
Oracle® Rdb for OpenVMS
New Features Manual

Release 7.3

July 2023

®

Oracle Rdb New Features, Release 7.3.4 for OpenVMS

Copyright © 1984, 2023 Oracle and/or its affiliates. All rights reserved.
Oracle Corporation - Worldwide Headquarters, 2300 Oracle Way, Austin, TX 78741, United States

Primary Author: Rdb Engineering and Documentation group

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce,
translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this
software, unless required by law for interoperability, is prohibited. The information contained
herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing. If this is software or related documentation that is
delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the
following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or
iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

Oracle, Java, Oracle Rdb, Hot Standby, LogMiner for Rdb, Oracle SQL/Services, Oracle CODASYL
DBMS, Oracle RMU, Oracle CDD/Repository, Oracle Trace, and Rdb7 are registered trademarks of
Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

Contents

Preface . v

1 Enhancements and Changes Provided in Oracle Rdb Release 7.3.4

1.1 Enhancements and Changes Provided in Oracle Rdb Release 7.3.4 1–1
1.1.1 Enhanced LIKE Table Support in CREATE TABLE Statement 1–1
1.1.2 Some Aggregate Functions Now Inherit Source Column EDIT

STRING . 1–1
1.1.3 New Summary_Only Qualifier to RMU Dump Audit Command 1–2
1.1.4 New Option=GENERATED Added to RMU Extract Command 1–3
1.1.5 Changed Behavior for the Noedit_Filename Qualifier in RMU Backup

After_Journal Command . 1–4

2 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.2

2.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.2 2–1
2.1.1 New PCSI Support for Rdb Kit Installation and Deinstallation 2–1
2.1.2 Updated Support for RDMS$BIND_CODE_OPTIMIZATION 2–2
2.1.3 DUPLICATES ARE NOT ALLOWED Clause Added to ALTER INDEX

Statement . 2–3
2.1.4 New RMU/SET_DATABASE Qualifier /ACCESS=[UN]RESTRICTED

. 2–3
2.1.5 New RMU/VERIFY Qualifier /VALIDATE for FLOAT Data Type Error

Detection . 2–4
2.1.6 New /ABORT Qualifier for the RMU/SET DATABASE Command . . . 2–6
2.1.7 Smaller After Image Backup Files . 2–8

3 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

3.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–1
3.1.1 New and Modified Replication Network Error Handling Log Messages

. 3–1
3.1.2 RMU Show Statistics Feature To Select Screens To Include In

STATISTICS.RPT . 3–2
3.1.3 RMU BACKUP and RESTORE /OUTPUT Qualifier to Write Output

to a File . 3–4
3.1.4 AIJ Backup Data Compression Information is Now in the ABS

Process Logs . 3–5
3.1.5 RMU MOVE_AREA and COPY_DATABASE /OUTPUT Qualifier to

Write Output to a File . 3–6
3.1.6 Support for /OUTPUT=file-spec Qualifier Added to RMU Backup Plan

File . 3–7
3.1.7 New CREATE OR REPLACE Support for PROFILE 3–9
3.1.8 New CREATE OR REPLACE Support for VIEW 3–10

iii

3.1.9 New CREATE OR REPLACE Support for SEQUENCE 3–12
3.1.10 New Options for SET LOGFILE Statement . 3–13
3.1.11 New UNDECLARE CURSOR Statement . 3–14
3.1.12 Enhanced LIKE Table Support in CREATE TABLE Statement 3–15
3.1.13 New TO_DSINTERVAL and TO_YMINTERVAL Functions 3–18
3.1.14 New CREATE DEFAULT AUDIT Statement 3–20
3.1.15 New ALTER DEFAULT AUDIT Statement . 3–23
3.1.16 New DROP DEFAULT AUDIT Statement . 3–25
3.1.17 New SESSION and GLOBAL Attributes for Sequences 3–26
3.1.18 New LogMiner Feature to Close and Immediately Reopen Table

Output Files . 3–27

4 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

4.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–1
4.1.1 Intel Itanium Processor 9700 ‘‘Kittson’’ Certified 4–1
4.1.2 Relaxed Type Checking for DEFAULT Clause 4–1
4.1.3 New Statistics Screen Shows Top Processes Accessing a Table Logical

Area . 4–2
4.1.4 Relaxed Naming Rules for RMU Extract Option=MATCH Option . . . 4–4
4.1.5 RMU/RESTORE Now Always Displays the %RMU-I-AIJRECFUL

Message . 4–5
4.1.6 New SQL Built-in Functions . 4–6
4.1.6.1 New String Functions . 4–6
4.1.6.2 New Aggregate Functions . 4–8
4.1.7 -RMU-F-DBROOTFILE, -RMU-F-DBDATAFILE messages output

with %RMU-F-BADAIJFILE . 4–12
4.1.8 RMU Extract Now Outputs ALTER DATABASE For Storage Area

Access Mode . 4–13
4.1.9 RMU/RECOVER RMU-F-BACKUPNOAIJ, RMU-F-TSNNOSYNC,

RMU-F-CANTSYNCTSNS Error Messages . 4–14
4.1.10 Delimited_Text Keywords Can Now Be Negated For RMU Load And

Unload . 4–17
4.1.11 RMU Load Now Supports User Defined Conversion Routines 4–17
4.1.12 New CARDINALITY Option for SHOW TABLE Command 4–19
4.1.13 New CONSTRAINT Naming for Domain Constraints 4–19
4.1.14 New AS Result-type Clause for CREATE SEQUENCE Statement 4–20
4.1.15 New GENERATED Column Support . 4–21
4.1.16 Enhancements to INCLUDE Statement . 4–22
4.1.17 New Support for DEFAULT Index NODE SIZE Calculation 4–23
4.1.18 New LANGUAGE Support From RMU Extract Command 4–24
4.1.19 Enhancements for CREATE and ALTER MODULE Statements 4–26
4.1.20 New RMU Dump Symbols Command . 4–28
4.1.21 New Options to SET SQLDA Statement . 4–30
4.1.22 More New Options to SET SQLDA Statement 4–30

5 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1

5.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1 5–1
5.1.1 Oracle Rdb 7.3.2.1 Certified on OpenVMS 8.4-2 from VMS Software

Inc. and Integrity i4 systems from HPE . 5–1
5.1.2 RMU/SHOW AFTER_JOURNAL [NO]CHECKPOINT Qualifier 5–1
5.1.3 Engine Error Logging . 5–4
5.1.4 New MEDIAN Aggregate Function Added to SQL 5–5

iv

5.1.5 New RMU/BACKUP/AFTER_JOURNAL [NO]SPACE_CHECK
Qualifier . 5–5

5.1.6 New Options to SET SQLDA Statement . 5–7
5.1.7 New RMU Set Statistics Command . 5–8
5.1.8 Multi-Aggregate Index Optimization . 5–13
5.1.9 Use Old DPB Format for Rdb_Change_Database 5–15
5.1.10 LogMiner State Now in AIJ Options File, New

RDM$LOGMINER_STATE Symbol . 5–15
5.1.11 New /[NO]MBX_ASYNCH Qualifier for RMU/UNLOAD/AFTER 5–21
5.1.12 New /PAGE_NUMBER Qualifier for RMU/DUMP and

RMU/DUMP/BACKUP . 5–21
5.1.13 New Information Table RDB$SESSION_PRIVILEGES Now Available

. 5–22

6 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

6.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–1
6.1.1 New COMPRESSION OCTETS Clause for CREATE INDEX

Statement . 6–1
6.1.2 Enhancements for TRUNCATE TABLE Statement 6–2
6.1.3 RMU Extract Now Supports RECOMPILE Item 6–4
6.1.4 SQL Now Supports the MISSING VALUE Clause as Part of CREATE

and ALTER DOMAIN Statement . 6–4
6.1.5 Comma Statement Separator Now Deprecated 6–5
6.1.6 New Logical Name RDMS$BIND_DEADLOCK_WAIT to Control

Sub-second Deadlock Wait . 6–6
6.1.7 Query Optimization Improvements for IN Clause 6–7
6.1.8 New SHOW AUDIT Command Added to Interactive SQL 6–8
6.1.9 RMU/RECLAIM Can Now Skip to the Next SPAM Interval and/or

Storage Area to Avoid Lock Contention . 6–9
6.1.10 RMU Open Statistics Supports PROCESS_GLOBAL Qualifier 6–11
6.1.11 RMU/SHOW LOGICAL_NAME Now Supports /DESCRIPTION

Qualifier . 6–12
6.1.12 Using Per-Process Monitoring for RMU Show Statistics 6–13
6.1.12.1 Per-Process Monitoring Operational Modes 6–13
6.1.12.2 Per-Process Monitoring Facility Activation 6–14
6.1.12.3 Per-Process Monitoring Facility Process Activation 6–15
6.1.12.4 Per-Process Monitoring Run-Time Options 6–17
6.1.12.5 Detached Process Monitoring . 6–18
6.1.12.6 Per-Process Monitoring Overview Information 6–18
6.1.13 RMU Error Messages Which Suggest Altering Backup File Attributes

. 6–27
6.1.14 Query Optimization Improvements for DATE ANSI Queries 6–29
6.1.15 New RMU Dump Metadata_File Command . 6–29
6.1.16 New REPLACE_ROWS Qualifier Added to RMU Load Command . . . 6–31
6.1.17 RMU/SET SHARED_MEMORY/SECTION_NAME 6–31
6.1.18 RESTART Clause of ALTER SEQUENCE No Longer Needs Value . . 6–33
6.1.19 New Options to SET SQLDA Statement . 6–33
6.1.20 Support for External Authentication (LDAP) . 6–34
6.1.21 New RMU Extract Options to Control Output for DATABASE and

ALTER_DATABASE Items . 6–35
6.1.22 RMU/SET AFTER_JOURNAL/SWITCH_JOURNAL Now Can Create

an Emergency AIJ . 6–36
6.1.23 New Support for Second OpenVMS Account Password 6–39

v

6.1.24 New "Index Counts" Optimization for SORTED Indices 6–40
6.1.25 Support for Proxy Access to Remote Databases Using TCP/IP

Transport . 6–40
6.1.26 Support for INTEGER Result Type for COUNT Function 6–41

7 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.3

7.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.3 7–1
7.1.1 Oracle Rdb 7.3.1.3 Certified on OpenVMS 8.4-1H1 from VMS

Software Inc. and Integrity i4 systems from HPE 7–1

8 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2

8.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2 8–1
8.1.1 New FULBCKREQ Message Output When a Full Backup is Required

. 8–1
8.1.2 New TRACE Option for EXPORT DATABASE Statement 8–2
8.1.3 New /NOAFTER_JOURNAL Qualifier to Disable AIJ File Creation by

RMU/RECOVER . 8–3
8.1.4 Enhance Dumper of Merge Range List . 8–4
8.1.5 RMU Extract Now Extracts SYS_GET_DIAGNOSTIC Function 8–5
8.1.6 Alter Index Now Supports REVERSE and NOREVERSE Clauses . . . 8–5
8.1.7 SQL Precompiler Now Generates C++ Compatible Intermediate C

Source . 8–6
8.1.8 New RMU/RECOVER Feature to Alter Storage Areas, After_Journal

and Record_Cache Directories . 8–7
8.1.9 RMU Unload Record_Definition File Can Include Offset and Length

Comment . 8–14
8.1.10 New RMU/DUMP/BACKUP Enhanced Error Handling Features 8–15
8.1.11 New REVERSE Attribute for CREATE SEQUENCE Statement and

IDENTITY Clause . 8–16

9 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.1

9.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.1 9–1
9.1.1 New LIMIT_TO Qualifier Added to RMU Load Command 9–1
9.1.2 New BEFORE and SINCE Qualifiers Added to RMU Load Audit 9–2
9.1.3 New RMU/SHOW/STATISTICS Output File Periodic Buffer

Flushes . 9–3
9.1.4 New Error and Log Messages Added for Segmented String Verification

. 9–4

10 Enhancements And Changes Provided in Oracle Rdb Release
7.3.1.0

10.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–1
10.1.1 Changes to Default and Limits Behavior in Oracle Rdb 10–1
10.1.2 New /ERROR_LIMIT Qualifier Added as the Default to RMU/VERIFY

. 10–3
10.1.3 RMU /VERIFY Root Displays the Corrupt Page Table Entries 10–5
10.1.4 DECLARE LOCAL TEMPORARY TABLE Supports COMMENT IS

Clause . 10–6
10.1.5 Temporary Tables Now Support LARGE MEMORY Option 10–6
10.1.6 COUNT Now Returns BIGINT Result . 10–7

vi

10.1.7 Aggregate Functions Now Use BIGINT Counters 10–7
10.1.8 /[NO]KEY_VALUES Qualifier Added to RMU/VERIFY/INDEX 10–7
10.1.9 The /LOCK_TIMEOUT Qualifier Now Allows the Database

Default . 10–9
10.1.10 Compression of AIJ Backup Files for Automatic AIJ Backups 10–10
10.1.11 Global Statistics Sections for Better Performance 10–10
10.1.12 RMU/SET AUDIT Supports Wildcard Table and Column Names 10–10
10.1.13 RMU/BACKUP Database Root Verification Performance

Enhancement . 10–12
10.1.14 RMU /UNLOAD /AFTER_JOURNAL New Qualifier

/DELETES_FIRST . 10–14
10.1.15 Add Option to Pass Values to /CONFIRM During RESTORE

Operation . 10–14
10.1.16 Table Names Can Now Be Specified For Index Verification 10–15
10.1.17 New RMU/VERIFY Feature to Detect Orphan Hash Index Buckets

. 10–16
10.1.18 New COMPILE Clause for ALTER TRIGGER Statement 10–17
10.1.19 New COMPILE ALL TRIGGERS Clause for ALTER TABLE

Statement . 10–18
10.1.20 New RETRY Clause for ACCEPT Statement . 10–20
10.1.21 New Character Sets ISOLATIN2 and WIN_LATIN2 Supported 10–20
10.1.22 Changes and Enhancements to Trigger Support 10–21
10.1.23 New RMU BACKUP RBF File BRHK_ROOT1, BRHK_ROOT2,

BRH$K_ROOT3 Records /kroot_records . 10–21
10.1.24 New Functions NUMTODSINTERVAL, NUMTOYMINTERVAL

Supported . 10–23
10.1.25 RMU Dump Audit Command . 10–24
10.1.26 New BIN_TO_NUM Numeric Function . 10–29
10.1.27 RMU /PROGRESS_REPORT and Control-T for RMU Backup and

Restore . 10–29
10.1.28 /[NO]SNAPSHOTS, /[NO]DATA_FILE Added to

RMU/MOVE_AREA . 10–30
10.1.29 Enhancements for Compression Support in SQL EXPORT DATABASE

Command . 10–32
10.1.30 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/INDEXES . . . 10–33
10.1.31 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE Storage

Statistics . 10–37
10.1.32 /[NO]PARTITIONS Qualifier Added to

RMU/ANALYZE/PLACEMENT . 10–42
10.1.33 New RMU/[NO]ASSIST Qualifier for Commands Using Tape

Drives . 10–47
10.1.34 New RMU/ALTER Feature to Modify the Area Header Root File

Specification . 10–48
10.1.35 Create Index Supports the REVERSE Keyword to Create Reverse Key

Indices . 10–50
10.1.36 Support for New Syntax for Sequence Generator Statements 10–50
10.1.37 RMU/SET AUDIT Supports MODULE, ROUTINE, SEQUENCE and

VIEW . 10–52
10.1.38 RMU/SHOW AUDIT Supports MODULE, ROUTINE, SEQUENCE

and VIEW . 10–53
10.1.39 SQL Now Supports SQL Standard Syntax for SET CONSTRAINTS

ALL Statement . 10–54
10.1.40 Support ANSI and ISO SQL Standard Length Units 10–54

vii

10.1.41 New SET FLAGS Clause Supported by CREATE and ALTER
PROFILE . 10–55

10.1.42 New Support for SAVEPOINT Syntax and Semantics 10–56
10.1.42.1 SAVEPOINT Statement . 10–57
10.1.42.2 RELEASE SAVEPOINT Statement . 10–58
10.1.42.3 ROLLBACK TO SAVEPOINT Statement . 10–59
10.1.43 New OPTIMIZE OUTLINE Clause Allows Outline Specification 10–61
10.1.44 RMU/DUMP/HEADER=ROW_CACHE Now Displays Whether Row

Cache is Enabled . 10–62
10.1.45 RMU/LOAD Now Supports CSV Formatted Files 10–67
10.1.46 RMU/UNLOAD Now Supports CSV Formatted Files 10–67
10.1.47 RMU/UNLOAD Supports BITMAPPED_SCAN Optimize Option 10–69
10.1.48 New EDIT STRING Clause for CREATE FUNCTION and CREATE

MODULE Functions . 10–69
10.1.49 Changes to RMU/VERIFY/CONSTRAINTS and ALTER TABLE

Statement . 10–71
10.1.50 New SQRT Numeric Function . 10–71
10.1.51 New MOD Numeric Function . 10–72
10.1.52 New Data Types BINARY and BINARY VARYING 10–74
10.1.53 PERSONA SUPPORT is Enabled For All New Databases 10–75
10.1.54 New Dialects Support in SQL . 10–76
10.1.55 New WITH Clause Provides Subquery Factoring 10–77
10.1.56 DECLARE LOCAL TEMPORARY VIEW Statement 10–80
10.1.57 Enhancements for Buffered Read Support in SQL EXPORT

DATABASE Command . 10–81
10.1.58 New BITMAPPED SCAN Clauses Added to OPTIMIZE Clause 10–82
10.1.59 New Support for Allocations Specified Using Quantified Numeric

Literal . 10–84
10.1.60 New SQL Functions Added . 10–85
10.1.61 Optimized NOT NULL Constraint Execution 10–85
10.1.62 New RMU/LOAD Option CHARACTER_ENCODING_XML 10–86
10.1.63 New MEMORY ALLOCATION Clause for the GLOBAL BUFFERS

Definition . 10–87
10.1.64 New REPLACE Statement . 10–87
10.1.65 Query Optimization Improvements for IN Clause 10–89

11 Optimizer Enhancements Appendix

11.1 Optimizer Enhancements . 11–1
11.1.1 Changes and Improvements to the Rdb Optimizer and Query

Compiler . 11–1

Examples

4–1 Using the FIRST_VALUE Function . 4–8
4–2 Using the LAST_VALUE Function . 4–9
4–3 Using the LISTAGG Function . 4–11
4–4 Using the GROUP_CONCAT Function . 4–11
4–5 Using RMU Dump Symbols . 4–29
5–1 RMU Set Statistics Export . 5–12
5–2 RMU Set Statistics Checkpoint . 5–13
6–1 Example showing use of PROCESS_GLOBAL option 6–12

viii

6–2 Using the STORAGE_AREAS and JOURNALS options to control
output . 6–35

6–3 Using MATCH option to extract just one row cache definition 6–36
10–1 Using CSV format for Microsoft EXCEL export 10–68
10–2 Using options to change delimiters in a CSV formatted file 10–68
10–3 Example 1: Invalid request for square root of a negative value 10–72
10–4 Example 2: Correct query showing square root results 10–72
10–5 Example 1: Using the MOD function . 10–73
10–6 Example 1: Using the old syntax vs the new syntax for the WITH

clause . 10–79
10–7 Example 2: Using Complex Query with INSERT ... SELECT

Statement . 10–79
10–8 Example 3: Using subquery factoring within a UNION operator 10–80
10–9 Example 1: Simplifying a query using a declared local view 10–82
10–10 Example 2: Operations on an updatable local view 10–83

Tables

10–1 RDBNSA$K types . 10–26

ix

Preface

Purpose of This Manual
This manual contains the New Features Chapters for Oracle Rdb Release 7.3.4
and prior Rdb 7.3 releases.

Deprecated and Desupported Features for Oracle Rdb
Each release of Oracle Rdb introduces behavior changes for your database
in addition to new features. Changes in behavior include deprecated and
desupported debug flags, parameters, options, syntax, and the deprecation and
desupport of features and components.

Each chapter in this manual describes behavior changes where features have
been deprecated or desupported in that release. By deprecate, we mean that the
feature is no longer being enhanced but is still supported for the full life of the
Oracle Rdb release. By desupported, we mean that Oracle will no longer fix bugs
related to that feature and may remove the code altogether (see the Obsolete
Features section in each chapter). Where indicated, a deprecated feature may be
desupported in a future major release.

Access to Oracle Support
Oracle customers that have purchased support have access to
electronic support through My Oracle Support. For information,
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Document Structure
This manual consists of the following chapters:

v

Chapter 1 Describes enhancements introduced in Oracle Rdb Release 7.3.4

Chapter 2 Describes enhancements introduced in Oracle Rdb Release 7.3.3.2

Chapter 3 Describes enhancements introduced in Oracle Rdb Release 7.3.3.1

Chapter 4 Describes enhancements introduced in Oracle Rdb Release 7.3.3.0

Chapter 5 Describes enhancements introduced in Oracle Rdb Release 7.3.2.1

Chapter 6 Describes enhancements introduced in Oracle Rdb Release 7.3.2.0

Chapter 7 Describes enhancements introduced in Oracle Rdb Release 7.3.1.3

Chapter 8 Describes enhancements introduced in Oracle Rdb Release 7.3.1.2

Chapter 9 Describes enhancements introduced in Oracle Rdb Release 7.3.1.1

Chapter 10 Describes enhancements introduced in Oracle Rdb Release 7.3.1.0

Chapter 11 Describes enhancements in the Optimizer

vi

1
Enhancements and Changes Provided in

Oracle Rdb Release 7.3.4

1.1 Enhancements and Changes Provided in Oracle Rdb Release
7.3.4

1.1.1 Enhanced LIKE Table Support in CREATE TABLE Statement
This release of Oracle Rdb adds new EXCLUDING and INCLUDING clauses to
the LIKE clause within the CREATE TABLE statement.

Syntax

like-attributes =

EXCLUDING COMMENTS
INCLUDING COMPUTED

DEFAULTS
GENERATED
IDENTITY
PROTECTION

By default, Rdb includes the column protections (access control lists) and
comments for any copied column. These new clauses allow the database
administrator to suppress the copying of that metadata.

1.1.2 Some Aggregate Functions Now Inherit Source Column EDIT STRING
Oracle Rdb V7.3.3 and later versions support EDIT STRING inheritance for these
functions when using Interactive SQL.

• MAX, MEDIAN, MIN, FIRST_VALUE, LAST_VALUE

When the input type matches the output type, then the EDIT STRING from
the source column is inherited to improve the readability of the aggregate.

• CAST

When the datatype of the CAST function references a domain then if an EDIT
STRING defined it is inherited from the domain.

The following example shows the EDIT STRING being used.

Enhancements and Changes Provided in Oracle Rdb Release 7.3.4 1–1

SQL> create domain DOM_TST integer(2) edit string ’$(9)9.99’;
SQL>
SQL> create table TST
cont> (a integer(2) edit string ’$(9)9.99’
cont> ,c char(10)
cont>);
SQL>
SQL> insert into TST
cont> values (100, 100, ’A’);
1 row inserted
SQL> insert into TST
cont> values (233, 233, ’B’);
1 row inserted
SQL>
SQL> --> column with explicit edit string
SQL> select min (a), max (a), cast (a as DOM_TST)
cont> from TST
cont> group by a
cont> ;
cont> ;

$100.00 $100.00 $100.00
$233.00 $233.00 $233.00

2 rows selected
SQL>
SQL> select first_value (a) within group (order by b desc),
cont> last_value (a) within group (order by b desc),
cont> median (a)
cont> from TST
cont> ;

$233.00 $100.00 $166.50
1 row selected
SQL>

Use the SET DISPLAY NO EDIT STRING statement to disable this behavior.

1.1.3 New Summary_Only Qualifier to RMU Dump Audit Command
This release of Oracle Rdb adds a new Summary_Only qualifier to RMU Dump
Audit. This allows the database administrator to see a list of databases that have
entries recorded in the named AUDIT$JOURNAL.

Neither the Format nor the Type qualifiers are permitted when Summary_Only is
used. The database parameter is ignored.

The following example generates a file containing the database names used by
that version of the SECURITY.AUDIT$JOURNAL.

$ define/nolog RMU_AJ SYS$COMMON:[SYSMGR]SECURITY.AUDIT$JOURNAL;8398
$ rmu/dump/audit -

"" -
RMU_AJ -
/since=TODAY -
/log -
/summary_only -
/output=audit_dump.txt

$

1–2 Enhancements and Changes Provided in Oracle Rdb Release 7.3.4

1.1.4 New Option=GENERATED Added to RMU Extract Command
This release of Oracle Rdb includes a new GENERATED option for RMU Extract.
In prior releases RMU Extract Item=UNLOAD and Item=LOAD would generate
load commands that assumed all the columns were updatable.

The option FULL can be used to generate syntax that loaded every field by name
and included virtual columns (AUTOMATIC AS, GENERATED, IDENTITY and
COMPUTED BY) as commented out names. Therefore, editing was required to
uncomment GENERATED column names so they could be reloaded. In addition
the /Virtual=AUTOMATIC qualifier needed to be added to the RMU Load and
RMU Unload commands.

Using Option=GENERATED will now instruct RMU Extract to generate more
appropriate DCL commands for unloading and re-loading data in tables that
contain GENERATED columns.

The following example shows a portion of a generated DCL procedure when only
Option=FULL is used.

$ RMU/EXTRACT/ITEM=UNLOAD/OPTION=FULL SAMPLE_DB
.
.
.

$ CREATE SAMPLE0.COLUMNS
! Columns list for table SAMPLE0
! in ...
! Created by RMU Extract for Oracle Rdb ... on 29-JAN-2021 13:20:28.40
! Virtual: IDENT_COL
DETAILS
! Virtual: LAST_UPDATE
$ RMU/UNLOAD -

USER1:[TESTING.DATABASES]MF_PERSONNEL_SQL.RDB -
/FIELDS="@SAMPLE0.COLUMNS" -
SAMPLE0 -
SAMPLE0.UNL

$

The following example shows a portion of a generated DCL procedure when
Option=GENERATED is used.

$ RMU/EXTRACT/ITEM=UNLOAD/OPTION=GENERATED SAMPLE_DB
.
.
.

$ CREATE SAMPLE0.COLUMNS
! Columns list for table SAMPLE0
! in ...
! Created by RMU Extract for Oracle Rdb ... on 29-JAN-2021 13:23:27.76
IDENT_COL
DETAILS
LAST_UPDATE
$ RMU/UNLOAD -

USER1:[TESTING.DATABASES]MF_PERSONNEL_SQL.RDB -
/FIELDS="@SAMPLE0.COLUMNS" -
/VIRTUAL=AUTOMATIC -
SAMPLE0 -
SAMPLE0.UNL

$

Enhancements and Changes Provided in Oracle Rdb Release 7.3.4 1–3

1.1.5 Changed Behavior for the Noedit_Filename Qualifier in RMU Backup
After_Journal Command

Bug 31711278

In prior releases of Oracle Rdb the Noedit_Filename qualifier on the RMU
Backup After_Journal was ignored. With this release it takes on a new meaning
as described below:

/EDIT_FILENAME

As with previous versions, this qualifier defines the editing to be performed
for the output backup file name. This editing is performed on the provided
backup filename, or if "" is specified instead of a backup-file-spec then the
default backup filename defined in the database.

This qualifier replaces any EDIT_FILENAME defined for the database.

/NOEDIT_FILENAME

This qualifier negates any prior usage on the command of the /EDIT_
FILENAME qualifier and also instructs RMU to ignore the EDIT_FILENAME
defined by the SQL ALTER DATABASE statement, or RMU Set After_Journal
command. This is a change of behavior from prior versions and supports the
enhancements made to the RMU Set After_Journal command which allows
the defaults to be defined for the MANUAL backup processing.

No editing is performed on the provided backup filename, or if "" is specified
instead of a backup-file-spec then the default backup filename defined in the
database is used without changes.

Neither /EDIT_FILENAME nor /NOEDIT_FILENAME was used.

In this case RMU Backup After_Journal will use the default if defined in the
database by SQL ALTER DATABASE statement, or RMU Set After_Journal
command.

1–4 Enhancements and Changes Provided in Oracle Rdb Release 7.3.4

2
Enhancements And Changes Provided in

Oracle Rdb Release 7.3.3.2

2.1 Enhancements And Changes Provided in Oracle Rdb Release
7.3.3.2

2.1.1 New PCSI Support for Rdb Kit Installation and Deinstallation
Starting with Oracle Rdb Release 7.3.3.2, whenever Oracle Rdb is installed
or deinstalled, Oracle Rdb will be registered in the PCSI software product
database. This will allow users to use the PCSI PRODUCT SHOW HISTORY and
PRODUCT SHOW PRODUCT commands to display information about releases of
Oracle Rdb that have been installed or deinstalled. This information will also be
helpful as input whenever a Service Request (SR) is submitted to Oracle Support.

The following lines will now be displayed during the installation of Oracle Rdb,
showing that the installation has been registered in the PCSI database.

The following product has been selected:
ORCL I64VMS RDB73 V7.3-320 Transition (registration)

The following product will be registered:
ORCL I64VMS RDB73 V7.3-320 DISK$NODE84_2:[VMS$COMMON.]

File lookup pass starting ...

Portion done: 0%
...100%

File lookup pass completed search for all files listed in the product’s PDF
Total files searched: 0 Files present: 0 Files absent: 0

The following product has been registered:
ORCL I64VMS RDB73 V7.3-320 Transition (registration)

%VMSINSTAL-I-MOVEFILES, Files will now be moved to their target directories...

Registration in the PCSI software product database allows a user to use
commands such as the following to track what Oracle Rdb releases are currently
installed and the history of any past product installations and deinstallations.

$ PRODUCT SHOW HISTORY/SINCE
------------------------------------ ----------- ----------- --- -----------
PRODUCT KIT TYPE OPERATION VAL DATE
------------------------------------ ----------- ----------- --- -----------
ORCL I64VMS RDB73 V7.3-320 Transition Reg Product (U) 10-OCT-2019
------------------------------------ ----------- ----------- --- -----------

1 item found

$ PRODUCT SHOW HISTORY RDB7*
------------------------------------ ----------- ----------- --- -----------
PRODUCT KIT TYPE OPERATION VAL DATE
------------------------------------ ----------- ----------- --- -----------
ORCL I64VMS RDB73 V7.3-320 Transition Reg Product (U) 10-OCT-2019
------------------------------------ ----------- ----------- --- -----------

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.2 2–1

1 item found

$ PRODUCT SHOW PRODUCT RDB7*
------------------------------------ ----------- ---------
PRODUCT KIT TYPE STATE
------------------------------------ ----------- ---------
ORCL I64VMS RDB74 V7.3-320 Transition Installed
------------------------------------ ----------- ---------

1 item found

The following lines will now be displayed during the deinstallation of Oracle
Rdb, showing that the removal of the release has been registered in the
PCSI database. Deinstallation is performed by executing the DCL procedure
SYS$MANAGER:RDB$DEINSTALL_DELETE.COM. Please refer to section
"Deleting Versions of Oracle Rdb" in the Oracle Rdb Installation Guide for further
details.

