
Case Study on Building Data-
Centric Microservices

Part I - Getting Started

May 26, 2020 | Version 1.0
Copyright © 2020, Oracle and/or its affiliates
Public

2
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

DISCLAIMER

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to
and use of this confidential material is subject to the terms and conditions of your Oracle software license and service agreement, which has
been executed and with which you agree to comply. This document and information contained herein may not be disclosed, copied, reproduced
or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be
incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation and upgrade of the
product features described. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making
purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole
discretion of Oracle.

Due to the nature of the product architecture, it may not be possible to safely include all features described in this document without risking
significant destabilization of the code.

TABLE OF CONTENTS

DISCLAIMER
INTRODUCTION
ARCHITECTURE OVERVIEW

Before You Begin
Our Canonical Application
Microservices Application Architecture
Polyglot Persistence – Converged Database
Persisting Events And State – Transactional Event Queues
Transactions Across Microservices – The Saga Pattern
Data Distribution Across Microservices

CASE STUDIES
Microservice Specification
Test Environment Specification
Test Workload

JAVA CASE STUDY
Implementation
Test Results

PYTHON CASE STUDY
Implementation
Test Results

NODE.JS CASE STUDY
Implementation
Test Results

CONCLUSION

3
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

INTRODUCTION

From mom-and-pop brick and mortar to behemoth merchants, modern applications are based on Microservices architecture. Such an
architecture brings undeniable benefits including: agile development, testing and deployment of independents services (DevOps, CI/CD), polyglot
programming, polyglot persistence (data models), fine-grained scalability, higher fault tolerance, Cloud scale tracing, diagnosability, and
application monitoring, and so on. However, such a Microservice architecture comes with inherent challenges including increased
communication, data consistency, managing transactions across services, and overall increased work. There are periodic debates about the
granularity of Microservices (micro or macro?) but the consensus is that the benefits outweigh the challenges. These challenges are usually
addressed at design level in splicing into a full application bounded domains of composable modular subservices. Modular principles have overall
benefits, which when implemented well, hold the keys to success with Microservices.

The goal of this paper (first of a multi-part series) is to describe in detail how to build and deploy a data-centric application, and how the Cloud
services on the Oracle Cloud Infrastructure along with the Oracle Autonomous Database help simplify the key implementation challenges. While
we illustrate the key design principles on the Oracle Cloud, the underlying architecture and open interfaces can be implemented and deployed on-
premises to get started.

ARCHITECTURE OVERVIEW

This section discusses the requirements and challenges for a Microservices-based application including: polyglot persistence, persisting events
and state, and data consistency across Microservices.

Before You Begin

We highly recommend to understand: (i) the ; and (ii) the Twelve Factor App methodology Cloud Native Computing Foundation frameworks and
 as your Microservices platform is based on it. A simple overview of the twelve factor app is in the table below as these are good technologies

practices and we highlight some of these in the simplified best practices to build microservices with the Oracle Converged Database.

FACTOR IMPLICATIONS

Code base Track revisions in one codebase, with potentially many deployments

Dependencies Explicitly declare and isolate dependencies

Config Store config in the environment

Backing Services Treat backing services as attached resources

Build, release, run Strictly separate build and run stages

Processes Execute the app as one or more stateless processes

Port binding Export services via port binding

Concurrency Scale out via the process model

Disposability Maximize robustness with fast startup and graceful shutdown

Dev/Prod Parity Keep development, staging, and production as similar as possible

Logs Treat logs as event streams

Admin Processes Run admin/management tasks as one-off processes

https://12factor.net/
https://landscape.cncf.io/
https://landscape.cncf.io/

4
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

A typical Microservice platform such as the Oracle Cloud Infrastructure (OCI) is made up of: an Image Registry (OCIR), Microservice
development frameworks (such as Helidon), a Container (Docker or CRI-O), an Orchestrator (the OCI Kubernetes Engine a.k.a. OKE), a Service
broker (Open Service Broker) for provisioning Cloud services, an API gateway, an Events service (OCI Events Service), a Service Mesh (such as
Istio) and service graph visualization tools (such as Kiali), a telemetry and tracing framework (opentracing with Jaeger or equivalent), metrics and
an analytic and alerting dashboard (Grafana or equivalent), storage services (OCI Object Store) and Oracle Converged Database with built-in
Transactional Event Queues (TEQ) (such as the Autonomous Database or Exadata Cloud Service). Additional services like Oracle Functions,
Oracle Machine Learning and Spark (OCI Dataflow), etc. can add real-time AI/ML capabilities to Microservices to make them intelligent.

On the data side, the converged database supports Document (JSON), Spatial, Graph, and Relational data in a Container database (CDB) with
one or more pluggable databases (PDB). This paradigm nicely allows for deploying SaaS services with multi-tenancy and microservices with data
isolation to separate PDBs when needed.

Our Canonical Application

This data-centric microservices application performs a transaction -- i.e., booking a mobile food order (e.g. appetizer, main course, dessert) from
one or many restaurants, wherein an order may fail if an item is not available in inventory, or delivery person is not available to deliver to the
destination. The has a set of Hands-on-Labs that provides a self-service walkthrough of creating a Microservices Oracle Learning Library
deployment on the Oracle Cloud.

As pictured hereafter, each service:

Performs a specific task: book or reserve either a mobile food order, check for inventory, and delivery of the item
Is implemented using either Java, Python or Node.js
Communicates with other services via Events using Oracle Transactional Event Queues (TEQ) transactional messaging
Accesses both relational and NoSQL (JSON) data models in a dedicated Pluggable database

The key challenges include: adopting a polyglot persistence strategy, ensuring the atomicity of persisting data and events, ensuring data
consistency, the handling of transactions across microservices and compensation logic when failures are encountered.

https://confluence.oci.oraclecorp.com/download/attachments/232080898/ConvergedDBArch.png?version=1&modificationDate=1589396932396&api=v2

5
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

Microservices Application Architecture

Polyglot Persistence – Converged Database

Data-driven applications use multiple data models including Relational, Document/JSON, Graph, Spatial, IoT, and Blockchain data.
Your challenge consists in selecting either a specialized engine for each data model or a multi-model engine. Does your use case require
integrating or querying across data models? For example, how would you persist a rich catalog containing text, images, graphs and documents
using a single data model? Are you prepared for pulling data over here then injecting over there? Are you prepared for heterogenous
administration and patching mechanisms or looking for a unique/homogeneous administration mechanism across data models.

