
Edition-Based Redefinition
A Key to Online Application Upgrade

Goals of Edition-Based Redefinition

• Allow arbitrary changes to the set of artifacts implementing application’s database of

record

• Use both pre-upgrade and post-upgrade application at the same time (hot rollover)

• Maintain uninterrupted availability of the application

• Ensure no noticeable negative impact on performance.

Copyright © 2024, Oracle and/or its affiliates2

Online Application Upgrade
The final piece of the HA jigsaw puzzle

3 Copyright © 2024, Oracle and/or its affiliates

High Availability

Change application’s
database objects

Survive
Hardware Failure

Change Infrastructure:
Operating System, Oracle

Database

Change objects’
physical properties

Planned Software Changes

High Availability

Planned Software Changes

Change objects’ meaning:
patching and upgrading

Change application’s
database objects

Online Application Upgrade
The final piece of the HA jigsaw puzzle

4 Copyright © 2024, Oracle and/or its affiliates

Change Infrastructure:
Operating System, Oracle

Database

Change objects’
physical properties

Survive
Hardware Failure

Program agenda

• Implementation of case study as an EBR exercise

• The challenge – and the statement of the solution

• Description of case study

• Explanation of edition, editioning view, and cross-edition trigger

• Preparing an application for EBR

Copyright © 2024, Oracle and/or its affiliates5

Online Application Upgrade

• Supporting online application upgrade requires maintaining uninterrupted availability of the
application

• End-user sessions can last tens of minutes or longer because –

• Users of the old app don’t want to abandon an ongoing session

• Users wanting to start a session must use the new app, but cannot wait until no-one is using the old app

• Thus, there is requirement for using both the pre-upgrade application and the post-upgrade
application at the same time – a.k.a. hot rollover

Copyright © 2024, Oracle and/or its affiliates6

The Challenge

• Upgrading production database without disturbing live users of the pre-upgrade application

• Making changes to database objects in privacy

• Ensuring transactions done by the users of the pre-upgrade application are reflected in the post-
upgrade application

• Achieving hot rollover i.e., transactions done by the users of the post-upgrade application are
reflected in the pre-upgrade application.

Copyright © 2024, Oracle and/or its affiliates7

Functional goals of any ZDT solution

• Cloning V[n] database into V[n+1] database

• Making arbitrary changes in V[n+1] database without them showing up in V[n] database

• Syncing data between V[n] and V[n+1] databases when all intended changes are done in the V[n+1]
database.

• Ensuring V[n] database is in sync with V[n+1] database, when V[n+1] is opened for use

• Honoring data and business rules in a transactional fashion—in the presence of this mutual bi-
directional synchronization

Copyright © 2024, Oracle and/or its affiliates8

Non-functional goals of any ZDT solution

• Creating V[n+1] as a clone of V[n] instantaneously without taking additional space.

• It must have no noticeable effect on the performance experience of the online users

• This implies that the solution must work its magic by making one single database seem, to
connecting clients, as if it’s two separate databases

• This, of course, is how EBR works

Copyright © 2024, Oracle and/or its affiliates9

Key Features of Edition-Based Redefinition

• Edition

• Code changes are installed in the privacy of a new edition

• Data changes are made safely by writing to new columns/tables

• These changes are not seen by the old edition

• Editioning View

• Exposes a different projection of a table into each edition

• Allows each user to see just its own columns

• Cross-edition Trigger

• Propagates data changes made by the old edition into the new edition’s columns

• Also, propagates changes made by new edition into old edition’s columns in the case of hot- rollover

With Oracle Database 23ai, EBR is now compatible with Oracle GoldenGate and other data integration solutions
that require supplemental logging.