The following product has been selected:
ORCL I64VMS RDB73 V7.3-320 Transition (registration)

The following product will be removed from destination:
ORCL I64VMS RDB73 V7.3-320 DISK$CLYPPR84_2:[VMS$COMMON.]

Portion done: 0%...100%

The following product has been removed:
ORCL I64VMS RDB74 V7.3-320 Transition (registration)

The example below shows the additional information that will be displayed by the
PCSI PRODUCT commands as a result of the deinstallation of a release of Oracle
Rdb.

$ PRODUCT SHOW HISTORY/SINCE
------------------------------------ ----------- ----------- --- -----------
PRODUCT KIT TYPE OPERATION VAL DATE
------------------------------------ ----------- ----------- --- -----------
ORCL I64VMS RDB73 V7.3-320 Transition Remove - 10-OCT-2019
ORCL I64VMS RDB73 V7.3-320 Transition Reg Product (U) 10-OCT-2019
------------------------------------ ----------- ----------- --- -----------
2 items found

$ PRODUCT SHOW HISTORY RDB7*
------------------------------------ ----------- ----------- --- -----------
PRODUCT KIT TYPE OPERATION VAL DATE
------------------------------------ ----------- ----------- --- -----------
ORCL I64VMS RDB73 V7.3-320 Transition Remove - 10-OCT-2019
ORCL I64VMS RDB73 V7.3-320 Transition Reg Product (U) 10-OCT-2019
------------------------------------ ----------- ----------- --- -----------
2 items found

$ PRODUCT SHOW PRODUCT RDB7*
------------------------------------ ----------- ---------
PRODUCT KIT TYPE STATE
------------------------------------ ----------- ---------
0 items found

2.1.2 Updated Support for RDMS$BIND_CODE_OPTIMIZATION
This logical name can be used to enable an optimization on Oracle Rdb systems
executing on emulated Alpha hardware. Please refer to the Oracle Rdb Release
7.3.3.1 release notes for further details.

This release includes the following improvements: All generated code is now
stored in separate code pages. This positively effects the Alpha hardware
emulators by ensuring that the generated code is read only. That is, it avoids
re-emulation because of updates to adjacent data portions of the page.

2–2 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.2

2.1.3 DUPLICATES ARE NOT ALLOWED Clause Added to ALTER INDEX
Statement

This release of Oracle Rdb adds the clause DUPLICATES ARE NOT
ALLOWED to the ALTER INDEX Statement. This is the inverse of the existing
DUPLICATES ARE ALLOWED clause.

This new clause first verifies that the index (SORTED, SORTED RANKED, or
HASHED), in fact, has no duplicate values.

Note

This command will perform I/O to the index but in general will be less
costly in terms of I/O and CPU usage compared to equivalent DROP
INDEX and CREATE UNIQUE INDEX statements. Oracle recommends
using SET FLAGS ’INDEX_STATS’ prior to performing the ALTER
INDEX Statement to gather useful information on the progress of the
statement.

If the scan detects any duplicate values, the scan is terminated and the actions of
the ALTER INDEX Statement (if any) are rolled back.

The following example shows the reported error message when the ALTER
INDEX statement cannot change the index to be unique.

SQL> create index mi_ndx on employees (middle_initial);
SQL>
SQL> --> should fail because middle_initial has duplicates
SQL> alter index mi_ndx
cont> duplicates are NOT allowed
cont> ;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-DUPNOTALL, duplicate records not allowed for index MI_NDX
-RDMS-E-IDXNOTCHG, index MI_NDX has not been changed
SQL>

If no duplicate values are found, then the index is converted to a UNIQUE index.

2.1.4 New RMU/SET_DATABASE Qualifier /ACCESS=[UN]RESTRICTED
The new Oracle Rdb RMU SET DATABASE command
ACCESS=[UN]RESTRICTED qualifier sets or clears the restricted database
access flag in the database root file if the database is currently open or closed. If
the restricted database access flag in the database root file is set, SQL users must
have DBADM privilege to attach to an Rdb database. Previously, the restricted
database access flag could only be cleared or set by the RMU OPEN command
ACCESS=[UN]RESTRICTED qualifier when it opened an Rdb database. If
the restricted access bit is set in the database root, the RMU DUMP/HEADER
command will show the following output when it displays the root parameters of
an Rdb database. The ACCESS=[UN]RESTRICTED qualifier requires that the
user has been granted RMU$ALTER privilege.

"Access restricted to privileged users"

The command line syntax for the RMU SET DATABASE command ACCESS
qualifier is:

/ACCESS=[UN]RESTRICTED

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.2 2–3

If ACCESS=RESTRICTED is specified, the restricted database access flag in
the database root file is set. If ACCESS=UNRESTRICTED is specified, the
restricted database access flag in the database root file is cleared. RESTRICTED
or UNRESTRICTED must be specified.

In the following example, when /ACCESS=RESTRICTED is specified in the
RMU/SET DATABASE command, the RMU/DUMP/HEADER command displays
"Access restricted to privileged users" to confirm that the restricted database
access flag in the database root has been set. When ACCESS=UNRESTRICTED
is specified, the RMU/DUMP/HEADER command display of the root parameters
does not include "Access restricted to privileged users", confirming that the
restricted database access flag in the database root has been cleared.

$ RMU/SET DATABASE/ACCESS=RESTRICTED MF_PERSONNEL
%RMU-I-MODIFIED, Database state modified
%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery
$ RMU/DUMP/HEADER/OUT=MFP.HDR MF_PERSONNEL
$ SEAR MFP.HDR "ACCESS RESTRICTED"

Access restricted to privileged users
$!
$ RMU/SET DATABASE/ACCESS=UNRESTRICTED MF_PERSONNEL
%RMU-I-MODIFIED, Database state modified
%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery
$ RMU/DUMP/HEADER/OUT=MFP.HDR MF_PERSONNEL
$ SEAR MFP.HDR "ACCESS RESTRICTED"
%SEARCH-I-NOMATCHES, no strings matched

2.1.5 New RMU/VERIFY Qualifier /VALIDATE for FLOAT Data Type Error
Detection

Bug 4374847

Oracle Rdb assumes that data provided by application programs and inserted into
DOUBLE PRECISION, REAL or FLOAT columns will be valid. However, there
are cases when invalid floating point data was inserted into such columns (for
example, data stored from uninitialized program variables).

The RMU Verify command has been enhanced with a new /VALIDATE qualifier
that requests RMU Verify to scan any table containing one or more DOUBLE
PRECISION, REAL or FLOAT columns and that the floating point data be
checked for validity.

The following example shows the extra pass that is performed in response to the
Validate qualifier.

2–4 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.2

$ RMU /VERIFY -
/VALIDATE=FLOAT=(departments,salary*) -
/LOG -

MF_PERSONNEL
%RMU-I-BGNROOVER, beginning root verification
%RMU-I-ENDROOVER, completed root verification
%RMU-I-DBBOUND, bound to database "DISK$TEST:[TEST_SYSTEM.DATABASE]

MF_PERSONNEL.RDB;1"
%RMU-I-OPENAREA, opened storage area RDB$SYSTEM for protected retrieval
%RMU-I-BGNAIPVER, beginning AIP pages verification
%RMU-I-ENDAIPVER, completed AIP pages verification
%RMU-I-BGNABMSPM, beginning ABM pages verification
%RMU-I-OPENAREA, opened storage area MF_PERS_SEGSTR for protected retrieval
%RMU-I-ENDABMSPM, completed ABM pages verification
%RMU-I-CLOSAREAS, releasing protected retrieval lock on all storage areas
%RMU-I-BGNVALDAT, Beginning of table data validation 8-MAR-2019 15:19:09.26
%RMU-I-TABCOLVLD, Scanning table DEPARTMENTS which has 2 floating point columns.
%RMU-I-TABCOLVLD, Scanning table SALARY_HISTORY which has 1 floating point

column.
%RMU-I-ENDVALDAT, End of data validation at 8-MAR-2019 15:19:09.31
%RMU-S-ENDVERIFY, elapsed time for verification : 0 00:00:00.27
$

In the previous example, the SALARY_AMOUNT column of the SALARY_
HISTORY table and the BUDGET_ACTUAL and BUDGET_PROJECTED
columns of the DEPARTMENTS table were modified to DOUBLE PRECISION to
show the command in operation.

Usage Notes

The Validate qualifier operates as a separate set of transactions (one per
table) after other verify operations are complete. Use the Transaction_Type
qualifier to alter the type of transaction being executed.

The Validate qualifier defaults to all tables with DOUBLE PRECISION,
REAL or FLOAT columns. However, the FLOAT keyword also accepts an
optional list of table names to be verified. The table name may include the
OpenVMS wildcard characters (*) and (%).

$ RMU /VERIFY -
/VALIDATE=FLOAT=(departments,salary*) -
/TRANSACTION_TYPE=WRITE -
/NOLOG -

MF_PERSONNEL
$

Views, global and local temporary tables, and information tables as well as
misspelled names are ignored by this qualifier, even if they are named by the
Validate qualifier. In such cases, no error is reported.

If an invalid floating value is detected, then RMU will report the column
name and the DBKEY of the affected row.

The default Transaction_Type for the Validate action is PROTECTED READ
mode. Use /TRANSACTION_TYPE=READ_ONLY to minimize locking.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.2 2–5

2.1.6 New /ABORT Qualifier for the RMU/SET DATABASE Command
The new Oracle Rdb RMU SET DATABASE command /ABORT qualifier will use
either the OpenVMS system service $FORCEX or the OpenVMS system service
$DELPRC to force attached user processes out of an open Rdb database but not
database server processes, such as AIJ, ROW CACHE or Database Recovery
Servers, or database utility processes such as RMU. The database will remain
open unless the database is an AUTOMATIC CLOSE database and no user,
server or utility processes are accessing the database when the /ABORT operation
completes. Currently, this functionality is only available as an option of the
CLOSE command which closes the database. The /ABORT qualifier requires that
the user has been granted RMU$OPEN privilege in the root file acess control list
(ACL) for the database or the OpenVMS WORLD privilege.

The /ACCESS=RESTRICTED qualifier can be specified in the same RMU/SET
DATABASE command as the /ABORT qualifier to require that SQL users have
DBADM privilege to attach to the database. The /ACCESS=RESTRICTED
qualifier will always be executed before the /ABORT qualifier.

The command line syntax for the RMU SET DATABASE command /ABORT
qualifier is:

/ABORT[=(FORCEX|DELPRC,[NO]CLUSTER,[NO]WAIT)]

FORCEX and NOWAIT are the defaults. If the user specifies WAIT but does
not specify CLUSTER or NOCLUSTER, CLUSTER is the default. If NOWAIT is
specified or defaulted to and neither CLUSTER nor NOCLUSTER is specified,
the default is NOCLUSTER. If NOCLUSTER is specified, only targeted processes
on the node where the SET DATABASE/ABORT command is invoked are aborted.
If CLUSTER is specified, targeted users on all cluster nodes where the database
is open are aborted. Therefore, if only /ABORT is specified, the default is
/ABORT=(FORCEX,NOCLUSTER,NOWAIT).

If NOWAIT is specified, RMU/SET DATABASE will return the prompt to the user
when the $FORCEX or $DELPRC requests have been issued to all of the targeted
processes. If WAIT is specified, RMU/SET DATABASE will return the prompt to
the user when the targeted processes are no longer accessing the database.

The FORCEX option cannot force an exit of a database process with a spawned
subprocess or a suspended or swapped out process. It aborts batch jobs that
are using the database. The DELPRC option deletes any subprocesses of all
database users, thereby deleting the processes from the database. The DELPRC
and FORCEX options are based on the OpenVMS system services $DELPRC and
$FORCEX. Refer to the OpenVMS documentation set for more information.

In the following example, the database is open on one node and has 5
active users. The "rmu/set database/abort" command defaults to "rmu/set
database/abort=(forcex/nocluster/nowait)". After this command completes, the
$FORCEX system service has been used to force these 5 users out of the database
so that database maintenance can be performed. The process logs of the 5 users
show the %RDMS-F-ABORTUSERS message output when a user is forced out of
the database by a FORCEX operation.

2–6 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.2

$ rmu/show user/out=user.dat mf_personnel
$ search user.dat "active database users"

- 5 active database users on this node
$ rmu/set database/abort mf_personnel
%RMU-I-MODIFIED, Database state modified
%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery
$ rmu/show user/out=user.dat mf_personnel
$ search user.dat "active database users"
%SEARCH-I-NOMATCHES, no strings matched
$ search forcex1.log abort
%RDMS-F-ABORTUSERS, database operator requested user termination
$ search forcex2.log abort
%RDMS-F-ABORTUSERS, database operator requested user termination
$ search forcex3.log abort
%RDMS-F-ABORTUSERS, database operator requested user termination
$ search forcex4.log abort
%RDMS-F-ABORTUSERS, database operator requested user termination
$ search forcex5.log abort
%RDMS-F-ABORTUSERS, database operator requested user termination
$

In the following example, the database is open on two nodes and has 5 active
users on each node. The "rmu/set database/abort=(delprc,cluster,wait)" command
is executed. After this command completes, the $DELPRC system service has
been used to delete the processes of these 10 database users, 5 on each node,
so that database maintenance can be performed. The log from the second node
shows that the processes of the 5 users on the other node are no longer accessing
the database after the wait time of 1 minute and 30 seconds expires, during
which the SET DATABASE/ABORT command was executed on the first cluster
node. The DELPRC operation deletes the user processes and therefore no abort
message is output for the deleted user processes.

$ rmu/show user/out=user.dat mf_personnel
$ search user.dat active, node
Oracle Rdb V7.3-320 on node TEST01 16-MAY-2019 09:48:33.57

- 5 active database users on this node
- database is also open on the following node:

$ rmu/set database/abort=(delprc,cluster,wait) mf_personnel
%RMU-I-MODIFIED, Database state modified
%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery
$ rmu/show user/out=user.dat mf_personnel
$ search user.dat active, node
Oracle Rdb V7.3-320 on node TEST01 16-MAY-2019 09:49:33.95
$!
$!### BELOW IS LOG FROM THE OTHER NODE ###
$!
$ rmu/show user/out=usern.dat mf_personnel
$ search usern.dat active, node
Oracle Rdb V7.3-320 on node TEST02 16-MAY-2019 09:48:04.49

- 5 active database users on this node
- database is also open on the following node:

$ wait 00:01:30
$ rmu/show user/out=usern.dat mf_personnel
$ search usern.dat active, node
Oracle Rdb V7.3-320 on node TEST02 16-MAY-2019 09:49:34.55
$

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.2 2–7

2.1.7 Smaller After Image Backup Files
This release of Oracle Rdb reduces the size of most backup after image journal
files. The size may be reduced by as much as 254 blocks compared with prior
versions. This is the result of improvements made to eliminate unused padding
pages in the backup.

This change only affects the backup of after image journals when compression
is not used, either by specifying the /NOCOMPRESSION qualifier or when the
default is no compression.

2–8 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.2

3
Enhancements And Changes Provided in

Oracle Rdb Release 7.3.3.1

3.1 Enhancements And Changes Provided in Oracle Rdb Release
7.3.3.1

3.1.1 New and Modified Replication Network Error Handling Log Messages
Enhancement Bug 7282606

In order to provide more information on network error recovery procedures, some
existing messages have been modified and new messages have been added to the
Oracle Rdb Replication (Hot Standby) server log messages output when network
failures occur while data is being transferred between a Master Rdb database and
a Standby Rdb database.

• Network retry count of # exceeded

This message has been changed to:

Network retry count of # exceeded; aborting...

where # is the maximum number of times to try to re-establish the network
connection. The attempt to re-establish the network connection has failed and
been aborted after attempting to re-establish the connection the maximum
number of times displayed in the message. The attempt to re-establish
the network connection will be aborted before the retry count is reached if
an attempt to shutdown and restart the network fails or an unrecoverable
network error occurs during a retry attempt. The network retry count can be
modified using the RDM$BIND_HOT_NETWORK_RETRY_COUNT logical.

• Unexpected loss of network connection; retrying...

This new message has been added to indicate that the network connection has
been lost and an attempt will be made to re-establish the network connection.
The error status will have already been output in a previous log message.

• Unexpected loss of network connection, status: status_code - status_text;
retrying...

This new message has been added to indicate that an error has been returned
which indicates that the network connection has been lost and an attempt
will be made to re-establish the network connection. The error status code id
is given followed by the error message name and text.

• Network connection failure, server "server_name"

This message has been changed to:

Network connection failure, server "server_name"; aborting...

to indicate that the named Hot Standby server cannot connect to the network
because of a network failure. The error status will have already been output
in a previous log message.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–1

• Unexpected network error status: status_code - status_text; aborting...
Unexpected network error subcode: subcode_id - subcode_text

This new message has been added to indicate that an unexpected and
unrecoverable network error has been detected. The error status code id
is given followed by the error message name and text. If there is a related
secondary error status that status code is also given followed by the error
message name and text.

• Network Connection lost, no attempt to reconnect will be made; aborting...

This new message has been added to indicate that the connection to the
network has been lost but in this case any retry attempt would fail so no
attempt to re-establish the network connection will be made. The error status
will have already been output in a previous log message.

• Network connection re-established

This new message has been added to confirm that the network connection has
been successfully re-established and the replication operation will continue.

The following extract from the log of one of the Oracle Rdb Hot Standby servers
shows two of the new messages described above, "Unexpected loss of network
connection, status: 056EA018 - %COSI-W-ENDOFFILE, end of file; retrying..."
and "Network connection re-established" which have been added to clarify
network error recovery procedures.

!++
!
! L C S - AIJ Log Catch-Up Server Process
!
!++

30-MAY-2018 17:47:29.47 - Reading AIJ sequence 2:97-191
30-MAY-2018 17:47:29.47 - Unexpected error LSS019: 056EC2C4 -
%COSI-F-WRITERR, write error
30-MAY-2018 17:47:29.47 - Unexpected subcode: 000020E4 -
%SYSTEM-F-LINKABORT, network partner aborted logical link
30-MAY-2018 17:47:29.47 - Unexpected loss of network connection,
status: 056EA018 - %COSI-W-ENDOFFILE, end of file; retrying...
30-MAY-2018 17:47:29.47 - Pausing for 1 second before retrying connect
30-MAY-2018 17:47:30.47 - Attempting to re-establish connection...
30-MAY-2018 17:47:30.47 - Connecting to node "TESTER"
30-MAY-2018 17:47:30.47 - Service object name is "RDMAIJ731"
30-MAY-2018 17:47:30.49 - Network protocol is DECnet
30-MAY-2018 17:47:30.49 - Identified standby LRS process 209E1B3B
30-MAY-2018 17:47:30.49 - Network connection re-established

3.1.2 RMU Show Statistics Feature To Select Screens To Include In
STATISTICS.RPT

Enhancement Bug 8945775

The RMU Show Statistics command allows the /WRITE_REPORT_DELAY=n
qualifier to collect statistics for "n" seconds and then exit after writing a text file
named STATISTICS.RPT that contains the current statistics for all of the RMU
Show Statistics screens.

With this release of Oracle Rdb, RMU allows individual screens to be included or
excluded from the STATISTICS.RPT file by specifying a full screen name or parts
of a screen name using the new REPORT_SCREEN qualifier. The specification
may include wild card character "*" to match multiple characters and "%" to
match a single character.

3–2 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

The new RMU Show Statistic qualifier /REPORT_SCREEN supports these
keywords:

• INCLUDE="string"

/REPORT_SCREEN=(INCLUDE="string")

This keyword will include in the report only those screens with a screen name
matching all or part of the specified "string". The string may contain wild
card characters.

• EXCLUDE="string"

/REPORT_SCREEN=(EXCLUDE="string")

This keyword will exclude from the report only those screens with a screen
name matching all or part of the specified "string". The string may contain
wild card characters.

INCLUDE and EXCLUDE options cannot both be specified in the same RMU
Show Statistics command. The REPORT_SCREEN qualifier is only valid when
the WRITE_REPORT_DELAY qualifier is used.

To include or exclude all the "SUMMARY" screens from the report, the commands
would be similar to these examples.

$ RMU/SHOW STATISTICS -
/WRITE_REPORT_DELAY=120 -
/REPORT_SCREEN=INCLUDE="SUMMARY*" -
DATABASE.RDB

$
$
$ RMU/SHOW STATISTICS -

/WRITE_REPORT_DELAY=120 -
/REPORT_SCREEN=EXCLUDE="Summary*" -
DATABASE.RDB

$

The string matching is case insensitive. That is, the strings "SUMMARY*" and
"Summary*" will be treated the same and will match the following screen header
titles containing "Summary".

Summary IO Statistics

Summary Locking Statistics

Summary Object Statistics

Summary Tx Statistics

An example of an RMU/SHOW STATISTICS screen header containing the unique
screen name "Summary IO Statistics" is:

Node: NODNAM (1/1/16) Oracle Rdb V7.3-31
Perf. Monitor 24-MAY-2018 15:14:32.85
Rate: 3.00 Seconds Summary IO Statistics
Page: 1 of 1 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 Mode: Online
--

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–3

3.1.3 RMU BACKUP and RESTORE /OUTPUT Qualifier to Write Output to a File
Enhancement Bug 1108555

An "/OUTPUT=file-spec" qualifier, which redirects log output (which can be
voluminous), from SYS$OUTPUT to the specified file, was added to the Oracle
Rdb RMU BACKUP and RESTORE commands in the Rdb V7.2-310 release
but was not documented in the sections of the Oracle RMU Reference Manual
describing these commands. This documentation will be added to the next version
of the RMU Reference Manual.

The syntax of the OUTPUT qualifier is:

/OUTPUT=file-spec

If a file extension is not specified in the output file specification, the output file
extension will be ".LIS".

The default if this qualifier is not specified is to send output from the BACKUP
or RESTORE command to SYS$OUTPUT. This qualifier must specify a valid file
specification and cannot be negated. The /NOLOG qualifier cannot be specified on
the same command line as the /OUTPUT qualifier. The qualifer /LOG=BRIEF or
/LOG=FULL can be specified with the /OUTPUT=file_spec qualifier to control the
amount of information written to the designated output file. The /LOG=BRIEF
(the default) qualifier will display the start and completion time of the backup or
restore of each database storage area. The /LOG=FULL qualifier will also display
thread assignment information and statistical information for each storage area.
See the Oracle RMU Reference Manual for more information on the use of the
/LOG qualifier with the BACKUP and RESTORE commands.

In the following example, the /LOG=BRIEF qualifier is used first with the
RMU/RESTORE command and then with the RMU/BACKUP command to direct
output to the TEST.LIS file.

$ rmu/backup/log=brief/output=test mf_personnel mfp.rbf
$ dir test.lis

Directory DISK:[DIRECTORY]

TEST.LIS;1

Total of 1 file.
$ search test.lis RMU-I-COMPLETED
%RMU-I-COMPLETED, BACKUP operation completed at 27-JUN-2018 16:41:00.35
$ delete test.lis;*
$!
$ sql
drop database file disk:[directory]mf_personnel;
$ rmu/restore/nocdd/dir=disk:[directory]/log=brief/output=test mfp.rbf
$ dir test.lis
Directory DISK:[DIRECTORY]

TEST.LIS;1

Total of 1 file.
$ search test.lis RMU-I-COMPLETED
%RMU-I-COMPLETED, RESTORE operation completed at 27-JUN-2018 16:43:00.37

In the following example, the /LOG=FULL qualifier is used first with the
RMU/RESTORE command and then with the RMU/BACKUP command to direct
output to the TEST.LIS file.

3–4 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

$ rmu/backup/log=full/output=test mf_personnel mfp.rbf
$ dir test.lis

Directory DISK:[DIRECTORY]

TEST.LIS;1

Total of 1 file.
$ search test.lis RMU-I-COMPLETED
%RMU-I-COMPLETED, BACKUP operation completed at 27-JUN-2018 16:45:00.23
$ delete test.lis;*
$!
$ sql
drop database file disk:[directory]mf_personnel;
$ rmu/restore/nocdd/dir=disk:[directory]/log=full/output=test mfp.rbf
$ dir test.lis

Directory DISK:[DIRECTORY]

TEST.LIS;1

Total of 1 file.
$ search test.lis RMU-I-COMPLETED
%RMU-I-COMPLETED, RESTORE operation completed at 27-JUN-2018 16:48:00.22

3.1.4 AIJ Backup Data Compression Information is Now in the ABS Process
Logs

New messages have been added to the Oracle Rdb After Image Journal Automatic
Backup Server process logs which will be output if data compression is enabled
for automatic database AIJ backups. Automatic database AIJ backups using data
compression can be defined for a database by the RMU/SET AFTER_JOURNAL
command. A log file to be output by each automatic AIJ backup server process
can be enabled by the RMU/SET SERVER ABS command for a database or by
defining the system RDM$BIND_ABS_LOG_FILE logical for a cluster node.

The new automatic AIJ backup server process log messages output if data
compression is enabled for database automatic AIJ backup files are the following.

• Compression ZLIB level 6

This first message shows the currently supported data compression algorithm
"ZLIB" and the ZLIB level used, which will be an integer between 1 and 9.
The higher the level number, the greater the compression but also the greater
amount of CPU time spent doing the compression. The default level of 6 is
a good trade off between the necessary CPU time and the amount of data
compression.

• Data compressed by 39% (3956 KB in/2428 KB out)

This second compression message, which immediately follows the first
compression message, shows the amount of compression as a percent
value based on the total number of input uncompressed bytes compared
to the total number of output compressed bytes followed by the total
number of uncompressed bytes and the total number of compressed bytes
expressed in scaling units, which will vary depending on the amount of data
compressed. The scaling units will be one of "Bytes", "KB" for kilobytes, "MB"
for megabytes, "GB" for gigabytes or "TB" for Terabytes.

The following example shows the last portion of a log file named ABS_
23CF6459.OUT created by an automatic backup server process with a process
id of 23CF6459. The log messages show that this process has created the After
Image Journal backup file AIJBCKCOMP.ABF;24 and that the data in the
backup file was compressed using the ZLIB compression level 6 algorithm. The

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–5

compressed output data was 38% smaller than the uncompressed input data. The
number of uncompressed input kilobytes is 3932 and the number of compressed
output kilobytes in the AIJBCKCOMP.ABF;24 output AIJ backup file is 2445.

$ TYPE DEVICE:[DIRECTORY]ABS_23CF6459.OUT

4-OCT-2018 08:44:33.45 - AIJ Backup Server (ABS) activated
4-OCT-2018 08:44:33.45 - Database is DEVICE:[DIRECTORY]AIJBCKCOMP.RDB;1
4-OCT-2018 08:44:33.45 - Backing up AIJ 23
4-OCT-2018 08:44:33.45 - By-sequence AIJ backup for sequence 23 to 23
%RDMS-I-OPERNOTIFY, system operator notification: AIJ backup operation started
4-OCT-2018 08:44:33.45 - No Hot Standby servers active
%RDMS-I-AIJBCKSEQ, backing up after-image journal sequence number 23
%RDMS-I-LOGBCKAIJ, backing up after-image journal J4 at 08:44:33.45
%RDMS-I-LOGCREBCK, created backup file DEVICE:[DIRECTORY]AIJBCKCOMP.ABF;24
%RDMS-I-OPERNOTIFY, system operator notification: AIJ backup operation completed
4-OCT-2018 08:44:34.34 - AIJ backup complete
4-OCT-2018 08:44:34.34 - Compression ZLIB level 6
4-OCT-2018 08:44:34.34 - Data compressed by 38% (3932 KB in/2445 KB out)
4-OCT-2018 08:44:34.34 - ELAPSED: 0 00:00:00.91 CPU: 0:00:00.79 BUFIO:
20 DIRIO: 356 FAULTS: 242
$

3.1.5 RMU MOVE_AREA and COPY_DATABASE /OUTPUT Qualifier to Write
Output to a File

A new "/OUTPUT=file-spec" qualifier has been added to the Oracle Rdb RMU
MOVE_AREA and COPY_DATABASE commands. This qualifier will redirect log
output, which can be voluminous, from SYS$OUTPUT to the specified file.

The syntax of the OUTPUT qualifier is:

/OUTPUT=file-spec

If a file extension is not specified in the output file specification, the output file
extension will be ".LIS".

The default if this qualifier is not specified is to send output from the MOVE_
AREA or COPY_DATABASE command to SYS$OUTPUT. This qualifier must
specify a valid file specification and cannot be negated. The /NOLOG qualifier
cannot be specified on the same command line as the /OUTPUT qualifier. See
the Oracle RMU Reference Manual for more information on the use of the /LOG
qualifier with the MOVE_AREA and COPY_DATABASE commands.

In the following example, the /LOG and /OUTPUT qualifiers are specfied with the
RMU/MOVE_AREA command to direct command output to the MOVELOG.LIS
file when moving all MF_PERSONNEL database areas to a different directory.

$ RMU/MOVE_AREA/LOG/OUTPUT=MOVELOG MF_PERSONNEL -
/ALL_AREAS/DIRECTORY=DISK:[DIRECTORY]
$ SEAR MOVELOG.LIS MOVTXT_15, MOVTXT_06, MOVTXT_07, DOFULLBCK,-
"operation completed"
%RMU-I-MOVTXT_15, Area files have been moved
%RMU-I-MOVTXT_06, Database root updated for all moved areas
%RMU-I-MOVTXT_07, Obsolete files deleted
%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery
%RMU-I-COMPLETED, MOVE_AREA operation completed at 18-JUL-2018 16:53:00.37

In the following example, the /LOG and /OUTPUT qualifiers are specfied
with the RMU/COPY_DATABASE command to direct command output to the
COPYLOG.LIS file when copying the MF_PERSONNEL database to a different
directory.

3–6 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

$ RMU/COPY_DATABASE/LOG/OUTPUT=COPYLOG MF_PERSONNEL /DIRECTORY=DISK:[DIRECTORY]
$ SEAR COPYLOG.LIS MOVTXT_00, DOFULLBCK, "operation completed"
%RMU-I-MOVTXT_00, Moved root file DISK:[DIRECTORY]MF_PERSONNEL.RDB;VERSION
%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery
%RMU-I-COMPLETED, COPY_DATABASE operation completed at 18-JUL-2018 17:23:00.24

3.1.6 Support for /OUTPUT=file-spec Qualifier Added to RMU Backup Plan File
Enhancement Bug 1108555

The Oracle Rdb RMU/BACKUP command "/OUTPUT=file-spec" qualifier, which
redirects log output, which can be voluminous, from SYS$OUTPUT to the
specified file, was not supported for the RMU Backup Plan file and therefore could
not be executed by the RMU/BACKUP/PLAN command even though it could be
specified for the RMU/BACKUP command. Support for the /OUTPUT=file-spec
qualifier has now been added to the RMU Backup Plan file used for parallel
backups of Rdb databases.

