ORACLE

Case Study on Building Data-
Centric Microservices

Part | - Getting Started

May 26, 2020 | Version 1.0
Copyright © 2020, Oracle and/or its affiliates
Public

DISCLAIMER

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to
and use of this confidential material is subject to the terms and conditions of your Oracle software license and service agreement, which has
been executed and with which you agree to comply. This document and information contained herein may not be disclosed, copied, reproduced
or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be
incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation and upgrade of the
product features described. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making
purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole
discretion of Oracle.

Due to the nature of the product architecture, it may not be possible to safely include all features described in this document without risking
significant destabilization of the code.

TABLE OF CONTENTS

® DISCLAIMER
* INTRODUCTION
¢ ARCHITECTURE OVERVIEW
Before You Begin
Our Canonical Application
Microservices Application Architecture
Polyglot Persistence — Converged Database
Persisting Events And State — Transactional Event Queues
Transactions Across Microservices — The Saga Pattern
Data Distribution Across Microservices
® CASE STUDIES
© Microservice Specification
© Test Environment Specification
© Test Workload
® JAVA CASE STUDY
© Implementation
© Test Results
® PYTHON CASE STUDY
© Implementation
© Test Results
®* NODE.JS CASE STUDY
© Implementation
O Test Results
® CONCLUSION

O O O 0 O 0 O

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

INTRODUCTION

From mom-and-pop brick and mortar to behemoth merchants, modern applications are based on Microservices architecture. Such an
architecture brings undeniable benefits including: agile development, testing and deployment of independents services (DevOps, CI/CD), polyglot
programming, polyglot persistence (data models), fine-grained scalability, higher fault tolerance, Cloud scale tracing, diagnosability, and
application monitoring, and so on. However, such a Microservice architecture comes with inherent challenges including increased
communication, data consistency, managing transactions across services, and overall increased work. There are periodic debates about the
granularity of Microservices (micro or macro?) but the consensus is that the benefits outweigh the challenges. These challenges are usually
addressed at design level in splicing into a full application bounded domains of composable modular subservices. Modular principles have overall
benefits, which when implemented well, hold the keys to success with Microservices.

The goal of this paper (first of a multi-part series) is to describe in detail how to build and deploy a data-centric application, and how the Cloud
services on the Oracle Cloud Infrastructure along with the Oracle Autonomous Database help simplify the key implementation challenges. While

we illustrate the key design principles on the Oracle Cloud, the underlying architecture and open interfaces can be implemented and deployed on-
premises to get started.

ARCHITECTURE OVERVIEW

This section discusses the requirements and challenges for a Microservices-based application including: polyglot persistence, persisting events
and state, and data consistency across Microservices.

Before You Begin

We highly recommend to understand: (i) the Twelve Factor App methodology; and (ii) the Cloud Native Computing Foundation frameworks and
technologies as your Microservices platform is based on it. A simple overview of the twelve factor app is in the table below as these are good
practices and we highlight some of these in the simplified best practices to build microservices with the Oracle Converged Database.

FACTOR IMPLICATIONS

Code base Track revisions in one codebase, with potentially many deployments
Dependencies Explicitly declare and isolate dependencies
Config Store config in the environment

Backing Services Treat backing services as attached resources

Build, release, run Strictly separate build and run stages

Processes Execute the app as one or more stateless processes

Port binding Export services via port binding

Concurrency Scale out via the process model

Disposability Maximize robustness with fast startup and graceful shutdown
Dev/Prod Parity Keep development, staging, and production as similar as possible
Logs Treat logs as event streams

Admin Processes Run admin/management tasks as one-off processes

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

https://12factor.net/
https://landscape.cncf.io/
https://landscape.cncf.io/

A typical Microservice platform such as the Oracle Cloud Infrastructure (OCI) is made up of: an Image Registry (OCIR), Microservice
development frameworks (such as Helidon), a Container (Docker or CRI-O), an Orchestrator (the OCI Kubernetes Engine a.k.a. OKE), a Service
broker (Open Service Broker) for provisioning Cloud services, an APl gateway, an Events service (OCI Events Service), a Service Mesh (such as
Istio) and service graph visualization tools (such as Kiali), a telemetry and tracing framework (opentracing with Jaeger or equivalent), metrics and
an analytic and alerting dashboard (Grafana or equivalent), storage services (OCI Object Store) and Oracle Converged Database with built-in
Transactional Event Queues (TEQ) (such as the Autonomous Database or Exadata Cloud Service). Additional services like Oracle Functions,
Oracle Machine Learning and Spark (OCI Dataflow), etc. can add real-time Al/ML capabilities to Microservices to make them intelligent.

On the data side, the converged database supports Document (JSON), Spatial, Graph, and Relational data in a Container database (CDB) with
one or more pluggable databases (PDB). This paradigm nicely allows for deploying SaaS services with multi-tenancy and microservices with data
isolation to separate PDBs when needed.

APP FLATFORM DATA PLATFORM i F
k
' [#] QUARKUS l “iia

T L \ORACLE .“'_. %\
- — . Mt i r-Hereary el
ORACLE e
™ [o N@: D)
= o T - T e
J;a kubemates DOCKEF ﬁ - .
e ﬁ_ PeavaT s brw
& outhon o de = fn == S
pak e Y9 O
BamE B il g -

Our Canonical Application

This data-centric microservices application performs a transaction -- i.e., booking a mobile food order (e.g. appetizer, main course, dessert) from
one or many restaurants, wherein an order may fail if an item is not available in inventory, or delivery person is not available to deliver to the
destination. The Oracle Learning Library has a set of Hands-on-Labs that provides a self-service walkthrough of creating a Microservices
deployment on the Oracle Cloud.

As pictured hereafter, each service:

Performs a specific task: book or reserve either a mobile food order, check for inventory, and delivery of the item

Is implemented using either Java, Python or Node.js

Communicates with other services via Events using Oracle Transactional Event Queues (TEQ) transactional messaging
Accesses both relational and NoSQL (JSON) data models in a dedicated Pluggable database

The key challenges include: adopting a polyglot persistence strategy, ensuring the atomicity of persisting data and events, ensuring data
consistency, the handling of transactions across microservices and compensation logic when failures are encountered.

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

https://confluence.oci.oraclecorp.com/download/attachments/232080898/ConvergedDBArch.png?version=1&modificationDate=1589396932396&api=v2

Microservices Application Architecture

. 4

Polyglot Persistence — Converged Database

Data-driven applications use multiple data models including Relational, Document/JSON, Graph, Spatial, 10T, and Blockchain data.

Your challenge consists in selecting either a specialized engine for each data model or a multi-model engine. Does your use case require
integrating or querying across data models? For example, how would you persist a rich catalog containing text, images, graphs and documents
using a single data model? Are you prepared for pulling data over here then injecting over there? Are you prepared for heterogenous
administration and patching mechanisms or looking for a unigue/homogeneous administration mechanism across data models.

