
Edition-Based Redefinition
A Key to Online Application Upgrade



Goals of Edition-Based Redefinition

• Allow arbitrary changes to the set of artifacts implementing application’s database of 

record 

• Use both pre-upgrade and post-upgrade application at the same time (hot rollover)

• Maintain uninterrupted availability of the application

• Ensure no noticeable negative impact on performance.
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Online Application Upgrade
The final piece of the HA jigsaw puzzle
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Program agenda

• Implementation of case study as an EBR exercise

• The challenge – and the statement of the solution

• Description of case study

• Explanation of edition, editioning view, and cross-edition trigger

• Preparing an application for EBR
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Online Application Upgrade

• Supporting online application upgrade requires maintaining uninterrupted availability of the 
application

• End-user sessions can last tens of minutes or longer because –

• Users of the old app don’t want to abandon an ongoing session

• Users wanting to start a session must use the new app, but cannot wait until no-one is using the old app

• Thus, there is requirement for using both the pre-upgrade application and the post-upgrade 
application at the same time – a.k.a. hot rollover
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The Challenge

• Upgrading production database without disturbing live users of the pre-upgrade application

• Making changes to database objects in privacy

• Ensuring transactions done by the users of the pre-upgrade application are reflected in the post-
upgrade application

• Achieving hot rollover i.e., transactions done by the users of the post-upgrade application are 
reflected in the pre-upgrade application. 
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Functional goals of any ZDT solution

• Cloning V[n] database into V[n+1] database

• Making arbitrary changes in V[n+1] database without them showing up in V[n] database

• Syncing data between V[n] and V[n+1] databases when all intended changes are done in the V[n+1]
database.

• Ensuring V[n] database is in sync with V[n+1] database, when V[n+1] is opened for use

• Honoring data and business rules in a transactional fashion—in the presence of this mutual bi-
directional synchronization
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Non-functional goals of any ZDT solution

• Creating V[n+1] as a clone of V[n] instantaneously without taking additional space. 

• It must have no noticeable effect on the performance experience of the online users

• This implies that the solution must work its magic by making one single database seem, to 
connecting clients, as if it’s two separate databases

• This, of course, is how EBR works
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Key Features of Edition-Based Redefinition

• Edition

• Code changes are installed in the privacy of a new edition

• Data changes are made safely by writing to new columns/tables

• These changes are not seen by the old edition

• Editioning View

• Exposes a different projection of a table into each edition 

• Allows each user to see just its own columns

• Cross-edition Trigger

• Propagates data changes made by the old edition into the new edition’s columns

• Also, propagates changes made by new edition into old edition’s columns in the case of hot- rollover

With Oracle Database 23ai, EBR is now compatible with Oracle GoldenGate and other data integration solutions 
that require supplemental logging.

Copyright © 2024, Oracle and/or its affiliates10



Hot rollover across stack - General Upgrade
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Hot rollover across the stack
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Hot rollover across the stack – Normal use (pre-upgrade)
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Hot rollover across the stack – Upgrade begins
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Hot rollover across the stack – Upgrade complete
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Hot rollover across the stack – Hot rollover begins!
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Hot rollover across the stack
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Hot rollover across the stack – hot rollover ends!

Former
edition

Current
edition

Current app Updated app

Copyright © 2024, Oracle and/or its affiliates23



Hot rollover across the stack – normal use (post-upgrade)
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Hot rollover across the stack – cleanup 
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Hot rollover across the stack
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Case Study
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The edition – setting the stage
Scenario – for now think only about synonyms, views, and PL/SQL

• The application has 1,000 mutually dependent code objects

• In general, there’s more than one schema

• They refer to each other by name – in general, by schema- qualified name

• The upgrade needs to change 10 of these
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The edition – setting the stage

1,000 v1 objects

990 unchanged v1 objects
+

10 changed v2 objects

Pre-upgrade application backend

Post-upgrade application backend

Copyright © 2024, Oracle and/or its affiliates29



The edition – setting the stage

• You can’t change the 10 objects in place as it would change the pre-upgrade app