The command line syntax of the OUTPUT qualifier for the RMU Backup
command line is:

/OUTPUT=file-spec

The new syntax for specifying the OUTPUT qualifier in the RMU Backup Plan
file is:

/OUTPUT = file-spec

The placeholder for the OUTPUT qualifier in the RMU Backup Plan file is:

! Output = specification for output file

The default if this qualifier is not specified is to send output from the BACKUP
command to SYS$OUTPUT. If a file extension is not specified in the output file
specification, the output file extension will be ".LIS". This qualifier must specify a
valid file specification and cannot be negated.

In this example, the first RMU/BACKUP/PARALLEL/OUTPUT=PARALLEL_LOG
command executes a parallel backup to disk logging output to the PARALLEL_
LOG.LIS;1 log file and creates the MFP.PLAN file which contains the "Output
= PARALLEL_LOG" qualifier and the other qualifiers specified in the backup
command. Then the second RMU/BACKUP/PLAN MFP.PLAN command is
executed to repeat the same backup using the same command qualifiers as the
first command which have been saved by the first command in the MFP.PLAN
file. For both commands, the parallel backup output has been logged to a file
named PARALLEL_LOG.LIS, producing the files PARALLEL_LOG.LIS;1 and
PARALLEL_LOG.LIS;2.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–7

$ rmu/backup/parallel=executor=1/disk/execute/log -
/output=parallel_log -
/active_io=5 -
/page_buffers=5 -
/noquiet_point -
/list_plan=mfp.plan -
mf_personnel [.test1]mfp.rbf,[.test2],[.test3]

$
$ sear mfp.plan "output"

Output = PARALLEL_LOG
$
$ rmu/backup/plan mfp.plan
$
$ type parallel_log.lis;2
WORKER_001: %RMU-I-BCKTXT_00, Backed up root file
DISK:[DIRECTORY]MF_PERSONNEL.RDB;1
WORKER_001: %RMU-I-BCKTXT_02, Starting full backup of storage area (RDB$SYSTEM)
DISK:[DIRECTORY]MF_PERS_DEFAULT.RDA;1 at 3-AUG-2018 15:03:39.44
WORKER_001: %RMU-I-BCKTXT_12, Completed full backup of storage area (RDB$SYSTEM)
DISK:[DIRECTORY]MF_PERS_DEFAULT.RDA;1 at 3-AUG-2018 15:03:39.45
WORKER_001: %RMU-I-BCKTXT_02, Starting full backup of storage area (EMPIDS_MID)
DISK:[DIRECTORY]EMPIDS_MID.RDA;1 at 3-AUG-2018 15:03:39.45
WORKER_001: %RMU-I-BCKTXT_02, Starting full backup of storage area
(MF_PERS_SEGSTR)
DISK:[DIRECTORY]MF_PERS_SEGSTR.RDA;1 at 3-AUG-2018 15:03:39.45
WORKER_001: %RMU-I-BCKTXT_12, Completed full backup of storage area (EMPIDS_MID)
DISK:[DIRECTORY]EMPIDS_MID.RDA;1 at 3-AUG-2018 15:03:39.46
WORKER_001: %RMU-I-BCKTXT_12, Completed full backup of storage area
(MF_PERS_SEGSTR)
DISK:[DIRECTORY]MF_PERS_SEGSTR.RDA;1 at 3-AUG-2018 15:03:39.46
WORKER_001: %RMU-I-RESUME, resuming operation on volume 2 using DISK
WORKER_001: %RMU-I-BCKTXT_02, Starting full backup of storage area
(SALARY_HISTORY)
DISK:[DIRECTORY]SALARY_HISTORY.RDA;1 at 3-AUG-2018 15:03:39.47
WORKER_001: %RMU-I-BCKTXT_02, Starting full backup of storage area (EMP_INFO)
DISK:[DIRECTORY]EMP_INFO.RDA;1 at 3-AUG-2018 15:03:39.47
WORKER_001: %RMU-I-BCKTXT_02, Starting full backup of storage area (EMPIDS_LOW)
DISK:[DIRECTORY]EMPIDS_LOW.RDA;1 at 3-AUG-2018 15:03:39.47
WORKER_001: %RMU-I-BCKTXT_12, Completed full backup of storage area
(SALARY_HISTORY)
DISK:[DIRECTORY]SALARY_HISTORY.RDA;1 at 3-AUG-2018 15:03:39.48
WORKER_001: %RMU-I-BCKTXT_12, Completed full backup of storage area (EMP_INFO)
DISK:[DIRECTORY]EMP_INFO.RDA;1 at 3-AUG-2018 15:03:39.48
WORKER_001: %RMU-I-BCKTXT_12, Completed full backup of storage area (EMPIDS_LOW)
DISK:[DIRECTORY]EMPIDS_LOW.RDA;1 at 3-AUG-2018 15:03:39.48
WORKER_001: %RMU-I-RESUME, resuming operation on volume 3 using DISK
WORKER_001: %RMU-I-BCKTXT_02, Starting full backup of storage area (JOBS)
DISK:[DIRECTORY]JOBS.RDA;1 at 3-AUG-2018 15:03:39.49
WORKER_001: %RMU-I-BCKTXT_02, Starting full backup of storage area (EMPIDS_OVER)
DISK:[DIRECTORY]EMPIDS_OVER.RDA;1 at 3-AUG-2018 15:03:39.49
WORKER_001: %RMU-I-BCKTXT_02, Starting full backup of storage area (DEPARTMENTS)
DISK:[DIRECTORY]DEPARTMENTS.RDA;1 at 3-AUG-2018 15:03:39.49
WORKER_001: %RMU-I-BCKTXT_12, Completed full backup of storage area (JOBS)
DISK:[DIRECTORY]JOBS.RDA;1 at 3-AUG-2018 15:03:39.50
WORKER_001: %RMU-I-BCKTXT_12, Completed full backup of storage area
(EMPIDS_OVER)
DISK:[DIRECTORY]EMPIDS_OVER.RDA;1 at 3-AUG-2018 15:03:39.50
WORKER_001: %RMU-I-BCKTXT_12, Completed full backup of storage area
(DEPARTMENTS)
DISK:[DIRECTORY]DEPARTMENTS.RDA;1 at 3-AUG-2018 15:03:39.50
WORKER_001: %RMU-I-COMPLETED, BACKUP operation completed at
3-AUG-2018 15:03:39.51
%RMU-I-COMPLETED, BACKUP operation completed at 3-AUG-2018 15:03:39.51
$
$ directory parallel_log.lis;*

3–8 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

Directory DISK:[DIRECTORY]

PARALLEL_LOG.LIS;2 PARALLEL_LOG.LIS;1

Total of 2 files.
$

3.1.7 New CREATE OR REPLACE Support for PROFILE
This release of Oracle Rdb supports the CREATE OR REPLACE syntax for
PROFILE. If the named profile does not exist, then CREATE OR REPLACE acts
like a CREATE PROFILE statement. If the named profile exists, it is first deleted
and then replaced by the new definition.

Any dependencies upon the profile, for example being assigned to a database
USER, are not affected by the CREATE OR REPLACE PROFILE statement.

The following example shows a profile named ADMIN_USER which is replaced
by a new definition. It also demonstrates that the assignment to a user is
unchanged.

SQL> show profiles admin_user;
ADMIN_USER
Transaction modes (shared read, no batch update)
Default transaction read write wait 3
Isolation level read committed

SQL>
SQL> create user rdbuser1
cont> identified externally
cont> profile admin_user
cont> ;
SQL>
SQL> show user rdbuser1;

RDBUSER1
Identified externally
Account is unlocked
Profile: ADMIN_USER
No roles have been granted to this user

SQL>
SQL> create or replace profile admin_user
cont> transaction modes (shared read, shared write, no batch update)
cont> ;
SQL>
SQL> show profiles admin_user;

ADMIN_USER
Transaction modes (shared, no batch update)

SQL>
SQL> show user rdbuser1;

RDBUSER1
Identified externally
Account is unlocked
Profile: ADMIN_USER
No roles have been granted to this user

SQL>

The default profile, created with the CREATE DEFAULT PROFILE statement,
can also be replaced.

SQL> create or replace default profile
cont> default transaction
cont> read write
cont> isolation level read committed
cont> limit rows 10000
cont> ;
SQL>

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–9

3.1.8 New CREATE OR REPLACE Support for VIEW
Enhancement Bugs 3763080 and 4555512

This release of Oracle Rdb now supports the CREATE OR REPLACE VIEW
Statement. The OR REPLACE modifier to CREATE VIEW will request that SQL
replace the view if one of that name exists in the database.

Arguments

OR REPLACE

This clause instructs SQL to replace an existing view if possible. If the view
does not exist, it will be created. The restrictions upon the replace action are
listed in the usage notes.

Usage Notes

If the view does not exist, then there must not be a table, sequence or
synonym with the same name as this new view.

If the view exists and the CREATE VIEW statement was used, then an error
will be reported.

If the view exists and the CREATE OR REPLACE VIEW statement was used
and the name used is a synonym, then the view referenced by that synonym
will be replaced.

A view will be replaced if these conditions are met.

1. There are no existing database object dependencies on the view.

For example, there are no procedures, functions or other objects with
references to the view and its columns.

Note

Dependencies may exist externally such as SQL Pre-compiler source
code or SQL Module Language procedures. Replacing the view with an
incompatible version may cause those modules to execute in unexpected
ways or to generate errors when recompiled.

2. The existing dependencies are met by the new view definition.

For example, if a view is referenced by a stored procedure then any
column names referenced must exist after the replace is complete.

Consider this example which attempts to reduce the columns of the view.
The view CURRENT_INFO uses the view field SALARY_START, which is
no longer present in the revised view definition.

3–10 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

SQL> create or replace view CURRENT_SALARY
cont> (LAST_NAME,
cont> FIRST_NAME,
cont> EMPLOYEE_ID,
cont> SALARY_AMOUNT) as
cont> (select
cont> C2.LAST_NAME,
cont> C2.FIRST_NAME,
cont> C2.EMPLOYEE_ID,
cont> C1.SALARY_AMOUNT
cont> from SALARY_HISTORY C1, EMPLOYEES C2
cont> where ((C1.SALARY_END is null)
cont> and (C2.EMPLOYEE_ID = C1.EMPLOYEE_ID)));
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-VIEWDEPEND, other database objects are dependent on this view
-RDMS-F-NOCHGVW, the definition of view "CURRENT_SALARY" may not be changed
SQL>

3. There are no language semantic requirements due to the functionality
used to reference the view.

For example, an INSERT INTO statement that omits the column list or a
SELECT * FROM statement have an implied column name list and also
column ordering. This column name ordering must be maintained by the
replace.

Note

The EXISTS function allows the format EXISTS (SELECT * FROM ...
WHERE ...). However, using the * syntax in this context does not actually
expand to reference all columns and therefore is not considered as a
semantic restriction.

Oracle Rdb does not check for compatible data types so it is possible that
functions, procedures, and views may fail due to incompatible types. In
some cases, the ALTER MODULE ... COMPILE statement should be used to
validate such changes prior to committing the replacement of the view.

If the view exists and is replaced, then any column level comment, granted
access control or audit settings will be propagated to the replacement view if
the column name is the same as in the prior version.

If the view exists and is replaced, then any view comment, granted access
control or audit/alarm settings will be propagated to the replacement view.

If the view exists and the OR REPLACE clause is used, then you must have
ALTER privilege on the referenced view.

Examples
Example 1: This example shows a definition of CURRENT_INFO that can be
applied to the PERSONNEL database when the view exists or even when the
view does not yet exist.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–11

SQL> create or replace view CURRENT_INFO
cont> (LAST_NAME,
cont> FIRST_NAME,
cont> "ID",
cont> DEPARTMENT,
cont> JOB,
cont> JSTART,
cont> SSTART,
cont> SALARY) as
cont> (select
cont> C1.LAST_NAME,
cont> C1.FIRST_NAME,
cont> C1.EMPLOYEE_ID,
cont> C2.DEPARTMENT_NAME,
cont> C3.JOB_TITLE,
cont> C1.JOB_START,
cont> C4.SALARY_START,
cont> C4.SALARY_AMOUNT
cont> from CURRENT_JOB C1, DEPARTMENTS C2, JOBS C3, CURRENT_SALARY C4
cont> where (((C2.DEPARTMENT_CODE = C1.DEPARTMENT_CODE)
cont> and (C3.JOB_CODE = C1.JOB_CODE))
cont> and (C4.EMPLOYEE_ID = C1.EMPLOYEE_ID)));
SQL>

3.1.9 New CREATE OR REPLACE Support for SEQUENCE
Enhancement Bug 3763080

This release of Oracle Rdb now supports the CREATE OR REPLACE SEQUENCE
Statement. The OR REPLACE modifier to CREATE SEQUENCE will request
that SQL replace the sequence if one of that name exists in the database.

Arguments

OR REPLACE

This clause instructs SQL to replace an existing sequence if possible. If the
sequence does not exist, it will be created. The restrictions upon the replace
action are listed in the usage notes.

Usage Notes

You must have the CREATE database privilege to execute the CREATE
SEQUENCE Statement. You must have the ALTER sequence privilege to
execute the CREATE OR REPLACE SEQUENCE Statement on an existing
sequence.

If the sequence does not exist, then there must not be a table, synonym or
view with the same name as this new sequence.

If the sequence exists and the CREATE SEQUENCE Statement was used,
then an error will be reported.

If the sequence exists and the CREATE OR REPLACE SEQUENCE
Statement was used and the name used is a synonym, then the sequence
referenced by that synonym will be replaced.

A system sequence (created internally by Oracle Rdb), or column identity
sequence (created by the IDENTITY or GENERATED ... AS IDENTITY
clause), may not be replaced.

If a sequence is replaced, the START WITH value will be reset to the value
specified by the CREATE SEQUENCE Statement or the default based on the
other clauses in the statement.

3–12 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

Exclusive access is required if a sequence is replaced. No active queries or
other users may have access to that sequence.

The access control list (ACL) on the sequence is propagated (saved and
restored) from the old sequence by the REPLACE action.

The audit and alarm settings for the sequence are propagated (saved and
restored) from the old sequence by the REPLACE action.

Any comment on the sequence is propagated (saved and restored) from
the old sequence by the REPLACE action unless there is a COMMENT IS
clause specified by the CREATE OR REPLACE Statement. Comments can be
created by the COMMENT IS clause of the CREATE or ALTER SEQUENCE
Statement or by the COMMENT ON SEQUENCE Statement.

Examples
Example 1: This example shows the CREATE OR REPLACE SEQUENCE
Statement and demonstrates that any comment or access control list is
propagated by OR REPLACE action.

create or replace sequence DEPT_ID
cycle noorder
start with 10
default wait

;

-- show that comment and ACL are propagated by OR REPLACE
show sequence DEPT_ID;

DEPT_ID
Sequence Id: 3
Initial Value: 10
Minimum Value: 1
Maximum Value: 9223372036854775806
Next Sequence Value: 10
Increment by: 1
Cache Size: 20
No Order
Cycle
No Randomize
Comment: revised; new departments get a unique number

show protection on sequence DEPT_ID;
Protection on Sequence DEPT_ID

(IDENTIFIER=[ACCT,ACCT_USER],ACCESS=SELECT)
(IDENTIFIER=[ACCT,ACCTUSER2],ACCESS=SELECT+SHOW+ALTER+DROP+DBCTRL

+REFERENCES)
(IDENTIFIER=[ACCT,ACCTUSER1],ACCESS=SELECT+SHOW+ALTER+DROP+DBCTRL

+REFERENCES)
(IDENTIFIER=[*,*],ACCESS=NONE)

3.1.10 New Options for SET LOGFILE Statement
This release of Oracle Rdb adds new options to the SET LOGFILE statement.

LOGFILE quoted-filespec

This statement allows the executing SQL script to save output to an
OpenVMS file. Output and errors from interactive SQL, as well as those
statements, will be written to the file-spec specified.

The SET LOGFILE is functionally equivalent to the SET OUTPUT statement.
A SET LOGFILE command that does not specify a file is equivalent to SET
NOLOGFILE.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–13

Various keywords can be used to control the written output file.

• CACHE

This is the default. The OpenVMS file caching will be in effect for this
file.

• NOCACHE

This option disables the OpenVMS file caching for this file. Use this to
prevent unnecessary caching for a temporary file.

• ECHO

This is the default. As well as writing the output to the designated file,
all commands and errors generated by interactive SQL are also written to
SYS$OUTPUT.

• NOECHO

If the option NOECHO is used, output to SYS$OUTPUT is disabled. All
commands and errors generated by interactive SQL are only written to
the output file.

• LARGE_FILE

If the output written to the LOGFILE is lengthy (such as when capturing
the output from a query), then this option will use an RMS EXTENT size
of 8192. This might improve output performance for very large files.

• SHARED

The file is created with the shared attribute which will allow other
processes to open and read that file while it is being written by SQL.

3.1.11 New UNDECLARE CURSOR Statement
This release of Oracle Rdb introduces a new UNDECLARE CURSOR statement
for interactive SQL.

This statement implicitly closes the named cursor, removes the declared cursor
name from the known cursor list, and releases resources held by SQL and the
Oracle Rdb Server for that cursor. If this is a table cursor, then all associated list
cursors are also undeclared.

Environment
You can use the UNDECLARE CURSOR statement:

• In interactive SQL

Format
UNDECLARE CURSOR <cursor-name>

Arguments
cursor-name

Specifies the name of the declared cursor.

3–14 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

Example
Example of using the Undeclare Cursor statement.

SQL> declare mycursor cursor for select * from mytable;
SQL>
SQL> open mycursor;
SQL> fetch mycursor;
MYFIELD
SAMPLE
SQL> close mycursor;
SQL>
SQL> undeclare cursor mycursor;
SQL>

3.1.12 Enhanced LIKE Table Support in CREATE TABLE Statement
This release of Oracle Rdb introduces support for the ANSI and ISO SQL
Language Standard syntax for the LIKE table clause.

In prior releases of Oracle Rdb, a table can be created using syntax similar to the
following:

SQL> create table RETIRED_EMPLOYEES
cont> like EMPLOYEES
cont> ;
SQL>

This statement copies the definitions of each column as well as DEFAULT values
defined for those source columns. SQL also allows additional columns and
constraints to be defined for the new table.

SQL> create table RETIRED_EMPLOYEES
cont> like EMPLOYEES
cont> (retirement_date DATE
cont> ,check (retirement_date > birthday) not deferrable
cont>);
SQL>

This syntax is retained for backward compatibility with prior releases of Oracle
Rdb.

The syntax for a similar feature in the ANSI/ISO SQL Database Language moves
the LIKE clause into the section that defines the columns and constraint. This
adds the ability to copy column definitions from more than one table, control
how GENERATED, AUTOMATIC, IDENTITY and COMPUTED columns are
inherited, as well as define the column ordering; this is determined by the order
of the listed columns and tables.

SQL> create table RETIRED_EMPLOYEES
cont> (retirement_date DATE
cont> ,like EMPLOYEES
cont> including COMPUTED
cont> excluding DEFAULTS
cont> ,check (retirement_date > birthday) not deferrable
cont> ,unique (employee_id)
cont> ,hr_authorizations LIST OF BYTE VARYING
cont>);
SQL>

By default, GENERATED, AUTOMATIC, IDENTITY and COMPUTED columns
are not copied but columns representing the same data types are created instead.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–15

Syntax
column-constraint-list =

col-definition
ansi-like-table-clause
table-constraint

,

ansi-like-table-clause =

LIKE <other-table-name>
like-attributes

like-attributes =

EXCLUDING COMMENTS
INCLUDING COMPUTED

DEFAULTS
GENERATED
IDENTITY
PROTECTION

Usage Notes

• When using the LIKE clause to copy a table definition, the creator of the
new table must have REFERENCES or SELECT privilege granted for the
referenced table.

• The LIKE clause can be used multiple times within a CREATE TABLE
statement. However, if the copied tables include any duplicate column names,
then an error will be reported. Only one IDENTITY column can be defined
or inherited. Use the INCLUDING IDENTITY clause, if necessary, to inherit
the attributes from the referenced table.

The default behavior is EXCLUDING COMPUTED, GENERATED,
IDENTITY column details. In this case, non-generated columns will be
created which contain the same data type attributes. Default values defined
for the source tables are not automatically inherited. Use the INCLUDING
DEFAULTS clause to control this behavior.

Note: For backward compatibility with previous versions of Oracle Rdb, the
LIKE clause used outside the column-constraint-list defaults to INCLUDING
GENERATED, INCLUDING IDENTITY, INCLUDING COMPUTED and
INCLUDING DEFAULTS. The like-attributes may not be specified in this
location and therefore these defaults may not be changed.

• The clauses EXCLUDING GENERATED or INCLUDING GENERATED apply
to columns defined using the GENERATED ... AS (expr) and AUTOMATIC ...
AS (expr) syntax. When EXCLUDING is used or implied, the generated (or
automatic) column is converted to a simple base column with the same data
types.

• The clauses EXCLUDING IDENTITY or INCLUDING IDENTITY apply to
columns defined using the GENERATED ... AS IDENTITY and IDENTITY
(...) syntax. When EXCLUDING is used or implied, the identity column is
converted to a simple base column with the same data types.

3–16 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

• The clauses EXCLUDING COMPUTED or INCLUDING COMPUTED
apply to columns defined using the COMPUTED BY expr syntax. When
EXCLUDING is used or implied, the computed by column is converted to
a simple base column with the same data types. Note that the column will
require space in the defined table, which isn’t true for COMPUTED BY
columns.

• When the LIKE clause is used within the column-constraint-list, then
EXCLUDING DEFAULTS is assumed. Use the INCLUDING DEFAULTS
if you wish the inherited columns to have DEFAULTS inherited from the
source table.

• The LIKE clause is only used to inherit the column definitions from the
referenced table. Once the table is created with LIKE clauses, subsequent
changes to the source table are not propagated to the created tables.

Examples
The following example shows the use of the LIKE clause to inherit columns from
various template tables.

SQL> create table NAMES_REC
cont> (LAST_NAME LAST_NAME_DOM
cont> ,FIRST_NAME FIRST_NAME_DOM
cont> ,MIDDLE_INITIAL MIDDLE_INITIAL_DOM
cont>);
SQL>
SQL> create table ADDRESS_REC
cont> (ADDRESS_DATA_1 ADDRESS_DATA_1_DOM
cont> ,ADDRESS_DATA_2 ADDRESS_DATA_2_DOM
cont> ,CITY CITY_DOM
cont> ,STATE STATE_DOM
cont> ,POSTAL_CODE POSTAL_CODE_DOM
cont>);
SQL>
SQL> create table employees
cont> (EMPLOYEE_ID ID_DOM not null
cont> ,like NAMES_REC including DEFAULTS
cont> ,like ADDRESS_REC including DEFAULTS
cont> ,SEX SEX_DOM
cont> ,BIRTHDAY DATE_DOM
cont> ,STATUS_CODE STATUS_CODE_DOM
cont>);
SQL>

The resulting CREATE TABLE for the EMPLOYEES table is easier to read and
allows for consistency among similar definitions.

SQL> show table (column) EMPLOYEES;
Information for table EMPLOYEES

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–17

Columns for table EMPLOYEES:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_DOM
Not Null constraint EMPLOYEES_EMPLOYEE_ID_NOT_NULL
LAST_NAME CHAR(14) LAST_NAME_DOM
FIRST_NAME CHAR(10) FIRST_NAME_DOM
MIDDLE_INITIAL CHAR(1) MIDDLE_INITIAL_DOM
ADDRESS_DATA_1 CHAR(25) ADDRESS_DATA_1_DOM
ADDRESS_DATA_2 CHAR(20) ADDRESS_DATA_2_DOM
CITY CHAR(20) CITY_DOM
STATE CHAR(2) STATE_DOM
POSTAL_CODE CHAR(5) POSTAL_CODE_DOM
SEX CHAR(1) SEX_DOM
BIRTHDAY DATE VMS DATE_DOM
STATUS_CODE CHAR(1) STATUS_CODE_DOM

SQL>

3.1.13 New TO_DSINTERVAL and TO_YMINTERVAL Functions
This release of Oracle Rdb supports two new builtin functions: TO_DSINTERVAL
and TO_YMINTERVAL. These functions accept a character string containing
either an ANSI/ISO SQL Language interval format string or an ISO durations
string (see below for a description).

Additionally, these functions support an optional DEFAULT ... ON
CONVERSION ERROR clause which provides an alternate value to use if
the source string contains errors.

The following example shows the use of the DEFAULT clause to allow special
handling of the unexpected value.

SQL> begin
cont> declare :v interval year to month;
cont> declare :SQLSTATE_DATA_INV_PARAM constant char(5) = ’22023’;
cont>
cont> set :v = to_yminterval (:duration default ’-P99999Y’ on conversion error);
cont> if :v = interval’-99999-0’ year (5) to month
cont> then
cont> signal :SQLSTATE_DATA_INV_PARAM (’duration conversion error’);
cont> end if;
cont> end;
%RDB-E-SIGNAL_SQLSTATE, routine "(unnamed)" signaled SQLSTATE "22023"
-RDB-I-TEXT, duration conversion error
SQL>

Syntax

TO_DSINTERVAL (ds_duration_string
[DEFAULT ds_return_value ON CONVERSION ERROR]

)

TO_YMINTERVAL (ym_duration_string
[DEFAULT ym_return_value ON CONVERSION ERROR]

)

The arguments to these functions are string values; variables, literals or function
results. For TO_DSINTERVAL, ds_duration_string and ds_return_value must be
formatted as a date/time DAY TO SECOND intervals. For TO_YMINTERVAL,
ym_duration_string and ym_return_value must be formatted as a date/time
YEAR TO MONTH intervals.

3–18 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

If ds_duration_string or ym_duration_string results in a NULL value, then
the result of the function will be NULL. If a conversion error occurs and the
DEFAULT ... ON CONVERSION ERROR value results in a NULL value, then
the result of the function will be NULL.

The clause DEFAULT ... ON CONVERSION ERROR is optional. If present, that
result will be used if any errors are encountered in the string values. If omitted,
then the error will be reported at runtime.

Duration Format
The International Organization for Standardization (ISO) defines a Date and
time format - ISO 8601. This standard includes the representation of duration
or periods. Oracle Rdb supports this format for use with the functions TO_
YMINTERVAL and TO_DSINTERVAL.

A duration represents an interval between two date and time values. Oracle Rdb
supports a subset of the ISO formatting that can be converted to the INTERVAL
YEAR TO MONTH or the INTERVAL DAY TO SECOND data type.

[+ | -] PnYnMnDTnHnMnS

The character string can begin with an optional "+" or "-" sign to indicate the sign
of the interval. The next character must be an uppercase P, which indicates that
the string is an ISO 8601 string. The capital letters P, Y, M, D, T, H, M, and S are
format indicators for each of the date and time elements. Leading and trailing
spaces are ignored, but embedded spaces will generate an error.

• P is the duration designator (for period) placed at the start of the duration
representation.

• nY is the year designator that follows the value for the number of years.

• nM is the month designator that follows the value for the number of months.

• nD is the day designator that follows the value for the number of days.

• T is the time designator that precedes the time components of the
representation. Note that T must be present only when there are time
(H, M, S) elements in the string.

• nH is the hour designator that follows the value for the number of hours.

• nM is the minute designator that follows the value for the number of minutes.

• nS is the second designator that follows the value for the number of seconds.

If any of the value designators (Y, M, D, H, M, and S) are omitted, then the field
they represent will be assumed zero (0). The n represents the unsigned value of
the field and must only contain numeric digits (0 through 9). The exception is
the seconds (S) field which represents seconds with decimal fractions that may
include a decimal indicator (either "." or ","). At least one element of the interval
must be represented; no element may be repeated.

Some examples:

• "P3Y6M4DT12H30M5.6S" represents a duration of three years, six months,
four days, twelve hours, thirty minutes, and five point 6 seconds.

• "P1Y" represents a duration of one year.

• "PT50000S" represents a duration of fifty thousand seconds, which will be
represented as thirteen hours fifty three minutes and twenty seconds.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–19

• "P1MT1M" represents one month and one minute. The "T" separator is
required to avoid ambiguity between months and minutes. This duration is
accepted by Oracle Rdb as a year-month interval as input TO_YMINTERVAL
but the low precision fields (D, H, M, S) will be discarded.

3.1.14 New CREATE DEFAULT AUDIT Statement
CREATE DEFAULT AUDIT Statement

This statement creates a system template object that is used to provide the audit
and alarm characteristics for a newly created object of that type. For example,
when a user creates a new SEQUENCE in the database, the audit/alarm
characteristics are inherited automatically from the template without further
action by the database administrator.

This statement can be used to create templates for:

• functions and procedures

• modules

• sequences

• tables and views

See also ALTER DEFAULT AUDIT Statement and the DROP DEFAULT AUDIT
Statement.

Environment
You can use the CREATE DEFAULT AUDIT statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Syntax

CREATE DEFAULT AUDIT
OR REPLACE ALIAS alias-name

FOR object-type
audit-attributes

object-type =

FUNCTION
MODULE
PROCEDURE
SEQUENCE
TABLE
VIEW

3–20 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

audit-attributes =

comment-is-clause
ALL PRIVILEGES
NO PRIVILEGES
PRIVILEGES (privilege-list)
TYPE IS (ALARM)

AUDIT
,

comment-is-clause =

COMMENT IS ’quoted-string’
/

privilege-list =

ALTER
CREATE
DBCTRL
DELETE
DROP
EXECUTE
FAILURE
INSERT
REFERENCES
SELECT
SHOW
SUCCESS
UPDATE

Arguments

• ALIAS aliasname

The name of the database alias if there is no default database for this session.

• COMMENT IS

Adds a comment to the template object.

• FOR object-type

The type of template.

• PRIVILEGES (privilege-list)
ALL PRIVILEGES
NO PRIVILEGES

Specifies the privileges that trigger audit or alarm actions.

The ALL PRIVILEGES clause is equivalent to specifying PRIVILEGES (ALL).
NO PRIVILEGES is the default if none of these clauses is specified.

• TYPE IS (ALARM)
TYPE IS (AUDIT)
TYPE IS (ALARM, AUDIT)

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–21

Defines the scope for the privileges checking. The default if this clause is not
specified is both ALARM and AUDIT.

Usage Notes

• You must have the SECURITY privilege on the database to execute the
CREATE DEFAULT AUDIT statement.