Copyright © 2024, Oracle and/or its affiliates10

Hot rollover across stack - General Upgrade

Copyright © 2024, Oracle and/or its affiliates11

Current edition

Current app

Hot rollover across the stack

Current edition

Current app

Copyright © 2024, Oracle and/or its affiliates12

Hot rollover across the stack

Current edition

Current app

Copyright © 2024, Oracle and/or its affiliates13

Hot rollover across the stack – Normal use (pre-upgrade)

Current edition

Current app

Copyright © 2024, Oracle and/or its affiliates14

Hot rollover across the stack – Upgrade begins

Current
edition

Updated
edition

Current app

Copyright © 2024, Oracle and/or its affiliates15

Hot rollover across the stack – Upgrade complete

Updated appCurrent app

Current
edition

Updated
edition

Copyright © 2024, Oracle and/or its affiliates16

Hot rollover across the stack – Hot rollover begins!

Current app

Current
edition

Updated
edition

Updated app

Copyright © 2024, Oracle and/or its affiliates17

Hot rollover across the stack

Current
edition

Updated
edition

Current app Updated app

Copyright © 2024, Oracle and/or its affiliates18

Hot rollover across the stack

Current
edition

Updated
edition

Current app Updated app

Copyright © 2024, Oracle and/or its affiliates19

Hot rollover across the stack

Current
edition

Updated
edition

Current app Updated app

Copyright © 2024, Oracle and/or its affiliates20

Hot rollover across the stack

Current
edition

Updated
edition

Current app Updated app

Copyright © 2024, Oracle and/or its affiliates21

Hot rollover across the stack

Current
edition

Updated
edition

Current app Updated app

Copyright © 2024, Oracle and/or its affiliates22

Hot rollover across the stack – hot rollover ends!

Former
edition

Current
edition

Current app Updated app

Copyright © 2024, Oracle and/or its affiliates23

Hot rollover across the stack – normal use (post-upgrade)

Former
edition

Current
edition

Former app Current app

Copyright © 2024, Oracle and/or its affiliates24

Hot rollover across the stack – cleanup

Former
edition

Current
edition

Current app

Copyright © 2024, Oracle and/or its affiliates25

Hot rollover across the stack

Current edition

Current app

Copyright © 2024, Oracle and/or its affiliates26

Case Study

Copyright © 2024, Oracle and/or its affiliates27

The edition – setting the stage
Scenario – for now think only about synonyms, views, and PL/SQL

• The application has 1,000 mutually dependent code objects

• In general, there’s more than one schema

• They refer to each other by name – in general, by schema- qualified name

• The upgrade needs to change 10 of these

Copyright © 2024, Oracle and/or its affiliates28

The edition – setting the stage

1,000 v1 objects

990 unchanged v1 objects
+

10 changed v2 objects

Pre-upgrade application backend

Post-upgrade application backend

Copyright © 2024, Oracle and/or its affiliates29

The edition – setting the stage

• You can’t change the 10 objects in place as it would change the pre-upgrade app

• An old and a new occurrence of the “same” object cannot co-exist

• Before EBR, the only dimensions that determine which object you mean, when one object refers to
another, are its name and its owner

• In short, the naming mechanisms, historically, were not rich enough to support online application
upgrade

Copyright © 2024, Oracle and/or its affiliates30

The edition extends the naming mechanism

• EBR introduces the new nonschema object type, edition – each edition can have its own private
occurrence of “the same” object

• A database must have at least one edition

• You create a new edition as the child of an existing edition – and an edition can’t have more than
one child

• A database session specifies which edition to use (of course, the database has a default edition)

Copyright © 2024, Oracle and/or its affiliates31

The edition extends the naming mechanism

• An object is identified by its name and its owner

• An editioned object is identified by its name, its owner, and the edition where it was created

• However, when you identify it, you can mention only its name and owner. This reference is
interpreted in the context of a current edition

• in SQL execution

• in the text of a stored object

Copyright © 2024, Oracle and/or its affiliates32

The semantic model for “create edition”

Copyright © 2024, Oracle and/or its affiliates33

When you create a new edition, every editioned object
in the parent edition is copied into the new edition