• An old and a new occurrence of the “same” object cannot co-exist

• Before EBR, the only dimensions that determine which object you mean, when one object refers to 
another, are its name and its owner

• In short, the naming mechanisms, historically, were not rich enough to support online application 
upgrade
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The edition extends the naming mechanism

• EBR introduces the new nonschema object type, edition – each edition can have its own private 
occurrence of “the same” object

• A database must have at least one edition

• You create a new edition as the child of an existing edition – and an edition can’t have more than 
one child

• A database session specifies which edition to use (of course, the database has a default edition)
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The edition extends the naming mechanism

• An object is identified by its name and its owner

• An editioned object is identified by its name, its owner, and the edition where it was created

• However, when you identify it, you can mention only its name and owner. This reference is 
interpreted in the context of a current edition

• in SQL execution

• in the text of a stored object
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The semantic model for “create edition”
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When you create a new edition, every editioned object
in the parent edition is copied into the new edition



The mental model of the implementation
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The mental model of the implementation
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The mental model of the implementation
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Editions

• If your upgrade needs only to change synonyms, views, or PL/SQL units, you now have all the tools 
you need

• Simply run the scripts that you, anyway, have written using a new edition while the application stays 
online

• Then change the default edition and let new session start in the new edition

• No “package state discarded” errors ever again!
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Editionable and noneditionable object types

1. Not all object types are editionable

• Synonyms, views, and PL/SQL units of all kinds (including, therefore, triggers and libraries), and are 
editionable

• Objects of all other object types – for example tables – are noneditionable

2. You need to version the structure of a table manually

• Instead of changing a column, you add a replacement column

• Then you rely on the fact that a view is editionable

39 Copyright © 2024, Oracle and/or its affiliates



Editioning views

• An editioning view (EV) may only project and rename columns

• You can’t have more than one editioning view for a table in a particular edition

• The EV must be owned by the table’s owner

• Application code should refer only to the logical world

• You can create table-style triggers (before or after statement or each row) on an editioning view 
using the “logical” column names

• A SQL optimizer hint can request an index on the physical table by specifying the “logical” column 
names

• Like all views, an editioning view can be read-only
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Editioning views – performance

• Any SQL statement that refers to one, or several, EVs will get the same execution plan as the 
statement you’d get if you replaced each of those references, by hand, with a reference to the table 
that the EV covers

• So, using an EV in front of every table brings no performance consequences

• Tests have proved this

41 Copyright © 2024, Oracle and/or its affiliates



Editioned and noneditioned objects – slight return

• An object whose type is non-editionable is never editioned

• An object whose type is editionable is editioned only when you request it for that object (requires 
that the owner is editions-enabled)

• You control the editioned state at the granularity of the single name

• Theorem (the NE-on-E prohibition): a non-editioned object cannot ordinarily depend on an 
editioned object

• For example, a table cannot depend on an editioned UDT

• If you want to use a type as the datatype for a column, that UDT must not be editioned
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Materialized views and indexes on virtual columns

• These objects have metadata that is explicitly set by the create and alter statements

• The evaluation edition explicitly specifies the name of the edition in which the resolution of 
editioned names will be done

• within the closure of the object’s static dependency parents (at compile time)

• and for those objects that are identified dynamically during SQL execution (at run time)

• The usable edition range explicitly specifies the set of adjacent editions within which the optimizer 
will consider the object, for query re-write when computing the execution plan
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Public synonyms

• A public synonym is just a synonym that happens to be owned by the Oracle-maintained user called 
“public”

• “public” user is editions enabled, but all existing public synonyms are non-editioned at the per-
object level

• As of version 12.1+, you can make your own public synonyms editioned at the per-object level
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Tables with UDT columns

• An ordinary column (as opposed to virtual) cannot specify the evaluation edition or the usable 
edition range metadata