• If the privilege set for AUDIT is different from ALARM then follow the
CREATE DEFAULT AUDIT Statement with an ALTER DEFAULT AUDIT
Statement. For example:

SQL> create default audit for function
cont> type is (alarm)
cont> privilege (drop);
SQL> alter default audit for function
cont> type is (audit)
cont> privilege (all);

• The clauses PRIVILEGES (ALL) and ALL PRIVILEGES are synonymous.
The actual privileges applied to the audit will be filtered by those applicable
to the object type. For example, EXECUTE privilege will not be applied to a
table.

• The created templates are system owned and you must use the ALTER
DEFAULT AUDIT Statement or DROP DEFAULT AUDIT Statement to
manage them. The GRANT and REVOKE Statements can be used on the
system objects but require appropriate DBCTRL privilege access.

• This statement will create system objects with the following names:

for sequence; RDB$DEFAULT_AUDIT_SEQUENCE

for table; RDB$DEFAULT_AUDIT_TABLE

for module; RDB$DEFAULT_AUDIT_MODULE

for function; RDB$DEFAULT_AUDIT_FUNCTION

for procedure; RDB$DEFAULT_AUDIT_PROCEDURE

for view; RDB$DEFAULT_AUDIT_VIEW

• Additionally, these template objects are used to provide the default access
control list (ACL) for a new object. You can use the GRANT and REVOKE
statements to manage the entries.

This example grants privileges to a role (rights identifier) and a user:

SQL> create default audit for sequence
cont> ;
SQL>
SQL> grant select, show on sequence rdb$default_audit_sequence
cont> to admin_user, user2
cont> ;
SQL>
SQL> show protection on sequence rdb$default_audit_sequence;
Protection on Sequence RDB$DEFAULT_AUDIT_SEQUENCE

(IDENTIFIER=[DEV,USER2],ACCESS=SELECT+SHOW)
(IDENTIFIER=ADMIN_USER,ACCESS=SELECT+SHOW)
(IDENTIFIER=[DEV,USER1],ACCESS=SELECT+SHOW+ALTER+DROP+DBCTRL+REFERENCES)
(IDENTIFIER=[*,*],ACCESS=NONE)

SQL>

3–22 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

The resulting access control list will implicitly grant the owner (USER1) all
privileges and public no access. The added entries for ADMIN_USER and
USER2 will be included for all new sequences.

In this example, a new sequence is created and inherits the new default
access control list.

SQL> create sequence next_dept_id;
SQL>
SQL> show protection on sequence next_dept_id;
Protection on Sequence NEXT_DEPT_ID

(IDENTIFIER=[DEV,USER2],ACCESS=SELECT+SHOW)
(IDENTIFIER=ADMIN_USER,ACCESS=SELECT+SHOW)
(IDENTIFIER=[DEV,USER1],ACCESS=SELECT+SHOW+ALTER+DROP+DBCTRL+REFERENCES)
(IDENTIFIER=[*,*],ACCESS=NONE)

SQL>

• This statement creates fully functional database objects. However, Oracle
recommends that these templates not be used as part of production views,
triggers, etc. Oracle reserves the right to change the definitions of these
objects in future releases of Oracle Rdb.

3.1.15 New ALTER DEFAULT AUDIT Statement
ALTER DEFAULT AUDIT Statement

This statement alters a system template object that is used to provide the audit
and alarm characteristics for a newly created object of that type. For example,
when a user creates a new SEQUENCE in the database, the audit/alarm
characteristics are inherited automatically from the template without further
action by the database administrator.

This statement can be used to alter templates for:

• functions and procedures

• modules

• sequences

• tables and views

See also CREATE DEFAULT AUDIT Statement and the DROP DEFAULT AUDIT
Statement.

Environment
You can use the ALTER DEFAULT AUDIT statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Syntax

ALTER DEFAULT AUDIT FOR object-type
ALIAS alias-name

audit-attributes

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–23

object-type =

FUNCTION
MODULE
PROCEDURE
SEQUENCE
TABLE
VIEW

audit-attributes =

comment-is-clause
ALL PRIVILEGES
NO PRIVILEGES
PRIVILEGES (privilege-list)
TYPE IS (ALARM)

AUDIT
,

comment-is-clause =

COMMENT IS ’quoted-string’
/

privilege-list =

ALTER
CREATE
DBCTRL
DELETE
DROP
EXECUTE
FAILURE
INSERT
REFERENCES
SELECT
SHOW
SUCCESS
UPDATE

Arguments

• ALIAS aliasname

The name of the database alias if there is no default database for this session.

• COMMENT IS

Adds a comment to the template object.

• FOR object-type

The type of template.

• PRIVILEGES (privilege-list)
ALL PRIVILEGES
NO PRIVILEGES

Specifies the privileges that trigger audit or alarm actions.

3–24 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

The ALL PRIVILEGES clause is equivalent to specifying PRIVILEGES (ALL).
NO PRIVILEGES is the default if none of these clauses is specified.

• TYPE IS (ALARM)
TYPE IS (AUDIT)
TYPE IS (ALARM, AUDIT)

Defines the scope for the privileges checking. The default if this clause is not
specified is both ALARM and AUDIT.

Usage Notes

• You must have the SECURITY privilege on the database to execute the
ALTER DEFAULT AUDIT statement.

• The clauses PRIVILEGES (ALL) and ALL PRIVILEGES are synonymous.
The actual privileges applied to the audit will be filtered by those applicable
to the object type. For example, EXECUTE privilege will not be applied to a
table.

• The default audit templates are system owned and you must use the ALTER
DEFAULT AUDIT Statement or DROP DEFAULT AUDIT Statement to
manage them. The GRANT and REVOKE Statements can be used on the
system objects but require appropriate DBCTRL privilege access.

3.1.16 New DROP DEFAULT AUDIT Statement
DROP DEFAULT AUDIT Statement

This statement drops a system template object that is used to provide the audit
and alarm characteristics for a newly created object of that type.

This statement can be used to drop templates for:

• functions and procedures

• modules

• sequences

• tables and views

See also CREATE DEFAULT AUDIT Statement and the ALTER DEFAULT
AUDIT Statement.

Environment
You can use the DROP DEFAULT AUDIT statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Syntax

DROP DEFAULT AUDIT FOR object-type
ALIAS alias-name

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–25

object-type =

FUNCTION
MODULE
PROCEDURE
SEQUENCE
TABLE
VIEW

Arguments

• ALIAS aliasname

The name of the database alias if there is no default database for this session.

Usage Notes

• You must have the SECURITY privilege on the database to execute the DROP
DEFAULT AUDIT statement.

3.1.17 New SESSION and GLOBAL Attributes for Sequences
This release of Oracle Rdb supports new keywords; SESSION and GLOBAL.
These keywords are supported for use with CREATE SEQUENCE and ALTER
SEQUENCE.

• SESSION

Specify SESSION to create a session sequence, which is a special type of
sequence that is specifically designed to be used with temporary tables that
have session visibility. Unlike the existing regular sequences (referred to as
"global" sequences), a session sequence returns a unique range of sequence
numbers only within a session, but not across sessions. Another difference is
that session sequences are not persistent. If a session goes away, so does the
state of the session sequences that were accessed during the session.

You may not specify both SESSION and GLOBAL.

• GLOBAL

Specify GLOBAL to create a global, or regular, sequence. This is the default.

You may not specify both GLOBAL and SESSION.

The following example shows the creation of a SESSION sequence.

SQL> create sequence Example
cont> nomaxvalue
cont> session
cont> start with 456;
SQL>
SQL> show sequence Example;

EXAMPLE
Sequence Id: 4
Initial Value: 456
Minimum Value: 1
Maximum Value: (none)
Next Sequence Value: 456
Increment by: 1
Cache Size: 20
No Order
No Cycle
No Randomize
Session (local temporary sequence)
Wait

3–26 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

SQL>

3.1.18 New LogMiner Feature to Close and Immediately Reopen Table Output
Files

The Oracle Rdb RMU Unload After_journal command can create large table
output files when extracting data records from committed transactions recorded
in Rdb database After Image Journal files. This new feature allows limiting the
size of table output files so they can be processed more often by the database user
without terminating the RMU Unload After_journal command data extraction
operation. The current output file is closed and then "reopened" by creating a
new output file with the same name but an incremented OpenVMS file version
number, based on the specified table output file maximum record count integer
value. The RMU Unload After_journal extraction operation will continue without
interruption or loss of any data. The contents of the reopened output file will not
contain any of the data records of the previous closed file but will continue from
the point at which the previous file terminated.

The table output file will be closed and then reopened by default when the next
transaction commit boundary is reached or, as an option, immediately when the
specified maximum record count value is reached. The reopen record count is not
an exact count of all records written to the table output file, which can vary based
on the output file data format and other options that can be specified by the RMU
Unload After_journal command. It is meant to be an approximate estimate made
by the user of the desired size of each reopened output file and is the sum of the
Delete and Modify data records written to the table output file. If the default
option of ending the current output file at the next transaction commit boundary
is in effect, Delete and Modify data records will continue to be output from the
point at which the specified reopen record count is reached until the end of the
current transaction.

The syntax for the new LogMiner feature to close and immediately reopen
table output files is an option of the RMU Unload After_journal command
TABLE qualifier which specifies the name of a table to be unloaded or
multiple tables if wild card characters are included in the table name. The
OUTPUT=file-spec option must also be specified as an option of the TABLE
qualifier to name the table output file to be reopened. If the same output
file name is specified for multiple tables, all of those tables will write Modify
and Delete records to the same output file and all of these records will be
included in the reopen count. The reopen syntax must be specified with the
first TABLE qualifier to name the same output file or it will be ignored. The
INCLUDE=ACTION=(NODELETE,NOMODIFY) qualfier syntax cannot also
be included in the same RMU Unload After_journal command since this would
exclude both the Modify and Delete data records from the output file which are
required to determine when the output file can be reopened.

The command line syntax of the LogMiner option to close and immediately reopen
table output files specified as an option of the /TABLE qualifier is:

REOPEN=(RECORDS=integer,[NO]COMMIT_BOUNDARY)

"RECORDS=integer" specifies an unsigned integer value between 1 and
2147483647 which is the the number of Delete and Modify data records that
the Rdb RMU Unload After_journal command can write to a table output file
before the output file is closed and immediately reopened for output by creating
a new output file with the same name but an incremented OpenVMS file version
number. The reopen will happen by default when the next transaction commit
boundary is reached or, as an option, immediately when the specified maximum

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–27

record count value is reached. "COMMIT_BOUNDARY" is the default which
specifies that the file is closed and reopened at the end of the current transaction.
If "NOCOMMIT_BOUNDARY" is specified, the file will immediately be closed and
then reopend when the reopen count is reached. The RMU Unload After_journal
command will continue to execute without interruption during the reopen process.

The reopen parameters can also be specified in the table’s option file designated
by the "/OPTIONS=file_spec" command line qualifier of the RMU Unload After_
journal command.

TABLE=table_name,REOPEN_RECORDS=integer,REOPEN_COMMIT=TRUE | FALSE

"REOPEN_COMMIT=TRUE" specifies the default option to close and reopen
the table output file when the current transaction is committed. If "REOPEN_
COMMIT=FALSE" is specifed, the table output file is immediately closed when
the specified reopen count is reached.

The following example shows a table options file with each table writing to a
different output file. The first table closes and reopens the output file as soon
as the reopen record count is reached. The second table closes and reopens the
output file when the current transaction is committed which is the default action.

$ type LOGMINER_TABLES.OPT
table=invoices,output=reports.dat,reopen_records=5,reopen_commit=false
table=costs,output=cost_analysis.dat,reopen_records=5,reopen_commit=true

In the following example, the data records for two database tables are written
to the same output file. Only the reopen parameters specified for the first table
designated which writes to the same output are used so reopen parameters do
not need to be specified for any other tables writing to the same file. The reopen
Modify and Delete data record count specified is 5 and the close and reopen of
the table output file occurs as soon as the reopen record count is reached. The
log messages show that 9 output files, REPORTS.DAT;1 to REPORTS.DAT;9, are
created during the extraction operation, which continues without interruption.
The %RMU-I-LMREOPENCOUNTS informational log message names the table
"INVOICES", which is the first table specified as writing to the REPORTS.DAT
table output file, but the number of Modify and Delete data records written in
the message includes any other tables writing to the named file (in this case the
"COSTS" table). The messages put out when the RMU Unload After_journal
command terminates specify the total number of Modify and Delete data records
written to all the created REPORTS.DAT files by each individual database table.

3–28 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

$ rmu/unload/after_journal/statistics/FORMAT=DUMP/TRACE/LOG -
accounting.rdb accounting_jrnl.aij -
/table=(name=invoices, -
output=reports.dat, -
REOPEN=(RECORDS=5,NOCOMMIT_BOUNDARY), -
table_definition=invoices_def, -
record_definition=rdb_lm_invoices) -
/table=(name=costs, -
record_definition=rdb_lm_costs, -
table_definition=costs_def, -
output=reports.dat)

%RMU-I-UNLAIJFL, Unloading table INVOICES to
DEVICE:[DIRECTORY]REPORTS.DAT;1
%RMU-I-UNLAIJFL, Unloading table COSTS to
DEVICE:[DIRECTORY]REPORTS.DAT;1
%RMU-I-LOGOPNAIJ, opened journal file
DEVICE:[DIRECTORY]ACCOUNTING_JRNL.AIJ;1 at 29-JAN-2019 13:55:53.06
%RMU-I-AIJRSTSEQ, journal sequence number is "0"
29-JAN-2019 13:55:53.06 Starting at offline open record sequence number 0
%RMU-I-EXTSRTSTAT, Records:1 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 256 committed
%RMU-I-EXTSRTSTAT, Records:2 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 257 committed
%RMU-I-LMREOPENCLOSE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;1" closed
%RMU-I-LMREOPENCOUNTS, Table "INVOICES" : 5 data records written,
specified reopen count is 5
%RMU-I-LMREOPENCREATE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;2" created
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 258 committed
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 259 committed
%RMU-I-LMREOPENCLOSE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;2" closed
%RMU-I-LMREOPENCOUNTS, Table "INVOICES" : 5 data records written,
specified reopen count is 5
%RMU-I-LMREOPENCREATE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;3" created
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 261 committed
%RMU-I-EXTSRTSTAT, Records:1 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 262 committed
%RMU-I-EXTSRTSTAT, Records:1 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 263 committed
%RMU-I-LMREOPENCLOSE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;3" closed
%RMU-I-LMREOPENCOUNTS, Table "INVOICES" : 5 data records written,
specified reopen count is 5
%RMU-I-EXTSRTSTAT, Records:1 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 264 committed
%RMU-I-LMREOPENCREATE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;4" created
%RMU-I-EXTSRTSTAT, Records:2 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 266 committed
%RMU-I-LMREOPENCLOSE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;4" closed
%RMU-I-LMREOPENCOUNTS, Table "INVOICES" : 5 data records written,
specified reopen count is 5
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 267 committed
%RMU-I-LMREOPENCREATE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;5" created
%RMU-I-EXTSRTSTAT, Records:1 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 268 committed

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–29

%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 269 committed
%RMU-I-LMREOPENCLOSE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;5" closed
%RMU-I-LMREOPENCOUNTS, Table "INVOICES" : 5 data records written,
specified reopen count is 5
%RMU-I-LMREOPENCREATE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;6" created
%RMU-I-EXTSRTSTAT, Records:2 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 270 committed
%RMU-I-LOGRECSTAT, transaction with TSN 271 committed
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 272 committed
%RMU-I-LMREOPENCLOSE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;6" closed
%RMU-I-LMREOPENCOUNTS, Table "INVOICES" : 5 data records written,
specified reopen count is 5
%RMU-I-EXTSRTSTAT, Records:2 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 260 committed
%RMU-I-LMREOPENCREATE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;7" created
%RMU-I-EXTSRTSTAT, Records:2 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 274 committed
%RMU-I-EXTSRTSTAT, Records:1 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 275 committed
%RMU-I-LMREOPENCLOSE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;7" closed
%RMU-I-LMREOPENCOUNTS, Table "INVOICES" : 5 data records written,
specified reopen count is 5
%RMU-I-LMREOPENCREATE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;8" created
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 276 committed
%RMU-I-LOGRECSTAT, transaction with TSN 265 committed
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 278 committed
%RMU-I-LMREOPENCLOSE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;8" closed
%RMU-I-LMREOPENCOUNTS, Table "INVOICES" : 5 data records written,
specified reopen count is 5
%RMU-I-LMREOPENCREATE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]INVOICES.DAT;9" created
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 279 committed
%RMU-I-EXTSRTSTAT, Records:2 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 273 committed
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 281 committed
%RMU-I-LOGRECSTAT, transaction with TSN 283 committed
%RMU-I-LOGRECSTAT, transaction with TSN 282 committed
%RMU-I-LOGRECSTAT, transaction with TSN 286 committed
%RMU-I-LOGRECSTAT, transaction with TSN 288 committed
%RMU-I-EXTSRTSTAT, Records:7 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 289 committed
%RMU-I-LOGRECSTAT, transaction with TSN 291 committed
%RMU-I-AIJMODSEQ, next AIJ file sequence number will be 1
%RMU-I-LOGSUMMARY, total 30 transactions committed
%RMU-I-LOGSUMMARY, total 0 transactions rolled back
--
ELAPSED: 0 00:00:00.09 CPU: 0:00:00.01 BUFIO: 167 DIRIO: 105 FAULTS: 186
Table "INVOICES" : 35 records written (33 modify, 2 delete)
Table "COSTS" : 9 records written (9 modify, 0 delete)
Total : 44 records written (42 modify, 2 delete)
$

3–30 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

In the following example, the data records for two database tables are written
to the same output file. Only the reopen parameters specified for the first table,
which writes to the same output file, are used so reopen parameters do not need
to be specified for any other tables writing to the same file. The reopen Modify
and Delete data record count specified is 5 and the close and reopen of the table
output file occurs at the end of the current transaction, the default, not as soon
as the reopen record count is reached. The log messages show that 8 output
files, REPORTS.DAT;1 to REPORTS.DAT;8, are created and that in some cases
more than 5 Modify and Delete data records are written because the current
transaction does not end immediately after the reopen record count is reached.
The %RMU-I-LMREOPENCOUNTS informational log message names the table
"INVOICES", which is the first table specified as writing to the REPORTS.DAT
table output file, but the number of Modify and Delete data records written in
the message includes any other tables writing to the named file (in this case the
"COSTS" table). The messages put out when the RMU Unload After_journal
command terminates specify the total number of Modify and Delete data records
written to all the created REPORTS.DAT files by each individual database table.

$ rmu/unload/after_journal/statistics/FORMAT=DUMP/TRACE/LOG -
accounting.rdb accounting_jrnl.aij -
/table=(name=invoices, -
output=reports.dat, -
REOPEN=(RECORDS=5), -
table_definition=invoices_def, -
record_definition=rdb_lm_invoices) -
/table=(name=costs, -
record_definition=rdb_lm_costs, -
table_definition=costs_def, -
output=reports.dat)

%RMU-I-UNLAIJFL, Unloading table INVOICES to DEVICE:[DIRECTORY]REPORTS.DAT;1
%RMU-I-UNLAIJFL, Unloading table COSTS to DEVICE:[DIRECTORY]REPORTS.DAT;1
%RMU-I-LOGOPNAIJ, opened journal file
DEVICE:[DIRECTORY]ACCOUNTING_JRNL.AIJ;1 at 29-JAN-2019 13:45:07.66
%RMU-I-AIJRSTSEQ, journal sequence number is "0"
29-JAN-2019 13:45:07.66 Starting at offline open record sequence number 0
%RMU-I-EXTSRTSTAT, Records:1 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 256 committed
%RMU-I-EXTSRTSTAT, Records:2 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 257 committed
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LMREOPENCLOSE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;1" closed
%RMU-I-LMREOPENCOUNTS, Table "INVOICES" : 6 data records written,
specified reopen count is 5
%RMU-I-LOGRECSTAT, transaction with TSN 258 committed
%RMU-I-LMREOPENCREATE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;2" created
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 259 committed
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LMREOPENCLOSE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;2" closed
%RMU-I-LMREOPENCOUNTS, Table "INVOICES" : 6 data records written,
specified reopen count is 5
%RMU-I-LOGRECSTAT, transaction with TSN 261 committed
%RMU-I-LMREOPENCREATE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;3" created
%RMU-I-EXTSRTSTAT, Records:1 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 262 committed
%RMU-I-EXTSRTSTAT, Records:1 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 263 committed
%RMU-I-EXTSRTSTAT, Records:1 Merges:0 Nodes:0 WorkAlq:0

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–31

%RMU-I-LOGRECSTAT, transaction with TSN 264 committed
%RMU-I-EXTSRTSTAT, Records:2 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LMREOPENCLOSE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;3" closed
%RMU-I-LMREOPENCOUNTS, Table "INVOICES" : 5 data records written,
specified reopen count is 5
%RMU-I-LOGRECSTAT, transaction with TSN 266 committed
%RMU-I-LMREOPENCREATE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;4" created
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 267 committed
%RMU-I-EXTSRTSTAT, Records:1 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 268 committed
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LMREOPENCLOSE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;4" closed
%RMU-I-LMREOPENCOUNTS, Table "INVOICES" : 7 data records written,
specified reopen count is 5
%RMU-I-LOGRECSTAT, transaction with TSN 269 committed
%RMU-I-LMREOPENCREATE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;5" created
%RMU-I-EXTSRTSTAT, Records:2 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 270 committed
%RMU-I-LOGRECSTAT, transaction with TSN 271 committed
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 272 committed
%RMU-I-EXTSRTSTAT, Records:2 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LMREOPENCLOSE, Reopen record count reached,
output file "DEVICE:[DIRECTORY]REPORTS.DAT;5" closed
%RMU-I-LMREOPENCOUNTS, Table "INVOICES" : 6 data records written,
specified reopen count is 5
%RMU-I-LOGRECSTAT, transaction with TSN 260 committed
%RMU-I-LMREOPENCREATE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;6" created
%RMU-I-EXTSRTSTAT, Records:2 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 274 committed
%RMU-I-EXTSRTSTAT, Records:1 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 275 committed
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LMREOPENCLOSE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;6" closed
%RMU-I-LMREOPENCOUNTS, Table "INVOICES" : 6 data records written,
specified reopen count is 5
%RMU-I-LOGRECSTAT, transaction with TSN 276 committed
%RMU-I-LOGRECSTAT, transaction with TSN 265 committed
%RMU-I-LMREOPENCREATE, Reopen record count reached,
output file "DEVICE:[DIRECTORY]REPORTS.DAT;7" created
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 278 committed
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LMREOPENCLOSE, Reopen record count reached,
output file "DEVICE:[DIRECTORY]REPORTS.DAT;7" closed
%RMU-I-LMREOPENCOUNTS, Table "INVOICES" : 5 data records written,
specified reopen count is 5
%RMU-I-LOGRECSTAT, transaction with TSN 279 committed
%RMU-I-LMREOPENCREATE, Reopen record count reached, output file
"DEVICE:[DIRECTORY]REPORTS.DAT;8" created
%RMU-I-EXTSRTSTAT, Records:2 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 273 committed
%RMU-I-EXTSRTSTAT, Records:3 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 281 committed
%RMU-I-LOGRECSTAT, transaction with TSN 283 committed
%RMU-I-LOGRECSTAT, transaction with TSN 282 committed
%RMU-I-LOGRECSTAT, transaction with TSN 286 committed
%RMU-I-LOGRECSTAT, transaction with TSN 288 committed

3–32 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1

%RMU-I-EXTSRTSTAT, Records:7 Merges:0 Nodes:0 WorkAlq:0
%RMU-I-LOGRECSTAT, transaction with TSN 289 committed
%RMU-I-LOGRECSTAT, transaction with TSN 291 committed
%RMU-I-AIJMODSEQ, next AIJ file sequence number will be 1
%RMU-I-LOGSUMMARY, total 30 transactions committed
%RMU-I-LOGSUMMARY, total 0 transactions rolled back
--
ELAPSED: 0 00:00:00.18 CPU: 0:00:00.06 BUFIO: 155 DIRIO: 91 FAULTS: 187
Table "INVOICES" : 35 records written (33 modify, 2 delete)
Table "COSTS" : 9 records written (9 modify, 0 delete)
Total : 44 records written (42 modify, 2 delete)
$

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.1 3–33

4
Enhancements And Changes Provided in

Oracle Rdb Release 7.3.3.0

4.1 Enhancements And Changes Provided in Oracle Rdb Release
7.3.3.0

4.1.1 Intel Itanium Processor 9700 ‘‘Kittson’’ Certified
For this release of Oracle Rdb on HPE Integrity servers, the Intel Itanium
Processor 9700 series (i6), code named ‘‘Kittson’’, is the newest processor for
which Rdb is certified. Please note that OpenVMS V8.4-2L1 or later is required
for this class of processors.

4.1.2 Relaxed Type Checking for DEFAULT Clause
In prior versions of Oracle Rdb, the DEFAULT for a domain or column was
strictly checked when the type was DATE, TIME, TIMESTAMP or INTERVAL.
With this release, these rules for DEFAULT have been relaxed and allow
compatible types to be used.

• TIMESTAMP can now have a DEFAULT with the data types DATE (ANSI),
DATE (VMS) and TIMESTAMP

• DATE VMS can now have a DEFAULT with the data types DATE (ANSI),
DATE (VMS) and TIMESTAMP

• INTERVAL can now have a DEFAULT with the same interval qualifier or a
subset of the columns interval qualifier. For example, if the column is defined
as INTERVAL YEAR TO MONTH then the DEFAULT can be an expression
that results in INTERVAL YEAR,or INTERVAL MONTH.

The following example shows ALTER TABLE statements that failed in prior
versions but which are now accepted by SQL.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–1

SQL> set dialect ’sql99’;
SQL>
SQL>
SQL> create table INFO
cont> (seq_no integer identity
cont>);
SQL>
SQL> alter table INFO
cont> add column dt timestamp default current_date
cont> ;
%SQL-F-DEFVALINC, You specified a default value for DT which is inconsistent
with its data type
SQL>
SQL> alter table INFO
cont> add column duration interval day to second(2) default interval’0’day
cont> ;
%SQL-F-DEFVALINC, You specified a default value for DURATION which is
inconsistent with its data type
SQL>

4.1.3 New Statistics Screen Shows Top Processes Accessing a Table Logical
Area

Bug 18460947

A new Oracle Rdb RMU/SHOW STATISTICS Zoom screen option has been added
to the existing Logical Area Information Logical Area Statistics screen to display
the top ten or fewer processes attached to an Oracle Rdb database that are
accessing the table logical area currently displayed in the Logical Area Statistics
screen header. When the new Zoom option, displayed at the bottom of the Logical
Area Statistics screen, is selected a menu will appear on the left side of the
screen to allow one of the statistics listed in the menu to be chosen to select the
top processes accessing the table logical area. The last choice in the menu will be
"ALL", indicating that the sum of all the individual statistics listed above it in
the menu will be used to select the top processes accessing the table logical area.

When the menu statistics entry is selected, a maximum of ten process IDs will
be displayed in a Zoom screen sorted in descendng order based on the current
value of the chosen statistic. The process ID will end with a colon followed by the
stream ID assigned by the database and the letter "A" indicating that the process
has been activated and attached for global statistics collection. The numerical
statistic value used to select the process will be displayed next to each process ID.

This feature is only available for table logical areas. As with all screens that
display per-process statistics, process statistic collection must be enabled for the
database.

The following example shows the RMU/SHOW STATISTICS screen displays
that implement this new functionality. The right sides and blank portions of
these screens are not shown to save space. The first screen shown is the Logical
Area Statistics screen for the EMPLOYEES table EMPIDS_LOW logical area
in the MF_PERSONNEL database with the new Zoom screen "Zoom" option at
the bottom of the screen. The second screen shows the menu that will appear
on the left of the Logical Area Statistics screen when the user selects the new
"Zoom" option. This menu allows the user to select the statistic to be used to
determine the top ten or fewer processes accessing the table logical area based on
the selected statistic name. The last "ALL" entry on the menu will use the sum
of all the statistics listed above it to select the top processes accessing the table.
Once the menu choice has been selected, in this case "record fetched", the third

4–2 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

Zoom screen will be displayed which shows the process ID and process statistic
value sorted in descending order of the process statistic value.

$ RMU/SHOW STATISTICS MF_PERSONNEL

Node: TSTNOD (1/1/16) Oracle Rdb V7.3-300 Perf. Monitor
Rate: 3.00 Seconds Logical Area Statistics
Page: 1 of 1 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
..

Table EMPLOYEES in EMPIDS_LOW

statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

record marked 0 0 0.0 0 0.0
record fetched 1 0 0.6 222 74.0

fragmented 0 0 0.0 0 0.0
record stored 0 0 0.0 0 0.0

fragmented 0 0 0.0 0 0.0
pages checked 0 0 0.0 0 0.0
saved IO 0 0 0.0 0 0.0
discarded 0 0 0.0 0 0.0
record erased 0 0 0.0 0 0.0
fragmented 0 0 0.0 0 0.0
sequential scan 0 0 0.0 0 0.0
record fetched 0 0 0.0 0 0.0

..
Config Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Write X_plot
Zoom !

Node: TSTNOD (1/1/16) Oracle Rdb V7.3-300 Perf. Monitor
Rate: 3.00 Seconds Logical Area Statistics
Page: 1 of 1 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
..

Table EMPLOYEES in EMPIDS_LOW

statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

A. record marked 0 0 0.0 0 0.0
B. record fetched 1 0 0.5 222 74.0
C. fragmented 0 0 0.0 0 0.0
D. record stored 0 0 0.0 0 0.0
E. fragmented 0 0 0.0 0 0.0
F. pages checked 0 0 0.0 0 0.0
G. saved IO 0 0 0.0 0 0.0
H. discarded 0 0 0.0 0 0.0
I. record erased 0 0 0.0 0 0.0
J. fragmented 0 0 0.0 0 0.0
K. sequential scan 0 0 0.0 0 0.0
L. record fetched 0 0 0.0 0 0.0
M. ALL

..
Type <return> or <letter> to select logical area statistics, <control-Z> to
cancel

Node: TSTNOD (1/1/16) Oracle Rdb V7.3-300 Perf. Monitor
Rate: 3.00 Seconds Logical Area Statistics
Page: 1 of 1 DEVICE:[DIRECORY]MF_PERSONNEL.RDB;1
..

Table EMPLOYEES in EMPIDS_LOW

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–3

...Top Processes Accessing Logical Area EMPLOYEES in EMPIDS_LOW................

.