The Oracle Converged Database is a multi-model engine with pluggable databases which simplifies the polyglot persistence challenge. This
architecture brings the best of both worlds; it allows you to either specialize a pluggable database into a specific data model store or turn a
pluggable database into a general purpose multi-model store. In our canonical application, each Microservice uses a dedicated pluggable
database for storing both Relational and Document/JSON data. It also uses the in-built messaging and streaming layer (Transactional Event
Queues) which provide transactional messaging to simplify application coding.

Persisting Events And State — Transactional Event Queues

In this application, we opt for event-driven communication between microservices often referred to as event sourcing. This is asynchronous
communication with an event broker and an event store, which serves as the sole source of truth. Each microservice gets notified when an event,
in which it has expressed interest via subscription, is produced. Upon completing its task, the service must persist changes to data and persist an
event for notifying other services. The challenge consists in persisting the state and the event, atomically, i.e. in the same local transaction (XA
being an anti-pattern in microservices architecture). This asynchronous communication alleviates issues related to microservice environments
such as network outages and changes, transient availability of services themselves, back pressure, need for retry logic, etc. It also allows for
loose coupling with other services which facilitates independent continuous development/test/deployment and fine-grained scaling.

Several techniques or frameworks are used to address such challenges, notably: the Outbox pattern, using a table as a message queue, and the
Transactional Event Queue.

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

https://microservices.io/patterns/data/transactional-outbox.html

We pick Oracle Transactional Event Queues (TEQ) for the transactional messaging it provides, as it is built into the Oracle Database. TEQ's APIs
include JMS, Java, PL/SQL, C, and Kafka Java client. TEQ serves the purpose of an event store and event broker, where each microservice
maintains an incoming event queue to subscribe to other Microservices’ outgoing queues, and an outgoing queue to examine the incoming event,
process it, and then respond. This is in contrast to using an API gateway, which also can be used in the context of Microservices, especially if
there are very few microservices and the overhead of maintaining API changes is not overwhelming. Using an event store is more scalable since
messages are asynchronous. TEQ delivers messages exactly once, by following transaction semantics in the database (not available for the
Kafka Java Client API), and by propagating messages/events between queues in separate databases. The producers and subscribers of events
can send and consume messages within the exactly-once transaction semantics even in the presence of failures and retries. This is one of the
key advantages of the simplification of the messaging flows with TEQ in an Event-driven architecture.

Transactions Across Microservices — The Saga Pattern

In our canonical application, each service persists data in its dedicated local database. However, until the business transaction is completed or
rolled back entirely, the data is not consistent at any given time but rather will eventually become consistent. As an example, the committed
changes to the available orders made by the order service of the current mobile ordering are not permanent as the order might be rolled back; the
value of the available inventory read by another concurrent transaction is not consistent at the time of the reading as it will be changed when-if
the current business transaction is rolled back. How do you ensure eventual consistency in long running transactions?

In an asynchronous communication system, the two-phase commit protocol with distributed locking is a no-go. The Saga pattern helps ensure the
consistency of long-running business transactions. An application could use the orchestration Saga pattern with a Frontend service as the
coordinator -- as opposed to the choreography Saga where services communicate and coordinate among themselves without a coordinator.
However, the Saga pattern comes with the following challenges/issues:

1. It does not guarantee Isolation (as in A.C.I1.D.); in the order booking example, the amount of available inventory is not the same upon
repeatable reads.

2. High development/test costs of the compensating changes made by local transactions in the event of failure of the entire business
transaction; the compensation code may amount for up to 80% of the microservices code which adds to huge code maintenance
overhead.

3. And there is additional complexity due to human interaction

Saga Support could be entirely programmatic (DIY) or implemented via frameworks such as the Long Running Activity for Microprofile API, or via
database primitives. The Saga pattern for Microservices will be the subject of a future whitepaper in this series.

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

https://microservices.io/patterns/data/saga.html
https://confluence.oci.oraclecorp.com/download/attachments/232080898/ConvergedDBArch.png?version=1&modificationDate=1589396932396&api=v2

Data Distribution Across Microservices

One of the best practices is to design microservices within bounded contexts, thereby guaranteeing data independence and avoiding transactions
across microservices as much as possible. The additional benefits of data independence are: agility, as each service can be implemented by a
small team with no dependency on others; and the freedom for schema or database reorganization and placement. In principle, each
microservice comes with its dedicated database; however, such principle must not be taken to the letter. The following table discusses some of
these possible choice.

MICROSERVICE BENEFITS CONSIDERATIONS | ANALYTICS

DATABASE /ISSUES /IREPORTING
ISOLATION

Table(s)/View(s) per microservice Simplest initial maintenance Role-based access control Views

Availability, maintenance
restrictions as all use same

database
Schema per microservice Simple initial maintenance Availability, maintenance Cross schema queries/views
restrictions as all use same
database
PDB per microservice Ultimate flexibility (PDBs can be Combine or separate based on Cross PDB queries/views for
deployed together or separately, availability and maintenance needs PDBs in same CDB
and this can be easily changed
over time) Database links for PDBs in
separate CDBs
Non-Multitenant Database per Highest isolation Separate availability, maintenance Database Links

microservice
Extra steps required to consolidate

The following figure depicts some of the many possible deployment or placement options. Three Oracle pluggable databases (PDBs) associated
with three notional microservices: Order (O), Inventory (1), and Delivery (D). In the first example, all three PDBs are deployed within the same
Container database (CDB) and would be maintained together with the same database release, patch and availability levels. In the second
example, the PDBs are deployed each on its own CDB; each potentially with its own database release, patch level, and availability. The third
example depicts how PDB sharding can be used to provide additional scalability by sharding Delivery three ways, and sharding Inventory two
ways, while Orders remains unsharded.

Example 1 Exampla 2 Example 3

4 4 4> b o o o
S ey e Ty St e Ty e et
e e e B e O o= =05 ~IE =

CDE1 CDB1 CDE1

o L SR S
o T o [S

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

https://confluence.oci.oraclecorp.com/download/attachments/232080898/ConvergedDBArch.png?version=1&modificationDate=1589396932396&api=v2

CASE STUDIES

To compare and contrast microservice implementations, we defined a standard specification, test environment, and test harness. The

specification is a subset of the Mobile Food Order application described earlier in this paper.

Microservice Specification

The specification describes two microservices, Orders and Inventory, working together to place and fulfill orders. The microservices function
independently with their own database schemas. The Orders microservice persists orders as JSON documents in a SODA collection. The
Inventory microservice persists inventory information using a relational table. The services interact with each other through Oracle AQ

messaging. The microservices respond to HTTP REST requests and to messages sent over AQ messaging.

PUT /placeOrder

Orders Entry - Orders Orders Collection
- GET /showOrder Microservice

System

orders schema

AQ schema

GET /inventory Inventory Inventory Table

Microservice

inventory schema

Data Store

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

MESSAGE FLOW

The diagram below shows how an order is placed and how messages flow between the two microservices to check for and allocate inventory.