• Therefore, a UDT that defines the datatype for a table column must remain noneditioned

• In an EBR exercise, if the aim is to redefine the UDT, then the “classic” replacement column 
paradigm is used
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The crossedition trigger

• Of course, DML does not stop during online application upgrade

• If the upgrade needs to change the structure that stores transactional data – like the orders 
customers make using an online shopping site – then the installation of values into the replacement 
columns must keep pace with these changes

• Triggers have the ideal properties to do this safely

• Each trigger must fire appropriately to propagate changes made to pre-upgrade columns into the 
post- upgrade columns – and vice versa
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The crossedition trigger

• Crossedition triggers directly access the table

• They have special firing rules

• You create crossedition triggers in the Post_Upgrade edition

• The paradigm is: don’t do any DDLs in the Pre_Upgrade edition

• The firing rules rules assume that

• Pre-upgrade columns are changed only by sessions using the Pre_Upgrade edition

• Post-upgrade columns are changed only by sessions using the Post_Upgrade edition
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The crossedition trigger

• A forward crossedition trigger is fired by application DML issued by sessions using the Pre_Upgrade 
edition

• A reverse crossedition trigger is fired by application DML issued by sessions using the Post_Upgrade 
edition
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Readying the application for editions

• Put an editioning view in front of every table

• The EV and the table it covers can’t have the same name

• Rename each table to an obscure but related name (e.g. append an underscore, or lowercase the name)

• Create an editioning view for each table that has the same name that the table originally had

• NOTE:

• If a schema has an object, whose type is noneditionable, that depends on an object whose type is editionable, 
then the adoption plan must accommodate this by controlling the editioned state of objects whose type is 
editionable, at the granularity of the individual object

• Else, the editioned state can be conveniently set for the whole schema
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Readying the application for editions

• Revoke privileges from the tables and grant them to the editioning views

• Move VPD policies to the editioning views

• “Move” triggers to the editioning views

• Just drop the trigger and re-run the original (or mechanically edited) create trigger statement to recreate it on the 
editioning view

• Of course

• All indexes on the original Employees table remain valid but User_Ind_Columns now shows the new values for 
Table_Name and Column_Name

• All constraints (foreign key and so on) on the original Employees remain in force for Employees_

• This readying work must be done by the developers of the application that adopts EBR
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Case study
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Automated retiring of unused editions as of Oracle Database 12.2

• “Drop edition” is re-implemented to formalize retiring an edition

• You can always drop the root edition, even when it contains actual editioned objects that are 
inherited by a descendent edition

• It remains in place, but it is marked “unusable” so that you can never use it again

• An editioned object in an unusable edition that is not visible in a usable edition is dropped safely 
and automatically by a background process

• When an unusable edition contains no actual editioned objects, it is dropped safely and 
automatically by a background process
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Rolling back
a failed EBR exercise
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Demonstration
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replacement column paradigm



create edition e1 as child of Ora$Base

/

alter session set edition = e1

/

Insensitive to pending DML
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alter table t_ add c_Wide varchar2(50)

/

Waits on pending DML without blocking new DML
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create trigger Fwd

before update or insert on t_ for each row

forward crossedition

disable

begin

:New.c_Wide := :new.c;

end Fwd;

/

alter trigger Fwd enable

/

Insensitive to pending DML
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declare

-- Supplying "null" for the SCN formal to Wait_On_Pending_DML()

-- asks it to get the most current SCN across all instances.

SCN number := null;

-- A null or negative value for Timeout will cause a very long wait.