. top...............................statistic

. processes....................record fetched

. 20B54CFC:1A 12036

. 20B3EB03:1A 10347

. 20ADC254:1A 10321

. 20A8CE4A:1A 9560

. 20B31240:1A 8374

. 20B5743A:1A 7312

. 20B39E2F:1A 6543

. 20A71A11:1A 5478

. 20AFC603:1A 4312

. 20B46D41:1A 3245

.

...

..
Type any key to erase display and return to logical area statistics menu

4.1.4 Relaxed Naming Rules for RMU Extract Option=MATCH Option
In prior releases of Oracle Rdb, the RMU Extract Option=MATCH option required
that names include a trailing "%" wildcard in order to match a single object name
in the database.

The following example shows the problem if the wildcard is missing.

$ rmu/extract-
/item=table-
/option=(noheader,filename_only,match:work_status) -
sql$database

set verify;
set language ENGLISH;
set default date format ’SQL92’;
set quoting rules ’SQL92’;
set date format DATE 001, TIME 001;
attach ’filename PERSONNEL’;
-- no tables defined
$

This problem has been corrected in Oracle Rdb Release 7.3.3.0. In this release,
RMU recognizes that this is a fixed length name and adds trailing spaces to
enable the single object match. The following example shows the simplified
interface.

$ rmu/extract-
/item=table-
/option=(noheader,filename_only,match:work_status) -
sql$database

set verify;
set language ENGLISH;
set default date format ’SQL92’;
set quoting rules ’SQL92’;
set date format DATE 001, TIME 001;
attach ’filename PERSONNEL’;
create table WORK_STATUS (

STATUS_CODE STATUS_CODE,
STATUS_NAME STATUS_NAME,
STATUS_TYPE STATUS_TYPE);

commit work;
$

4–4 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

4.1.5 RMU/RESTORE Now Always Displays the %RMU-I-AIJRECFUL Message
Bug 14375975

With this release of Oracle Rdb, the RMU message RMU-I-AIJRECFUL is
always displayed by RMU Restore when after image journaling is enabled for the
database. Previously, this message was only output if the RMU Restore /LOG
qualifier was specified.

The RMU Recover command is often executed after an RMU Restore operation
to apply the contents of one or more after image journal (AIJ) files to update the
database with any changes made since the database backup file was created.
RMU Restore displays, using the AIJRECFUL message, the AIJ file sequence
number of the first AIJ file where the recovery should start. This is important
information for the database administrator to determine where a database
recovery should start and to make sure that AIJ files are applied to the database
in the correct order.

Note

The RMU/Dump/After_journal/ONLY=TYPE=OPEN command can be
used to dump the AIJ sequence number contained in the Open records of
AIJ files.

Examples
In the following example, the database ABC, previously backed up by the
RMU/BACKUP command with circular after image journaling enabled, is restored
by the RMU/RESTORE/NOLOG command.

The RMU-I-AIJRECFUL message states that the next recovery of the database
should start with the AIJ file which has the sequence number "0" specified in its
Open record. An RMU/DUMP/AFTER_JOURNAL dump of the AIJABC1.AIJ file
shows that this AIJ file has a "0" sequence number in its Open record and belongs
to the ABC database. The RMU/RECOVER command is then used to bring the
database up to date by applying journaled changes made to the database since
the database backup file was created (contained in the AIJABC1.AIJ after image
journal file).

$ RMU/RESTORE/NOCDD/NORECOVER/NOLOG ABC_SAVE.RBF
%RMU-I-AIJRECFUL, Recovery of the entire database starts with AIJ file
sequence 0
%RMU-I-AIJRSTAVL, 3 after-image journals available for use
%RMU-I-AIJRSTMOD, 1 after-image journal marked as "modified"
%RMU-I-AIJISON, after-image journaling has been enabled
%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery
$!
$ RMU/DUMP/AFTER/ONLY=TYPE=OPEN AIJABC1.AIJ
*--
* Oracle Rdb V7.3-220 17-JUL-2017 15:27:49.16
*
* Dump of After Image Journal
* Filename: DEVICE:[DIRECTORY]AIJABC1.AIJ;1
*
*--

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–5

1/1 TYPE=O, LENGTH=510, TAD=17-JUL-2017 15:27:48.47, CSM=00
Database DEVICE:[DIRECTORY]ABC.RDB;1
Database timestamp is 17-JUL-2017 15:27:47.03
Facility is "RDMSAIJ ", Version is 721.0
Database version is 73.0
AIJ Sequence Number is 0
Last Commit TSN is 96
Synchronization TSN is 0
Journal created on VMS platform
Type is Normal (unoptimized)
Open mode is Initial
Backup type is Active
I/O format is Record
Commit-to-Journal optimization disabled
AIJ journal activation ID is 00B1E299B4FE8A62
LogMiner is disabled

$!
$ RMU/RECOVER/NOLOG AIJABC1.AIJ
%RMU-I-LOGRECDB, recovering database file DEVICE:[DIRECTORY]ABC.RDB;1
%RMU-I-LOGRECSTAT, transaction with TSN 128 committed
%RMU-I-LOGRECSTAT, transaction with TSN 129 committed
%RMU-I-LOGRECSTAT, transaction with TSN 130 committed
%RMU-I-AIJONEDONE, AIJ file sequence 0 roll-forward operations completed
%RMU-I-AIJAUTOREC, starting automatic after-image journal recovery
%RMU-I-AIJONEDONE, AIJ file sequence 1 roll-forward operations completed
%RMU-W-NOTRANAPP, no transactions in this journal were applied
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed
%RMU-I-AIJVNOSYNC, AIJ file DEVICE:[DIRECTORY]AIJABC1.AIJ;1 synchronized with
database
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence number
needed will be 2

4.1.6 New SQL Built-in Functions
This release of Oracle Rdb introduces the following new built-in functions:

LTRIM
RTRIM
BTRIM
FIRST_VALUE
LAST_VALUE
LISTAGG
GROUP_CONCAT

4.1.6.1 New String Functions
In prior releases of Oracle Rdb, the SQL_FUNCTIONS script could be used to
add a version of the RTRIM and LTRIM functions to an Rdb database. These
definitions were limited in the character set they supported and always resulted
in a VARCHAR (2000) result.

In this release of Rdb, new native versions of these two functions are now
available. They have the advantage of being more efficient, accept any database
character set and result in a VARCHAR string that is limited to the length of the
source string.

• LTRIM (source_string [, trim_pattern])

This function trims the leading characters (left end) from the source_string
that also appear in the trim_pattern. The trim_pattern defaults to a single
space character from the source_string character set.

4–6 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

SQL> select ltrim (product_desc, ’<>* ’)
cont> from sample
cont> where product_desc containing ’Not’;

Not Available **
Not Available >>
Not Available >>
3 rows selected
SQL>

Note

A similar LTRIM function is provided in the SQL_FUNCTIONS library
and is now superseded by this built-in function. Applications compiled
with SQL Precompiler or SQL Module Language will need to be
recompiled to make use of this new function.

• RTRIM (source_string [, trim_pattern])

This function trims the trailing characters (right end) from the source_string
that also appear in the trim_pattern. The trim_pattern defaults to a single
space character from the source_string character set.

SQL> select rtrim (product_desc, ’<>* ’)
cont> from sample
cont> where product_desc containing ’Not’;

** Not Available
<< Not Available
>> Not Available
3 rows selected
SQL>

Note

A similar RTRIM function is provided in the SQL_FUNCTIONS
library and is now superseded by this built-in function. Applications
compiled with SQL Precompiler or SQL Module Language will need to be
recompiled to make use of this new function.

• BTRIM (source_string [, trim_pattern])

This function trims the trailing and leading characters (both ends) from the
source_string that also appear in the trim_pattern. The trim_pattern defaults
to a single space character from the source_string character set.

SQL> select btrim (product_desc, ’<>* ’)
cont> from sample
cont> where product_desc containing ’Not’;

Not Available
Not Available
Not Available
3 rows selected
SQL>

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–7

Usage Notes

• These functions are similar to the TRIM function except that the trim_
pattern can be longer than one character and thus a variety of characters can
be trimmed from the string.

• If the value expression passed as source_string is not CHAR, VARCHAR,
BINARY or VARBINARY, then Rdb will implicitly convert that value to
VARCHAR before applying the trim action (as in the following example).
RTRIM (10000.000, ’0’)

• If the query is executed under an ORACLE dialect and the result of the trim
function is a zero length string, then this is assumed to be equivalent to a
NULL result.

• If LTRIM and RTRIM are nested with the same trim_pattern, Rdb will
attempt to substitute a call to the routine BTRIM that trims leading and
trailing characters from the source_string (as in the following example).
LTRIM (RTRIM (last_name, ’ ’), ’ ’)

4.1.6.2 New Aggregate Functions
Aggregate functions can be used in the context of a GROUP BY clause, or can
operate on the whole result table. Aggregate functions operate on non-NULL
values of the source value-expression and they can also be modified with the
FILTER (WHERE ...) clause.

FIRST_VALUE Function
This function returns the first value of the specified column or value-expression
computed from the values of the rows in the group. The set of values within the
group can be reordered using the WITHIN GROUP (ORDER BY ...) clause.

This function returns a result that matches the data type of the source
expression. If, after applying the FILTER (WHERE ...) clause or the WHERE
clause, there are no rows then the result will be NULL.

The WITHIN GROUP (ORDER BY ...) clause may be omitted but the results of
the function are then not deterministic.

This example shows that the first value for SUPERVISOR_ID is determined after
ordering by the EMPLOYEES job starting date (JOB_START).

Example 4–1 Using the FIRST_VALUE Function

SQL> select
cont> EMPLOYEE_ID
cont> ,FIRST_VALUE (SUPERVISOR_ID)
cont> within group (order by JOB_START) as FIRST_BOSS
cont> ,MIN (SUPERVISOR_ID)
cont> from JOB_HISTORY
cont> where EMPLOYEE_ID = ’00167’
cont> group by EMPLOYEE_ID
cont> ;
EMPLOYEE_ID FIRST_BOSS
00167 00248 00164
1 row selected
SQL>

(continued on next page)

4–8 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

Example 4–1 (Cont.) Using the FIRST_VALUE Function

The output of the MIN function is shown to demonstrate that the results might
be different for the FIRST_VALUE function because of the ordering performed by
the WITHIN GROUP (ORDER BY ...) clause.

LAST_VALUE Function
This function returns the last value of the specified column or value-expression
computed from the values of the rows in the group. The set of values within the
group can be reordered using the WITHIN GROUP (ORDER BY ...) clause.

This function returns a result that matches the data type of the source
expression. If, after applying the FILTER (WHERE ...) clause or the WHERE
clause, there are no rows then the result will be NULL.

The WITHIN GROUP (ORDER BY ...) clause may be omitted but the results of
the function are then not deterministic.

This example uses LAST_VALUE to determine the SUPERVISOR_ID of the
current job, which is selected using the FILTER clause.

Example 4–2 Using the LAST_VALUE Function

SQL> select
cont> EMPLOYEE_ID
cont> ,LAST_VALUE (SUPERVISOR_ID)
cont> within group (order by JOB_START)
cont> filter (where JOB_END is NULL)
cont> as CURRENT_BOSS
cont> from JOB_HISTORY
cont> where EMPLOYEE_ID = ’00167’
cont> group by EMPLOYEE_ID
cont> ;
EMPLOYEE_ID CURRENT_BOSS
00167 00164
1 row selected
SQL>

LISTAGG Function
The GROUP BY clause creates a set of rows that match the grouping criteria.
The values of a column, or value-expression computed from the values of a row in
the group, may be concatenated forming a single string result. LISTAGG provides
clauses to control its action in case the result is too long, as well as specification
of the separator character string.

This function returns a VARCHAR result. Any column or value expression will be
implicitly converted to VARCHAR prior to executing the LISTAGG function. If,
after applying the FILTER (WHERE ...) clause or the WHERE clause, there are
no rows, then the result will be NULL.

By default, LISTAGG returns a VARCHAR(4000) result, but this can be changed
to a smaller or larger result using these options:

1. Interactive SQL and Dynamic SQL can use the SET RESULT LENGTH
statement.

2. Specify PRAGMA=RESULT_LENGTH:n in the /SQLOPTIONS qualifier for
the SQL Pre-compiler.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–9

3. Specify /PRAGMA=RESULT_LENGTH:n qualifier for the SQL Module
Language compiler.

4. Specify the PRAGMA (RESULT LENGTH n) clause in the DECLARE
MODULE statement for either SQL Pre-compiler or SQL Module Language
compiler context file.

5. Include the PRAGMA (RESULT LENGTH n) in the MODULE language
header.

The value for RESULT LENGTH can range from 256 through to 32767.

The default SEPARATOR (when omitted) is an empty string. If the result exceeds
the allocated buffer size, then an error will be raised that is the default ON
OVERFLOW ERROR. The clause ON OVERFLOW TRUNCATE defaults to
a truncation indicator of ’...’ and WITH COUNT. To eliminate the truncation
indicator string, specify either an empty string (’’) or NULL.

The WITHIN GROUP (ORDER BY ...) clause may be omitted but the results of
the function are then not deterministic.

Note

Applications that use LISTAGG from a module written in C or C++
will have a symbol defined, SQL_PRAGMA_RESULT_LENGTH, that
reflects the default value of RESULT_LENGTH, or the value defined by
the SQLOPTIONS PRAGMA=RESULT_LENGTH option, or the setting
in the DECLARE MODULE Statement within the PRAGMA clause.
This symbol can be used to allocate memory to receive the result of the
LISTAGG functions.

.

.

.
long SQLCODE;
char * lagg_result;

lagg_result = malloc (SQL_PRAGMA_RESULT_LENGTH);

.

.

.

exec sql
select listagg (first_name, ’; ’)

within group (order by middle_initial)
into :lagg_result
from employees
where last_name = ’Smith’
group by last_name
;

if (SQLCODE != 0) sql_signal();
.
.
.

This example shows the list of employees with the LAST_NAME of ’Smith’, and
returns the FIRST_NAME of all employees that share the last name.

4–10 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

Example 4–3 Using the LISTAGG Function

SQL> select
cont> LAST_NAME
cont> ,LISTAGG (FIRST_NAME, ’/’ ON OVERFLOW TRUNCATE ’ ’ WITH COUNT)
cont> WITHIN GROUP (order by FIRST_NAME, MIDDLE_INITIAL)
cont> from
cont> EMPLOYEES
cont> where
cont> LAST_NAME starting with ’Smith’
cont> group by
cont> LAST_NAME
cont> ;
LAST_NAME
Smith Roger /Terry
1 row selected
SQL>

GROUP_CONCAT Function
The GROUP_CONCAT provides an alternate syntax for the LISTAGG
functionality. It is provided for compatibility with other SQL implementations.
SQL transforms this function to a LISTAGG equivalent.

This function returns a VARCHAR result. All column and value expressions will
be implicitly converted to VARCHAR prior to executing the GROUP_CONCAT
function. GROUP_CONCAT allows a list of values to be passed. SQL implicitly
generates a CONCAT function with these arguments and NULL values will
be omitted. If, after applying the FILTER (WHERE ...) clause or the WHERE
clause, there are no rows, then the result will be NULL.

By default, GROUP_CONCAT returns a VARCHAR(4000) result but this can be
changed to a smaller or larger result using the options listed under LISTAGG
function.

The default SEPARATOR is a ’,’ (comma). If the result exceeds the allocated
buffer size, then it will be truncated (equivalent to the LISTAGG clause ON
OVERFLOW TRUNCATE NO COUNT).

The ORDER BY clause within GROUP_CONCAT may be omitted but the results
of the function are then not deterministic.

Note

Applications that use GROUP_CONCAT from a module written in C or
C++ will have a symbol defined, SQL_PRAGMA_RESULT_LENGTH, that
reflects the default value of RESULT_LENGTH, or the value defined by
the SQLOPTIONS PRAGMA=RESULT_LENGTH option, or the setting
in the DECLARE MODULE Statement within the PRAGMA clause.
This symbol can be used to allocate memory to receive the result of the
GROUP_CONCAT functions.

This example shows the list of employees with the LAST_NAME of ’Smith’, and
returns the FIRST_NAME of all employees that share the last name.

Example 4–4 Using the GROUP_CONCAT Function

(continued on next page)

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–11

Example 4–4 (Cont.) Using the GROUP_CONCAT Function

SQL> select
cont> LAST_NAME
cont> ,GROUP_CONCAT (FIRST_NAME
cont> order by FIRST_NAME, MIDDLE_INITIAL
cont> SEPARATOR ’/’)
cont> from
cont> EMPLOYEES
cont> where
cont> LAST_NAME starting with ’Smith’
cont> group by
cont> LAST_NAME
cont> ;
LAST_NAME
Smith Roger /Terry
1 row selected
SQL>

4.1.7 -RMU-F-DBROOTFILE, -RMU-F-DBDATAFILE messages output with
%RMU-F-BADAIJFILE

It is a common user error for an Oracle Rdb database root file, area data file, or
area data snapshot file to be specified instead of a database after image journal
(AIJ) file when executing the RMU/RECOVER command.

Now a new -RMU-F-DBROOTFILE error message will be output as a secondary
message when the existing %RMU-F-BADAIJFILE fatal error message is output
if a database root file (*.RDB) is specified in an RMU/RECOVER command where
a database after image journal file should be specified.

%RMU-F-BADAIJFILE, this file is not a valid after image journal file,
please correct the file specification
-RMU-F-DBROOTFILE, specify a database after image journal file, this
is a database root file
%RMU-F-FTL_RCV, Fatal error for RECOVER operation at 25-JUL-2017
10:02:46.39

If a database area data file (*.RDA) or area data snapshot file (*.SNP) is specified
in an RMU/RECOVER command where a database after image journal file should
be specified, a new -RMU-F-DBDATAFILE error message will be output as a
secondary message when the existing %RMU-F-BADAIJFILE fatal error message
is output.

%RMU-F-BADAIJFILE, this file is not a valid after image journal file,
please correct the file specification
-RMU-F-DBDATAFILE, specify a database after image journal file, this
is a database data file
%RMU-F-FTL_RCV, Fatal error for RECOVER operation at 25-JUL-2017
10:02:53.28

In the following example, the secondary "-RMU-F-DBROOTFILE" message is
output following the primary "%RMU-F-BADAIJFILE" fatal error message if a
database root file, MF_PERSONNEL.RDB, is specified instead of a database after
image journal file in an RMU/RECOVER command, and the secondary "-RMU-F-
DBDATAFILE" message is output following the primary "%RMU-F-BADAIJFILE"
fatal error message if a database data file (JOBS.RDA, JOBS.SNP) is specified
instead of a database after image journal file in an RMU/RECOVER command.
The last RMU/RECOVER command shows that if the after image journal file
specified has an invalid format but is not a database root or data file, only the
"%RMU-F-BADAIJFILE" message is output.

4–12 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

$!
$! Database root file specified instead of an AIJ file
$!
$ rmu/recover device:[directory]mf_personnel.rdb
%RMU-F-BADAIJFILE, this file is not a valid after image journal file,
please correct the file specification
-RMU-F-DBROOTFILE, specify a database after image journal file, this
is a database root file
%RMU-F-FTL_RCV, Fatal error for RECOVER operation at 25-JUL-2017
10:02:53.28
$!
$! Database data files specified instead of an AIJ file
$!
$ rmu/recover device:[directory]jobs.rda
%RMU-F-BADAIJFILE, this file is not a valid after image journal file,
please correct the file specification
-RMU-F-DBDATAFILE, specify a database after image journal file, this
is a database data file
%RMU-F-FTL_RCV, Fatal error for RECOVER operation at 25-JUL-2017
10:04:40.22
$!
$ rmu/recover device:[directory]jobs.snp
%RMU-F-BADAIJFILE, this file is not a valid after image journal file,
please correct the file specification
-RMU-F-DBDATAFILE, specify a database after image journal file, this
is a database data file
%RMU-F-FTL_RCV, Fatal error for RECOVER operation at 25-JUL-2017
10:07:45.16
$!
$! Invalid database AIJ file specified
$!
$ rmu/recover device:[directory]invalid.aij
%RMU-F-BADAIJFILE, this file is not a valid after image journal file,
please correct the file specification
%RMU-F-FTL_RCV, Fatal error for RECOVER operation at 25-JUL-2017
10:09::32.16

4.1.8 RMU Extract Now Outputs ALTER DATABASE For Storage Area Access
Mode

This release of RMU Extract allows the output of the READ WRITE or READ
ONLY clause for the storage area access mode. By default, a comment is written
to the script documenting the current mode. Now, using the ACCESS_MODE
keyword for the DEFAULTS qualifier will output an ALTER DATABASE
(CHANGE DATABASE for RDO) statement that modifies the access mode
for all storage areas (except for RDB$SYSTEM). If the keyword is negated
(NOACCESS_MODE), then the comment is not written to the SQL or RDO script.

The following example shows using the new keyword.

$ RMU/EXTRACT/ITEM=DATABASE -
/DEFAULT=(ACCESS_MODE) -
/OPTION=(NOHEADER,FILENAME_ONLY) -
MF_PERSONNEL -
/OUTPUT=DB.SQL

.

.

.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–13

4.1.9 RMU/RECOVER RMU-F-BACKUPNOAIJ, RMU-F-TSNNOSYNC,
RMU-F-CANTSYNCTSNS Error Messages

For the the recovery of Oracle Rdb databases from After Image Journal (AIJ)
files using the RMU/RECOVER command, Transaction Sequence Number (TSN)
values are maintained in the database root file and in the open record and
transaction records of each journal file. Each TSN number represents a database
transaction which modified the database. The highest committed TSN number
in the database root file determines where in the journal file or backed-up or
optimized journal file RMU/RECOVER will start the roll forward operation. An
AIJ file will only be applied to the database if the TSN number in the open record
of the AIJ file is less than or equal to the highest committed TSN number in the
database root file. Indvidual transactions contained in an AIJ file are ignored
until the TSN of an individual transaction equals the highest committed TSN
number in the database root file.

If the TSN number in the open record of an AIJ file is greater than the highest
committed TSN number in the database root file, none of the transactions in the
AIJ file will be recovered since there are missing transactions that need to be
recovered before the transactions that are contained in the current AIJ file are
recovered to prevent loss of data and database corruption. Previously, if the TSN
number in the open record of an AIJ file was greater than the highest committed
TSN number in the database root file, RMU/RECOVER would read through
the entire journal file, ignoring all transactions because the TSN values of the
individual transaction records in the AIJ file are all greater than the highest
committed TSN number in the database root file. After ignoring all transactions,
RMU/RECOVER would put out the following warning message.

%RMU-W-NOTRANAPP, no transactions in this journal were applied

Now, if at the start of the RMU/RECOVER operation, the TSN number in the
open record of the first AIJ file to be processed is greater than the highest
committed TSN number in the database root file, the recovery operation will
be immediately aborted to avoid reading through the entire AIJ file and any
additional AIJ files to be processed, ignoring all transactions. The recovery
operation is aborted based on the open record of the first AIJ file to be processed
since all AIJ files processed after the first AIJ file should also have TSN numbers
in their open records which are greater than the highest committed TSN number
in the database root file because all transactions must be recovered in the correct
original sequence to prevent loss of data and database corruption.

When the RMU/RECOVER operation is aborted because at the start of the
recover operation the TSN number in the open record of the first AIJ file to be
processed is greater than the highest committed TSN number in the database
root file, one of the following two fatal message sequences will be output.

%RMU-F-BACKUPNOAIJ, After Image Journaling was enabled after the
database was backed up or has since been disabled and reinitialized
-RMU-F-CANTSYNCTSNS, Last committed TSN 96 in the after image journal
file exceeds last committed TSN 35 in the database root

This message sequence is output by RMU/RECOVER if the database is either
backed up before AIJ journaling is enabled and any after image journal files
are defined for the database or if the database is backed up after AIJ journaling
has been disabled and the after image journal state has not been reenabled and
recovered by the database restore operation. A backup of the database should be
made whenever changes are made to the database, prior to the database recovery
which causes the following message to be output.

4–14 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

%RMU-W-DOFULLBCK, full database backup should be done to ensure future
recovery

If the database was backed up subsequent to after image journaling being enabled
and after image journal files being defined, restore the database from that backup
file and retry the recovery operation.

%RMU-F-TSNNOSYNC, The transactions in this journal file are not
consistent with the transactions in this database root file
-RMU-F-CANTSYNCTSNS, Last committed TSN 448 in the after image journal
file exceeds last committed TSN 0 in the database root

This message sequence is output by RMU/RECOVER if unjournaled
modifications were made to the database, or a copy of the database if the
/ROOT qualifier was specified, that were not journaled. If the previous changes
are contained in another after image journal file, that AIJ file should be
applied before this AIJ file is applied. This message may also be output if
the RMU/REPAIR/INITIALIZE=TSN command was executed to initialize the
TSNs after the database was backed up. A full backup of the database should be
made after any RMU/REPAIR operation is executed or any changes are made to
the database which cause the following message to be output.

%RMU-W-DOFULLBCK, full database backup should be done to ensure future
recovery

Make sure that all previous changes made to the database have been journaled
and that all after image journal files containing those changes are specified in
the RMU/RECOVER command in the correct sequence order and applied to the
correct database or copy of the database.

In the the following example, the fatal %RMU-F-BACKUPNOAIJ and -RMU-
F-CANTSYNCTSNS messages are output by RMU/RECOVER because the
database is backed up before after image journaling is enabled and any after
image journal files are defined for the database. If the database is instead backed
up immediately after the %RDMS-W-DOFULLBCK message is output, the
RMU/RECOVER operation will succeed.

$ SQL
create database filename device:[directory]foo.rdb;
create table t1 (f1 int);
create unique index i1 on t1(f1);
commit;
disconnect all;
exit
$ RMU/BACKUP/NOLOG device:[directory]FOO.RDB BAR.RBF
$ SQL
alter database filename device:[directory]foo.rdb
journal is enabled
add journal foo file ’device:[directory]foo.aij’;
%RDMS-W-DOFULLBCK, full database backup should be done to ensure
future recovery
exit
$ SQL
attach ’filename device:[directory]foo.rdb’;
insert into t1 values (1);
1 row inserted
insert into t1 values (2);
1 row inserted
insert into t1 values (10);
1 row inserted
commit;
exit
$ SQL

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–15

drop database filename foo.rdb;
exit
$ RMU/RESTORE/NOCDD/NOLOG BAR.RBF
%RMU-I-AIJRSTAVL, 0 after-image journals available for use
%RMU-I-AIJISOFF, after-image journaling has been disabled
%RMU-W-USERECCOM, Use the RMU Recover command. The journals are not available.
$ RMU/RECOVER/LOG/TRACE FOO.AIJ
%RMU-I-LOGRECDB, recovering database file device:[directory]FOO.RDB;1
%RMU-F-BACKUPNOAIJ, After Image Journaling was enabled after the database was
backed up or has since been disabled and reinitialized
-RMU-F-CANTSYNCTSNS, Last committed TSN 96 in the after image journal file
exceeds last committed TSN 35 in the database root
%RMU-F-FTL_RCV, Fatal error for RECOVER operation at 20-SEP-2017 15:02:57.15

In the the following example, the fatal %RMU-F-TSNNOSYNC and -RMU-F-
CANTSYNCTSNS messages are output by RMU/RECOVER because the previous
unjournaled RMU/REPAIR operation initializes the TSN values in the database
root before the RMU/RECOVER command is executed and because the %RMU-
I-FULBACREQ message calling for a database backup immediately after the
RMU/REPAIR command is executed (which initializes the database root TSN
values), is ignored.

$ sql
alter database filename device:[directory]mf_personnel.rdb
journal filename device:[directory]pers_aij.aij;

%RDMS-W-DOFULLBCK, full database backup should be done to ensure
future recovery
exit

$!
$! Create entry in aij file
$!
$ sql

attach ’filename device:[directory]mf_personnel.rdb’;
update employees
set address_data_1 = ’10 Ridge St.’
where employee_id = ’00164’;

1 row updated
commit;
disconnect all;
exit;

$!
$! Re-set TSNS
$ rmu/repair/initialize=tsns device:[directory]mf_personnel.rdb
%RMU-I-AIJ_ENABLED, This database has after image journaling enabled...
You should create a new journal after this operation completes.
%RMU-I-FULBACREQ, A full backup of this database should be performed after
RMU REPAIR
$!
$! Try to apply original .aij; should not succeed
$!
$ rmu/recover/log/root=device:[directory]mf_personnel.rdb
device:[directory]pers_aij.aij
%RMU-I-LOGRECDB, recovering database file DISK:[DIRECTORY]MF_PERSONNEL.RDB;2
%RMU-F-TSNNOSYNC, The transactions in this journal file are not consistent
with the transactions in this database root file
-RMU-F-CANTSYNCTSNS, Last committed TSN 448 in the after image journal file
exceeds last committed TSN 0 in the database root
%RMU-F-FTL_RCV, Fatal error for RECOVER operation at 20-SEP-2017 16:08:16.96

4–16 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

4.1.10 Delimited_Text Keywords Can Now Be Negated For RMU Load And
Unload

In previous versions of Oracle Rdb, the RMU Load and RMU Unload command
keywords PREFIX, SUFFIX, NULL and SEPARATOR could be specified as empty
quoted strings. This notation was used to eliminate one or more of these options
from the delimited text output.

In this release, these keywords can be negated (NOPREFIX, NOSUFFIX,
NONULL, NOSEPARATOR) as required to achieve the same effect. This applies
to the RMU Load, RMU Unload, and RMU Unload After_Journal commands. The
output of any plan file will contain the empty strings if NOPREFIX, NOSUFFIX,
or NOSEPARATOR is used.

The following example compares the empty string syntax with the negated
keyword usage.

$ rmu/unload-
/record=(nofile,format=delimited,prefix="",suffix="",null="*") -
db$:mf_personnel -
work_status -
sys$output:

0,INACTIVE,RECORD EXPIRED
1,ACTIVE ,FULL TIME
2,ACTIVE ,PART TIME
,,*
%RMU-I-DATRECUNL, 4 data records unloaded 28-MAR-2017 17:24:07.43.
$ rmu/unload-

/record=(nofile,format=delimited,noprefix,nosuffix,null="*") -
db$:mf_personnel -
work_status -
sys$output:

0,INACTIVE,RECORD EXPIRED
1,ACTIVE ,FULL TIME
2,ACTIVE ,PART TIME
,,*
%RMU-I-DATRECUNL, 4 data records unloaded 28-MAR-2017 17:24:07.56.
$

4.1.11 RMU Load Now Supports User Defined Conversion Routines
This release of Oracle Rdb adds a new column attribute to the record definition
file syntax. The new STORE USING clause allows the record definition file (RRD)
to indicate to RMU how to store the data in the target column by specifying the
name of a transformation function. This function may be a SQL or an external
function existing in the target database.

For example, when a delimited data file is read, there may exist column values
in formats not acceptable to Oracle Rdb. The routine specified by the STORE
USING clause allows the source value from the data file to be manipulated prior
to being inserted into the table.