The mental model of the implementation

Copyright © 2024, Oracle and/or its affiliates34

Object_1

Object_2

Object_3

Object_4

Pre-upgrade edition

The mental model of the implementation

Copyright © 2024, Oracle and/or its affiliates35

Pre-upgrade edition Post-upgrade edition

Object_1

Object_2

Object_3

Object_4

Object_1

Object_2

Object_3

Object_4

is child of

(inherited)

(inherited)

(inherited)

(inherited)

The mental model of the implementation

Copyright © 2024, Oracle and/or its affiliates36

Pre-upgrade edition Post-upgrade edition

Object_1

Object_2

Object_3

Object_4

Object_1*

Object_2*

Object_3

Object_4

is child of

(actual)

(actual)

(inherited)

(inherited)

The mental model of the implementation

Copyright © 2024, Oracle and/or its affiliates37

Pre-upgrade edition Post-upgrade edition

Object_1

Object_2

Object_3

Object_4

Object_1*

Object_2*

Object_3

Object_4

is child of

(dropped)

(actual)

(inherited)

(inherited)

Editions

• If your upgrade needs only to change synonyms, views, or PL/SQL units, you now have all the tools
you need

• Simply run the scripts that you, anyway, have written using a new edition while the application stays
online

• Then change the default edition and let new session start in the new edition

• No “package state discarded” errors ever again!

38 Copyright © 2024, Oracle and/or its affiliates

Editionable and noneditionable object types

1. Not all object types are editionable

• Synonyms, views, and PL/SQL units of all kinds (including, therefore, triggers and libraries), and are
editionable

• Objects of all other object types – for example tables – are noneditionable

2. You need to version the structure of a table manually

• Instead of changing a column, you add a replacement column

• Then you rely on the fact that a view is editionable

39 Copyright © 2024, Oracle and/or its affiliates

Editioning views

• An editioning view (EV) may only project and rename columns

• You can’t have more than one editioning view for a table in a particular edition

• The EV must be owned by the table’s owner

• Application code should refer only to the logical world

• You can create table-style triggers (before or after statement or each row) on an editioning view
using the “logical” column names

• A SQL optimizer hint can request an index on the physical table by specifying the “logical” column
names

• Like all views, an editioning view can be read-only

Copyright © 2024, Oracle and/or its affiliates40

Editioning views – performance

• Any SQL statement that refers to one, or several, EVs will get the same execution plan as the
statement you’d get if you replaced each of those references, by hand, with a reference to the table
that the EV covers

• So, using an EV in front of every table brings no performance consequences

• Tests have proved this

41 Copyright © 2024, Oracle and/or its affiliates

Editioned and noneditioned objects – slight return

• An object whose type is non-editionable is never editioned

• An object whose type is editionable is editioned only when you request it for that object (requires
that the owner is editions-enabled)

• You control the editioned state at the granularity of the single name

• Theorem (the NE-on-E prohibition): a non-editioned object cannot ordinarily depend on an
editioned object

• For example, a table cannot depend on an editioned UDT

• If you want to use a type as the datatype for a column, that UDT must not be editioned

42 Copyright © 2024, Oracle and/or its affiliates

Materialized views and indexes on virtual columns

• These objects have metadata that is explicitly set by the create and alter statements

• The evaluation edition explicitly specifies the name of the edition in which the resolution of
editioned names will be done

• within the closure of the object’s static dependency parents (at compile time)

• and for those objects that are identified dynamically during SQL execution (at run time)

• The usable edition range explicitly specifies the set of adjacent editions within which the optimizer
will consider the object, for query re-write when computing the execution plan

43 Copyright © 2024, Oracle and/or its affiliates

Public synonyms

• A public synonym is just a synonym that happens to be owned by the Oracle-maintained user called
“public”

• “public” user is editions enabled, but all existing public synonyms are non-editioned at the per-
object level

• As of version 12.1+, you can make your own public synonyms editioned at the per-object level

Copyright © 2024, Oracle and/or its affiliates44

Tables with UDT columns

• An ordinary column (as opposed to virtual) cannot specify the evaluation edition or the usable
edition range metadata

• Therefore, a UDT that defines the datatype for a table column must remain noneditioned