The Oracle Converged Database is a multi-model engine with pluggable databases which simplifies the polyglot persistence challenge. This
architecture brings the best of both worlds; it allows you to either specialize a pluggable database into a specific data model store or turn a
pluggable database into a general purpose multi-model store. In our canonical application, each Microservice uses a dedicated pluggable
database for storing both Relational and Document/JSON data. It also uses the in-built messaging and streaming layer (Transactional Event
Queues) which provide transactional messaging to simplify application coding.

Persisting Events And State – Transactional Event Queues

In this application, we opt for event-driven communication between microservices often referred to as event sourcing. This is asynchronous
communication with an event broker and an event store, which serves as the sole source of truth. Each microservice gets notified when an event,
in which it has expressed interest via subscription, is produced. Upon completing its task, the service must persist changes to data and persist an
event for notifying other services. The challenge consists in persisting the state and the event, atomically, i.e. in the same local transaction (XA
being an anti-pattern in microservices architecture). This asynchronous communication alleviates issues related to microservice environments
such as network outages and changes, transient availability of services themselves, back pressure, need for retry logic, etc. It also allows for
loose coupling with other services which facilitates independent continuous development/test/deployment and fine-grained scaling.

Several techniques or frameworks are used to address such challenges, notably: , using a table as a message queue, and the the Outbox pattern
Transactional Event Queue.

https://microservices.io/patterns/data/transactional-outbox.html

6
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

1.

2.

3.

We pick Oracle Transactional Event Queues (TEQ) for the transactional messaging it provides, as it is built into the Oracle Database. TEQ’s APIs
include JMS, Java, PL/SQL, C, and Kafka Java client. TEQ serves the purpose of an event store and event broker, where each microservice
maintains an incoming event queue to subscribe to other Microservices’ outgoing queues, and an outgoing queue to examine the incoming event,
process it, and then respond. This is in contrast to using an API gateway, which also can be used in the context of Microservices, especially if
there are very few microservices and the overhead of maintaining API changes is not overwhelming. Using an event store is more scalable since
messages are asynchronous. TEQ delivers messages exactly once, by following transaction semantics in the database (not available for the
Kafka Java Client API), and by propagating messages/events between queues in separate databases. The producers and subscribers of events
can send and consume messages within the exactly-once transaction semantics even in the presence of failures and retries. This is one of the
key advantages of the simplification of the messaging flows with TEQ in an Event-driven architecture.

Transactions Across Microservices – The Saga Pattern

In our canonical application, each service persists data in its dedicated local database. However, until the business transaction is completed or
rolled back entirely, the data is not consistent at any given time but rather will eventually become consistent. As an example, the committed
changes to the available orders made by the order service of the current mobile ordering are not permanent as the order might be rolled back; the
value of the available inventory read by another concurrent transaction is not consistent at the time of the reading as it will be changed when-if
the current business transaction is rolled back. How do you ensure eventual consistency in long running transactions?

In an asynchronous communication system, the two-phase commit protocol with distributed locking is a no-go. The helps ensure the Saga pattern
consistency of long-running business transactions. An application could use the orchestration Saga pattern with a Frontend service as the
coordinator -- as opposed to the choreography Saga where services communicate and coordinate among themselves without a coordinator.
However, the Saga pattern comes with the following challenges/issues:

It does not guarantee Isolation (as in A.C.I.D.); in the order booking example, the amount of available inventory is not the same upon
repeatable reads.
High development/test costs of the compensating changes made by local transactions in the event of failure of the entire business
transaction; the compensation code may amount for up to 80% of the microservices code which adds to huge code maintenance
overhead.
And there is additional complexity due to human interaction

Saga Support could be entirely programmatic (DIY) or implemented via frameworks such as the , or via Long Running Activity for Microprofile API
database primitives. The Saga pattern for Microservices will be the subject of a future whitepaper in this series.

https://microservices.io/patterns/data/saga.html
https://confluence.oci.oraclecorp.com/download/attachments/232080898/ConvergedDBArch.png?version=1&modificationDate=1589396932396&api=v2

7
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

Data Distribution Across Microservices

One of the best practices is to design microservices within , thereby guaranteeing data independence and avoiding transactions bounded contexts
across microservices as much as possible. The additional benefits of data independence are: agility, as each service can be implemented by a
small team with no dependency on others; and the freedom for schema or database reorganization and placement. In principle, each
microservice comes with its dedicated database; however, such principle must not be taken to the letter. The following table discusses some of
these possible choice.

MICROSERVICE
DATABASE
ISOLATION

BENEFITS CONSIDERATIONS
/ISSUES

ANALYTICS
/REPORTING

Table(s)/View(s) per microservice Simplest initial maintenance Role-based access control

Availability, maintenance
restrictions as all use same
database

Views

Schema per microservice Simple initial maintenance Availability, maintenance
restrictions as all use same
database

Cross schema queries/views

PDB per microservice Ultimate flexibility (PDBs can be
deployed together or separately,
and this can be easily changed
over time)

Combine or separate based on
availability and maintenance needs

Cross PDB queries/views for
PDBs in same CDB

Database links for PDBs in
separate CDBs

Non-Multitenant Database per
microservice

Highest isolation Separate availability, maintenance

Extra steps required to consolidate

Database Links

The following figure depicts some of the many possible deployment or placement options. Three Oracle pluggable databases (PDBs) associated
with three notional microservices: Order (O), Inventory (I), and Delivery (D). In the first example, all three PDBs are deployed within the same
Container database (CDB) and would be maintained together with the same database release, patch and availability levels. In the second
example, the PDBs are deployed each on its own CDB; each potentially with its own database release, patch level, and availability. The third
example depicts how PDB sharding can be used to provide additional scalability by sharding Delivery three ways, and sharding Inventory two
ways, while Orders remains unsharded.

https://confluence.oci.oraclecorp.com/download/attachments/232080898/ConvergedDBArch.png?version=1&modificationDate=1589396932396&api=v2

8
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

CASE STUDIES
To compare and contrast microservice implementations, we defined a standard specification, test environment, and test harness. The
specification is a subset of the Mobile Food Order application described earlier in this paper.

Microservice Specification

The specification describes two microservices, Orders and Inventory, working together to place and fulfill orders. The microservices function
independently with their own database schemas. The Orders microservice persists orders as JSON documents in a SODA collection. The
Inventory microservice persists inventory information using a relational table. The services interact with each other through Oracle AQ
messaging. The microservices respond to HTTP REST requests and to messages sent over AQ messaging.

9
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

1.
a.
b.
c.
d.

2.
a.
b.
c.
d.

3.
a.
b.
c.

4.

MESSAGE FLOW

The diagram below shows how an order is placed and how messages flow between the two microservices to check for and allocate inventory.