Some examples include:

• Date formats that only specify two digit year, which requires century be
derived by some rule (year < 50 means adding 1900, otherwise they are
assumed to add 2000)

• Date/time values that specify fractional seconds precision larger than
supported by SQL

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–17

• Numeric decimal marker and digit group separators different from those
implicitly supported by Oracle Rdb. For example, a value might be saved by
an application in some countries as 1.234.567,89 which would not be accepted
by Rdb without some transformation.

• Character fields might have leading or trailing spaces, but the database
column expects them to be trimmed.

For this release, only functions that accept one argument are supported from the
STORE USING clause.

The examples directory SQL$SAMPLE includes a module definition that provides
example routines that transform source text prior to insert into the target
column. This script is provided for use by the database programmer, as well as to
be used as a model for locally created routines. The script, CVT_MODULE.SQL,
contains the following routines:

• CONVERT_DATE_VMS_7 accepts a text string which represents a date VMS
string with 7 digits of fractional second value.

• CONVERT_DECIMAL_MARK converts numeric values by removing any digit
group separators and changing the decimal mark to ".". It then returns a
string for implicit conversion to the columns data type.

• CONVERT_DATE_DD_MON_YY accepts a text string with the month as a
three letter (English) abbreviation, and a 2 or 4 digit year. It parses the date
and returns a DATE ANSI value.

• SET_NULL_WHEN_ZERO. In some cases special values in the data file
represent an UNKNOWN state. This script assumes that zero equates to
NULL. An example of this might be SALARY_AMOUNT in the SALARY_
HISTORY table.

In some cases, transformations can be solved by using SQL builtin functions. The
following are directly supported and will be called with one parameter defaulting
the optional parameters; TRIM, RTRIM, LTRIM, UPPER, LOWER and SQRT.

The routine name, (unless it is a SQL builtin). must represent an SQL or
External routine in the database. RMU performs some simple validation but it is
expected that the input parameter and result type are compatible with the data
type of the RMU Load source and the target column data type.

The following example shows a simple routine to filter the decimal mark in an
input field.

create module EXAMPLE
function CONVERT_DECIMAL_MARK (in :v varchar(40))
returns varchar(40)
comment is ’Only preserve numbers and sign from the input’
/ ’and substitute decimal mark’;
return translate (:v, ’+-0123456789,. ’, ’+-0123456789.’);

end module;

Each field in the record definition file may have at most one STORE USING
clause.

The following example shows a simple record definition file that would be used to
load data from a delimited data file.

4–18 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

DEFINE FIELD EMPLOYEE_ID DATATYPE IS TEXT SIZE IS 5.
DEFINE FIELD SALARY_AMOUNT DATATYPE IS TEXT SIZE IS 30.
DEFINE FIELD SALARY_START DATATYPE IS TEXT SIZE IS 10.
DEFINE FIELD SALARY_END DATATYPE IS TEXT SIZE IS 10.
DEFINE RECORD SALARY_HISTORY.

EMPLOYEE_ID .
SALARY_AMOUNT store using CONVERT_DECIMAL_MARK.
SALARY_START .
SALARY_END .

END SALARY_HISTORY RECORD.

4.1.12 New CARDINALITY Option for SHOW TABLE Command
This release of Oracle Rdb adds support for the CARDINALITY option to SHOW
TABLE and enhances the support for SHOW INDEX. The CARDINALITY option
(unlike other SHOW options) adds the display of cardinality information to other
table and index displays.

• SHOW INDEX (CARDINALITY)

In prior versions, this option would only display output for index column
cardinality if the index was not unique. SQL now displays the table’s
approximate cardinality for unique indices.

Index column cardinality is not maintained for the last index column, as this
is the same value as the index cardinality.

• SHOW TABLE (CARDINALITY)

This command now also displays the approximate cardinality as recorded in
the Rdb system tables for the named tables and their indices.

The following example shows the additional output when the CARDINALITY
option is used.

SQL> show table (cardinality,index) salary_history;
Information for table SALARY_HISTORY

Table cardinality: 729

Indexes on table SALARY_HISTORY:
SH_EMPLOYEE_ID with column EMPLOYEE_ID
Index cardinality: 100
Duplicates are allowed
Type is Sorted
Key suffix compression is DISABLED
Node size 430
Percent fill 70

4.1.13 New CONSTRAINT Naming for Domain Constraints
This release of Oracle Rdb supports the naming of domain constraints. The
CREATE and ALTER DOMAIN Statements now allow the CHECK constraint
to be named. The name can later be used by the ALTER DOMAIN ... DROP
CONSTRAINT statement.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–19

Syntax for CREATE DOMAIN Statement
domain-constraint =
--+-----------------------------------+-> CHECK (predicate) ---+
| | |
+--> CONSTRAINT <constraint-name> --+ v

|
+--+
|
+--+----------------------------+--->

| |
+--> constraint-attributes --+

Usage Notes for CREATE DOMAIN Statement

• The optional CONSTRAINT clause is used to give a name to a domain
constraint. This name must not be the same as an existing domain, table or
column constraint nor that of a view WITH CHECK OPTION.

• The CONSTRAINT name is a simple identifier. It cannot be qualified by an
alias as it is not a separate database object.

• The CONSTRAINT name can be used in a subsequent ALTER DOMAIN ...
DROP CONSTRAINT clause.

Syntax for ALTER DOMAIN Statement
alter-domain-constraints =
--+--> domain-constraint ------------------+-->
| |
+--> DROP CONSTRAINT <constraint-name> --+
| |
+--> DROP ALL CONSTRAINTS ---------------+

Additional Usage Notes for ALTER DOMAIN Statement

• The ALTER DOMAIN ... ADD CONSTRAINT clause performs an implicit
ALTER DOMAIN ... DROP ALL CONSTRAINTS prior to applying the new
constraint to the domain. Any constraint name defined by prior statements
will also be dropped.

4.1.14 New AS Result-type Clause for CREATE SEQUENCE Statement
This release of Oracle Rdb supports the ANSI and ISO SQL Database Language
AS clause for CREATE SEQUENCE. The AS clause specifies a data type
which will be returned by the sequence. Oracle Rdb restricts the result to
unscaled integer types: TINYINT, SMALLINT, INTEGER (INT) and BIGINT
(QUADWORD). Unless specified by the CREATE SEQUENCE Statement, SQL
will implicitly set the MAXVALUE or the MINVALUE to the extreme values that
can be stored in such a data type.

The following example shows the effect of the AS clause.

4–20 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

SQL> create sequence new_departments as integer cycle;
SQL> show sequence new_departments;

NEW_DEPARTMENTS
Sequence Id: 1
Initial Value: 1
Minimum Value: 1
Maximum Value: 2147483647
Next Sequence Value: 1
Increment by: 1
Cache Size: 20
No Order
Cycle
No Randomize
Wait
SQL>

4.1.15 New GENERATED Column Support
This release of Oracle Rdb adds support for the ANSI/ISO SQL Database
Language Standard clause GENERATED ALWAYS.

The following new clauses are supported:

• GENERATED ALWAYS AS IDENTITY [identity-attributes]

This clause is equivalent to the Oracle Rdb syntax IDENTITY [identity-
attributes] and is added for compatibility with Oracle Database and the
ANSI/ISO SQL Database Language Standard.

When defining a column, the data type of the column can be provided, as
shown in the following example, and will result in an implicit CAST of the
value-expression to that data type (or domain).

SQL> create domain SEQ_NO_DOM integer;
SQL>
SQL> create table SAMPLE
cont> (seq_no SEQ_NO_DOM generated always as identity
cont> !...
cont>);
SQL>
SQL> show table (column) SAMPLE;
Information for table SAMPLE

Columns for table SAMPLE:
Column Name Data Type Domain
----------- --------- ------
SEQ_NO INTEGER
Computed: Generated always as Identity

!...
SQL>

If the data type is omitted, then the default will be BIGINT.

• GENERATED BY DEFAULT AS IDENTITY [identity-attributes]

This clause is similar to the GENERATED ALWAYS AS IDENTITY clause,
with the exception that the application programmer may INSERT a value
instead of having Oracle Rdb compute and store a value.

In contrast, the GENERATED ALWAYS clause is treated as a read-only
column. Note: the database administrator can also use the SET FLAGS
’AUTO_OVERRIDE’ statement to temporarily treat GENERATED ALWAYS
columns as GENERATED BY DEFAULT columns.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–21

If an explicit value is inserted by the application, then it is possible that the
sequence associated with the IDENTITY column will generate a duplicate
value. The application must be prepared to handle this case and Oracle Rdb
cannot guarantee uniqueness of values in this column.

• GENERATED ALWAYS AS (value-expression)

This clause is equivalent to the Oracle Rdb syntax AUTOMATIC INSERT
AS value-expression and is added for compatibility with Oracle Database
and the ANSI/ISO SQL Database Language Standard.

When defining a column, the data type of the column can be provided, as
shown in the following example, and will result in an implicit CAST of the
value-expression to that data type (or domain).

SQL> create table SAMPLE
cont> (seq_no SEQ_NO_DOM generated always as identity
cont> ,row_ts timestamp(2) generated always as (current_timestamp)
cont> !...
cont>);
SQL>
SQL> show table (column) SAMPLE;
Information for table SAMPLE

Columns for table SAMPLE:
Column Name Data Type Domain
----------- --------- ------
SEQ_NO INTEGER
Computed: Generated always as Identity
ROW_TS TIMESTAMP(2)
Computed: Generated always as (current_timestamp)

!...

SQL>

If the column data type is not specified, then the data type will be derived
from the value expression.

• GENERATED BY DEFAULT AS (value-expression)

This clause is similar to the GENERATED ALWAYS clause, with the
exception that the application programmer may INSERT a value instead
of having Oracle Rdb compute and store a value.

In contrast, the GENERATED ALWAYS clause is treated as a read-only
column. Note: the database administrator can also use the SET FLAGS
’AUTO_OVERRIDE’ statement to temporarily treat GENERATED ALWAYS
columns as GENERATED BY DEFAULT columns.

4.1.16 Enhancements to INCLUDE Statement
Bug 25910172

This release of Oracle Rdb enhances the INCLUDE statement for the SQL
Precompiler. The INCLUDE statement can now include modules from a
referenced text library.

• INCLUDE MODULE <modulename> FROM LIBRARY <library-file-spec>

This command will include the source text from the named text library.
The text library should be created using the OpenVMS command
LIBRARY/CREATE/TEXT. The name of the modules in that library can be
determined using the LIBRARY/LIST/TEXT. It is posible that these modules
are specifically named using the /MODULE qualifier on the LIBRARY
command.

4–22 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

$ LIBRARY/CREATE/TEXT PERSONNEL_DEFS.TLB
$ LIBRARY/REPLACE/TEXT PERSONNEL_DEFS.TLB EMPS.LIB/MODULE=EMPLOYEES_REC
$ LIBRARY/REPLACE/TEXT PERSONNEL_DEFS.TLB SH.LIB/MODULE=SALARY_HISTORY_REC
$ LIBRARY/REPLACE/TEXT PERSONNEL_DEFS.TLB JH.LIB/MODULE=JOB_HISTORY_REC
$

To reference this text library, the application would use an INCLUDE
statement as shown below:

EXEC SQL INCLUDE MODULE EMPLOYEES_REC FROM LIBRARY ’PERSONNEL_DEFS.TLB’
END-EXEC

• INCLUDE MODULE <modulename>

This abbreviated statement defaults to using the text library named
SQL$TEXT_LIBRARY in the default directory, or referenced by the logical
name SQL$TEXT_LIBRARY.

EXEC SQL INCLUDE MODULE EMPLOYEES_REC
END-EXEC

Usage Notes

• Using the INCLUDE command makes any included text visible to the SQL
Precompiler and also the target language. Use this command when you wish
to make variable and record definitions visible to SQL or if the included text
also contains EXEC SQL directives.

• The module included from a text library may not also include the INCLUDE
file-spec statement nor the INCLUDE MODULE statement.

• The default file type for the LIBRARY is .TLB

• If the text library is created with case sensitive names, then the MODULE
name must be in quotes to preserve the case of the name.

$ LIBRARY/CREATE=CASE_SENSITIVE:yes/TEXT PERSONNEL_DEFS.TLB
$ LIBRARY/REPLACE/TEXT -

PERSONNEL_DEFS.TLB -
JH.LIB/MODULE="JobHistoryRecord"

In such cases, the SQL$PRE command line, or the MODULE header must
specify that QUOTING RULES are enabled to allow quoted names. This
can be specified using /SQLOPTIONS qualifier to specify either ANSI_
IDENTIFIERS or ANSI_QUOTING, or compiling with a DECLARE MODULE
statement in a context file.

$! Use a context file and set SQL99 quoting rules
$ CREATE CONTEXT_FILE.SQL
declare module TESTING

pragma (ident ’V1.00’)
quoting rules sql99;

$ DEFINE/USER SQL$TEXT_LIBRARY INCLUDE_MODULE.TLB
$ SQL$PRE/COBOL SAMPLE_APP CONTEXT_FILE.SQL

4.1.17 New Support for DEFAULT Index NODE SIZE Calculation
Bug 27484661

Prior to Oracle Rdb V7.3.1, the default node size was computed as 430, or when
that value was too small for longer keys, 860. The problem with these sizes were
that they did not fill a complete page. So there remained wasted space on a page
that could not be used.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–23

As part of a redesign of this functionality, it was decided that since the user
did not define a NODE SIZE, it was beneficial for most INSERT and query
environments to use the maximum node size that could be stored on a page.

Some environments would prefer the default NODE SIZE for a sorted index to
be smaller than that currently computed by the Rdb. This may be due to activity
(DELETE and UPDATE of key values), concurrency where the application wants
fewer keys to be locked, or when the page size is very large, say 32 to 63 blocks.

In this release, the logical name RDMS$DEFAULT_INDEX_NODE_SIZE_SMALL
can be defined to enable an alternate node size computation. The node sizes are
still space filling on the page but are similar in size to that of prior versions.

In addition, the RDMS$SET_FLAGS logical name or SET FLAGS statement can
specify ’INDEX_SIZING(SMALL)’ to select this algorithm. The setting ’INDEX_
SIZING(LARGE)’ or ’NOINDEX_SIZING’ will revert to the other algorithm.

Oracle recommends that applications choose node sizes applicable to their
application needs. These defaults are for ease of use and may not be best for all
environments, key data values or application activity.

4.1.18 New LANGUAGE Support From RMU Extract Command
This release of Oracle Rdb supports extracting record definitions for selected or
all tables in a database. The Language qualifier will now support the languages;
CC, COBOL and Pascal.

• CC

For the C language, you must specify CC to avoid ambiguity with an
abbreviated COBOL language.

The output for C is a typedef with the columns of the table and named with
the table name. This definition is designed to be used by the SQL Precompiler
and so includes pseudo data types and CHARACTER SET clauses to establish
the correct semantics for the precompiler.

The following example shows the output for the WORK_STATUS table. Note
that, by default, RMU Extract assumes null terminated strings and adds one
to the length. This can be disabled by specifying NONULL_TERMINATED
for the Option qualifier.

Applications would then declare a variable using this typedef definition as
shown in the following code fragment.

$ rmu/extract/item=table /lang=cc sql$database/option=(noheader,
match:work_status,audit)

/* Table: WORK_STATUS (null terminated)
// Created on 11-JUL-2018 17:39:59.20
// Last altered on 11-JUL-2018 17:39:59.21
// Created by HR_SERVICES
//
*/

4–24 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

#ifndef _WORK_STATUS_
#define _WORK_STATUS_
typedef struct {

char STATUS_CODE[2];
char STATUS_NAME[9];
char STATUS_TYPE[15];
} WORK_STATUS;

#endif // WORK_STATUS
. . .
exec sql
include ’work_status.h’

WORK_STATUS work_status_rec;

exec sql
fetch work_status_cursor into :work_status_rec;

Note that the generated text file must be included by the EXEC SQL
INCLUDE or EXEC SQL INCLUDE MODULE ... FROM LIBRARY
statements so that the definition is visible to the SQL Precompiler.

• COBOL

The output for COBOL is a 01 data division definition with the columns of the
table and named with the table name. VARCHAR and VARBINARY columns
are represented by level 49 field with two subfields to represent the length
(LEN) and body (VAL) of the string.

This definition is designed to be used by the SQL Precompiler and so includes
pseudo data types and CHARACTER SET clauses to establish the correct
semantics for the precompiler.

The following example shows the representation of a VARCHAR column.

$ rmu/extract -
/item=table -
/language=cobol -
PERSONNEL -
/option=(noheader,audit,match:candidates)

. . .
** Table: CANDIDATES
** Created on 11-JUL-2018 17:39:59.03
** Never altered
** Created by HR_SERVICES
**

01 CANDIDATES.
05 LAST_NAME picture X(14).
05 FIRST_NAME picture X(10).
05 MIDDLE_INITIAL picture X(1).
05 CANDIDATE_STATUS .

49 LEN picture S9(4) comp.
49 VAL picture X(255).

Note that the generated text file must be included by the EXEC SQL
INCLUDE or EXEC SQL INCLUDE MODULE ... FROM LIBRARY
statements so that the definition is visible to the SQL Precompiler.

• Pascal

The output for Pascal is a type with the columns of the table and named with
the table name. This definition is designed to be used by the SQL Precompiler
and so includes pseudo data types and CHARACTER SET clauses to establish
the correct semantics for the precompiler.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–25

Applications would then declare a variable (VAR) using this type definition as
shown in the following code fragment.

$ rmu/extract/item=table -
/lang=Pascal -
/output=work_status.p -
sql$database -
/option=(noheader,match:work_status,audit)
.
.
.

exec sql
include ’work_status.p’;

var
work_status_rec : work_status := ZERO;

.

.

.

Note that the generated text file must be included by the EXEC SQL
INCLUDE or EXEC SQL INCLUDE MODULE ... FROM LIBRARY
statements so that the definition is visible to the SQL Precompiler.

4.1.19 Enhancements for CREATE and ALTER MODULE Statements
With this release of Oracle Rdb, the following enhancements have been made to
the module and routine functionality.

1. The module attributes can now appear in any order.

In prior releases, the clauses STORED NAME IS, LANGUAGE SQL,
AUTHORIZATION, and COMMENT IS were required to appear in that
order, although any and all could be omitted. SQL now allows these and new
clauses to be in any order following the name of the module and before the
DECLARE statements.

2. A new EXTERNAL DEFAULTS clause has been added to the module header.

In prior releases, each external routine within the module had to specify the
LOCATION, LANGUAGE, PARAMETER STYLE, BIND ... SITE, and BIND
SCOPE clauses. In many cases, the module referenced just one shareable
image and all these values were the same but were duplicated for every
external routine.

For example, these three routines are defined in the OpenVMS runtime
library.

4–26 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

SQL> create module DCL_SYMBOLS
cont>
cont> procedure LIB$SET_SYMBOL (in :symbol varchar(40) by descriptor,
cont> in :value_string varchar(40) by descriptor,
cont> in :table_type_indicator integer = 2);
cont> external name LIB$SET_SYMBOL
cont> location ’SYS$SHARE:LIBRTL.EXE’
cont> language GENERAL
cont> parameter style GENERAL;
cont>
cont> procedure LIB$GET_SYMBOL (in :symbol varchar(40) by descriptor,
cont> out :resultant_string varchar(40) by descriptor,
cont> out :resultant_length smallint,
cont> in :table_type_indicator integer = 2);
cont> external name LIB$GET_SYMBOL
cont> location ’SYS$SHARE:LIBRTL.EXE’
cont> language GENERAL
cont> parameter style GENERAL;
cont>
cont> procedure LIB$DELETE_SYMBOL (in :symbol varchar(40) by descriptor,
cont> in :table_type_indicator integer = 2);
cont> external name LIB$DELETE_SYMBOL
cont> location ’SYS$SHARE:LIBRTL.EXE’
cont> language GENERAL
cont> parameter style GENERAL;
cont>
cont> end module;

With this release of Oracle Rdb, many of these attributes can be specified
once in the module header as part of the EXTERNAL DEFAULTS clause and
omitted for procedure and function definitions. Often the only clause required
for an external routine is the EXTERNAL keyword.

As can be seen in this example, this simplifies the definition. In addition,
the name of the external routine body matches the name within SQL so the
NAME clause is also omitted.

SQL> create module DCL_SYMBOLS
cont> external defaults (
cont> location ’SYS$SHARE:LIBRTL.EXE’
cont> language GENERAL
cont> parameter style GENERAL
cont>)
cont>
cont> procedure LIB$SET_SYMBOL (in :symbol varchar(40) by descriptor,
cont> in :value_string varchar(40) by descriptor,
cont> in :table_type_indicator integer = 2);
cont> external;
cont>
cont> procedure LIB$GET_SYMBOL (in :symbol varchar(40) by descriptor,
cont> out :resultant_string varchar(40) by descriptor,
cont> out :resultant_length smallint,
cont> in :table_type_indicator integer = 2);
cont> external;
cont>
cont> procedure LIB$DELETE_SYMBOL (in :symbol varchar(40) by descriptor,
cont> in :table_type_indicator integer = 2);
cont> external;
cont>
cont> end module;

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–27

3. The ALTER MODULE statement has been enhanced to also support
the EXTERNAL DEFAULTS created with the module. Therefore, any
external routine added to the module with the ADD FUNCTION or ADD
PROCEDURE clauses will inherit any missing attributes from the original
module definitions.

For example, assume this modified example where the routine LIB$DELETE_
SYMBOL is added later using the ALTER MODULE statement.

SQL> create module DCL_SYMBOLS
cont> external defaults (
cont> location ’SYS$SHARE:LIBRTL.EXE’
cont> language GENERAL
cont> parameter style GENERAL
cont>)
cont>
cont> procedure LIB$SET_SYMBOL (in :symbol varchar(40) by descriptor,
cont> in :value_string varchar(40) by descriptor,
cont> in :table_type_indicator integer = 2);
cont> external;
cont>
cont> procedure LIB$GET_SYMBOL (in :symbol varchar(40) by descriptor,
cont> out :resultant_string varchar(40) by descriptor,
cont> out :resultant_length smallint,
cont> in :table_type_indicator integer = 2);
cont> external;
cont>
cont> end module;

At a later time, ALTER MODULE can be executed to add other routines in
the same shareable image.

SQL> ! Add new routine using ALTER DATABASE
SQL> !
SQL> alter module DCL_SYMBOLS
cont> add
cont> procedure LIB$DELETE_SYMBOL (in :symbol varchar(40) by descriptor,
cont> in :table_type_indicator integer = 2);
cont> external;
cont> end module;

4.1.20 New RMU Dump Symbols Command
Enhancement Bugs 804046 and 2790736

This release of Oracle Rdb adds a new RMU command: RMU Dump Symbols.

RMU Dump Symbols Command
Displays or writes to a specified output file the contents of database root file
information. The output is similar to that from RMU Dump Header except that
the output is in the form of a DCL command procedure that defines global DCL
symbols.

Syntax

RMU/Dump/Symbols root-file-spec

Command Qualifiers Defaults

/Execute NoExecute
/Output[=file-spec] /Output=SYS$OUTPUT
/[No]Prefix[=text-string] /Prefix=RMU$

4–28 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

Description
This command is designed for database administrators who wish to write DCL
procedures that react to the current state of the Rdb database.

This command does not open the database and only provides access to the static
on-disk database root file.

Command Parameters

root-file-spec

A file specification for the database root file whose root file header information
you want to display.

Qualifiers

Execute

The file created by the /OUTPUT qualifier is executed before returning control
to DCL. This allows immediate use of the defined global symbols. The default
is NoExecute.

Output[=file-spec]

The name of the output command procedure created by RMU. The default is
SYS$OUTPUT (which cannot be used by /EXECUTE).

Prefix=test-string
NoPrefix

By default, the generated symbol names start with RMU$. However, the
database administrator can replace this with any text string. This would
allow, for instance, two RMU Dump Symbol commands to be executed on
different databases and the generated (unique) symbols compared.

If NoPrefix is used then no prefix string is added to the created DCL symbols.

The following example shows a simple command procedure to get the CLIENT_
FULL_BACKUP_TIMESTAMP for the named database and compute the delta
time since it was last backed up.

Example 4–5 Using RMU Dump Symbols

$ v = ’f$verify(0)
$ set noon
$!
$! Check the last full backup date and see if backup is past due
$!
$ temp_file = "temp" + f$getjpi(0,"PID") + ".tmp;"
$ RMU/DUMP/SYMBOL/EXECUTE/PREFIX=PERS_/OUTPUT=&TEMP_FILE SQL$DATABASE
$ delta_time = f$delta_time (PERS_CLIENT_FULL_BACKUP_TIMESTAMP,"TODAY")
$ days = f$integer(f$element(0," ",delta_time))
$ if days .gt. 7
$ then
$ alert_text = f$fao("Database PERS not backed up in !SL day!%S", days)
$ write sys$output alert_text
$! reply/username=DBADMIN "’’alert_text’"
$ endif
$ delete &temp_file
$ exit ! ’f$verify(v)’

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–29

4.1.21 New Options to SET SQLDA Statement
The SET SQLDA Statement now supports the ENABLE and DISABLE of
TRUNCATE WARNINGS. The default behavior when SET DIALECT establishes
the dialect as SQL92, SQL99, SQL2011, or an ORACLE dialect is to generate an
error when an assignment would cause a string value to be truncated.

Note

Trailing spaces characters are ignored when determining if a string is
truncated.

This setting of the SQLDA allows dynamic applications to enable or disable this
behavior for all dialects, including SQLV40 (default dialect) and SQL89.

enable-option =
-+-> FULL QUERY HEADER ---------+-->
| |
+-> INSERT RETURNING ----------+
| |
+-> INTEGER COUNT -------------+
| |
+-> NAMED MARKERS -------------+
| |
+-> NULL ELIMINATION WARNINGS -+
| |
+-> ROWID TYPE ----------------+
| |
+-> TRUNCATE WARNINGS ---------+

The following example uses Dynamic SQL to execute various INSERT statements.
The tool displays the error reported for string truncation.

-> CREATE TABLE SAMPLE_TABLE (COL1 CHAR);
-> INSERT INTO SAMPLE_TABLE VALUES (’xxx’);
inputs: 0
-> !;
-> SET SQLDA ’enable truncate warnings’;
inputs: 0
-> INSERT INTO SAMPLE_TABLE VALUES (’xxx’);
inputs: 0
Error -306:
%RDB-E-TRUN_STORE, string truncated during assignment to a column
-> !;
-> SET SQLDA ’disable truncate warnings’;
inputs: 0
-> INSERT INTO SAMPLE_TABLE VALUES (’xxx’);
inputs: 0

4.1.22 More New Options to SET SQLDA Statement
The SET SQLDA Statement now supports the ENABLE and DISABLE of
NULL ELIMINATION WARNINGS. The default behavior when SET DIALECT
establishes the dialect as SQL92, SQL99, SQL2011, or an ORACLE dialect is
to generate a warning when an aggregate function (COUNT, MIN, MAX, AVG,
STDDEV, etc) eliminates NULL values when computing a result.

This setting of the SQLDA allows dynamic applications to enable or disable this
behavior for all dialects, including SQLV40 (default dialect) and SQL89.

4–30 Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0

enable-option =
-+-> FULL QUERY HEADER ---------+-->
| |
+-> INSERT RETURNING ----------+
| |
+-> INTEGER COUNT -------------+
| |
+-> NAMED MARKERS -------------+
| |
+-> NULL ELIMINATION WARNINGS -+
| |
+-> ROWID TYPE ----------------+
| |
+-> TRUNCATE WARNINGS ---------+

The following example uses Dynamic SQL to execute a COUNT function on a
column that has some values set to NULL. The tool displays the warning reported
in such cases.

Enter statement:
SET DIALECT ’SQL99’;
inputs: 0
Enter statement:
SELECT COUNT (MIDDLE_INITIAL) FROM EMPLOYEES;
inputs: 0
out: [0] typ=Bigint {505} len=8
--> reported warning; sqlcode=1003
[SQLDA - displaying 1 fields]
0/: 64
Enter statement:
SET SQLDA ’DISABLE NULL ELIMINATION WARNINGS’;
inputs: 0
Enter statement:
SELECT COUNT (MIDDLE_INITIAL) FROM EMPLOYEES;
inputs: 0
out: [0] typ=Bigint {505} len=8
[SQLDA - displaying 1 fields]
0/: 64
Enter statement:

Enhancements And Changes Provided in Oracle Rdb Release 7.3.3.0 4–31

5
Enhancements And Changes Provided in

Oracle Rdb Release 7.3.2.1

5.1 Enhancements And Changes Provided in Oracle Rdb Release
7.3.2.1

5.1.1 Oracle Rdb 7.3.2.1 Certified on OpenVMS 8.4-2 from VMS Software Inc.
and Integrity i4 systems from HPE

This version of Rdb has been certified to run on OpenVMS Version 8.4-2 from
VMS Software Inc. and Integrity i4 systems from HPE.

5.1.2 RMU/SHOW AFTER_JOURNAL [NO]CHECKPOINT Qualifier
The RMU/SHOW AFTER_JOURNAL [NO]CHECKPOINT qualifier can be used
to request that all active database processes on all nodes perform a checkpoint
when the /BACKUP_CONTEXT qualifier is also specified to set After Image
Journal database symbols based on the current After Image Journal configuration
defined in the database root file and the database fast commit to journal feature
is enabled for the database. For more information on these After Image Journal
database symbols that begin with "RDM$AIJ_", see the documentation for the
/BACKUP_CONTEXT qualifier.

The checkpoint occurs immediately before the AIJ global symbols are defined
or modified. The checkpoint will only be executed if the RMU/SHOW AFTER_
JOURNAL command /BACKUP_CONTEXT qualifier is also specified and the
database fast commit to journal feature is currently enabled.

The syntax for this qualifier is as follows:

/[NO]CHECKPOINT

The default if this qualifier is not specified is /NOCHECKPOINT.

