex-unittest-credential')
 }
 steps {
 sh '$UTILS/apexinstallbuild $BUILD_ZIP 1597 apex_unit $UNITDB_USR/$UNITDB_PSW@$DB greatappunit'
 sh '$UTPLSQL run -f=ut_junit_reporter -o $TESTS_XML $UNITDB_USR/$UNITDB_PSW@$DB'
 }
 }
 stage('Deploy to Test') {
 environment {
 TESTDB = credentials('apex-test-credential')
 }
 steps {
 sh '$UTILS/apexinstallbuild $BUILD_ZIP 2597 apex_test $TESTDB_USR/$TESTDB_PSW@$DB greatapptest'
 }
 }
 }
 post {
 always {
 archiveArtifacts 'build/**/*.zip'
 junit 'tests/**/*.xml'
 cleanWs disableDeferredWipeout: true,
 patterns: [
 [pattern: 'build/*.zip', type: 'INCLUDE'],
 [pattern: 'tests/*.xml', type: 'INCLUDE']
]
 }
 }
}

Figure 49 shows the archived test results for build number 80 of the greatapp/main pipeline. Code coverage
report could be included and archived just as easily.

45 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

Figure 49: Formatted unit test results for a run of the greatapp/main pipeline

Conclusion and Recommendations

Oracle APEX's industry-leading developer productivity makes it the best choice for teams of any size to build
database-backed business apps for desktop or mobile users. As your end users report bugs and suggest
enhancements, you and your team now have the knowhow to make steady, incremental progress against a
prioritized list of these issues and ideas. With each milestone your team plans and executes, you can follow what
you learned in this paper to deliver a few change requests at a time to delight your end users with consistently
high-quality releases on a regular schedule. Along the way you saw examples of the APEX development lifecycle
in practice using popular solutions like GitLab, GitHub, Oracle VB Studio, and Jenkins, with pointers to additional
targeted solutions like Jira for issue tracking and Oracle OCI Dev Ops for build automation on Oracle Cloud.

The Oracle APEX team joins the wider APEX community in wishing you success in all the future APEX apps you
and your team will build while putting your improved understanding of the development lifecycle into practice. As
parting advice, consider the concrete recommendations below.

Recommendations for Simple Apps and Small Teams
Small teams building relatively simple applications should:

• Adopt a team-centric approach to application development

• Track issues and plan milestones using the built-in APEX Team Development

• Work in a shared development instance, using page locking to minimize conflicts

• Embrace Git using a private repository in a free hosted service like GitHub, GitLab, or Oracle VB Studio

• Test business logic and measure code coverage with utPLSQL

• Commit team progress to Git at sensible intervals using apexexport2git or similar script

• Create a build zip of their application at the same time using apexgit2buildzip or similar script

• Aspire to use separate APEX environments for development, testing, and production

• Deploy appropriate builds to test and production as needed using apexinstallbuild or similar script.

Recommendations for Mission-Critical Apps and Larger Teams
Teams building mission-critical applications, or larger teams in general, should:

• Adopt a feature-centric approach to application development

• Track issues in a system with Kanban boards like GitLab, GitHub, Jira, or Oracle VB Studio

• Embrace Git using a private repo in a hosted service like GitHub, GitLab, or Oracle VB Studio

• Work in private "branch instances" of APEX on Git feature branches

• Commit individual feature branch progress to Git using apexexport2git or similar script

• Conduct formal merge request code reviews with one or more teammates

• Create a build zip of their app when feature is merged to main using apexgit2buildzip or similar script

• Use separate APEX environments for development, testing, and production

46 Technical Paper / Understanding the Oracle APEX Application Development Lifecycle / Version 3

 Copyright © 2022, Oracle and/or its affiliates / Public

• Test business logic and measure code coverage with utPLSQL

• Validate end-to-end user interface use cases with Cypress

• Inspect code for performance, security, or quality problems

• Automate build, test, and deployment using Jenkins, GitHub, GitLab, Oracle VB Studio, or OCI Dev Ops.

Downloading Scripts Mentioned in This Paper

You can download the apexexport2git, apexgit2buildzip, and apexinstallbuild scripts along with the
example Jenkins-related files mentioned in this paper from here:

https://apex.oracle.com/go/lifecycle-technical-paper-files

You'll find versions of the scripts for Mac/Linux as well as Windows.

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2022, Oracle and/or its affiliates. All rights reserved. This document is
provided for information purposes only, and the contents hereof are subject to
change without notice. This document is not warranted to be error-free, nor subject
to any other warranties or conditions, whether expressed orally or implied in law,
including implied warranties and conditions of merchantability or fitness for a
particular purpose. We specifically disclaim any liability with respect to this
document, and no contractual obligations are formed either directly or indirectly by
this document. This document may not be reproduced or transmitted in any form or
by any means, electronic or mechanical, for any purpose, without our prior written
permission.

This device has not been authorized as required by the rules of the Federal
Communications Commission. This device is not, and may not be, offered for sale or
lease, or sold or leased, until authorization is obtained.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may
be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks
or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The
Open Group. 0120

Disclaimer: If you are unsure whether your data sheet needs a disclaimer, read the revenue
recognition policy. If you have further questions about your content and the disclaimer
requirements, e-mail REVREC_US@oracle.com.

Author: Steve Muench – Contributors: Salim Hlayel, Mike Hichwa