• In an EBR exercise, if the aim is to redefine the UDT, then the “classic” replacement column
paradigm is used

Copyright © 2024, Oracle and/or its affiliates45

The crossedition trigger

• Of course, DML does not stop during online application upgrade

• If the upgrade needs to change the structure that stores transactional data – like the orders
customers make using an online shopping site – then the installation of values into the replacement
columns must keep pace with these changes

• Triggers have the ideal properties to do this safely

• Each trigger must fire appropriately to propagate changes made to pre-upgrade columns into the
post- upgrade columns – and vice versa

Copyright © 2024, Oracle and/or its affiliates46

The crossedition trigger

• Crossedition triggers directly access the table

• They have special firing rules

• You create crossedition triggers in the Post_Upgrade edition

• The paradigm is: don’t do any DDLs in the Pre_Upgrade edition

• The firing rules rules assume that

• Pre-upgrade columns are changed only by sessions using the Pre_Upgrade edition

• Post-upgrade columns are changed only by sessions using the Post_Upgrade edition

Copyright © 2024, Oracle and/or its affiliates47

The crossedition trigger

• A forward crossedition trigger is fired by application DML issued by sessions using the Pre_Upgrade
edition

• A reverse crossedition trigger is fired by application DML issued by sessions using the Post_Upgrade
edition

Copyright © 2024, Oracle and/or its affiliates48

Readying the application for editions

• Put an editioning view in front of every table

• The EV and the table it covers can’t have the same name

• Rename each table to an obscure but related name (e.g. append an underscore, or lowercase the name)

• Create an editioning view for each table that has the same name that the table originally had

• NOTE:

• If a schema has an object, whose type is noneditionable, that depends on an object whose type is editionable,
then the adoption plan must accommodate this by controlling the editioned state of objects whose type is
editionable, at the granularity of the individual object

• Else, the editioned state can be conveniently set for the whole schema

Copyright © 2024, Oracle and/or its affiliates49

Readying the application for editions

• Revoke privileges from the tables and grant them to the editioning views

• Move VPD policies to the editioning views

• “Move” triggers to the editioning views

• Just drop the trigger and re-run the original (or mechanically edited) create trigger statement to recreate it on the
editioning view

• Of course

• All indexes on the original Employees table remain valid but User_Ind_Columns now shows the new values for
Table_Name and Column_Name

• All constraints (foreign key and so on) on the original Employees remain in force for Employees_

• This readying work must be done by the developers of the application that adopts EBR

Copyright © 2024, Oracle and/or its affiliates50

Case study

Copyright © 2024, Oracle and/or its affiliates51

PK Phone ...

Employees_

Current edition

Employees Maintain_Emps

Copyright © 2024, Oracle and/or its affiliates52

PK Phone ...

Employees_

Employees Maintain_Emps

Employees Maintain_Emps

Current edition

Updated edition

Copyright © 2024, Oracle and/or its affiliates53

Employees Maintain_Emps

Employees Maintain_Emps

PK Phone #Cntry...

Employees_

Current edition

Updated edition

Copyright © 2024, Oracle and/or its affiliates54

Employees Maintain_Emps

PK Phone #Cntry...

Employees_

Employees Maintain_Emps

Current edition

Updated edition

Copyright © 2024, Oracle and/or its affiliates55

Employees Maintain_Emps

PK Phone #Cntry...

Employees_

Employees Maintain_Emps

Fwd_Xed

Current edition

Updated edition

Copyright © 2024, Oracle and/or its affiliates56

Employees Maintain_Emps

PK Phone #Cntry...

Employees_

Employees Maintain_Emps

Fwd_Xed

Current edition

Updated edition

Copyright © 2024, Oracle and/or its affiliates57

Employees Maintain_Emps

PK Phone #Cntry...

Employees_

Employees Maintain_Emps

Fwd_Xed
Rvrs_Xed

Current edition

Updated edition

Copyright © 2024, Oracle and/or its affiliates58

Employees Maintain_Emps

PK Phone #Cntry...