PUT /placeOrder

Orders Collection

Orders Entry

System PNl Microservice
- - = orders schema

A7 schema

GET /inventory Inventory Inventory Table

Microservice)
inventory schema

1. Place Order
a. An external application calls the PUT /placeOrder interface on the Orders microservice with the order details.
b. The order is inserted into the orders collection.
c. A message is placed on the orderqueue queue.
d. The insertion of the order and enqueuing of the message are committed to the database as a single transaction.
Inventory Check
a. The Inventory microservice receives the message on the orderqueue queue.
b. The inventory is checked and allocated
c. A message with the inventory details is sent on the inventoryqueue queue.
d. The receipt of the message, allocation of inventory, and sending of the message are committed to the database as a single
transaction.
3. Order Update
a. The Orders microservice receives the message on the inventoryqueue queue
b. The order document is updated in the orders collection.
c. The dequeuing of the message and update of the order document are committed to the database as a single transaction.
4. At any time, the order status can be queried through the GET /showOrder interface on the Orders microservice.

N

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

10

FUNCTIONALITY

MICROSERVICE OPERATION SPECIFICATION

Orders PUT /placeOrder

GET /showOrder

Inventory Queue Consumer
Inventory GET /inventory

Order Queue Consumer

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

Insert order (JSON) into the “orders” collection using the SODA
interface

Post a message to the “orderqueue” using the AQ interface
Commit

Return the order (JSON)

Retrieve the order by orderid from the “orders” collection using
the SODA interface
Return the order (JSON)

Retrieve a message from the “inventoryqueue” using the AQ
interface

Update the order with the inventory status

Commit

Query an inventory row from the inventory table by inventory_id
using the relational SQL interface
Return the inventory information (JSON)

Retrieve a message from the “orderqueue” using the AQ interface
Check and decrement the inventory in the inventory table using
the relational SQL interface

Post a message to the “inventoryqueue” with the inventory status
using the AQ interface

Commit

MESSAGE FORMAT

QUEUE OPERATION JSON FORMAT (BY EXAMPLE)

orderqueue PUT /placeOrder {"orderid": “000012",
"itemd": “34",
"del i veryl ocation": “London”,
"status": “pending” }
inventoryqueue Order Queue Consumer {“orderid”: “000012”,
“action”: "inventoryexists",
“inventorylocation”: “New York”}

MICROSERVICE CONFIGURATION

PARAMETER FUNCTION

DB_CONNECT_STRING Database TNS connect string.

DB_USER Database username.

DB_PASSWORD I?atabase login password. Could be different on each database deployment and may vary over
time.

DB_CONNECTION_COUNT Number of database connections in the connection pool for each worker process.

WORKERS Optional. Number of worker processes to be deployed per container.

HTTP_THREADS Optional. Number of HTTP threads to be deployed per worker process.

DEBUG_MODE 1 — enable debugging, 0 — disable debugging. Used when testing and debugging the
application.

AQ_CONSUMER_THREADS Number of threads consuming AQ messages.

QUEUE_OWNER Database schema that owns the database queues.

DATABASE ACCESS

The microservices are implemented with connection pooling with Oracle FAN enabled.

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

DATABASE SCHEMAS

SCHEMA DEFINITION

orders | _metadata := '/{
"keyCol um": {
"assi gnment Met hod": "CLI ENT", "nane": "ORDERI D', "sqgl Type":
" VARCHAR2"
}
}
collection : = DBMS_SODA. create_col |l ection('orders', |_netadata);
inventory create table inventory (

i nventoryid varchar(16) primary key,
i nvent oryl ocati on varchar (32),

i nvent orycount integer);

insert into inventory values('24',' New York', 10000);
insert into inventory values('30','New York', 10000);
insert into inventory values('31','New York', 10000);
insert into inventory values('32','New York', 10000);

insert into inventory values('33"','New York', 0);

insert into inventory values('34','New York', 0);

The Orders microservice is given:

® Login access to the ORDERS schema containing the SODA “orders” collection.
® Enqueue access to the “orderqueue” and dequeue access to the “inventoryqueue” in the AQ schema.

The Inventory microservice is given:

® Login access to the INVENTORY schema containing the inventory table.
® Enqgueue access to the “inventoryqueue” and dequeue access to the “orderqueue” in the AQ schema.

The fine grained security roles and privileges that are available with Oracle are useful for controlling the behavior of Microservices.

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

13

Test Environment Specification

PUT /placeOrder

>
- Orders
- GET /showOrder Microservice orders schema

-
- Inventory Q

AQ schema

Orders Collection

Artillery Test
Workload

Inventory
GET finventory Microservice

inventory schema

Inventory PDB

DATABASE DEPLOYMENT

The ORDERS and INVENTORY schemas deployed on separate pluggable databases (PDBs) within the same container database (CDB).
All case studies shared the same two node RAC release 19.6 database deployed on Oracle Cloud Infrastructure.

Authentication was by username and password.
The database connection string had the following structure:
(DESCRI PTI ON=(CONNECT_TI MEOUT=5) (TRANSPORT CONNECT_TI MEQUT=3) (RETRY_COUNT=3) (RETRY_DELAY=3) (ADDRESS LI ST=

(LOAD_BALANCE=0n) (ADDRESS=(PROTOCOL=TCP) (HOST=<SCAN ADDRESS>) (PORT=1521))) (CONNECT _DATA=
(SERVI CE_NANME=<DATABASE SERVI CE NAME>)))

Access to the database was via a database service. The database service was created as follows:

srvctl add service -db <DB NAME> -service <SERVI CE NAME> -preferred "DBRACL, DBRAC2" -pdb <PDB NAME> -
notification TRUE

AQ CONFIGURATION

Each PDB contains an AQ schema with orders and inventory queues. Messages propagated between the queues in the schemas in each
PDBs. The following table details the queue and propagation configuration:

SCHEMA DEFINITION

AQ (Orders PDB) DBVS_AQADM CREATE_QUEUE_TABLE (
queue_t abl e => ' ORDERQUEUE' ,
queue_payl oad_t ype => ' RAW,

mul ti pl e_consumners => true);

DBMVS_AQADM CREATE_QUEUE (
queue_nane => ' ORDERQUEUE' ,
queue_t abl e => ' ORDERQUEUE') ;

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

grant _option

queue_t abl e

DBMS_AQADM gr ant _queue_pri vil ege (

=>

=>

=>

=>

DBVE_AQADM START _QUEUE (

DBMVS_AQADM CREATE_QUEUE_TABLE (

queue_payl oad_t ype

queue_t abl e

grant _option

DBMVS_AQADM CREATE_QUEUE (
> ' | NVENTORYQUEUE'

DBMS_AQADM gr ant _queue_pri vi l ege (

=>

=>

=>

=>

DBMVS_AQADM START QUEUE (

create database |ink | NVENTORY. <GLOBAL_NAME> connect to aq identified by
" <PASSWORD>" usi ng ' | NVENTORY' ;

DBMS_AQADM add_subscri ber (
queue_name=>' aq. ORDERQUEUE' ,
subscri ber=>sys. aq$_agent (nul | , ' ag. ORDERQUEUE@ NVENTORY. <GLOBAL_NAME>' , 0)

queue_t o_queue => true);

dbns_agadm schedul e_propagati on

(queue_nane

, desti nati on_queue =>

, desti nation

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

' ORDERQUEUE' ,

=> ' ORDERQUELE') ;