Timeout constant integer := null;

begin

if not Sys.DBMS_Utility.Wait_On_Pending_DML(

Tables  => 't_',

Timeout => Timeout,

SCN     => SCN)

then

Raise_Application_Error(-20000,

'Wait_On_Pending_DML() timed out. '||

'CET was enabled before SCN: '||SCN);

end if;

end Wait_On_Pending_DML;

/

Deliberately wait on pending DML. Doesn’t block new DML.
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declare

Cur integer :=

Sys.DBMS_Sql.Open_Cursor(Security_Level => 2);

No_Of_Updated_Rows integer not null := -1;

begin

Sys.DBMS_Sql.Parse(

c => Cur,

Language_Flag => Sys.DBMS_Sql.Native,

Statement => 'update t_ set c = c',

Apply_Crossedition_Trigger => 'Fwd',

Fire_Apply_Trigger => true);

No_Of_Updated_Rows := Sys.DBMS_Sql.Execute(Cur);

Sys.DBMS_Sql.Close_cursor(Cur);

end;

/

Apply the crossedition trigger’s transform to every row
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alter table t_

modify c_Wide constraint t_c_Wide_NN not null

enable novalidate

/

Waits on pending DML without blocking new DML
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create unique index t_c_Wide_Unq

on t_(c_Wide)

online

/

Waits on pending DML without blocking new DML
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alter table t_

add constraint t_c_Wide_Unq unique (c_Wide)

using index t_c_Wide_Unq

enable novalidate

/

Waits on pending DML without blocking new DML
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alter table t_

enable validate

constraint t_c_Wide_NN

/

alter table t_

enable validate

constraint t_c_Wide_Unq

/

create or replace editioning view t as

select PK, c_Wide c from t_

/

Insensitive to pending DML
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create trigger Rvrs

before update or insert on t_ for each row

reverse crossedition

disable

begin

:New.c := :new.c_Wide;

end Rvrs;

/

alter trigger Rvrs enable

/

Hot rollover can start now!

Insensitive to pending DML
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Wait until no sessions are using the old edition.

Then retire it.
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alter database default edition = e1

/

Insensitive to pending DML
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-- Want to drop the crossedition triggers ASAP

-- to avoid now-unnecessary cost of firing them.

-- Must first drop the constraint that Revrs satisfies.

alter table t_

drop constraint t_c_NN

online

/

Waits on pending DML without blocking new DML
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alter trigger Rvrs disable

/

drop trigger Rvrs

/

alter trigger Fwd disable

/

drop trigger Fwd

/

Insensitive to pending DML
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alter table t_

drop constraint t_c_Unq

online

/

Waits on pending DML without blocking new DML
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-- Drop all covered objects.

-- Normally this is done entirely mechanically by discovering the

-- covered objects and generating the appropriate "drop" for each.

declare

Stmt constant varchar2(32767) not null := '

drop view t';

Cur integer :=

Sys.DBMS_Sql.Open_Cursor(Security_level=>2);

begin

-- Parse for a DDL implies Execute.

Sys.DBMS_Sql.Parse(

c             => Cur,

Language_Flag => Sys.DBMS_Sql.Native,

Statement     => Stmt,

Edition       => 'ORA$BASE');

Sys.DBMS_Sql.Close_Cursor(Cur);

end;

/

Insensitive to pending DML
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Waits on pending DML without blocking new DML
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alter table t_

set unused column c

online

/

The EBR exercise is now complete!



Edition-Based Redefinition

• EBR brings the edition, the editioning view, and the crossedition trigger

• Code changes are installed in the privacy of a new edition

• Data changes are made safely by writing only to new columns or new tables not seen by the old edition

• An editioning view exposes a different projection of a table into each edition to allow each to see just its own 
columns

• A crossedition trigger propagates data changes made by the old edition into the new edition’s columns, or (in 
hot- rollover) vice-versa
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Evolutionary capability improvements

• Some table DDLs that used to fail if another session had outstanding DML now always succeed

• Others, that cannot succeed while there’s outstanding DML, are now governed by a timeout 
parameter

• Online index creation and rebuild now never cause other sessions to wait

• The dependency model is now fine-grained: e.g. adding a new column to a table, or a new 
subprogram to a package spec, no longer invalidates the dependants
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Next steps

• Read the edition-based redefinition chapter in the Oracle Database Development Guide

• Read EBR whitepaper, published on oracle.com/ebr 
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