Employees_

Employees Maintain_Emps

Fwd_Xed
Rvrs_Xed

present
Current edition

to-be
Current edition

Copyright © 2024, Oracle and/or its affiliates59

Employees Maintain_Emps

PK Phone #Cntry...

Employees_

Employees Maintain_Emps

Former edition

Current edition

Copyright © 2024, Oracle and/or its affiliates60

PK Phone #Cntry...

Employees_

Employees Maintain_Emps

Current edition

Former edition

Copyright © 2024, Oracle and/or its affiliates61

PK Phone #Cntry...

Employees_

Employees Maintain_Emps

Current edition

Copyright © 2024, Oracle and/or its affiliates62

PK Phone #Cntry...

Employees_

Employees Maintain_Emps

Current edition

Copyright © 2024, Oracle and/or its affiliates63

Automated retiring of unused editions as of Oracle Database 12.2

• “Drop edition” is re-implemented to formalize retiring an edition

• You can always drop the root edition, even when it contains actual editioned objects that are
inherited by a descendent edition

• It remains in place, but it is marked “unusable” so that you can never use it again

• An editioned object in an unusable edition that is not visible in a usable edition is dropped safely
and automatically by a background process

• When an unusable edition contains no actual editioned objects, it is dropped safely and
automatically by a background process

Copyright © 2024, Oracle and/or its affiliates64

Rolling back
a failed EBR exercise

Copyright © 2024, Oracle and/or its affiliates65

Employees Maintain_Emps

PK Phone #Cntry...

Employees_

Employees Maintain_Emps

Fwd_Xed
Rvrs_Xed

Current edition

Updated edition

Copyright © 2024, Oracle and/or its affiliates66

Employees Maintain_Emps

PK Phone #Cntry...

Employees_

Employees Maintain_Emps

Fwd_Xed
Rvrs_Xed

Current edition

Updated edition

Copyright © 2024, Oracle and/or its affiliates67

Employees Maintain_Emps

PK Phone #Cntry...

Employees_

Current edition

Copyright © 2024, Oracle and/or its affiliates68

Demonstration

Copyright © 2024, Oracle and/or its affiliates69

Column widening using the
replacement column paradigm

create edition e1 as child of Ora$Base

/

alter session set edition = e1

/

Insensitive to pending DML

Copyright © 2024, Oracle and/or its affiliates70

alter table t_ add c_Wide varchar2(50)

/

Waits on pending DML without blocking new DML

Copyright © 2024, Oracle and/or its affiliates71

create trigger Fwd

before update or insert on t_ for each row

forward crossedition

disable

begin

:New.c_Wide := :new.c;

end Fwd;

/

alter trigger Fwd enable

/

Insensitive to pending DML

Copyright © 2024, Oracle and/or its affiliates72

declare

-- Supplying "null" for the SCN formal to Wait_On_Pending_DML()

-- asks it to get the most current SCN across all instances.

SCN number := null;

-- A null or negative value for Timeout will cause a very long wait.

Timeout constant integer := null;

begin

if not Sys.DBMS_Utility.Wait_On_Pending_DML(

Tables => 't_',

Timeout => Timeout,

SCN => SCN)

then

Raise_Application_Error(-20000,

'Wait_On_Pending_DML() timed out. '||

'CET was enabled before SCN: '||SCN);

end if;

end Wait_On_Pending_DML;

/

Deliberately wait on pending DML. Doesn’t block new DML.