=> ' | NVENTORYQUEUE' ,

=> ' | N\VENTORYQUEUE') ;

' I NVENTORYQUEUE'

> ' | NVENTORYQUELUE')

=> ' ag. ORDERQUEUE'
" ag. ORDERQUEUE'
=> ' | NVENTORY. <GLOBAL_NAVE>"

http://sys.aq

,Sstart_tine => sysdate --i nmedi ately

, duration => nul | --until stopped
, | atency => 0); --No gap before propagating
AQ (inventory PDB) DBVS_AQADM CREATE_QUEUE_TABLE (
queue_t abl e => ' ORDERQUEUE' ,

queue_payl oad_type =>'RAW);
DBMS_AQADM CREATE_QUEUE (
queue_nane => ' ORDERQUEUE' ,

queue_t abl e => ' ORDERQUEUE') ;

DBMS_AQADM gr ant _queue_pri vi l ege (

privil ege => ' DEQUEUE' ,
queue_nane => ' ORDERQUEUE'
grant ee => "inventory',
grant _option => FALSE) ;

DBVMS_AQADM START_QUEUE (
queue_name => ' ORDERQUEUE') ;

DBVS_AQADM CREATE_QUEUE_TABLE (
queue_t abl e => ' | N\VENTORYQUEUE' ,
queue_payl oad_type =>'RAW,

mul ti pl e_consuners => true);
DBVS_AQADM CREATE_QUEUE (
queue_namne => ' | NVENTORYQUEUE' ,

queue_t abl e => ' | NVENTORYQUEUE') ;

DBMS_AQADM gr ant _queue_pri vil ege (

privilege => " ENQUEUE' ,
queue_narme => " | NVENTORYQUEUE' ,
grant ee => "inventory',
grant_option => FALSE) ;

DBMS_AQADM START_QUEUE (
queue_namne => ' | N\VENTORYQUELUE') ;

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

create database |ink ORDERS. <GLOBAL_NAME> connect to aq identified by
" <PASSWORD>" usi ng ' ORDERS' ;

DBMS_AQADM add_subscri ber (

queue_nanme=>' _aq. | NVENTORYQUEUE' ,
subscri ber=>sys. aq$_agent (nul |, ' ${ LANG _aq. | NVENTORYQUEUE@G.OBAL_NAME>' , 0) ,

queue_t o_queue => true);

END;

dbns_agadm schedul e_propagati on

(queue_nane => ' ag. | NVENTORYQUEUE'

, destination_queue => 'aq. | NVENTORYQUEUE'

,destination => ' ORDERS. <GLOBAL_NAME>'
,Sstart_tine => sysdate --inmedi ately
,duration => nul | --until stopped

, | atency => 0);

MICROSERVICE DEPLOYMENT

We containerized each of the microservices using Docker and deployed each with two replicas on Oracle Container Engine for Kubernetes

fronted by a load balancer.

To deploy each of the microservices, we used YAML definition files similar to the following example from the Python implementation of the

inventory microservice:
api Ver si on: apps/vl
ki nd: Depl oynent
nmet adat a:
name: python-inventory
| abel s:
nanme: python-inventory
spec:
replicas: 2
sel ector:
mat chLabel s:
nane: python-inventory
tenpl at e:
net adat a:
nane: python-inventory
| abel s:
nane: python-inventory
spec:

cont ai ners:

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0

16 Copyright © 2020, Oracle and/or its affiliates

--No gap before propagating

http://sys.aq

- name: python-inventory

i mage: iad.ocir.io/nmacl oud/ maa-m croservi ces/ pythoninventory:vi2[cl]
ports:
- containerPort: 8080
resour ces:
requests:
nenory: 256M
limts:
menory: 512M
env:
- nane: DB_CONNECT_STRI NG
val ue: "<DB_CONNECT_STRI NG
- nanme: DB USER
val ue: "python_inventory"
- nane: DB_PASSWORD
val ue: "<DB_PASSWORD>"
- nane: DB_CONNECTI ON_COUNT
val ue: "5"
- nanme: WORKERS
val ue: "1"
- nane: HITP_THREADS
val ue: "16"
- name: PORT
val ue: "8080"
- nane: DEBUG MODE
val ue: "1"
- nane: AQ CONSUMER THREADS
val ue: "1"
- nane: QUEUE_OWNER
val ue: "PYTHON AQ'
r eadi nessProbe:
exec:
conmand:
- cat
- /tnp/ready
initial Del aySeconds: 0
peri odSeconds: 1
ti meout Seconds: 1

successThreshol d: 1

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

http://iad.ocir.io/maacloud/maa-microservices/pythoninventory:v12

18

failureThreshold: 1

i magePul | Secrets:
- nane: <SECRET>
Microservice deployment on Kubernetes used the following command:
kubect| create -f app.yam
The following is an example from the Python inventory microservice of the YAML definition for the load balancer:
api Version: vl
ki nd: Service
net adat a:
nane: python-inventory-svc
spec:
type: LoadBal ancer
ports:
- port: 8080
protocol : TCP
targetPort: 8080
sel ector:
name: python-inventory
Load balancer deployment on Kubernetes used the following command:

kubect| create -f Ib.yanl

Test Workload

Artillery enabled us to drive a test workload. We monitored and collected the output from the test runs.

TEST DATA GENERATION

The following Python program generated 10 separate CSV test data files which drove workload for the tests:

i mport csv

i mport random

i tem ds=["30","31","32","33","34"]
numfiles = 10
for f in range(l, numfiles+l):
with open('order%l.csv' %f, 'w) as nmyfile:
w = csv.witer(nyfile, quoting=csv. QJOTE_ALL)
for i in range(f, 200001, numfiles):

w.witerom["%06d" % (i), random choice(item ds)])

The following bash script shuffled (randomized) the data:

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

19

for ((i =1; i <=10; i+4));

do
export CSV_FI LE=order ${i}.csv
shuf $CSV_FILE > shuf _$CSV_FI LE

done

WORKLOAD

The Artillery YAML definitions described in the below table drove the three HTTP REST interfaces at a rate of 60 requests per second:

OPERATION ARTILLERY YAML DEFINITION

PUT /placeOrder config:
envi ronnent s:
pyt hon_kube:
target: 'http://150.136.194. 42: 8080’
pyt hon_docker :
target: 'http://0.0.0.0:8080
payl oad:
path: "{{ $processEnvironnment.CSV_FILE }}"
order: "sequence"
cast: false
fields:
- "orderid"
- "item d"
phases:
- duration: 140

arrival Rate: 30

name: " PUT"
scenari os:

- name: "PUT"
wei ght: 12
flow

- put:

url: "/placeOrder?orderid={{ orderid }}& temd={{ itemd }}
&del i veryl ocati on=London"

GET /showOrder config:
envi ronment s:
pyt hon_kube:
target: 'http://150.136.194.42: 8080

pyt hon_docker:

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

http://0.0.0.0:8080

target: 'http://0.0.0.0:8080

payl oad:
path: "{{ $processEnvironnment.CSV_FILE }}"
order: "sequence"
cast: false
fields:
"orderid"
- "item d"
phases:
- duration: 120
arrival Rate: 30

name: "GET"
scenari os:

- nane: "GET"
wei ght: 10
flow

- get:

url: "/showOrder?orderid={{ orderid }}"

GET /inventory config:
envi ronment s:
pyt hon_kube:
target: 'http://150.136.0.242:8080'
pyt hon_docker:
target: 'http://0.0.0.0:8081"
payl oad:
path: "inventory.csv"
fields:
- "inventoryid"
phases:
- duration: 120
arrival Rate: 30
name: " CGET"
scenari os:
- name: "CGET"
wei ght: 10
fl ow
- get:

url: "/inventory/{{ inventoryid }}"

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

http://0.0.0.0:8080
http://150.136.0.242
http://0.0.0.0:8081

The following bash script drove the workload:

ENV=$1
WORKERS=$2
FOLDER=$3
TEST=$4
PREFI X=" $5"

set -e

mkdir -p $FOLDER
nkdi r $FOLDER/ $TEST

#PUT FI RST
for ((i =1 ; i <= $WORKERS ; i++))
do
sleep 0.01
export CSV_FI LE=${ PREFI X} order ${i}.csv
artillery run -e $ENV put _art.yam | tee -a $FOLDER/ $TEST/put _art.txt &

done

sl eep 20

#GET ORDER NEXT
for ((i =1 ; i <= $WORKERS ; i++));
do
sleep 0.01
export CSV_FI LE=${ PREFI X} order ${i }.csv
artillery run -e $ENV get _ord_art.yaml | tee -a $FOLDER/ $TEST/get _ord_art.txt &

done

#GET | NVENTORY NEXT
for ((i =1 ; i <= $WORKERS ; i++))
do
sl eep 0.01
artillery run -e $ENV get _inv_art.yanml | tee -a $FOLDER/ $TEST/get_inv_art.txt &

done

wai t

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

22

JAVA CASE STUDY

Implementation

SOFTWARE VERSIONS

SOFTWARE VERSION

Linux oracle-epel-release-el7.x86_64 0:1.0-2.el7
Apache Maven 3.6.1
JDK 11.0
Helidon SE 1.4.3

Oracle Database and Grid Infrastructure ~ 19.6
Kubernetes 1.14.8

Docker 18.09.8

IMPORTED LIBRARIES

Oracle JDBC drivers, ojdbc10.jar with companion jars, located in Maven Central:

ojdbc10.jar: 19.3 JDBC Thin driver;

ucp.jar: required for UCP(Universal Connection Pool);

ons.jar: for use by the Oracle Notification Services (ONS) daemon;

simplefan.jar: Java APIs for subscribing to RAC Fast Application Notification (FAN) events via ONS;
xdb.jar: to support standard JDBC 4.x java.sql.SQLXML interface

Helidon's project pom.xml pulls ojdbc10.jar and its dependencies:
<dependency>
<groupl d>com or acl e. oj dbc</ gr oupl d>
<artifactld>oj dbclO</artifactld>
<versi on>19. 3. 0. 0</ ver si on>
</ dependency>
SODA for JAVA:
® https://github.com/oracle/soda-for-java/releases/download/v${SODA_VERSION}/orajsoda-${SODA_VERSION}.jar
Package lombok.extern.slf4j:

Lombok provides several log annotations to work with different logging libraries. In the end, they all generate a logger instance hamed
as log. SIf4j generates a logger using the SLF4J API. ¢ SIf4j library:

<!-- logging -->
<dependency>
<gr oupl d>ch. gos. | ogback</ gr oupl d>

<artifactld>l ogback-classic</artifactld>

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

https://github.com/oracle/soda-for-java/releases/download/v$%7bSODA_VERSION%7d/orajsoda-$%7bSODA_VERSION%7d.jar

<ver si on>${| ogback. ver si on} </ ver si on>

</ dependency>

<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>ul-to-slf4j</artifactld>
<versi on>${j ul -to-sl f4j.version}</version>

</ dependency>

<l-- /logging -->

DATABASE CONNECTION POOLING

The microservice connected to the Oracle database using the Java Connection Pool.
UCP connection pool creation incorporated the following attributes specified in the Kubernetes YAML file:

® [nitial, minimum and maximum connection counts controlled the size of the pool

®* The FCF pool property enabled and disabled. FCF : dataSource.setFastConnectionFailoverEnabled(true);

® The following connection timeout parameters optimized UCP and addressed temporary connection shortage during outages:
TimeoutChekinterval, InactiveConnectionTimeout, QueryTimeout and WaitTimeout

UCP data source factory declaration

dat aSour ce = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

dat aSour ce. set Connect i onFact or yCl assNane(" or acl e. j dbc. pool . Or acl eDat aSour ce") ;
dat aSour ce=set User (dbConfi g. get ("user").asString().get());

dat aSour ce. set Passwor d(dbConfi g. get (" password").asString().get());

dat aSour ce. set URL(dbConfi g.get("url").asString().get());

FAN Enablement

Bool ean bool Param = dbConfi g. get ("fail over Enabl ed"). asBool ean() . orEl se(null);
dat aSour ce. set Fast Connect i onFai | over Enabl ed(bool Paran ;

UCP Size

dat aSour ce. setl nitial Pool Si ze(i nt Paran)j;

dat aSour ce. set M nPool Si ze(i nt Param ;

dat aSour ce. set MaxPool Si ze(i nt Paramn ;

UCP Optimization

dat aSour ce. set Ti meout Checkl nt erval (i nt Paran);

dat aSour ce. set | nacti veConnecti onTi meout (i nt Param ;

dat aSour ce. set Quer yTi neout (i nt Param ;

dat aSour ce. set Connect i onWai t Ti neout (i nt Paranj ;

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

FUNCTIONAL IMPLEMENTATION

MICR | OPERATION JAVA CODE

OSER

VICE

Orders PUT /placeOrder // DB Transaction
try {

dat abase. get Cont ext (). execute(conn -> {

Order order = dao.create(conn, new Order(orderld, itemd,
del i verylLocation));

String nmessagel d = dao. pushToQueue(conn, order);
conn.commit();
conn. cl ose();
}, log);
} catch (Exception e) {
errorOrdersCreate.inc();

request . next (e);

// dao (Data Access (bject)
Oracl eDat abase soda = dat abase. get Soda() . get Dat abase(conn) ;
Oracl eCol | ection col = soda. openCol | ection(coll ectionNane);

Or acl eDocunent doc = soda. cr eat eDocunent Fronft ri ng(or der .
get Orderid(),JsonUtils.witeVal ueAsString(order));

col .insert(doc);
| og. debug("Created {}", order);
return order;

public String pushToQueue(Or acl eConnection conn, Order order) throws
SQLException {

return Queueltils. sendMessage(conn, new O der Message(order), queue,
QUEUE_SENDER NAME, QUEUE_SENDER_ADDRESS) ; }