Place Order
An external application calls the PUT /placeOrder interface on the Orders microservice with the order details.
The order is inserted into the orders collection.
A message is placed on the orderqueue queue.
The insertion of the order and enqueuing of the message are committed to the database as a single transaction.

Inventory Check
The Inventory microservice receives the message on the orderqueue queue.
The inventory is checked and allocated
A message with the inventory details is sent on the inventoryqueue queue.
The receipt of the message, allocation of inventory, and sending of the message are committed to the database as a single
transaction.

Order Update
The Orders microservice receives the message on the inventoryqueue queue
The order document is updated in the orders collection.
The dequeuing of the message and update of the order document are committed to the database as a single transaction.

At any time, the order status can be queried through the GET /showOrder interface on the Orders microservice.

10
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

FUNCTIONALITY

MICROSERVICE OPERATION SPECIFICATION

Orders PUT /placeOrder
Insert order (JSON) into the “orders” collection using the SODA
interface
Post a message to the “orderqueue” using the AQ interface
Commit
Return the order (JSON)

GET /showOrder
Retrieve the order by orderid from the “orders” collection using
the SODA interface
Return the order (JSON)

Inventory Queue Consumer
Retrieve a message from the “inventoryqueue” using the AQ
interface
Update the order with the inventory status
Commit

Inventory GET /inventory
Query an inventory row from the inventory table by inventory_id
using the relational SQL interface
Return the inventory information (JSON)

Order Queue Consumer
Retrieve a message from the “orderqueue” using the AQ interface
Check and decrement the inventory in the inventory table using
the relational SQL interface
Post a message to the “inventoryqueue” with the inventory status
using the AQ interface
Commit

11
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

MESSAGE FORMAT

QUEUE OPERATION JSON FORMAT (BY EXAMPLE)

orderqueue PUT /placeOrder {"orderid": “000012”,

 "itemid": “34”,

 "deliverylocation": “London”,

 "status": “pending” }

inventoryqueue Order Queue Consumer {“orderid”: “000012”,

 “action”: "inventoryexists",

 “inventorylocation”: “New York”}

MICROSERVICE CONFIGURATION

PARAMETER FUNCTION

DB_CONNECT_STRING Database TNS connect string.

DB_USER Database username.

DB_PASSWORD Database login password. Could be different on each database deployment and may vary over
time.

DB_CONNECTION_COUNT Number of database connections in the connection pool for each worker process.

WORKERS Optional. Number of worker processes to be deployed per container.

HTTP_THREADS Optional. Number of HTTP threads to be deployed per worker process.

DEBUG_MODE 1 – enable debugging, 0 – disable debugging. Used when testing and debugging the
application.

AQ_CONSUMER_THREADS Number of threads consuming AQ messages.

QUEUE_OWNER Database schema that owns the database queues.

DATABASE ACCESS

The microservices are implemented with connection pooling with Oracle FAN enabled.

12
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

DATABASE SCHEMAS

SCHEMA DEFINITION

orders l_metadata := '{

 "keyColumn":{

 "assignmentMethod": "CLIENT", "name": "ORDERID", "sqlType":
"VARCHAR2"

 }

 }';

 collection := DBMS_SODA.create_collection('orders', l_metadata);

inventory create table inventory (

 inventoryid varchar(16) primary key,

 inventorylocation varchar(32),

 inventorycount integer);

insert into inventory values('24','New York', 10000);

insert into inventory values('30','New York', 10000);

insert into inventory values('31','New York', 10000);

insert into inventory values('32','New York', 10000);

insert into inventory values('33','New York', 0);

insert into inventory values('34','New York', 0);

The Orders microservice is given:

Login access to the ORDERS schema containing the SODA “orders” collection.
Enqueue access to the “orderqueue” and dequeue access to the “inventoryqueue” in the AQ schema.

The Inventory microservice is given:

Login access to the INVENTORY schema containing the inventory table.
Enqueue access to the “inventoryqueue” and dequeue access to the “orderqueue” in the AQ schema.

The fine grained security roles and privileges that are available with Oracle are useful for controlling the behavior of Microservices.

13
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

Test Environment Specification

DATABASE DEPLOYMENT

The ORDERS and INVENTORY schemas deployed on separate pluggable databases (PDBs) within the same container database (CDB).
All case studies shared the same two node RAC release 19.6 database deployed on Oracle Cloud Infrastructure.

Authentication was by username and password.

The database connection string had the following structure:

(DESCRIPTION=(CONNECT_TIMEOUT=5)(TRANSPORT_CONNECT_TIMEOUT=3)(RETRY_COUNT=3)(RETRY_DELAY=3) (ADDRESS_LIST=
(LOAD_BALANCE=on)(ADDRESS=(PROTOCOL=TCP)(HOST=<SCAN ADDRESS>)(PORT=1521)))(CONNECT_DATA=
(SERVICE_NAME=<DATABASE SERVICE NAME>)))

Access to the database was via a database service. The database service was created as follows:

srvctl add service -db <DB NAME> -service <SERVICE NAME> -preferred "DBRAC1,DBRAC2" -pdb <PDB NAME> -
notification TRUE

AQ CONFIGURATION

Each PDB contains an AQ schema with orders and inventory queues. Messages propagated between the queues in the schemas in each
PDBs. The following table details the queue and propagation configuration:

SCHEMA DEFINITION

AQ (Orders PDB) DBMS_AQADM.CREATE_QUEUE_TABLE (

queue_table => 'ORDERQUEUE',

queue_payload_type => 'RAW',

multiple_consumers => true);

DBMS_AQADM.CREATE_QUEUE (

queue_name => 'ORDERQUEUE',

queue_table => 'ORDERQUEUE');

14
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

DBMS_AQADM.grant_queue_privilege (

 privilege => 'ENQUEUE',

 queue_name => 'ORDERQUEUE',

 grantee => 'orders',

 grant_option => FALSE);

DBMS_AQADM.START_QUEUE (

queue_name => 'ORDERQUEUE');

DBMS_AQADM.CREATE_QUEUE_TABLE (

queue_table => 'INVENTORYQUEUE',

queue_payload_type => 'RAW');

DBMS_AQADM.CREATE_QUEUE (

queue_name => 'INVENTORYQUEUE',

queue_table => 'INVENTORYQUEUE');

DBMS_AQADM.grant_queue_privilege (

 privilege => 'DEQUEUE',

 queue_name => 'INVENTORYQUEUE',

 grantee => 'orders',

 grant_option => FALSE);