The following example shows a database defined with circular After Image
Journal files and fast commit to the journal files enabled. Then an RMU/SHOW
AFTER_JOURNAL command is executed with the /BACKUP_CONTEXT qualifier
and the /CHECKPOINT qualifier specified. In this case, a global checkpoint will
be executed before the global symbols that start with ’RDM$AIJ_’ are defined or
modified.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1 5–1

$ SQL
create database filename foo

reserve 10 journals
create storage area RDB$SYSTEM

filename foo
alloc 3000
snap alloc 1;

create table tab (a int, b char(500)) ;
commit;
disc all ;
alter database filename foo

journal is enabled (fast commit enabled)
add journal foo_aij_0

filename test$scratch:foo_aij_0.aij
add journal foo_aij_1

filename test$scratch:foo_aij_1.aij
add journal foo_aij_2

filename test$scratch:foo_aij_2.aij
add journal foo_aij_3

filename test$scratch:foo_aij_3.aij
add journal foo_aij_4

filename test$scratch:foo_aij_4.aij
add journal foo_aij_5

filename test$scratch:foo_aij_5.aij
add journal foo_aij_6

filename test$scratch:foo_aij_6.aij
add journal foo_aij_7

filename test$scratch:foo_aij_7.aij
;

%RDMS-W-DOFULLBCK, full database backup should be done to ensure future recovery
exit
$ rmu/dump/header/out=foo.hdr foo
$ sear foo.hdr fast

Fast Commit...
- Fast commit is enabled
- Fast incremental backup is enabled

$ rmu/show after_journal/backup_context/checkpoint foo
JOURNAL IS ENABLED -

RESERVE 10 -
ALLOCATION IS 512 -
EXTENT IS 512 -
OVERWRITE IS DISABLED -
SHUTDOWN_TIMEOUT IS 60 -
NOTIFY IS DISABLED -
BACKUPS ARE MANUAL -
CACHE IS DISABLED

ADD JOURNAL FOO_AIJ_0 -
! FILE DISK:[DIRECTORY]FOO_AIJ_0.AIJ;1

FILE TEST$SCRATCH:FOO_AIJ_0.AIJ
ADD JOURNAL FOO_AIJ_1 -
! FILE DISK:[DIRECTORY]FOO_AIJ_1.AIJ;1

FILE TEST$SCRATCH:FOO_AIJ_1.AIJ
ADD JOURNAL FOO_AIJ_2 -
! FILE DISK:[DIRECTORY]FOO_AIJ_2.AIJ;1

FILE TEST$SCRATCH:FOO_AIJ_2.AIJ
ADD JOURNAL FOO_AIJ_3 -
! FILE DISK:[DIRECTORY]FOO_AIJ_3.AIJ;1

FILE TEST$SCRATCH:FOO_AIJ_3.AIJ
ADD JOURNAL FOO_AIJ_4 -
! FILE DISK:[DIRECTORY]FOO_AIJ_4.AIJ;1

FILE TEST$SCRATCH:FOO_AIJ_4.AIJ
ADD JOURNAL FOO_AIJ_5 -
! FILE DISK:[DIRECTORY]FOO_AIJ_5.AIJ;1

FILE TEST$SCRATCH:FOO_AIJ_5.AIJ
ADD JOURNAL FOO_AIJ_6 -

5–2 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1

! FILE DISK:[DIRECTORY]FOO_AIJ_6.AIJ;1
FILE TEST$SCRATCH:FOO_AIJ_6.AIJ

ADD JOURNAL FOO_AIJ_7 -
! FILE DISK:[DIRECTORY]FOO_AIJ_7.AIJ;1

FILE TEST$SCRATCH:FOO_AIJ_7.AIJ
$ show symbol rdm$aij*
RDM$AIJ_BACKUP_SEQNO == "-1"
RDM$AIJ_COUNT == "8"
RDM$AIJ_CURRENT_SEQNO == "0"
RDM$AIJ_ENDOFFILE == "2"
RDM$AIJ_FULLNESS == "0"
RDM$AIJ_LAST_SEQNO == "-1"
RDM$AIJ_NEXT_SEQNO == "0"
RDM$AIJ_SEQNO == "-1"

$!
$ rmu/backup/nolog foo foo
$!

The second RMU/SHOW AFTER_JOURNAL command is executed with the
/BACKUP_CONTEXT qualifier and the /NOCHECKPOINT qualifier specified.
Therefore, a global checkpoint will not be executed before the global symbols that
start with ’RDM$AIJ_’ are defined or modified. The /NOCHECKPOINT qualifier
did not have to be specified since it is the default.

$ rmu/show after_journal/backup_context/nocheckpoint foo
JOURNAL IS ENABLED -

RESERVE 10 -
ALLOCATION IS 512 -
EXTENT IS 512 -
OVERWRITE IS DISABLED -
SHUTDOWN_TIMEOUT IS 60 -
NOTIFY IS DISABLED -
BACKUPS ARE MANUAL -
CACHE IS DISABLED

ADD JOURNAL FOO_AIJ_0 -
! FILE DISK:[DIRECTORY]FOO_AIJ_0.AIJ;1

FILE TEST$SCRATCH:FOO_AIJ_0.AIJ
ADD JOURNAL FOO_AIJ_1 -
! FILE DISK:[DIRECTORY]FOO_AIJ_1.AIJ;1

FILE TEST$SCRATCH:FOO_AIJ_1.AIJ
ADD JOURNAL FOO_AIJ_2 -
! FILE DISK:[DIRECTORY]FOO_AIJ_2.AIJ;1

FILE TEST$SCRATCH:FOO_AIJ_2.AIJ
ADD JOURNAL FOO_AIJ_3 -
! FILE DISK:[DIRECTORY]FOO_AIJ_3.AIJ;1

FILE TEST$SCRATCH:FOO_AIJ_3.AIJ
ADD JOURNAL FOO_AIJ_4 -
! FILE DISK:[DIRECTORY]FOO_AIJ_4.AIJ;1
ADD JOURNAL FOO_AIJ_5 -
! FILE DISK:[DIRECTORY]FOO_AIJ_5.AIJ;1

FILE TEST$SCRATCH:FOO_AIJ_5.AIJ
ADD JOURNAL FOO_AIJ_6 -
! FILE DISK:[DIRECTORY]FOO_AIJ_6.AIJ;1

FILE TEST$SCRATCH:FOO_AIJ_6.AIJ
ADD JOURNAL FOO_AIJ_7 -
! FILE DISK:[DIRECTORY]FOO_AIJ_7.AIJ;1

FILE TEST$SCRATCH:FOO_AIJ_7.AIJ
$ show symbol rdm$aij*
RDM$AIJ_BACKUP_SEQNO == "-1"
RDM$AIJ_COUNT == "8"
RDM$AIJ_CURRENT_SEQNO == "0"
RDM$AIJ_ENDOFFILE == "2"
RDM$AIJ_FULLNESS == "0"
RDM$AIJ_LAST_SEQNO == "-1"
RDM$AIJ_NEXT_SEQNO == "0"

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1 5–3

RDM$AIJ_SEQNO == "-1"

5.1.3 Engine Error Logging
This feature allows error messages returned from a database engine on a remote
server to be logged. Only non success messages are logged. The server must be
running Release 7.3.2.1 or higher.

These messages will typically be written into a NETSERVER.LOG file. However,
they can be written to a different log file by creating an RDB$SERVER_
DEFAULTS.DAT file on the server and defining:

RCI_DUMP_LOGFILE "DISK:[DIR]FILE.LOG"

This feature is "OFF" by default. It can be turned on by the following methods.

Note: setting any of these methods to "ON" will turn the feature on. Each method
can only be set to "TRUE" or "ON". All other values are ignored. Thus, if any one
is set "ON" then the feature will be enabled even if another is set "OFF".

1. Define the logical RDB$RDBSHR_ENGINEERR_LOG "ON". The logical must
be set on the server so that it is visible to Dispatch. Setting it in the system
table may be best. See the following example.

DEFINE/SYSTEM RDB$RDBSHR_ENGINEERR_LOG "ON"

2. Create an RDB$SERVER_DEFAULTS.DAT file on the server and define the
logical.

RCI_ENGINEERR_LOG "ON"

3. Create an RDB$CLIENT_DEFAULTS.DAT file on the client and define the
logical.

RCI_ENGINEERR_LOG "ON"

This will cause the client to instruct the server to turn on Engine Error
Logging. This also requires that both client and server are running Release
7.3.2.1 or higher.

Be aware that SQL_DEFAULTS_RESTRICTION may stop RCI_ENGINEERR_
LOG from being read. Thus, it is advised that RCI_ENGINEERR_LOG be in the
most privileged .DAT file.

The files are read in the following order:

RDB$SYSTEM_DEFAULTS:RDB$SERVER_DEFAULTS.DAT
RDB$GROUP_DEFAULTS:RDB$SERVER_DEFAULTS.DAT
RDB$USER_DEFAULTS:RDB$SERVER_DEFAULTS.DAT
Then SYS$LOGIN:RDB$SERVER_DEFAULTS.DAT is read only if
RDB$USER_DEFAULTS:RDB$SERVER_DEFAULTS.DAT does not exist.

RDB$SYSTEM_DEFAULTS:RDB$CLIENT_DEFAULTS.DAT
RDB$GROUP_DEFAULTS:RDB$CLIENT_DEFAULTS.DAT
RDB$USER_DEFAULTS:RDB$CLIENT_DEFAULTS.DAT
Then SYS$LOGIN:RDB$CLIENT_DEFAULTS.DAT is read only if
RDB$USER_DEFAULTS:RDB$CLIENT_DEFAULTS.DAT does not exist.

If Engine Error Logging is enabled, an entry is written to the "Keyword values
negotiated between client and server..." section of the log file.

This entry indicates Engine Error Logging is on:

LOGGING ENGINE ERRORS

5–4 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1

An example of an error report:

** 17-MAY-2016 01:37:24.73: %RDB-E-ENGINEERR, The database engine has returned
an error for client 15a250 connection 21
%RDB-F-SYS_REQUEST, error from system services request
%RDMS-F-FILACCERR, error opening storage area file DISK1:[DATABASE]JOBS.SNP;1
***** Error while processing RCI_CLASS_REQ

5.1.4 New MEDIAN Aggregate Function Added to SQL
Bug 1358157

This release of Oracle Rdb includes a new statistical function, MEDIAN.

Description
MEDIAN returns the middle value of the set of ordered values for the group.
If the number of values is an even number, then the result is the linear
interpolation between the two middle values. NULL values are excluded from
the set of values used by MEDIAN and are not counted.

MEDIAN will accept values of the following data types: TINYINT, SMALLINT,
INTEGER, BIGINT, NUMERIC, DECIMAL, NUMBER, FLOAT, REAL, DOUBLE
PRECISION, and INTERVAL. It returns the same data type as a result.

The following example shows the use of MEDIAN in a SQL query.

SQL> select employee_id,
cont> count (*),
cont> avg (salary_amount) as avg edit using ’-(7)9.9(2)’,
cont> median (salary_amount) as median
cont> from salary_history
cont> where employee_id in (’00165’, ’00188’)
cont> group by employee_id
cont> ;
EMPLOYEE_ID AVG MEDIAN
00165 12 9313.17 9017.00
00188 2 21093.00 21093.00
2 rows selected
SQL>

5.1.5 New RMU/BACKUP/AFTER_JOURNAL [NO]SPACE_CHECK Qualifier
If the OpenVMS operating system detects insufficient disk space when the Oracle
Rdb RMU/BACKUP/AFTER_JOURNAL command is creating, or writing to, a
backup disk file or a temporary disk work file needed for the backup of one or
more After Image Journal (AIJ) files, a fatal %RMU-F-FILACCERR error is
output followed by the RMS-F-FUL error returned by OpenVMS and the backup
operation is terminated. The point where the lack of disk space is detected can
occur when a file is created by RMU/BACKUP/AFTER_JOURNAL or whenever
data is being written to a file created by RMU/BACKUP/AFTER_JOURNAL.

%RMU-F-FILACCERR, error creating AIJ backup file
DEVICE:[DIRECTRY]BACKUP_AIJ.AIJBCK;1
-RMS-F-FUL, device full (insufficient space for allocation)

%RMU-F-FILACCERR, error writing to backup file
DEVICE:[DIRECTORY]BACKUP_AIJ.AIJBCK;1
-RMS-F-FUL, device full (insufficient space for allocation)

To avoid aborting an AIJ backup because of insufficient disk space when
RMU/BACKUP/AFTER_JOURNAL is creating a file or while AIJ data is being
written to the created file, the [NO]SPACE_CHECK qualifier has been added
to the RMU/BACKUP/AFTER_JOURNAL command to perform a disk space
check at the earliest possible point in the backup: before creating the backup file

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1 5–5

for the next AIJ file to be backed up; before backing up the next AIJ file using
the /RENAME optimization of creating a new version of the AIJ file; or before
creating a temporary switchover file for backing up the currently active AIJ file.

The disk space check is based on the number of blocks which will be needed
for the AIJ file to be backed up or renamed, or the number of blocks needed to
allocate the temporary work file which will be created. The number of required
blocks is compared to a snapshot of the current free blocks on the disk device
where a backup file will be created, or the disk device where a new version of the
backup file will be created (see the documentation for the RENAME qualifier),
or the disk device where a switchover file will be created for backing up the
currently active AIJ file.

The disk space check is the default and will only not be done if /NOSPACE_
CHECK is specified or if the AIJ is not being backed up to a disk device. Note
that this disk space check is based on a snapshot of the current disk device free
space which can change immediately before or after the snapshot is taken. The
%RMU-E-DISKNOSPACE message that is output if insufficient disk free space
is detected specifies the free blocks available on the disk device at the time the
space check is made (see below).

If there is insufficient disk space to continue the backup, the following message
will be output to the operator console:

%RMU-I-OPERNOTIFY, system operator notification: error backing up AIJ
AFTER1 - no disk space on device DISK1:

The following error messages will be output:

%RMU-E-DISKNOSPACE, Insufficient space on device "DISK1:", needed
blocks 512, free blocks 400, total blocks 500

%RMU-F-AIJBCKNOSPACE, After journal "AFTER1" could not be backed up
because of insufficient space on device "DISK1:"

In the above example messages, "AFTER1" is the AIJ name in the database
root, displayed as "AIJ_NAME =" by the RMU/DUMP/HEADER command, and
"DISK1:" is the name of the disk device. "Needed blocks" are the required disk
blocks, "free blocks" are the available free disk blocks and "total blocks" is the
total of the allocated and free blocks on the disk device.

The syntax for this qualifier is:

/[NO]SPACE_CHECK

The default if this qualifier is not specified is /SPACE_CHECK.

The following example shows the /SPACE_CHECK qualifier specified with
the RMU/BACKUP/AFTER command. When backing up after-image journal
"AFTER1" to disk device "DISK1:", 512 blocks will be needed but only 400 blocks
are free and "DISK1:" only has a maximum capacity of 500 blocks. Therefore the
backup is aborted. Note that /SPACE_CHECK is the default and /NOSPACE_
CHECK must be specified to bypass the space check on disk devices.

5–6 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1

$ rmu/backup/after/SPACE_CHECK/continuous/until=13:53:24.33 -
/log mf_personnel DISK:[DIRECTORY]backup_aij.out

%RMU-I-AIJBCKBEG, beginning after-image journal backup operation
%RMU-I-OPERNOTIFY, system operator notification: AIJ backup operation started
%RMU-I-AIJBCKSEQ, backing up after-image journal sequence number 0
%RMU-I-LOGBCKAIJ, backing up after-image journal AFTER1 at 13:49:24.40
%RMU-E-DISKNOSPACE, Insufficient space on device "DISK1:", needed blocks 512,
free blocks 400, total blocks 500
%RMU-I-OPERNOTIFY, system operator notification: error backing up AIJ AFTER1 -
no disk space on device DISK1:
%RMU-I-AIJBCKSTOP, backup of after-image journal AFTER1 did not complete
%RMU-I-OPERNOTIFY, system operator notification: AIJ manual backup operation
failed
%RMU-F-AIJBCKNOSPACE, After journal "AFTER1" could not be backed up because
of insufficient space on device "DISK1:"
%RMU-F-FTL_BCK, Fatal error for BACKUP operation at 2-JUN-2016 13:49:24.43

5.1.6 New Options to SET SQLDA Statement
Bugs 1048570, 2863911 and 9738823

The SET SQLDA Statement now supports the ENABLE and DISABLE of the
FULL QUERY HEADER. This setting fills in the SQLNAME for any non-column
expression in a select expression.

enable-option =
-+-> FULL QUERY HEADER --+-->
| |
-+-> INSERT RETURNING ---+
| |
+-> INTEGER COUNT ------+
| |
+-> NAMED MARKERS ------+
| |
+-> ROWID TYPE ---------+

The following example uses Dynamic SQL and accepts various statements. The
tool displays the label from the SQLDA as a description for the user.

Enter statement:
attach ’filename sql$database’;
inputs: 0
Enter statement:
set sqlda ’enable full query header’;
inputs: 0
Enter statement:
select employee_id, first_name || last_name, extract(year from birthday)
from employees
where employee_id = ’00164’;
inputs: 0
out: [0] typ=Char {453} len=5
out: [1] typ=Char {453} len=24
out: [2] typ=Integer {497} len=4
[SQLDA - displaying 3 fields]
0/EMPLOYEE_ID: 00164
1/CONCAT(FIRST_NAME,...): Alvin Toliver
2/EXTRACT(YEAR FROM BIRTHDAY): 1947
Enter statement:

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1 5–7

Usage Notes

FULL QUERY HEADER - By default, any select expression that is not a
column or DBKEY is given an empty SQLNAME in the SQLDA (SQLNAME_
LEN is zero). When this option is enabled, an approximation of the select
expression is formatted as a label for the expression.

The SQLNAME_LEN will be between 1 and 62, therefore the expression may
be truncated. If any of the SQLDA options ORACLE LEVEL1, ORACLE
LEVEL2 or ORACLE LEVEL3 are set, then the SQLNAME_LEN will be
limited to 30 as this is the largest name supported by Oracle Database.

If the dialect is set to any of ORACLE LEVEL1, ORACLE LEVEL2 or
ORACLE LEVEL3, then some functions will be presented using Oracle
Database names (SYSDATE, SYSTIMESTAMP, ROWID and NVL) instead
of the Oracle Rdb SQL names (CURRENT_TIMESTAMP, DBKEY and
COALESCE) regardless of the SQL syntax used in the original query.

5.1.7 New RMU Set Statistics Command
Enhancement Bug 21618556

The Oracle Rdb RMU Set Statistics command allows the user to manage the
saving and restoring of database statistics.

RMU Set Statistics allows saving database statistics by writing them to a node-
specific database file located in the same directory as the database root file,
and initializing database statistics by reading them from the same node-specific
database file. This file has the same name as the root file, with a default file
extension of .rds.

The statistics file contains node-specific information, and it cannot be renamed or
copied. The exported database statistics file (.rds) can be deleted if it is no longer
needed. The RMU Backup command does not save the statistics files. They are
considered to be temporary files and not part of the database.

The RMU Set Statistics command can be used with databases defined with
a Manual open mode and databases defined with an Automatic open mode.
The RMU Close command Statistics=Export qualifier can also be used to save
statistics to the same node-specific database file and the RMU Open command
Statistics=Import qualifier can be used to set database statistics by reading them
from the same node-specific database file, but only for databases defined with a
Manual open mode. For more information, see the documentation for the RMU
Close and RMU Open commands.

You must have RMU$ALTER privilege in the access control list (ACL) for a
database or the OpenVMS SYSPRV or BYPASS privilege to use the RMU Set
Statistics command.

Database statistics must be enabled on the database. The RMU Dump Header
command will display the following message if statistics are enabled for the
database.

- Statistics are enabled

The general format for this command is:

RMU/Set Statistics root-file-spec

The qualifiers for this command are:

5–8 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1

EXPORT
EXPORT = CLOSE
EXPORT = NOCLOSE

If just EXPORT is specified, the database monitor will immediately write the
database statistics to the node-specific database statistics file. The monitor must
be running and the database must currently be open. The default if EXPORT
is omitted is not to write the database statistics to the node-specific database
statistics file. The monitor log will record the export of the database statistics.
If the node-specific database statistics file does not exist, it will be created. The
existing node-specific database statistics file contents will be replaced and the
version number of this file will not be incremented.

If EXPORT = CLOSE is specified, a parameter will be set in the database root
to cause the monitor to automatically save the database statistics to the node-
specific database statistics file whenever the database is closed. No immediate
statistics export is executed. The RMU Dump Header command will show the
open and close modes for the database as either:

Database open mode is MANUAL
Database close mode is MANUAL

or:

Database open mode is AUTOMATIC
Database close mode is AUTOMATIC

If the open and close modes are MANUAL, the database must be opened
by an RMU Open command and closed by an RMU Close command. For
more information, see the documentation for the RMU Close and RMU Open
commands. If the open and close modes are AUTOMATIC, the database is
opened when the first user attaches to the database and closed when no users are
attached to the database.

If EXPORT = NOCLOSE is specified, a parameter will be set in the database
root to cause the monitor to not save the database statistics to the node-specific
database statistics file whenever the database is closed.

If EXPORT = CLOSE or EXPORT = NOCLOSE is specified, the database must
currently be closed since the root parameters of the database are being modified.

If automatic exporting of the database statistics to the node-specific database
statistics file is enabled for the database, the RMU Dump Header command will
display the following message:

- Statistics export on database close is enabled

If automatic exporting of the database statistics to the node-specific database
statistics file is disabled for the database, the RMU Dump Header command will
display the following message:

- Statistics export on database close is disabled

IMPORT = OPEN
IMPORT = NOOPEN

If IMPORT = OPEN is specified, a parameter is set in the database root to cause
the monitor to automatically initialize the database statistics by reading the
node-specific database statistics file whenever the database is opened. Statistics
can only be imported when the database is opened. No immediate import of
database statistics is allowed once the database has been opened to prevent
currently active database statistics values from being overwritten.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1 5–9

If IMPORT = NOOPEN is specified, a parameter will be set in the database
root to cause the monitor to not initialize the database statistics by reading the
node-specific database statistics file when the database is opened. The RMU
Dump Header command will show the open and close modes for the database as
either of the following:

Database open mode is MANUAL
Database close mode is MANUAL

or:

Database open mode is AUTOMATIC
Database close mode is AUTOMATIC

If the open and close modes are MANUAL, the database must be opened
by an RMU Open command and closed by an RMU Close command. For
more information, see the documentation for the RMU Close and RMU Open
commands. If the open and close modes are AUTOMATIC, the database is
opened when the first user attaches to the database and closed when no users are
attached to the database.

If IMPORT = OPEN or IMPORT = NOOPEN is specified, the database must
currently be closed since the root parameters of the database are being modified.

If automatic importing of the database statistics from the node-specific database
statistics file is enabled for the database, the RMU Dump Header command will
display the following message:

- Statistics import on database open is enabled

If automatic importing of the database statistics from the node-specific database
statistics file is disabled for the database, the RMU Dump Header command will
display the following message:

- Statistics import on database open is disabled

CHECKPOINT
CHECKPOINT = n
NOCHECKPOINT

When statistics values are imported from the node-specific database statistics file
by the database monitor at the time the database is opened, automatic periodic
checkpoints are started by default to export the statistics values to the node-
specific statistics file to keep the statistics file as current as possible in case a
system crash occurs before the database is closed.

If only NOCHECKPOINT is specified, these default periodic export checkpoints
are disabled by modifying a parameter in the database root. If only
CHECKPOINT is specified, a default periodic export checkpoint interval of
30 minutes is used.

The monitor log and the RMU Show System command will indicate if these
checkpoints are occurring.

All options of the checkpoint qualifier require that the database must currently
be closed since the root parameters of the database are being modified.

If statistic export checkpoints are enabled for the database, the RMU Dump
Header command will display the following message:

- Statistics export checkpoints are enabled

5–10 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1

If statistic export checkpoints are disabled for the database, the RMU Dump
Header command will display the following message:

- Statistics export checkpoints are disabled

By default, these periodic export checkpoints occur every 30 minutes. If
CHECKPOINT = n is specified, the export checkpoints interval parameter
can be modified in the database root for checkpoints to occur every n minutes,
where n can be a minimum export checkpoint interval of 30 minutes, a maximum
checkpoint interval of 1440 minutes (which is one checkpoint every 24 hours), or
any number of minutes between these minimum and maximum values. The RMU
Dump Header command will display the setting of the export checkpoint value in
the root as follows:

- Statistics export interval is n minutes

If CHECKPOINT = n is specified, only the statistics export checkpoint interval
for the database is modified. NOCHECKPOINT or CHECKPOINT without the
checkpoint interval in minutes parameter, must be specified to disable or enable
periodic export checkpoints.

If statistics are disabled for the database, the RMU Dump Header command will
display the following:

Statistics are disabled

If statistics are enabled for the database but the import of database statistics on
database open is disabled, the RMU Dump Header command will not show any
statistics checkpoint information since statistics checkpoints are only executed if
statistics are imported when the database is opened.

Statistics...
- Statistics are enabled
- Statistics import on database open is disabled
- Statistics export on database close is disabled

If statistics are enabled for the database and the import of database statistics
on database open is enabled, the RMU Dump Header command will show the
statistics export checkpoint parameters for the database.

Statistics...
- Statistics are enabled
- Statistics import on database open is enabled
- Statistics export on database close is enabled
- Statistics export checkpoints are enabled
- Statistics export interval is 30 minutes

LOG
NOLOG

Displays informational messages during the execution of the RMU Set Statistics
command. The default for this qualifier is NOLOG.

Examples
The following example shows the use of the RMU Set Statistics command to do an
immediate export to the database node-specific statistics file to save the current
database statistics.

An RMU Show System command shows that the database monitor is running and
that the database is open, which are requirements for doing immediate exports
and imports of statistics. No *.rds statistics file currently exists for the database
so the RMU Set Statistics command Export qualifier creates the file using the

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1 5–11

node name and the database name and writes the current database statistics
values to the statistics file.

Example 5–1 RMU Set Statistics Export

$ rmu/show user
Oracle Rdb V7.3-200 on node TSTNOD 11-AUG-2016 16:16:33.77

- monitor started 10-AUG-2016 19:14:09.13 (uptime 0 21:02:24)
- monitor log filename is "DEVICE:[DIRECTORY]RDMMON73_TSTNOD.LOG;3487"

database DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
- opened 11-AUG-2016 16:13:09.96 (elapsed 0 00:03:23)
- 2 active database users on this node

$ dir *.rds
%DIRECT-W-NOFILES, no files found
$ rmu/set statistics/export/log mf_personnel.
%RMU-I-MODIFIED, Database Statistics Import/Export file state modified
$ dir/date *.rds

Directory DEVICE:[DIRECTORY]

MF_PERSONNEL_TSTNOD.RDS;1
11-AUG-2016 16:17:05.54

Total of 1 file.

The following example shows the use of the RMU Set Statistics command to
modify the statistics export and import parameters in the database root used
by the database monitor for the export of statistics to the database node-specific
statistics file when the database is closed and the import of statistics from the
database node-specific statistics file when the database is opened, as well as for
periodic checkpoints to export the statistics to keep them as up to date as possible
in case a system crash occurs before the database is closed.

The first RMU Show System command shows that the database is closed and not
being accessed by database users, which is a requirement for setting statistics
import and export parameters in the database root.

The RMU Dump Header command shows that statistics collection is enabled for
the database but the export of statistics when the database is closed and the
import of statistics when the database is opened are both disabled. The statistics
export checkpoint parameters are not shown because statistic checkpoints are
only executed if statistics are imported when the database is opened.

The RMU Set Statistics command is then used to enable statistic imports when
the database is opened, statistic exports when the database is closed and to set
the interval between periodic statistic exports to 60 minutes (the default is 30
minutes). Periodic export checkpoints are the default if statistics are imported
when the database is opened.

The RMU Dump Header command is used to display the new statistics
parameters that have been set in the database root. Later, the RMU Set
Statistics command is used to disable statistic imports when the database is
opened, statistic exports when the database is closed, and periodic checkpoints to
export statistics.

5–12 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1

The RMU Dump Header command shows that statistics collection is enabled for
the database but the export of statistics when the database is closed and the
import of statistics when the database is opened are both disabled. The statistics
export checkpoint parameters are not shown because statistic checkpoints are
only executed if statistics are imported when the database is opened.

Example 5–2 RMU Set Statistics Checkpoint

$ rmu/show system
Oracle Rdb V7.3-200 on node TSTNOD 12-AUG-2016 09:54:08.45

- monitor started 11-AUG-2016 19:14:09.20 (uptime 0 14:39:59)
- monitor log filename is "DEVICE:[DIRECTORY]RDMMON73_MALIBU.LOG;3488"
- no databases are accessed by this node

$ rmu/dump/header/out=mfp.hdr mf_personnel
sear mfp.hdr statistics

Statistics...
- Statistics are enabled
- Statistics import on database open is disabled
- Statistics export on database close is disabled

$ rmu/set statistics/import=open/export=close/checkpoint=60/log mf_personnel
%RMU-I-LOGMODFLG, enabled database open statistics import
%RMU-I-LOGMODFLG, enabled database close statistics export
%RMU-I-LOGMODFLG, modified statistics export interval to 60 minutes
%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery
%RMU-I-MODIFIED, Database Statistics Import/Export file state modified

$ sear mfp.hdr statistics
Statistics...
- Statistics are enabled
- Statistics import on database open is enabled
- Statistics export on database close is enabled
- Statistics export checkpoints are enabled
- Statistics export interval is 60 minutes

$ rmu/set statistics/import=noopen/export=noclose/nocheckpoint/log mf_personnel
%RMU-I-LOGMODFLG, disabled database open statistics import
%RMU-I-LOGMODFLG, disabled database close statistics export
%RMU-I-LOGMODFLG, disabled database statistics export checkpoints
%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery
%RMU-I-MODIFIED, Database Statistics Import/Export file state modified

$ sear mfp.hdr statistics
Statistics...
- Statistics are enabled
- Statistics import on database open is disabled
- Statistics export on database close is disabled

5.1.8 Multi-Aggregate Index Optimization
Bug 1085681

Previous versions of Oracle Rdb provided specialized optimizations to descend
the index structure to compute MIN, MAX, COUNT(*), COUNT(DISTINCT
expression) and COUNT(expression) aggregations.

These optimizations include:

• MAX - Max key lookup,

• MIN - Min key lookup,

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1 5–13

• COUNT - Index counts (for SORTED indices), and Index counts lookup
(for SORTED RANKED indices),

• COUNT (DISTINCT) - Index distinct counts (for SORTED indices), and
Index distinct lookup (for SORTED RANKED indices).

SQL> select max (salary_amount)
cont> from salary_history
cont> where salary_amount is not null
cont> ;
Tables:
0 = SALARY_HISTORY

Aggregate: 0:MAX (0.SALARY_AMOUNT) Q2
Index only retrieval of relation 0:SALARY_HISTORY
Index name SALARY_NDX [0:1] Max key lookup
Keys: NOT MISSING (0.SALARY_AMOUNT)

93340.00
1 row selected
SQL>

These optimizations use specialized code to traverse the SORTED or SORTED
RANKED index, which results in reduced CPU time and possibly reduced I/O
to generate these results. However, these optimizations were only applied to
simple queries using just one of these aggregates. For example, this meant that
any query that requested both the MAX (salary_amount) and also MIN (salary_
amount) was not using these optimizations for either MAX or MIN.