GET /showOrder /1 DB Transaction
try {
dat abase. get Cont ext () . execut e(conn -> {

Order retval = dao.get(conn, request.queryParanms().first
("orderid").orEl se(null));

conn. cl ose();
if (Objects.nonNull (retval)) {
response. send(JsonUtils.witeVal ueAsString(retval));

} else {

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

throw new Ht t pSt at usExcepti on(404, "Order not found.");

}
}, log);
} catch (Exception e) {
errorOrdersGet.inc();

request . next (e);

// dao (Data Access (bject)
Or acl eDat abase soda = dat abase. get Soda() . get Dat abase(conn) ;
Oracl eCol | ection col = soda.openCol | ection(col | ectionNang);
Oracl eDocunent doc = col.find().key(id).getOne();
if (Objects.nonNull (doc)) {
return JsonUtils.read(doc. get Content AsString(), Oder.class);
} else {

return null;

Inventory Queue this. consumer = new QueueConsuner (dat abase, queue, MetricUtils.
Consumer i nvQConsuner, (conn, nessage) -> {

I nvent oryMessage i nventory = JsonUtils.read(nmessage,
I nvent or yMessage. cl ass) ;

Order update = new Order(inventory.getOrderld(), null, null);
if (OrderConsuner. EXI STS. equal s(inventory.getState())) {
updat e. set St at us("successful ");
updat e. set Suggest i vesal ei t en{ "suggesti veSal el tent');

updat e. set Del i veryl ocati on(i nventory.
get I nvent oryl ocation());

} else {

updat e. set Status("failed to inventory");
}
dao. updat e(conn, update);

conn. comm t();

}, log);
Inventory GET /inventory /1 DB Transaction
try {
dat abase. get Cont ext (). execut e(conn -> {
Inventory retval = dao.get(conn, request.path().param
("id));

conn. cl ose();

if (Objects.nonNull (retval)) {

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

found.");

}, 1og);

response. send(JsonUtils.witeVal ueAsString(retval));

} else {

throw new Ht t pSt at usExcepti on(404, "Ilnventory not

} catch (Exception e) {

errorlnventoryCet.inc();

request. next(e);

/1 dao (Data Access bject)

try (O acl ePreparedStat ement st

= (Oracl ePreparedSt atenent) conn.

prepareStatenent (GET_BY_ID)) {

Order Queue
Consumer

t hi s. consuner =
or dQConsuner ,

cl ass);

.

st.setString(1, id);

Resul t Set res = st.executeQuery();
if (res.next()) {

return new | nventory(res);
} else {

return null;

/! Order Consuner

new QueueConsuner (dat abase, MetricUtils.

(conn, nessage) -> {

queue,

Or der Message order = JsonUtils.read(nmessage, O der Message.

String location = dao. decrenent (conn, order.getltemd());
String state;

if (Objects.nonNull (location)) {

state = EXI STS;
} else {
state = "inventorydoesnot exi st";

}

dao. pushToQueue(conn, order.getOrderld(), state, |ocation);

conn. comit();

log);

// dao (Data Access (bject)

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0

Copyright © 2020, Oracle and/or its affiliates

String DECREMENT_BY | D = "update inventory set inventor
i nvent or ycount
inventoryl ocation into ?";

ycount =

1 where inventoryid = ? and inventorycount > 0O returning

try (Oracl ePreparedStatenent st = (O acl ePreparedSt at enent) conn.

prepar eSt at ement (DECREMENT_BY_I D)) {

st.setString(1, id);

st.regi ster ReturnParanet er (2, Types. VARCHAR);

int i = st.executeUpdate();
Resul t Set res = st.getReturnResul tSet();
if (i >0 & res.next()) {
String location = res.getString(1);
| og. debug(" Decrenented inventory id {}
| ocation);

return | ocation;

DOCKER PACKAGING

| ocation {}", id,

IMAGE DOCKER BUILD

orders # run + build just orders
docker - conpose -f project.ymn
inventory # run + build just inventory

docker - conpose -f project.yn
i nvent ory

We used Docker Compose to define and run a multi-container Docker application including orders and inventory
compose yaml file that defines the order and inventory services.

Dockerfile:

FROM openj dk: 11- bust er

RUN nkdir -p /usr/src/app

WORKDI R / usr/ src/ app

ADD . /target /usr/src/app

ENV JAVA OPTS="$JAVA OPTS"

ENV APP_VERS| ON=0. 0. 1

EXPOSE 8080

CMD exec java -jar $JAVA OPTS /usr/src/app/ hel i don- $APP_VERSI ON. j ar $APP_MODE

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

up -d --build orders

up -d --build

. project.yml is a docker

project.yml:

version: "3.3"
services:
orders:
i mage: iad.ocir.io/nmacl oud/ maa-m croservi ces/ helidon-orders:v1.0.1
build: ../
ports:
"81: 81"
envi ronmnent :
- APP_MODE=or der s
- DB_URL=$DB_URL
- LOG_LEVEL=DEBUG
i nventory:
i mage: iad.ocir.io/naacl oud/ naa-m croservices/ helidon-inventory:v1.0.1
build: ../
ports:
"82: 82"
envi ronment :
- APP_MODE=i nvent ory
- DB_URL=$DB_URL
- LOG_LEVEL=DEBUG
net wor ks:
defaul t:
i pam
config:

- subnet: 10.100.0.0/24

Test Results

The implementation deployed in the test environment and tested under load functioned according to the specification.

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0

& Copyright © 2020, Oracle and/or its affiliates

http://iad.ocir.io/maacloud/maa-microservices/helidon-orders:v1.0.1
http://iad.ocir.io/maacloud/maa-microservices/helidon-inventory:v1.0.1

29

PYTHON CASE STUDY

Implementation

SOFTWARE VERSIONS

SOFTWARE VERSION

Linux oracle-epel-release-el7.x86_64 0:1.0-2.el7
Python 3.6.8
cx_Oracle 7.3.0

Oracle Database and Grid Infrastructure 19.6

Oracle Instant Client 19.3
Kubernetes 1.14.8
Docker 18.09.8

IMPORTED LIBRARIES

® flask implements the REST interface to the service
® simplejson provides JSON formatting

MICROSERVICE CONFIGURATION

The following example code extracts parameters from the environment during execution:

db_connect_string = env. get (' DB_CONNECT_STRI NG)

DATABASE CONNECTION POOLING

Connection pool creation used the following attributes:

® Minimum and maximum connection counts set to the same value to prevent connection storms

® events=True enabled FAN

® During outages there can be a temporary shortage of connections in the pool. The getmode and waitTimeout settings ensure that
threads wait for connections to be recovered instead of failing.

pool = cx_Oracl e. Sessi onPool (
db_user,
db_password,
db_connect _string,
encodi ng="UTF- 8",
m n=db_connecti on_count,
max=db_connecti on_count,

t hr eaded=Tr ue,

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

event s=Tr ue,

get node=cx_Or acl e. SPOOL_ATTRVAL_TI MEDWAI T,
wai t Ti meout =10000)