DBMS_AQADM.START_QUEUE (

queue_name => 'INVENTORYQUEUE');

create database link INVENTORY.<GLOBAL_NAME> connect to aq identified by
"<PASSWORD>" using 'INVENTORY';

DBMS_AQADM.add_subscriber(

 queue_name=>'aq.ORDERQUEUE',

 subscriber=> $_agent(null,'aq.ORDERQUEUE@INVENTORY.<GLOBAL_NAME>',0),sys.aq

 queue_to_queue => true);

dbms_aqadm.schedule_propagation

 (queue_name => 'aq.ORDERQUEUE'

 ,destination_queue => 'aq.ORDERQUEUE'

 ,destination => 'INVENTORY.<GLOBAL_NAME>'

http://sys.aq

15
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

 ,start_time => sysdate --immediately

 ,duration => null --until stopped

 ,latency => 0); --No gap before propagating

AQ (inventory PDB) DBMS_AQADM.CREATE_QUEUE_TABLE (

queue_table => 'ORDERQUEUE',

queue_payload_type => 'RAW');

DBMS_AQADM.CREATE_QUEUE (

queue_name => 'ORDERQUEUE',

queue_table => 'ORDERQUEUE');

DBMS_AQADM.grant_queue_privilege (

 privilege => 'DEQUEUE',

 queue_name => 'ORDERQUEUE',

 grantee => 'inventory',

 grant_option => FALSE);

DBMS_AQADM.START_QUEUE (

queue_name => 'ORDERQUEUE');

DBMS_AQADM.CREATE_QUEUE_TABLE (

queue_table => 'INVENTORYQUEUE',

queue_payload_type => 'RAW',

multiple_consumers => true);

DBMS_AQADM.CREATE_QUEUE (

queue_name => 'INVENTORYQUEUE',

queue_table => 'INVENTORYQUEUE');

DBMS_AQADM.grant_queue_privilege (

 privilege => 'ENQUEUE',

 queue_name => 'INVENTORYQUEUE',

 grantee => 'inventory',

 grant_option => FALSE);

DBMS_AQADM.START_QUEUE (

queue_name => 'INVENTORYQUEUE');

16
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

create database link ORDERS.<GLOBAL_NAME> connect to aq identified by
"<PASSWORD>" using 'ORDERS';

DBMS_AQADM.add_subscriber(

 queue_name=>'_aq.INVENTORYQUEUE',

 subscriber=> $_agent(null,'${LANG}_aq.INVENTORYQUEUE@<GLOBAL_NAME>',0),sys.aq

 queue_to_queue => true);

END;

dbms_aqadm.schedule_propagation

 (queue_name => 'aq.INVENTORYQUEUE'

 ,destination_queue => 'aq.INVENTORYQUEUE'

 ,destination => 'ORDERS.<GLOBAL_NAME>'

 ,start_time => sysdate --immediately

 ,duration => null --until stopped

 ,latency => 0); --No gap before propagating

MICROSERVICE DEPLOYMENT

We containerized each of the microservices using Docker and deployed each with two replicas on Oracle Container Engine for Kubernetes
fronted by a load balancer.
To deploy each of the microservices, we used YAML definition files similar to the following example from the Python implementation of the
inventory microservice:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: python-inventory

 labels:

 name: python-inventory

spec:

 replicas: 2

 selector:

 matchLabels:

 name: python-inventory

 template:

 metadata:

 name: python-inventory

 labels:

 name: python-inventory

 spec:

 containers:

http://sys.aq

17
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

 - name: python-inventory

 image: iad.ocir.io/maacloud/maa-microservices/pythoninventory:v12[c1]

 ports:

 - containerPort: 8080

 resources:

 requests:

 memory: 256Mi

 limits:

 memory: 512Mi

 env:

 - name: DB_CONNECT_STRING

 value: "<DB_CONNECT_STRING>"

 - name: DB_USER

 value: "python_inventory"

 - name: DB_PASSWORD

 value: "<DB_PASSWORD>"

 - name: DB_CONNECTION_COUNT

 value: "5"

 - name: WORKERS

 value: "1"

 - name: HTTP_THREADS

 value: "16"

 - name: PORT

 value: "8080"

 - name: DEBUG_MODE

 value: "1"

 - name: AQ_CONSUMER_THREADS

 value: "1"

 - name: QUEUE_OWNER

 value: "PYTHON_AQ"

 readinessProbe:

 exec:

 command:

 - cat

 - /tmp/ready

 initialDelaySeconds: 0

 periodSeconds: 1

 timeoutSeconds: 1

 successThreshold: 1

http://iad.ocir.io/maacloud/maa-microservices/pythoninventory:v12

18
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

 failureThreshold: 1

 imagePullSecrets:

 - name: <SECRET>

Microservice deployment on Kubernetes used the following command:

kubectl create -f app.yaml

The following is an example from the Python inventory microservice of the YAML definition for the load balancer:

apiVersion: v1

kind: Service

metadata:

 name: python-inventory-svc

spec:

 type: LoadBalancer

 ports:

 - port: 8080

 protocol: TCP

 targetPort: 8080

 selector:

 name: python-inventory

Load balancer deployment on Kubernetes used the following command:

kubectl create -f lb.yaml

Test Workload

Artillery enabled us to drive a test workload. We monitored and collected the output from the test runs.

TEST DATA GENERATION

The following Python program generated 10 separate CSV test data files which drove workload for the tests:

import csv

import random

itemids=["30","31","32","33","34"]

num_files = 10

for f in range(1, num_files+1):

 with open('order%d.csv' % f, 'w') as myfile:

 wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)

 for i in range(f, 200001, num_files):

 wr.writerow(["%06d" % (i), random.choice(itemids)])

The following bash script shuffled (randomized) the data:

19
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

for ((i = 1 ; i <= 10 ; i++));

do

 export CSV_FILE=order${i}.csv

 shuf $CSV_FILE > shuf_$CSV_FILE

done

WORKLOAD

The Artillery YAML definitions described in the below table drove the three HTTP REST interfaces at a rate of 60 requests per second:

OPERATION ARTILLERY YAML DEFINITION

PUT /placeOrder config:

 environments:

 python_kube:

 target: 'http://150.136.194.42:8080'

 python_docker:

 target: ' 'http://0.0.0.0:8080

 payload:

 path: "{{ $processEnvironment.CSV_FILE }}"

 order: "sequence"

 cast: false

 fields:

 - "orderid"

 - "itemid"

 phases:

 - duration: 140

 arrivalRate: 30

 name: "PUT"

scenarios:

 - name: "PUT"

 weight: 12

 flow:

 - put:

 url: "/placeOrder?orderid={{ orderid }}&itemid={{ itemid }}
&deliverylocation=London"

GET /showOrder config:

 environments:

 python_kube:

 target: 'http://150.136.194.42:8080'

 python_docker:

http://0.0.0.0:8080

20
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

 target: ' 'http://0.0.0.0:8080

 payload:

 path: "{{ $processEnvironment.CSV_FILE }}"

 order: "sequence"

 cast: false

 fields:

 - "orderid"

 - "itemid"

 phases:

 - duration: 120

 arrivalRate: 30

 name: "GET"

scenarios:

 - name: "GET"

 weight: 10

 flow:

 - get:

 url: "/showOrder?orderid={{ orderid }}"

GET /inventory config:

 environments:

 python_kube:

 target: ' :8080'http://150.136.0.242

 python_docker:

 target: ' 'http://0.0.0.0:8081

 payload:

 path: "inventory.csv"

 fields:

 - "inventoryid"

 phases:

 - duration: 120

 arrivalRate: 30

 name: "GET"

scenarios:

 - name: "GET"

 weight: 10

 flow:

 - get:

 url: "/inventory/{{ inventoryid }}"

http://0.0.0.0:8080
http://150.136.0.242
http://0.0.0.0:8081

21
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

The following bash script drove the workload:

ENV=$1

WORKERS=$2

FOLDER=$3

TEST=$4

PREFIX="$5"

set -e

mkdir -p $FOLDER

mkdir $FOLDER/$TEST

#PUT FIRST

for ((i = 1 ; i <= $WORKERS ; i++));

do

 sleep 0.01

 export CSV_FILE=${PREFIX}order${i}.csv

 artillery run -e $ENV put_art.yaml | tee -a $FOLDER/$TEST/put_art.txt &

done

sleep 20

#GET ORDER NEXT

for ((i = 1 ; i <= $WORKERS ; i++));

do

 sleep 0.01

 export CSV_FILE=${PREFIX}order${i}.csv

 artillery run -e $ENV get_ord_art.yaml | tee -a $FOLDER/$TEST/get_ord_art.txt &

done

#GET INVENTORY NEXT

for ((i = 1 ; i <= $WORKERS ; i++));

do

 sleep 0.01

 artillery run -e $ENV get_inv_art.yaml | tee -a $FOLDER/$TEST/get_inv_art.txt &

done

wait

22
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

JAVA CASE STUDY

Implementation

SOFTWARE VERSIONS

SOFTWARE VERSION

Linux oracle-epel-release-el7.x86_64 0:1.0-2.el7

Apache Maven 3.6.1

JDK 11.0

Helidon SE 1.4.3

Oracle Database and Grid Infrastructure 19.6

Kubernetes 1.14.8

Docker 18.09.8

IMPORTED LIBRARIES

Oracle JDBC drivers, ojdbc10.jar with companion jars, located in Maven Central:

ojdbc10.jar: 19.3 JDBC Thin driver;
ucp.jar: required for UCP(Universal Connection Pool);
ons.jar: for use by the Oracle Notification Services (ONS) daemon;
simplefan.jar: Java APIs for subscribing to RAC Fast Application Notification (FAN) events via ONS;
xdb.jar: to support standard JDBC 4.x java.sql.SQLXML interface

Helidon’s project pom.xml and its dependencies: pulls ojdbc10.jar

 <dependency>

 <groupId>com.oracle.ojdbc</groupId>

 <artifactId>ojdbc10</artifactId>

 <version>19.3.0.0</version>

 </dependency>

SODA for JAVA:

https://github.com/oracle/soda-for-java/releases/download/v${SODA_VERSION}/orajsoda-${SODA_VERSION}.jar

Package lombok.extern.slf4j:

Lombok provides several log annotations to work with different logging libraries. In the end, they all generate a logger instance named
as log. Slf4j generates a logger using the SLF4J API. c Slf4j library:

<!-- logging -->

 <dependency>

 <groupId>ch.qos.logback</groupId>

 <artifactId>logback-classic</artifactId>

https://github.com/oracle/soda-for-java/releases/download/v$%7bSODA_VERSION%7d/orajsoda-$%7bSODA_VERSION%7d.jar

23
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

 <version>${logback.version}</version>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>jul-to-slf4j</artifactId>

 <version>${jul-to-slf4j.version}</version>

 </dependency>

<!-- /logging -->

DATABASE CONNECTION POOLING

The microservice connected to the Oracle database using the Java Connection Pool.

UCP connection pool creation incorporated the following attributes specified in the Kubernetes YAML file:

Initial, minimum and maximum connection counts controlled the size of the pool
The FCF pool property enabled and disabled. FCF : dataSource.setFastConnectionFailoverEnabled(true);
The following connection timeout parameters optimized UCP and addressed temporary connection shortage during outages:
TimeoutChekInterval, InactiveConnectionTimeout, QueryTimeout and WaitTimeout

UCP data source factory declaration

dataSource = PoolDataSourceFactory.getPoolDataSource();

dataSource.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");

dataSource=setUser(dbConfig.get("user").asString().get());

dataSource.setPassword(dbConfig.get("password").asString().get());

dataSource.setURL(dbConfig.get("url").asString().get());

FAN Enablement

Boolean boolParam = dbConfig.get("failoverEnabled").asBoolean().orElse(null);

dataSource.setFastConnectionFailoverEnabled(boolParam);

UCP Size

dataSource.setInitialPoolSize(intParam);

dataSource.setMinPoolSize(intParam);

dataSource.setMaxPoolSize(intParam);

UCP Optimization

dataSource.setTimeoutCheckInterval(intParam);

dataSource.setInactiveConnectionTimeout(intParam);

dataSource.setQueryTimeout(intParam);

dataSource.setConnectionWaitTimeout(intParam);

24
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

FUNCTIONAL IMPLEMENTATION

MICR
OSER
VICE

OPERATION JAVA CODE

Orders PUT /placeOrder // DB Transaction

try {

 database.getContext().execute(conn -> {

 Order order = dao.create(conn, new Order(orderId, itemId,
deliveryLocation));

 String messageId = dao.pushToQueue(conn, order);

 conn.commit();

 conn.close();

 }, log);

 } catch (Exception e) {

 errorOrdersCreate.inc();

 request.next(e);

 }

// dao (Data Access Object)

 OracleDatabase soda = database.getSoda().getDatabase(conn);

 OracleCollection col = soda.openCollection(collectionName);