Copyright © 2024, Oracle and/or its affiliates73

declare

Cur integer :=

Sys.DBMS_Sql.Open_Cursor(Security_Level => 2);

No_Of_Updated_Rows integer not null := -1;

begin

Sys.DBMS_Sql.Parse(

c => Cur,

Language_Flag => Sys.DBMS_Sql.Native,

Statement => 'update t_ set c = c',

Apply_Crossedition_Trigger => 'Fwd',

Fire_Apply_Trigger => true);

No_Of_Updated_Rows := Sys.DBMS_Sql.Execute(Cur);

Sys.DBMS_Sql.Close_cursor(Cur);

end;

/

Apply the crossedition trigger’s transform to every row

Copyright © 2024, Oracle and/or its affiliates74

alter table t_

modify c_Wide constraint t_c_Wide_NN not null

enable novalidate

/

Waits on pending DML without blocking new DML

Copyright © 2024, Oracle and/or its affiliates75

create unique index t_c_Wide_Unq

on t_(c_Wide)

online

/

Waits on pending DML without blocking new DML

Copyright © 2024, Oracle and/or its affiliates76

alter table t_

add constraint t_c_Wide_Unq unique (c_Wide)

using index t_c_Wide_Unq

enable novalidate

/

Waits on pending DML without blocking new DML

Copyright © 2024, Oracle and/or its affiliates77

alter table t_

enable validate

constraint t_c_Wide_NN

/

alter table t_

enable validate

constraint t_c_Wide_Unq

/

create or replace editioning view t as

select PK, c_Wide c from t_

/

Insensitive to pending DML

Copyright © 2024, Oracle and/or its affiliates78

create trigger Rvrs

before update or insert on t_ for each row

reverse crossedition

disable

begin

:New.c := :new.c_Wide;

end Rvrs;

/

alter trigger Rvrs enable

/

Hot rollover can start now!

Insensitive to pending DML

Copyright © 2024, Oracle and/or its affiliates79

Wait until no sessions are using the old edition.

Then retire it.

Copyright © 2024, Oracle and/or its affiliates80

alter database default edition = e1

/

Insensitive to pending DML

Copyright © 2024, Oracle and/or its affiliates81

-- Want to drop the crossedition triggers ASAP

-- to avoid now-unnecessary cost of firing them.

-- Must first drop the constraint that Revrs satisfies.

alter table t_

drop constraint t_c_NN

online

/

Waits on pending DML without blocking new DML

Copyright © 2024, Oracle and/or its affiliates82

alter trigger Rvrs disable

/

drop trigger Rvrs

/

alter trigger Fwd disable

/

drop trigger Fwd

/

Insensitive to pending DML

Copyright © 2024, Oracle and/or its affiliates83

alter table t_

drop constraint t_c_Unq

online

/

Waits on pending DML without blocking new DML

Copyright © 2024, Oracle and/or its affiliates84

-- Drop all covered objects.

-- Normally this is done entirely mechanically by discovering the

-- covered objects and generating the appropriate "drop" for each.

declare

Stmt constant varchar2(32767) not null := '

drop view t';

Cur integer :=

Sys.DBMS_Sql.Open_Cursor(Security_level=>2);

begin

-- Parse for a DDL implies Execute.

Sys.DBMS_Sql.Parse(

c => Cur,

Language_Flag => Sys.DBMS_Sql.Native,

Statement => Stmt,

Edition => 'ORA$BASE');

Sys.DBMS_Sql.Close_Cursor(Cur);

end;

/

Insensitive to pending DML

Copyright © 2024, Oracle and/or its affiliates85

Waits on pending DML without blocking new DML

Copyright © 2024, Oracle and/or its affiliates86

alter table t_

set unused column c

online

/

The EBR exercise is now complete!

Edition-Based Redefinition

• EBR brings the edition, the editioning view, and the crossedition trigger

• Code changes are installed in the privacy of a new edition

• Data changes are made safely by writing only to new columns or new tables not seen by the old edition

• An editioning view exposes a different projection of a table into each edition to allow each to see just its own
columns

• A crossedition trigger propagates data changes made by the old edition into the new edition’s columns, or (in
hot- rollover) vice-versa

Copyright © 2024, Oracle and/or its affiliates87

Evolutionary capability improvements

• Some table DDLs that used to fail if another session had outstanding DML now always succeed

• Others, that cannot succeed while there’s outstanding DML, are now governed by a timeout
parameter