FUNCTIONAL IMPLEMENTATION

MICROSERVICE | OPERATION PYTHON CODE

Orders PUT /placeOrder soda = conn. get SodaDat abase()
order Col | ecti on = soda. openCol | ecti on("orders")
order Doc = soda. creat eDocunent (order, key=order['orderid'])

order Col | ecti on. i nsert One(order Doc)

or der Queue = conn. queue(queue_owner + ".orderqueue")

or der Queue. engOne(conn. nsgproperti es(payl oad = si npl ej son.
dunps(

{*orderid': order["orderid"], 'itemd': order["item d"]}

)))

conn. conmmi t ()

GET /showOrder order Col | ecti on = conn. get SodaDat abase() . openCol | ecti on
("orders")

orderDoc = orderCol |l ection.find().key(request.args. get
("orderid)).getOne()

Inventory Queue i nvent or yResponse = si npl ej son. | oads(i nvent or yQueue.
Consumer degOne() . payl oad)

order = orderCollection.find()

. key(i nvent oryResponse["orderid"]).get One(). get Cont ent ()

if inventoryResponse['action'] == "inventoryexists':
order['status'] = 'successful’
order[' suggestiveSal eltem] = 'suggestiveSalelteni
order['inventorylLocation'] = inventoryResponse
["inventoryl ocation']
el se:
order['status'] = 'failed no inventory'

order Col | ection. find().key(inventoryResponse["orderid"]).
repl aceOne(or der)

conn. commi t ()

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0

30 Copyright © 2020, Oracle and/or its affiliates

Inventory GET /inventory cursor. execute("select * frominventory where inventoryid =
tid",

[inventory_id])

Order Queue Consumer sql = """update inventory set inventorycount =
inventorycount - 1

where inventoryid = :inventoryid and
i nventorycount > 0

returning i nventorylocation into
i nventoryl ocation"""

orderlnfo = sinpl ejson. | oads(order Queue. deqOne() . payl oad)

ilvar = cursor.var(str)
ilvar.setval ue(0,"")
cursor. execute(sql, [orderInfo["item d"], ilvar])

inventoryl ocation = ilvar.getval ue(0)

i nvent or yQueue. enqOne(conn. nsgpr operti es(
payl oad = si npl ej son. dunps(
{"orderid': orderlnfo["orderid"],
"action': "inventoryexists" if cursor.rowount ==
el se "invent orydoesnot exi st"

"inventoryl ocation': inventoryl ocation}

)))

conn. conmmi t ()

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

32

DOCKER PACKAGING

IMAGE DOCKER FILE

Oracle19.3_python FROM or acl el i nux: 7-sl i m

ARG rel ease=19
ARG updat e=3
RUN yum -y install oracle-release-el7 & \
yum confi g- manager --enable ol 7_oracle_instantclient &%\
yum -y install oracle-instantclient${rel ease}. ${update}-basiclite && \
yuminstall -y oracle-epel-release-el7 &\
yuminstall -y python36 &% \

rm-rf /var/cache/ yum

orders FROM or acl €19. 3_pyt hon
inventory WORKDI R / app
ADD . /app

RUN python3.6 -mpip install -r /app/requirenents.txt
CMD ["guni corn", "app:app", "--config=config.py"]

The requirements.txt file included the following libraries:
Fl ask_restful

guni corn

cx_Oracle

si npl ej son

The following config.py code extracted parameters from the environment:

fromos inport environ as env

Quni corn Configuration

bind = ":" + env.get("PORT", "8080")

wor kers = int(env. get("WORKERS", 1))
threads = int(env.get("HTTP_THREADS", 1))

Test Results

The implementation deployed in the test environment and tested under load functioned according to the specification.

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

NODE.JS CASE STUDY

Implementation

SOFTWARE VERSIONS

SOFTWARE

Linux

Node.js
node-oracledb

nvm

npm

express
express-validator
morgan

Oracle Database and Grid Infrastructure
Oracle Instant Client
Kubernetes

Docker

NODE LIBRARIES

morgan provides logging

VERSION

oracle-epel-release-el7.x86_64 0:1.0-2.el7
10.19.0
4.2.0
0.35.2
6.13.7
4.17.1
6.4.0
191
19.6
19.5
1.14.8

18.09.8

express provides a web server framework and enables JSON extraction from the request body
express-validator provides input validation

node-oracledb provides the interface to the Oracle database

MICROSERVICE CONFIGURATION

We implemented most parameterization through environment variables, for example the following:

const webConfig = {

port: process.env. HTTP_PORT ||

8080

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0

Copyright © 2020, Oracle and/or its affiliates

DATABASE CONNECTION POOLING

We created a database connection pool with the following attributes:

® Minimum (poolMin) and maximum (poolMax) connection counts set to the same value, per Oracle Real World Performance Team

guidance to prevent connection storms, using the environment variable DB_CONNECTION_COUNT.
® Pool increment (poolincrement) set to 0.

® Set events=true to enable FAN. This can be set via the oracledb.events property or at connection pool creation by setting the events
property in the object passed for poolAttrs. By default events it is set to false at the oracledb level except for two specific versions (4.0.0
and 4.0.1) in which it was set to true by default. For the purposes of this testing, enabled setting the value via environment variable

DB_M_FAN_EVENTS for the oracledb level.

® During outages there can be a temporary shortage of connections in the pool. Requests for connections are queued. The queueTimeout
settings ensure that queued connection requests will wait this amount of time before failing. The default value is 60000 (60 seconds). For
the purpose of this testing, enabled this to be set via the environment variable DB_CP_QUEUE_TIMEOUT, and tested in these tests with

a value of 10000 (10 seconds).

const dbConfig = {
order Pool : {
user: process. env. DB _USER,
password: process. env. DB_PASSWORD,
connect String: process. env. DB_CONNECT_STRI NG
pool M n: Nunber (process. env. DB_CONNECTI ON_COUNT) || 10,
pool Max: Nunber (process. env. DB_CONNECTI ON_COUNT) || 10,

pool I ncrement: process.env.DB POOL_INC || O

}s

switch (process. env. DB_M FAN EVENTS) {

case 'false':
consol e.l og(' Setting oracl edb. events to false..."');
oracl edb. events = fal se;
br eak;

case 'true':
consol e.l og(' Setting oracl edb. events to true..."');
oracl edb. events = true;
br eak;

defaul t:

consol e. | og(' Keepi ng default value for oracl edb. events..."');

if (process.env. DB_CP_QUEUE TI MEQUT) {

consol e. | og("' Setting dbConfi g. orderPool . queueTi meout to environnent variable value [%]...

DB_CP_QUEUE_TI MEQUT) ;
dbConfi g. or der Pool . queueTi neout = Nunber (process. env. DB_CP_QUEUE_TI MEQUT) ;

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

, process. env.