 OracleDocument doc = soda.createDocumentFromString(order.
getOrderid(),JsonUtils.writeValueAsString(order));

 col.insert(doc);

 log.debug("Created {}", order);

 return order;

public String pushToQueue(OracleConnection conn, Order order) throws
SQLException {

 return QueueUtils.sendMessage(conn, new OrderMessage(order), queue,
QUEUE_SENDER_NAME, QUEUE_SENDER_ADDRESS);}

GET /showOrder // DB Transaction

try {

 database.getContext().execute(conn -> {

 Order retval = dao.get(conn, request.queryParams().first
("orderid").orElse(null));

 conn.close();

 if (Objects.nonNull(retval)) {

 response.send(JsonUtils.writeValueAsString(retval));

 } else {

25
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

 throw new HttpStatusException(404, "Order not found.");

 }

 }, log);

 } catch (Exception e) {

 errorOrdersGet.inc();

 request.next(e);

 }

// dao (Data Access Object)

 OracleDatabase soda = database.getSoda().getDatabase(conn);

 OracleCollection col = soda.openCollection(collectionName);

 OracleDocument doc = col.find().key(id).getOne();

 if (Objects.nonNull(doc)) {

 return JsonUtils.read(doc.getContentAsString(), Order.class);

 } else {

 return null;

 }

Inventory Queue
Consumer

this.consumer = new QueueConsumer(database, queue, MetricUtils.
invQConsumer, (conn, message) -> {

 InventoryMessage inventory = JsonUtils.read(message,
InventoryMessage.class);

 Order update = new Order(inventory.getOrderId(), null, null);

 if (OrderConsumer.EXISTS.equals(inventory.getState())) {

 update.setStatus("successful");

 update.setSuggestivesaleitem("suggestiveSaleItem");

 update.setDeliverylocation(inventory.
getInventorylocation());

 } else {

 update.setStatus("failed to inventory");

 }

 dao.update(conn, update);

 conn.commit();

 }, log);

Inventory GET /inventory // DB Transaction

try {

 database.getContext().execute(conn -> {

 Inventory retval = dao.get(conn, request.path().param
("id"));

 conn.close();

 if (Objects.nonNull(retval)) {

26
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

 response.send(JsonUtils.writeValueAsString(retval));

 } else {

 throw new HttpStatusException(404, "Inventory not
found.");

 }

}, log);

 } catch (Exception e) {

 errorInventoryGet.inc();

 request.next(e);

}

// dao (Data Access Object)

try (OraclePreparedStatement st = (OraclePreparedStatement) conn.
prepareStatement(GET_BY_ID)) {

 st.setString(1, id);

 ResultSet res = st.executeQuery();

 if (res.next()) {

 return new Inventory(res);

 } else {

 return null;

}

}

Order Queue
Consumer

// Order Consumer

this.consumer = new QueueConsumer(database, queue, MetricUtils.
ordQConsumer, (conn, message) -> {

 OrderMessage order = JsonUtils.read(message, OrderMessage.
class);

 String location = dao.decrement(conn, order.getItemId());

 String state;

 if (Objects.nonNull(location)) {

 state = EXISTS;

 } else {

 state = "inventorydoesnotexist";

 }

 dao.pushToQueue(conn, order.getOrderId(), state, location);

 conn.commit();

 }, log);

// dao (Data Access Object)

27
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

String DECREMENT_BY_ID = "update inventory set inventorycount =
inventorycount - 1 where inventoryid = ? and inventorycount > 0 returning
inventorylocation into ?";

try (OraclePreparedStatement st = (OraclePreparedStatement) conn.
prepareStatement(DECREMENT_BY_ID)) {

 st.setString(1, id);

 st.registerReturnParameter(2, Types.VARCHAR);

 int i = st.executeUpdate();

 ResultSet res = st.getReturnResultSet();

if (i > 0 && res.next()) {

 String location = res.getString(1);

 log.debug("Decremented inventory id {} location {}", id,
location);

return location;

DOCKER PACKAGING

IMAGE DOCKER BUILD

orders # run + build just orders

docker-compose -f project.yml up -d --build orders

inventory # run + build just inventory

docker-compose -f project.yml up -d --build
inventory

We used Docker Compose to define and run a multi-container Docker application including orders and inventory. project.yml is a docker
compose yaml file that defines the order and inventory services.

Dockerfile:

FROM openjdk:11-buster

RUN mkdir -p /usr/src/app

WORKDIR /usr/src/app

ADD ./target /usr/src/app

ENV JAVA_OPTS="$JAVA_OPTS"

ENV APP_VERSION=0.0.1

EXPOSE 8080

CMD exec java -jar $JAVA_OPTS /usr/src/app/helidon-$APP_VERSION.jar $APP_MODE

28
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

project.yml:

version: "3.3"

services:

 orders:

 image: iad.ocir.io/maacloud/maa-microservices/helidon-orders:v1.0.1

 build: ../

 ports:

 - "81:81"

 environment:

 - APP_MODE=orders

 - DB_URL=$DB_URL

 - LOG_LEVEL=DEBUG

 inventory:

 image: iad.ocir.io/maacloud/maa-microservices/helidon-inventory:v1.0.1

 build: ../

 ports:

 - "82:82"

 environment:

 - APP_MODE=inventory

 - DB_URL=$DB_URL

 - LOG_LEVEL=DEBUG

networks:

 default:

 ipam:

 config:

 - subnet: 10.100.0.0/24

Test Results

The implementation deployed in the test environment and tested under load functioned according to the specification.

http://iad.ocir.io/maacloud/maa-microservices/helidon-orders:v1.0.1
http://iad.ocir.io/maacloud/maa-microservices/helidon-inventory:v1.0.1

29
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

PYTHON CASE STUDY

Implementation

SOFTWARE VERSIONS

SOFTWARE VERSION

Linux oracle-epel-release-el7.x86_64 0:1.0-2.el7

Python 3.6.8

cx_Oracle 7.3.0

Oracle Database and Grid Infrastructure 19.6

Oracle Instant Client 19.3

Kubernetes 1.14.8

Docker 18.09.8

IMPORTED LIBRARIES

flask implements the REST interface to the service
simplejson provides JSON formatting

MICROSERVICE CONFIGURATION

The following example code extracts parameters from the environment during execution:

db_connect_string = env.get('DB_CONNECT_STRING')

DATABASE CONNECTION POOLING

Connection pool creation used the following attributes:

Minimum and maximum connection counts set to the same value to prevent connection storms
events=True enabled FAN
During outages there can be a temporary shortage of connections in the pool. The getmode and waitTimeout settings ensure that
threads wait for connections to be recovered instead of failing.