• Online index creation and rebuild now never cause other sessions to wait

• The dependency model is now fine-grained: e.g. adding a new column to a table, or a new
subprogram to a package spec, no longer invalidates the dependants

Copyright © 2024, Oracle and/or its affiliates88

Next steps

• Read the edition-based redefinition chapter in the Oracle Database Development Guide

• Read EBR whitepaper, published on oracle.com/ebr

Copyright © 2024, Oracle and/or its affiliates89

Copyright © 2024, Oracle and/or its affiliates90

	Slide 1: Edition-Based Redefinition
	Slide 2: Goals of Edition-Based Redefinition
	Slide 3: Online Application Upgrade
	Slide 4: Online Application Upgrade
	Slide 5: Program agenda
	Slide 6: Online Application Upgrade
	Slide 7: The Challenge
	Slide 8: Functional goals of any ZDT solution
	Slide 9: Non-functional goals of any ZDT solution
	Slide 10: Key Features of Edition-Based Redefinition
	Slide 11: Hot rollover across stack - General Upgrade
	Slide 12: Hot rollover across the stack
	Slide 13: Hot rollover across the stack
	Slide 14: Hot rollover across the stack – Normal use (pre-upgrade)
	Slide 15: Hot rollover across the stack – Upgrade begins
	Slide 16: Hot rollover across the stack – Upgrade complete
	Slide 17: Hot rollover across the stack – Hot rollover begins!
	Slide 18: Hot rollover across the stack
	Slide 19: Hot rollover across the stack
	Slide 20: Hot rollover across the stack
	Slide 21: Hot rollover across the stack
	Slide 22: Hot rollover across the stack
	Slide 23: Hot rollover across the stack – hot rollover ends!
	Slide 24: Hot rollover across the stack – normal use (post-upgrade)
	Slide 25: Hot rollover across the stack – cleanup
	Slide 26: Hot rollover across the stack
	Slide 27: Case Study
	Slide 28: The edition – setting the stage
	Slide 29: The edition – setting the stage
	Slide 30: The edition – setting the stage
	Slide 31: The edition extends the naming mechanism
	Slide 32: The edition extends the naming mechanism
	Slide 33: The semantic model for “create edition”
	Slide 34: The mental model of the implementation
	Slide 35: The mental model of the implementation
	Slide 36: The mental model of the implementation
	Slide 37: The mental model of the implementation
	Slide 38: Editions
	Slide 39: Editionable and noneditionable object types
	Slide 40: Editioning views
	Slide 41: Editioning views – performance
	Slide 42: Editioned and noneditioned objects – slight return
	Slide 43: Materialized views and indexes on virtual columns
	Slide 44: Public synonyms
	Slide 45: Tables with UDT columns
	Slide 46: The crossedition trigger
	Slide 47: The crossedition trigger
	Slide 48: The crossedition trigger
	Slide 49: Readying the application for editions
	Slide 50: Readying the application for editions
	Slide 51: Case study
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Automated retiring of unused editions as of Oracle Database 12.2
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: Demonstration
	Slide 70: Insensitive to pending DML
	Slide 71: Waits on pending DML without blocking new DML
	Slide 72: Insensitive to pending DML
	Slide 73: Deliberately wait on pending DML. Doesn’t block new DML.
	Slide 74: Apply the crossedition trigger’s transform to every row
	Slide 75: Waits on pending DML without blocking new DML
	Slide 76: Waits on pending DML without blocking new DML
	Slide 77: Waits on pending DML without blocking new DML
	Slide 78: Insensitive to pending DML
	Slide 79: Insensitive to pending DML
	Slide 80
	Slide 81: Insensitive to pending DML
	Slide 82: Waits on pending DML without blocking new DML
	Slide 83: Insensitive to pending DML
	Slide 84: Waits on pending DML without blocking new DML
	Slide 85: Insensitive to pending DML
	Slide 86: Waits on pending DML without blocking new DML
	Slide 87: Edition-Based Redefinition
	Slide 88: Evolutionary capability improvements
	Slide 89: Next steps
	Slide 90