35

Because node-oracledb makes use of worker threads via the libuv library, it is important to ensure that there are at least as many worker threads
as database connections. By default there are 4 worker threads. As worker threads could be required for other application processing if the
application does both database and non-database work at the same time, for our testing we chose to increase the number of worker threads by
the number of connections in the pool. We set this value by setting the environment variable UV_THREADPOOL_SIZE. For more information,
see https://oracle.github.io/node-oracledb/doc/api.html#-143-connections-threads-and-parallelism.

const def aul t UWThr eadPool Si ze = 4;

const currUWThreadPool Si ze = process. env. UWW_THREADPOOL_SI ZE || defaul t UVThr eadPool Si ze;

if (currUVThreadPool Si ze < def aul t UVThr eadPool Si ze + dbConfi g. or der Pool . pool Max) {
process. env. UV_THREADPOCL_SI ZE = dbConfi g. or der Pool . pool Max + def aul t UVThr eadPool Si ze;

FUNCTIONAL IMPLEMENTATION

MICROSERVICE | OPERATION NODE.JS CODE

Orders PUT /placeOrder const soda = connection. get SodaDat abase() ;

const sodaCol | ecti on = await soda. openCol | ecti on(sodaConfi g.
ordersCol | ecti onNan®e) ;

const newOrder Doc = soda. creat eDocunent (order, { key: order.
orderid});

createdDoc = await sodaCol | ection. i nsert OneAndGet
(newOr der Doc) ;

const order Queue = await connection. get Queue(queueConfi g.
or der Queue) ;

const order MsgContent = {
orderid: order.orderid,
itemd: order.itemd

}

const inventoryMsg = await order Queue. enqOne(JSON. stringify
(order MsgContent)) ;

awai t connection.commit();

GET /showOrder const soda = connection. get SodaDat abase() ;

const sodaCol | ection = await soda. openCol | ecti on(sodaConfi g.
order sCol | ecti onNane) ;

const orderDoc = await sodaCol | ection.find().key(orderKey).
get One();

Inventory Queue const inventoryMsg = await inventoryQueue.deqOne();
Consumer

const inventoryMsgContent = JSON. parse(inventoryMsg. payl oad.
toString());

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

https://oracle.github.io/node-oracledb/doc/api.html#-143-connections-threads-and-parallelism

Inventory GET /inventory

const soda = connecti on. get SodaDat abase() ;

const sodaCol | ection = await soda. openCol | ecti on(sodaConfi g.
ordersCol | ecti onNan®e) ;

const orderDoc = await sodaCol |l ection.find().key
(i nvent oryMsgCont ent. orderi d). get One();

order = orderDoc. get Content ();

order.itemid = inventoryMsgContent.inventoryid;
if (inventoryMsgContent.action === 'inventoryexists') {
order.status = 'successful';

order.suggestiveSal eltem = ' suggesti veSal el teni ;
} else {

order.status = 'failed no inventory';

if (inventoryMsgContent.|ocation) {

order.inventoryl ocation = inventoryMsgContent.|ocation;

const newOrder Doc = soda. cr eat eDocunent (order, { key:
i nvent oryMsgCont ent . orderi d});

const updat edOrderDoc = await sodaCol | ection. find().key
(i nvent oryMsgCont ent. orderi d) . repl aceOneAndCet (newOr der Doc) ;

await connection. commt();

const sql Statenment =
“select inventoryid "inventoryid"
, inventorylocation "inventoryl ocation"
, inventorycount "inventorycount"
frominventory
where 1=1

and inventoryid = :inventoryid ;

bi ndVari abl es. i nventoryi d = req. parans. inventoryid;

options. out Format = oracl edb. OQUT_FORVAT_OBJECT;

connection = await oracl edb. get Connection();

const queryResult = await connection. execut e(sqgl Statenent,
bi ndVari abl es, options);

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0

Copyright © 2020, Oracle and/or its affiliates

ot

Order Queue Consumer const orderMsg = await order Queue. deqOne();

const order MsgContent = JSON. par se(order Msg. payl oad.
toString());

const updateSQ =

“update inventory

set inventorycount = inventorycount - 1
where 1=1
and inventoryid = :inventoryid

and inventorycount > 0
returning i nventoryl ocation

into :inventorylocation;

if ((orderMsgContent) && (orderMsgContent.itenmid) &&
(order MsgContent . orderid)) {

bi ndVari abl es. i nventoryid = order MsgContent.itemd

bi ndVari abl es. i nvent oryl ocati on = {
dir: oracl edb. Bl ND_QUT,
type: oracl edb. STRI NG

b

options. out Format = oracl edb. OQUT_FORVAT_OBJECT;

const queryResult = await connection. execut e(updat eSQL,
bi ndVari abl es, options);

if (queryResult.rowsAffected & queryResult.rowsAffected
=== 1) {

action = "inventoryexists";

| ocation = queryResult. outBi nds.inventoryl ocation[O0];
} else {

action = "inventorydoesnotexist";

location = "";

const inventoryMsgContent = {
orderid: orderMsgContent. orderid,

action: action,

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0
Copyright © 2020, Oracle and/or its affiliates

| ocation: |ocation

%

const inventoryMsg = await inventoryQueue. engOne(JSON.
stringi fy(inventoryMsgContent));

await connection.commt();

DOCKER PACKAGING

IMAGE DOCKER FILE

orders FROM or acl el i nux: 7-sl i m
inventory
RUN yum -y install oracle-rel ease-el 7 oracl e-nodej s-rel ease-el 7 && \
yum conf i g- manager --di sabl e ol 7_devel oper EPEL && \
yum -y install oracle-instantclient19.5-basiclite nodejs && \

rm-rf /var/cache/ yum

Create app directory
WORKDI R /usr/src/orders

Install app dependencies
A w ldcard is used to ensure both package.json AND package-| ock.json are copied
where avail abl e (npm@+)

COPY package*.json ./

RUN npm i nstal |
|f you are building your code for production

RUN npm ci --onl y=production

Bundl e app source

COPY .

EXPOSE 8080
CMVMD ["node", "app.js"]

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0

38 Copyright © 2020, Oracle and/or its affiliates

Test Results

The implementation deployed in the test environment and tested under load functioned according to the specification.

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0

9 Copyright © 2020, Oracle and/or its affiliates

CONCLUSION

Through the case studies, we have demonstrated how data centric microservices conforming to our simple architecture and best practices, built
in Java Helidon, Python and Node.js, and deployed on Oracle Cloud Infrastructure and Oracle Database, functioned exactly to our
specification. Further we showed the flexibility of the Oracle Converged Database to store different data types making the data architecture
simple.

DB TECHNICAL WHITE PAPER | Case Study on Building Data-Centric Microservices | Version 1.0

0 Copyright © 2020, Oracle and/or its affiliates

CONNECT WITH US

Call +1.800.0RACLEL1 or visit oracle.com.

Outside North America, find your local office at oracle.com/contact.

E blogs.oracle.com n facebook.com/oracle H twitter.com/oracle

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are subject to change
without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied
warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual
obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or

mechanical, for any purpose, without our prior written permission.

This device has not been authorized as required by the rules of the Federal Communications Commission. This device is not, and may not be, offered for sale or

lease, or sold or leased, until authorization is obtained.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group. 0120

Case Study on Building Data-Centric Microservices May, 2020

	Best Practices for Building Datacentric Microservices - Part I - Getting Started