pool = cx_Oracle.SessionPool(

 db_user,

 db_password,

 db_connect_string,

 encoding="UTF-8",

 min=db_connection_count,

 max=db_connection_count,

 threaded=True,

30
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

 events=True,

 getmode=cx_Oracle.SPOOL_ATTRVAL_TIMEDWAIT,

 waitTimeout=10000)

FUNCTIONAL IMPLEMENTATION

MICROSERVICE OPERATION PYTHON CODE

Orders PUT /placeOrder soda = conn.getSodaDatabase()

orderCollection = soda.openCollection("orders")

orderDoc = soda.createDocument(order, key=order['orderid'])

orderCollection.insertOne(orderDoc)

orderQueue = conn.queue(queue_owner + ".orderqueue")

orderQueue.enqOne(conn.msgproperties(payload = simplejson.
dumps(

 {'orderid': order["orderid"], 'itemid': order["itemid"]}

)))

conn.commit()

GET /showOrder orderCollection = conn.getSodaDatabase().openCollection
("orders")

orderDoc = orderCollection.find().key(request.args.get
('orderid')).getOne()

Inventory Queue
Consumer

inventoryResponse = simplejson.loads(inventoryQueue.
deqOne().payload)

order = orderCollection.find()

 .key(inventoryResponse["orderid"]).getOne().getContent()

if inventoryResponse['action'] == 'inventoryexists':

 order['status'] = 'successful'

 order['suggestiveSaleItem'] = 'suggestiveSaleItem'

 order['inventoryLocation'] = inventoryResponse
['inventorylocation']

else:

 order['status'] = 'failed no inventory'

orderCollection.find().key(inventoryResponse["orderid"]).
replaceOne(order)

conn.commit()

31
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

Inventory GET /inventory cursor.execute("select * from inventory where inventoryid =
:id",

 [inventory_id])

Order Queue Consumer sql = """update inventory set inventorycount =
inventorycount - 1

 where inventoryid = :inventoryid and
inventorycount > 0

 returning inventorylocation into :
inventorylocation"""

orderInfo = simplejson.loads(orderQueue.deqOne().payload)

ilvar = cursor.var(str)

ilvar.setvalue(0,"")

cursor.execute(sql, [orderInfo["itemid"], ilvar])

inventorylocation = ilvar.getvalue(0)

inventoryQueue.enqOne(conn.msgproperties(

 payload = simplejson.dumps(

 {'orderid': orderInfo["orderid"],

 'action': "inventoryexists" if cursor.rowcount == 1

 else "inventorydoesnotexist",

 'inventorylocation': inventorylocation}

)))

conn.commit()

32
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

DOCKER PACKAGING

IMAGE DOCKER FILE

Oracle19.3_python FROM oraclelinux:7-slim

ARG release=19

ARG update=3

RUN yum -y install oracle-release-el7 && \

 yum-config-manager --enable ol7_oracle_instantclient && \

 yum -y install oracle-instantclient${release}.${update}-basiclite && \

 yum install -y oracle-epel-release-el7 && \

 yum install -y python36 && \

 rm -rf /var/cache/yum

orders

inventory

FROM oracle19.3_python

WORKDIR /app

ADD . /app

RUN python3.6 -m pip install -r /app/requirements.txt

CMD ["gunicorn", "app:app", "--config=config.py"]

The requirements.txt file included the following libraries:

Flask_restful

gunicorn

cx_Oracle

simplejson

The following config.py code extracted parameters from the environment:

from os import environ as env

Gunicorn Configuration

bind = ":" + env.get("PORT", "8080")

workers = int(env.get("WORKERS", 1))

threads = int(env.get("HTTP_THREADS", 1))

Test Results

The implementation deployed in the test environment and tested under load functioned according to the specification.

33
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

NODE.JS CASE STUDY

Implementation

SOFTWARE VERSIONS

SOFTWARE VERSION

Linux oracle-epel-release-el7.x86_64 0:1.0-2.el7

Node.js 10.19.0

node-oracledb 4.2.0

nvm 0.35.2

npm 6.13.7

express 4.17.1

express-validator 6.4.0

morgan 1.9.1

Oracle Database and Grid Infrastructure 19.6

Oracle Instant Client 19.5

Kubernetes 1.14.8

Docker 18.09.8

NODE LIBRARIES

express provides a web server framework and enables JSON extraction from the request body
express-validator provides input validation
morgan provides logging
node-oracledb provides the interface to the Oracle database

MICROSERVICE CONFIGURATION

We implemented most parameterization through environment variables, for example the following:

const webConfig = {

 port: process.env.HTTP_PORT || 8080

}

34
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

DATABASE CONNECTION POOLING

We created a database connection pool with the following attributes:

Minimum (poolMin) and maximum (poolMax) connection counts set to the same value, per Oracle Real World Performance Team
guidance to prevent connection storms, using the environment variable DB_CONNECTION_COUNT.
Pool increment (poolIncrement) set to 0.
Set events=true to enable FAN. This can be set via the oracledb.events property or at connection pool creation by setting the events
property in the object passed for poolAttrs. By default events it is set to false at the oracledb level except for two specific versions (4.0.0
and 4.0.1) in which it was set to true by default. For the purposes of this testing, enabled setting the value via environment variable
DB_M_FAN_EVENTS for the oracledb level.
During outages there can be a temporary shortage of connections in the pool. Requests for connections are queued. The queueTimeout
settings ensure that queued connection requests will wait this amount of time before failing. The default value is 60000 (60 seconds). For
the purpose of this testing, enabled this to be set via the environment variable DB_CP_QUEUE_TIMEOUT, and tested in these tests with
a value of 10000 (10 seconds).

const dbConfig = {

 orderPool: {

 user: process.env.DB_USER,

 password: process.env.DB_PASSWORD,

 connectString: process.env.DB_CONNECT_STRING,

 poolMin: Number(process.env.DB_CONNECTION_COUNT) || 10,

 poolMax: Number(process.env.DB_CONNECTION_COUNT) || 10,

 poolIncrement: process.env.DB_POOL_INC || 0

 }

};

switch (process.env.DB_M_FAN_EVENTS) {

 case 'false':

 console.log('Setting oracledb.events to false...');

 oracledb.events = false;

 break;

 case 'true':

 console.log('Setting oracledb.events to true...');

 oracledb.events = true;

 break;

 default:

 console.log('Keeping default value for oracledb.events...');

}

if (process.env.DB_CP_QUEUE_TIMEOUT) {

 console.log('Setting dbConfig.orderPool.queueTimeout to environment variable value [%s]...', process.env.
DB_CP_QUEUE_TIMEOUT);

 dbConfig.orderPool.queueTimeout = Number(process.env.DB_CP_QUEUE_TIMEOUT);

35
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

}

Because node-oracledb makes use of worker threads via the libuv library, it is important to ensure that there are at least as many worker threads
as database connections. By default there are 4 worker threads. As worker threads could be required for other application processing if the
application does both database and non-database work at the same time, for our testing we chose to increase the number of worker threads by
the number of connections in the pool. We set this value by setting the environment variable UV_THREADPOOL_SIZE. For more information,
see .https://oracle.github.io/node-oracledb/doc/api.html#-143-connections-threads-and-parallelism

const defaultUVThreadPoolSize = 4;

const currUVThreadPoolSize = process.env.UV_THREADPOOL_SIZE || defaultUVThreadPoolSize;

if (currUVThreadPoolSize < defaultUVThreadPoolSize + dbConfig.orderPool.poolMax) {

 process.env.UV_THREADPOOL_SIZE = dbConfig.orderPool.poolMax + defaultUVThreadPoolSize;

}

FUNCTIONAL IMPLEMENTATION

MICROSERVICE OPERATION NODE.JS CODE

Orders PUT /placeOrder const soda = connection.getSodaDatabase();

const sodaCollection = await soda.openCollection(sodaConfig.
ordersCollectionName);

const newOrderDoc = soda.createDocument(order, { key: order.
orderid});

createdDoc = await sodaCollection.insertOneAndGet
(newOrderDoc);

const orderQueue = await connection.getQueue(queueConfig.
orderQueue);

const orderMsgContent = {

 orderid: order.orderid,

 itemid: order.itemid

}

const inventoryMsg = await orderQueue.enqOne(JSON.stringify
(orderMsgContent));

await connection.commit();

GET /showOrder const soda = connection.getSodaDatabase();

const sodaCollection = await soda.openCollection(sodaConfig.
ordersCollectionName);

const orderDoc = await sodaCollection.find().key(orderKey).
getOne();

Inventory Queue
Consumer

const inventoryMsg = await inventoryQueue.deqOne();

const inventoryMsgContent = JSON.parse(inventoryMsg.payload.
toString());

https://oracle.github.io/node-oracledb/doc/api.html#-143-connections-threads-and-parallelism

36
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

const soda = connection.getSodaDatabase();

const sodaCollection = await soda.openCollection(sodaConfig.
ordersCollectionName);

const orderDoc = await sodaCollection.find().key
(inventoryMsgContent.orderid).getOne();

order = orderDoc.getContent();

order.itemid = inventoryMsgContent.inventoryid;

if (inventoryMsgContent.action === 'inventoryexists') {

 order.status = 'successful';

 order.suggestiveSaleItem = 'suggestiveSaleItem';

} else {

 order.status = 'failed no inventory';

}

if (inventoryMsgContent.location) {

 order.inventorylocation = inventoryMsgContent.location;

}

const newOrderDoc = soda.createDocument(order, { key:
inventoryMsgContent.orderid});

const updatedOrderDoc = await sodaCollection.find().key
(inventoryMsgContent.orderid).replaceOneAndGet(newOrderDoc);

await connection.commit();

Inventory GET /inventory const sqlStatement =

`select inventoryid "inventoryid"

 , inventorylocation "inventorylocation"

 , inventorycount "inventorycount"

from inventory

where 1=1

 and inventoryid = :inventoryid`;

bindVariables.inventoryid = req.params.inventoryid;

options.outFormat = oracledb.OUT_FORMAT_OBJECT;

connection = await oracledb.getConnection();

const queryResult = await connection.execute(sqlStatement,
bindVariables, options);

37
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

Order Queue Consumer const orderMsg = await orderQueue.deqOne();

const orderMsgContent = JSON.parse(orderMsg.payload.
toString());

const updateSQL =

`update inventory

 set inventorycount = inventorycount - 1

 where 1=1

 and inventoryid = :inventoryid

 and inventorycount > 0

 returning inventorylocation

 into :inventorylocation`;

if ((orderMsgContent) && (orderMsgContent.itemid) &&
(orderMsgContent.orderid)) {

 bindVariables.inventoryid = orderMsgContent.itemid

}

bindVariables.inventorylocation = {

 dir: oracledb.BIND_OUT,

 type: oracledb.STRING

};

options.outFormat = oracledb.OUT_FORMAT_OBJECT;

const queryResult = await connection.execute(updateSQL,
bindVariables, options);

if (queryResult.rowsAffected && queryResult.rowsAffected
=== 1) {

 action = "inventoryexists";

 location = queryResult.outBinds.inventorylocation[0];

} else {

 action = "inventorydoesnotexist";

 location = "";

}

const inventoryMsgContent = {

 orderid: orderMsgContent.orderid,

 action: action,

38
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

 location: location

};

const inventoryMsg = await inventoryQueue.enqOne(JSON.
stringify(inventoryMsgContent));

await connection.commit();

DOCKER PACKAGING

IMAGE DOCKER FILE

orders

inventory

FROM oraclelinux:7-slim

RUN yum -y install oracle-release-el7 oracle-nodejs-release-el7 && \

 yum-config-manager --disable ol7_developer_EPEL && \

 yum -y install oracle-instantclient19.5-basiclite nodejs && \

 rm -rf /var/cache/yum

Create app directory

WORKDIR /usr/src/orders

Install app dependencies

A wildcard is used to ensure both package.json AND package-lock.json are copied

where available (npm@5+)

COPY package*.json ./

RUN npm install

If you are building your code for production

RUN npm ci --only=production

Bundle app source

COPY . .

EXPOSE 8080

CMD ["node", "app.js"]

39
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

Test Results

The implementation deployed in the test environment and tested under load functioned according to the specification.

40
DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

CONCLUSION

Through the case studies, we have demonstrated how data centric microservices conforming to our simple architecture and best practices, built
in Java Helidon, Python and Node.js, and deployed on Oracle Cloud Infrastructure and Oracle Database, functioned exactly to our
specification. Further we showed the flexibility of the Oracle Converged Database to store different data types making the data architecture
simple.

CONNECT WITH US

Call +1.800.ORACLE1 or visit oracle.com.

Outside North America, find your local office at oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are subject to change

without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied

warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual

obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or

mechanical, for any purpose, without our prior written permission.

This device has not been authorized as required by the rules of the Federal Communications Commission. This device is not, and may not be, offered for sale or

lease, or sold or leased, until authorization is obtained.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks

of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a

registered trademark of The Open Group. 0120

Case Study on Building Data-Centric Microservices May, 2020

	Best Practices for Building Datacentric Microservices - Part I - Getting Started