SQL> select min (salary_amount), max (salary_amount)
cont> from salary_history
cont> where salary_amount is not null
cont> ;
Tables:
0 = SALARY_HISTORY

Aggregate: 0:MAX (0.SALARY_AMOUNT) Q2
1:MIN (0.SALARY_AMOUNT) Q2

Index only retrieval of relation 0:SALARY_HISTORY
Index name SALARY_NDX [0:1]
Keys: NOT MISSING (0.SALARY_AMOUNT)

7000.00 93340.00
1 row selected
SQL>

With this release, Oracle Rdb introduces a new method that allows the optimizer
to recognize and apply many of these specialized optimizations within a single
query. These aggregates can be standalone or in an expression, as shown in
following example.

This query returns a single value but is now broken into three distinct index
descents to efficiently compute the MAX, MIN and COUNT aggregates. In
previous versions, this query would be solved by scanning the entire index and
collecting the values for the computation.

5–14 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1

SQL> select (MAX(salary_amount) - MIN(salary_amount))
cont> / LEAST(1, COUNT(salary_amount))
cont> as range_comp edit using ’-(10).99’
cont> from SALARY_HISTORY;
Tables:
0 = SALARY_HISTORY

Aggregate: 0:MAX (0.SALARY_AMOUNT) Q2
1:MIN (0.SALARY_AMOUNT) Q2
2:COUNT (0.SALARY_AMOUNT) Q2

Index only retrieval of relation 0:SALARY_HISTORY
Index name SALARY_NDX [0:0] Max key lookup

Index only retrieval of relation 0:SALARY_HISTORY
Index name SALARY_NDX [0:0] Min key lookup

Index only retrieval of relation 0:SALARY_HISTORY
Index name SALARY_NDX [0:1] Index counts
Keys: NOT MISSING (0.SALARY_AMOUNT)
RANGE_COMP
86340.00

1 row selected
SQL>

The new strategy display lists each aggregate in the order they were specified in
the query.

5.1.9 Use Old DPB Format for Rdb_Change_Database
In Oracle Rdb Release 7.3.2.1, the DPB (database parameter block) parameter
passed by the ALTER DATABASE statement has been augmented (extra
information may be included). This may cause remote access to older versions of
Oracle Rdb to fail with an RDB-F-BAD_DPB_CONTENT error. See the following
example.

%RDB-F-BAD_DPB_CONTENT, invalid database parameters in the database parameter block (DPB)
-RDMS-E-DDLDONOTMIX, the "SYNONYMS ARE ENABLED" clause can not be used with some ALTER
DATABASE clauses

To use the old format when using the ALTER DATABASE statement on an older
Oracle Rdb database, define the keyword RCI_OLD_CHANGE_DATABASE "ON"
in RDB$CLIENT_DEFAULTS.DAT.

5.1.10 LogMiner State Now in AIJ Options File, New RDM$LOGMINER_STATE
Symbol

Bug 23076123

The current state of LogMiner operations on an Oracle Rdb database, whether
LogMiner is enabled or disabled and whether the Continuous LogMiner feature
is enabled, will now be displayed either by the RMU SHOW AFTER_JOURNAL
command or the new RDM$LOGMINER_STATE symbol. The state can now
be set in the AIJ options file read by the AIJ_OPTIONS qualifier used with
the RMU COPY_DATABASE, RMU MOVE_AREA, RMU RESTORE, RMU
RESTORE ONLY_ROOT and RMU SET AFTER_JOURNAL commands to define
the database after-image journal configuration. The RMU SHOW AFTER_
JOURNAL OUTPUT qualifier now includes the current LogMiner state defined
in the database root in the AIJ options file. The RMU SHOW AFTER_JOURNAL
BACKUP_CONTEXT qualifier now defines the new RDM$LOGMINER_STATE
string symbol.

The new LogMiner syntax added to the AIJ options file and displayed by the
RMU SHOW AFTER_JOURNAL command is the following.

LOGMINER (IS) ENABLED|DISABLED [CONTINUOUS]

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1 5–15

- "IS" is optional and does not have to be specified.

LOGMINER IS DISABLED

- Both LogMiner and the Continuous LogMiner feature are disabled. The
Continuous LogMiner feature cannot be enabled unless LogMiner is also enabled.

LOGMINER IS ENABLED

- LogMiner is enabled but the Continuous LogMiner feature is disabled.

LOGMINER IS ENABLED CONTINUOUS

- Both LogMiner and the Continuous LogMiner feature are enabled. The
Continuous LogMiner feature cannot be enabled unless LogMiner is also enabled.

The new RDM$LOGMINER_STATE string symbol can have the following values.

$ SHOW SYMBOL RDM$LOGMINER_STATE
RDM$LOGMINER_STATE == "DISABLED"

- Both LogMiner and the Continuous LogMiner feature are disabled. The
Continuous LogMiner feature cannot be enabled unless LogMiner is also enabled.

$ SHOW SYMBOL RDM$LOGMINER_STATE
RDM$LOGMINER_STATE == "ENABLED"

- LogMiner is enabled but the Continuous LogMiner feature is disabled.

$ SHOW SYMBOL RDM$LOGMINER_STATE
RDM$LOGMINER_STATE == "ENABLED CONTINUOUS"

- Both LogMiner and the Continuous LogMiner feature are enabled. The
Continuous LogMiner feature cannot be enabled unless LogMiner is also enabled.

In the following example, the RMU SHOW AFTER_JOURNAL command shows
that LogMiner and the Continuous LogMiner feature are disabled for a database
and defines the RDM$LOGMINER_STATE symbol to indicate this. The database
is then backed up with LogMiner disabled. Then journaling is enabled with one
variable size extensible AIJ file and the RMU SET LOGMINER command is used
to enable LogMiner for the database but keeps the Continuous LogMiner feature
disabled. The Continuous LogMiner feature requires a fixed size file circular AIJ
configuration. The RMU SHOW AFTER_JOURNAL command is then used to
create an AIJ options file with LogMiner enabled and the Continuous LogMiner
feature disabled and a variable size file extensible AIJ configuration. Then the
database is deleted and restored from the backup file with both journaling and
LogMiner disabled, but because the RMU RESTORE AIJ_OPTIONS qualifier is
specified, the RMU RESTORE command reads the AIJ options file created by
the RMU SHOW AFTER_JOURNAL command and restores the variable size
file extensible AIJ configuration with LogMiner enabled and the Continuous
LogMiner feature disabled.

5–16 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1

$ RMU/SHOW AFTER_JOURNAL/BACKUP_CONTEXT-
/OUT=SHOW.TMP DEVICE:[DIRECTORY]MF_PERSONNEL
$ SEAR SHOW.TMP LOGMINER

LOGMINER IS DISABLED
$ SHOW SYMBOL RDM$LOGMINER_STATE
RDM$LOGMINER_STATE == "DISABLED"

$ RMU/BACKUP/NOLOG DEVICE:[DIRECTORY]MF_PERSONNEL -
DEVICE:[DIRECTORY]MFP
$ SQL
ALTER DATABASE FILE DEVICE:[DIRECTORY]MF_PERSONNEL
JOURNAL IS ENABLED

ADD JOURNAL TEST1 FILENAME ’TEST1.AIJ’;
%RDMS-W-DOFULLBCK, full database backup should be done to ensure
future recovery
EXIT;
$ RMU/SET LOGMINER/ENABLE/NOCONTINUOUS/LOG -
DEVICE:[DIRECTORY]MF_PERSONNEL
%RMU-I-MODIFIED, LogMiner state modified
%RMU-W-DOFULLBCK, full database backup should be done to ensure
future recovery
$ RMU/SHOW AFTER_JOURNAL/BACKUP_CONTEXT/OUT=AIJ1OPT.OPT -
DEVICE:[DIRECTORY]MF_PERSONNEL
$ TYPE AIJ1OPT.OPT
JOURNAL IS ENABLED -

RESERVE 1 -
ALLOCATION IS 512 -
EXTENT IS 512 -
OVERWRITE IS DISABLED -
SHUTDOWN_TIMEOUT IS 60 -
NOTIFY IS DISABLED -
BACKUPS ARE MANUAL -
CACHE IS DISABLED -
LOGMINER IS ENABLED

ADD JOURNAL TEST1 -
! FILE DISK:[DIRECTORY]TEST1.AIJ;1

FILE TEST1.AIJ
$ SHOW SYMBOL RDM$LOGMINER_STATE
RDM$LOGMINER_STATE == "ENABLED"

$!
$ SQL

DROP DATABASE FILE DEVICE:[DIRECTORY]MF_PERSONNEL;
EXIT

$ DELETE *.AIJ;*
$ RMU/RESTORE/NOCDD/NOLOG/DIR=TEST$SCRATCH-
/AIJ_OPTIONS=DEVICE:[DIRECTORY]AIJ1OPT.OPT -
DEVICE:[DIRECTORY]MFP
JOURNAL IS ENABLED -

RESERVE 1 -
ALLOCATION IS 512 -
EXTENT IS 512 -
OVERWRITE IS DISABLED -
SHUTDOWN_TIMEOUT IS 60 -
NOTIFY IS DISABLED -
BACKUPS ARE MANUAL -
CACHE IS DISABLED -
LOGMINER IS ENABLED

ADD JOURNAL TEST1 -
! FILE DISK:[DIRECTORY]TEST1.AIJ;1

FILE TEST1.AIJ
$ RMU/SHOW AFTER_JOURNAL/BACKUP_CONTEXT/OUT=SHOW.TMP -
DEVICE:[DIRECTORY]MF_PERSONNEL
$ SEAR SHOW.TMP LOGMINER

LOGMINER IS ENABLED
$ SHOW SYMBOL RDM$LOGMINER_STATE
RDM$LOGMINER_STATE == "ENABLED"

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1 5–17

In the following example, the RMU SHOW AFTER_JOURNAL command shows
that LogMiner and the Continuous LogMiner feature are disabled for a database
and defines the RDM$LOGMINER_STATE symbol to indicate this. The database
is then backed up with LogMiner disabled. Then journaling is enabled with
a fixed size file circular AIJ file configuration and the RMU SET LOGMINER
command is used to enable both LogMiner and the Continuous LogMiner option
for the database. The Continuous LogMiner feature requires a fixed size file
circular AIJ configuration. The RMU SHOW AFTER_JOURNAL command is
then used to create an AIJ options file with both LogMiner and the Continuous
LogMiner option enabled with a fixed size file circular AIJ configuration. Then
the database is deleted and restored from the backup file with both journaling
and LogMiner disabled. An RMU SET AFTER_JOURNAL command is then
used with the AIJ_OPTIONS qualifier to read the AIJ options file created by
the RMU SHOW AFTER_JOURNAL command to restore the fixed size file AIJ
configuration with both LogMiner and the Continuous LogMiner feature enabled.

$ RMU/SHOW AFTER_JOURNAL/BACKUP_CONTEXT/OUT=SHOW.TMP -
DEVICE:[DIRECTORY]MF_PERSONNEL
$ SEAR SHOW.TMP LOGMINER

LOGMINER IS DISABLED
$ SHOW SYMBOL RDM$LOGMINER_STATE
RDM$LOGMINER_STATE == "DISABLED"

$ RMU/BACKUP/NOLOG DEVICE:[DIRECTORY]MF_PERSONNEL -
DEVICE:[DIRECTORY]MFP
$ SQL
ALTER DATABASE FILE DEVICE:[DIRECTORY]MF_PERSONNEL
JOURNAL IS ENABLED

RESERVE 5 JOURNALS
ADD JOURNAL TEST1 FILENAME ’TEST1.AIJ’
ADD JOURNAL TEST2 FILENAME ’TEST2.AIJ’;

%RDMS-W-DOFULLBCK, full database backup should be done
to ensure future recovery
%RDMS-W-DOFULLBCK, full database backup should be done
to ensure future recovery
EXIT;
$ RMU/SET LOGMINER/ENABLE/CONTINUOUS/LOG -
DEVICE:[DIRECTORY]MF_PERSONNEL
%RMU-I-MODIFIED, LogMiner state modified
%RMU-W-DOFULLBCK, full database backup should be done to
ensure future recovery
$ RMU/SHOW AFTER_JOURNAL/BACKUP_CONTEXT/OUT=AIJ1OPT.OPT -
DEVICE:[DIRECTORY]MF_PERSONNEL
$ TYPE AIJ1OPT.OPT
JOURNAL IS ENABLED -

RESERVE 6 -
ALLOCATION IS 512 -
EXTENT IS 512 -
OVERWRITE IS DISABLED -
SHUTDOWN_TIMEOUT IS 60 -
NOTIFY IS DISABLED -
BACKUPS ARE MANUAL -
CACHE IS DISABLED -
LOGMINER IS ENABLED CONTINUOUS

ADD JOURNAL TEST1 -
! FILE DISK:[DIRECTORY]TEST1.AIJ;1

FILE TEST1.AIJ
ADD JOURNAL TEST2 -
! FILE DISK:[DIRECTORY]TEST2.AIJ;1

FILE TEST2.AIJ
$ SHOW SYMBOL RDM$LOGMINER_STATE
RDM$LOGMINER_STATE == "ENABLED CONTINUOUS"

$!
$ SQL

5–18 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1

DROP DATABASE FILE DEVICE:[DIRECTORY]MF_PERSONNEL;
EXIT

$ DELETE *.AIJ;*
$ RMU/RESTORE/NOCDD/NOLOG/DIR=TEST$SCRATCH -
DEVICE:[DIRECTORY]MFP
%RMU-I-AIJRSTAVL, 0 after-image journals available for use
%RMU-I-AIJISOFF, after-image journaling has been disabled
%RMU-W-USERECCOM, Use the RMU Recover command. The journals
are not available.
$ RMU/SHOW AFTER_JOURNAL/BACKUP_CONTEXT/OUT=SHOW.TMP -
DEVICE:[DIRECTORY]MF_PERSONNEL
$ SEAR SHOW.TMP LOGMINER

LOGMINER IS DISABLED
$ SHOW SYMBOL RDM$LOGMINER_STATE
RDM$LOGMINER_STATE == "DISABLED"

$ RMU/SET AFTER_JOURNAL/AIJ_OPTIONS=DEVICE:[DIRECTORY]AIJ1OPT.OPT -
DEVICE:[DIRECTORY]MF_PERSONNEL
%RMU-I-RESTXT_18, Processing options file
DEVICE:[DIRECTORY]AIJ1OPT.OPT
JOURNAL IS ENABLED -

RESERVE 6 -
ALLOCATION IS 512 -
EXTENT IS 512 -
OVERWRITE IS DISABLED -
SHUTDOWN_TIMEOUT IS 60 -
NOTIFY IS DISABLED -
BACKUPS ARE MANUAL -
CACHE IS DISABLED -
LOGMINER IS ENABLED CONTINUOUS

ADD JOURNAL TEST1 -
! FILE DISK:[DIRECTORY]TEST1.AIJ;1

FILE TEST1.AIJ
ADD JOURNAL TEST2 -
! FILE DISK:[DIRECTORY]TEST2.AIJ;1

FILE TEST2.AIJ
%RMU-I-LOGMODFLG, disabled after-image journaling
%RMU-I-LOGMODVAL, reserved 6 additional after-image journals
%RMU-W-DOFULLBCK, full database backup should be done to ensure
future recovery
%RMU-I-LOGMODFLG, enabled LogMiner
%RMU-I-LOGMODFLG, enabled LogMiner
%RMU-I-LOGMODFLG, disabled after-image journal file overwrite
%RMU-I-LOGMODVAL, modified AIJ shutdown time to 60 minutes
%RMU-I-LOGMODFLG, disabled after-image journal spooler
%RMU-I-LOGMODVAL, modified after-image journal file
allocation to 512
%RMU-I-LOGMODVAL, modified after-image journal file
extension to 512
%RMU-I-LOGMODSTR, switching from extensible to circular
AIJ journaling
%RMU-I-LOGCREAIJ, created after-image journal file
DISK:[DIRECTORY]TEST1.AIJ;1
%RMU-I-LOGMODSTR, added after-image journal definition "TEST1"
%RMU-I-LOGCREAIJ, created after-image journal file
DISK:[DIRECTORY]TEST2.AIJ;1
%RMU-I-LOGMODSTR, added after-image journal definition "TEST2"
%RMU-I-LOGMODSTR, activated after-image journal "TEST1"
%RMU-I-LOGMODFLG, enabled after-image journaling
%RMU-W-DOFULLBCK, full database backup should be done to ensure
future recovery
$ RMU/SHOW AFTER_JOURNAL/BACKUP_CONTEXT/OUT=SHOW.TMP -
DEVICE:[DIRECTORY]MF_PERSONNEL
$ SEAR SHOW.TMP LOGMINER

LOGMINER IS ENABLED CONTINUOUS
$ SHOW SYMBOL RDM$LOGMINER_STATE

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1 5–19

RDM$LOGMINER_STATE == "ENABLED CONTINUOUS"

The following example shows that, although the LogMiner Continuous LogMiner
feature requires a fixed size file circular AIJ configuration to execute, the RMU
SET LOGMINER command allows the LogMiner Continuous LogMiner feature to
be enabled with a variable size file extensible AIJ configurations but outputs the
warning message:

%RMU-W-CLMCIRCAIJ, Continuous LogMiner requires fixed-size circular
after-image journals

This indicates that the database must be altered to have a fixed size file circular
AIJ configuration or the Continuous LogMiner feature will fail with the following
fatal error:

%RMU-F-CLMCIRCAIJ, Continuous LogMiner requires fixed-size circular
after-image journals

The RMU SHOW AFTER_JOURNAL command now will also issue the following
warning message if it detects that the LogMiner Continuous LogMiner feature is
enabled with a variable size file extensible AIJ configuration.

%RMU-W-CLMCIRCAIJ, Continuous LogMiner requires fixed-size circular
after-image journals

Here is an example of this situation.

$ SQL
ALTER DATABASE FILE DEVICE:[DIRECTORY]MF_PERSONNEL
JOURNAL IS ENABLED

ADD JOURNAL TEST1 FILENAME ’TEST1.AIJ’;
%RDMS-W-DOFULLBCK, full database backup should be done to
ensure future recovery
EXIT;
$ RMU/SHOW AFTER_JOURNAL/BACKUP_CONTEXT DEVICE:[DIRECTORY]MF_PERSONNEL
JOURNAL IS ENABLED -

RESERVE 1 -
ALLOCATION IS 512 -
EXTENT IS 512 -
OVERWRITE IS DISABLED -
SHUTDOWN_TIMEOUT IS 60 -
NOTIFY IS DISABLED -
BACKUPS ARE MANUAL -
CACHE IS DISABLED -
LOGMINER IS DISABLED

ADD JOURNAL TEST1 -
! FILE DISK:[DIRECTORY]TEST1.AIJ;1

FILE TEST1.AIJ
$ SHOW SYMBOL RDM$LOGMINER_STATE
RDM$LOGMINER_STATE == "DISABLED"

$ RMU/SET LOGMINER/ENABLE/CONTINUOUS/LOG DEVICE:[DIRECTORY]MF_PERSONNEL
%RMU-W-CLMCIRCAIJ, Continuous LogMiner requires fixed-size circular
after-image journals
%RMU-I-MODIFIED, LogMiner state modified
%RMU-W-DOFULLBCK, full database backup should be done to ensure
future recovery
$ RMU/SHOW AFTER_JOURNAL/BACKUP_CONTEXT/OUT=AIJ1OPT.OPT -
DEVICE:[DIRECTORY]MF_PERSONNEL
%RMU-W-CLMCIRCAIJ, Continuous LogMiner requires fixed-size circular
after-image journals
$ TYPE AIJ1OPT.OPT
JOURNAL IS ENABLED -

RESERVE 1 -
ALLOCATION IS 512 -
EXTENT IS 512 -

5–20 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1

OVERWRITE IS DISABLED -
SHUTDOWN_TIMEOUT IS 60 -
NOTIFY IS DISABLED -
BACKUPS ARE MANUAL -
CACHE IS DISABLED -
LOGMINER IS ENABLED CONTINUOUS

ADD JOURNAL TEST1 -
! FILE DISK:[DIRECTORY]TEST1.AIJ;1

FILE TEST1.AIJ
$ SHOW SYMBOL RDM$LOGMINER_STATE
RDM$LOGMINER_STATE == "ENABLED CONTINUOUS"

5.1.11 New /[NO]MBX_ASYNCH Qualifier for RMU/UNLOAD/AFTER
Bug 24514893

In a prior version of Oracle Rdb, an enhancement was added to the
RMU/UNLOAD/AFTER command which affected how unloaded records were
written when the output device was a VMS mailbox.

Previously, when the RMU Logminer (LM) utility wrote a record to the mailbox,
it would wait for another process to read that record from the mailbox before
posting another record. In Oracle Rdb Release 7.3.1.3, the write operation was
changed to be more asynchronous in order to increase throughput. The LM
process no longer had to wait for the reader operation to finish before writing
more unloaded records. The enhancement was always enabled and could not be
disabled.

It has been discovered that in some situations, it is possible for the LM to
saturate the I/O buffer causing the entire process to hang, which could cause the
AIJ Backup Server (ABS) to stall and block other database users. This would
typically occur when an after-image journal switchover was attempted. Searching
RMU/SHOW STAT stall logs would show many processes stalled with "waiting for
AIJ journal control" messages. The only workaround to free the stalled processes
was to delete the LM process(es).

Starting with release 7.3.2.1 of Oracle Rdb, a new qualifier, /[NO]MBX_ASYNCH,
has been added to the RMU/UNLOAD/AFTER command to control the behavior
of how the LM writes records to the mailbox.

The qualifier /MBX_ASYNCH is enabled by default. It provides the asynchronous
mailbox write mechanism. If you experience users stalled with "waiting for AIJ
journal control" while running LM, you can restart the LM with the /NOMBX_
ASYNCH qualifier to revert to the old synchronous mailbox write behavior.

5.1.12 New /PAGE_NUMBER Qualifier for RMU/DUMP and
RMU/DUMP/BACKUP

Release 7.3.2.1 of Oracle Rdb adds a new qualifier to RMU/DUMP and
RMU/DUMP/BACKUP. The /PAGE_NUMBER qualifier is a shortcut for the
case where both /END and /START specify a single page number. Neither /END
nor /START can be specified if /PAGE_NUMBER is used.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1 5–21

5.1.13 New Information Table RDB$SESSION_PRIVILEGES Now Available
Bug 5300887

This release of Oracle Rdb includes a new information table, RDB$SESSION_
PRIVILEGES, that returns a decoding (or mapping) of the database access
control privileges similar to Oracle Database system privileges. While there is
not a precise one-to-one mapping between Rdb privileges and Oracle system
privileges, this is adequate to allow many Oracle OCI applications to successfully
query the data dictionary view, SESSION_PRIVS, based upon this information
table.

This table includes a single text column, RDB$PRIVILEGE, which contains a
string describing an assigned privilege.

SQL> select rdb$privilege from rdb$session_privileges;
RDB$PRIVILEGE
CREATE SESSION
1 row selected
SQL>

A revised version of the script SQL$SAMPLE:INFO_TABLES.SQL is provided by
this release. It can be executed to drop and recreate the information tables.

The following example shows the execution of this script to add the new
information table.

SQL> @SQL$SAMPLE:INFO_TABLES.SQL

Copyright (c) 1997, 2016, Oracle Corporation. All Rights Reserved.

Please ignore any FIELD_EXISTS error for the domain RDB$FILE_SPECIFICATION

Creating RDB$CACHES

Creating RDB$DATABASE_JOURNAL

Creating RDB$DATABASE_ROOT

Creating RDB$DATABASE_USERS

Creating RDB$STORAGE_AREAS

Creating RDB$JOURNALS

Creating RDB$LOGICAL_AREAS

Creating RDB$CHARACTER_SETS

Creating RDB$NLS_CHARACTER_SETS

Creating RDB$SESSION_PRIVILEGES

Type COMMIT if there were no unexpected errors, otherwise ROLLBACK
SQL> commit;
SQL>

5–22 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.1

6
Enhancements And Changes Provided in

Oracle Rdb Release 7.3.2.0

6.1 Enhancements And Changes Provided in Oracle Rdb Release
7.3.2.0

6.1.1 New COMPRESSION OCTETS Clause for CREATE INDEX Statement
This release of Oracle Rdb allows user specification of the octets used for run
length compression.

The COMPRESSION OCTETS clause can be used to specify those characters that
will be used for run-length compression. If this clause is not defined, then Oracle
Rdb will use the space character of the character set of any CHAR, or VARCHAR
columns in the index, and a zero for any other data type.

The following example shows the use of compression octets clause. Here
the database administrator noticed that -1 was used as a flag in the table and
since many rows use the DEFAULT value, it makes sense to include x’FF’ as a
compression character.

SQL> create table PEOPLE
cont> (name char (100) default ’ ’
...
cont> ,use_indicator bigint default -1
cont>)
cont> ;
SQL>
SQL> create index PEOPLE_NDX3
cont> on PEOPLE (use_indicator)
cont> enable compression
cont> (minimum run length 2,
cont> compression octets (X’00’, X’FF’))
cont> store in PEOPLE_NDX3_AREA
cont> ;
SQL>
SQL> insert into PEOPLE
cont> default values;
1 row inserted
SQL>

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–1

Syntax

rlc-attr =

(COMPRESSION OCTETS (char-string))
,

MINIMUM RUN LENGTH <n>

,

Usage Notes

• When compression octets is specified, the character strings can be simple
strings, such as ’*-!’, or if the characters are non-printing then use the hex
string specification, such as X’00A1’.

6.1.2 Enhancements for TRUNCATE TABLE Statement
This release of Oracle Rdb supports additional clauses for the TRUNCATE
TABLE statement as specified by the ANSI and ISO Database Language
Standard.

By default, the TRUNCATE TABLE statement restarts the associated IDENTITY
column using the START WITH value of the sequence. There are now two new
clauses to control the action of TRUNCATE TABLE when an IDENTITY column
exists. Either the RESTART IDENTITY action or CONTINUE IDENTITY
actions can be specified. The default behavior, when neither clause is used, and
when DIALECT ’SQL2011’ is used is to CONTINUE IDENTITY. For all other
dialects, the default is RESTART IDENTITY (which is maintained for backward
compatibility).

The following example requests that the IDENTITY column not be restarted after
the truncate.

SQL> truncate table HISTORY_LOG continue identity;

Syntax

TRUNCATE TABLE <table-name>
CONTINUE IDENTITY
RESTART

Arguments

• table-name
Specifies the name of the table you want to truncate. This name must be a
base table or global temporary table. Views and location temporary tables
may not be truncated.

• CONTINUE IDENTITY
Requests that TRUNCATE TABLE statement leave the current next value
unchanged for the associated IDENTITY column.

• RESTART IDENTITY
Requests that TRUNCATE TABLE reset the associated IDENTITY column
so that it starts with the START WITH value or, if there is none, the
MINVALUE value defined for the sequence.

6–2 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

Usage Notes

• You must have DELETE privilege for the table, as this command deletes all
data.

• You must have CREATE privilege at the table level.

• If there exists an AFTER DELETE or BEFORE DELETE trigger defined on
this table, you will require DROP and CREATE privileges for triggers on this
table. These privileges are required because this operation effectively disables
these triggers.

• TRUNCATE TABLE is a data definition statement and as such requires
exclusive access to the table.

• The TRUNCATE TABLE statement fails with an error message if:

RDB$SYSTEM storage area is set to read-only

The named table is a view

The named table has been reserved for data definition

The named table is a system table

• TRUNCATE TABLE deletes all data in the table, however, it does not execute
any BEFORE or AFTER DELETE triggers.

• If the dialect is set to SQL2011 and neither CONTINUE IDENTITY nor
RESTART IDENTITY clauses are specified, the default will be CONTINUE
IDENTITY. For all other dialects, the default is RESTART IDENTITY.

• TRUNCATE TABLE explicitly resets the values in Rdb$WORKLOAD rows
associated with this table, as well as removing any index or table storage
statistics.

• All CHECK and FOREIGN KEY constraints that reference the truncated
table are revalidated after the truncate operation to ensure that the database
remains consistent.

If constraint validation fails, the TRUNCATE statement is automatically
rolled back. For example:

SQL> set dialect ’sql99’;
SQL> CREATE TABLE test1
cont> (col1 REAL PRIMARY KEY);
SQL> CREATE TABLE test2
cont> (col1 REAL REFERENCES TEST1 (COL1));
SQL> INSERT INTO test1 VALUES (1);
1 row inserted
SQL> INSERT INTO test2 VALUES (1);
1 row inserted
SQL> COMMIT;
SQL>
SQL> TRUNCATE TABLE test1;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-INTEG_FAIL, violation of constraint TEST2_FOREIGN1 caused operation to
fail
-RDB-F-ON_DB, on database USERS2:[TESTING.DATABASES.]PERSONNEL.RDB;1
SQL> TABLE test1;

COL1
1.0000000E+00

1 row selected
SQL> ROLLBACK;

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–3

• When a table contains one or more LIST OF BYTE VARYING columns, the
TRUNCATE TABLE statement must read each row in the table and record
the pointers for all LIST values. This list is processed at COMMIT time to
delete the LIST column data. Therefore, the database administrator must
also allow for this time when truncating the table.

Reserving the table for EXCLUSIVE WRITE is recommended because the
dropped LIST columns will require that each row in the table be updated and
set to NULL - it is this action which queues the pointers for commit time
processing. This reserving mode will eliminate snapshot file I/O, lower lock
resources and reduce virtual memory usage.

As the LIST data is stored outside the table, performance may be improved
by attaching to the database with the RESTRICTED ACCESS clause, which
has the side effect of reserving all the LIST storage areas for EXCLUSIVE
access and therefore eliminates snapshot I/O during the delete of the LIST
data.

• If table contains no LIST OF BYTE VARYING columns, and the table and all
associated indices are stored in UNIFORM storage areas, then TRUNCATE
TABLE will employ the most efficient mechanism to erase the data from the
table.

6.1.3 RMU Extract Now Supports RECOMPILE Item
In this release of Oracle Rdb, RMU Extract supports a new Item keyword:
RECOMPILE. This keyword causes RMU to generate a series of ALTER
MODULE commands to recompile any invalid routines. The default is to only
include those modules that have at least one invalid routine. Use Option=FULL
to generate a script that compiles all modules.

The following example shows the generated SQL script for a database with
routines that were marked invalid. RMU annotates the generated ALTER
MODULE statement with the names of those invalid routines.

$ rmu/extract/option=(noheader,filename_only) abc /item=recompile
set verify;
set language ENGLISH;
set default date format ’SQL92’;
set quoting rules ’SQL92’;
set date format DATE 001, TIME 001;
attach ’filename EXAMPLE’;

alter module JACKET compile;
-- Invalid Procedure GU
-- Invalid Procedure GBS
-- Invalid Function F_GBS_DIRECT
commit work;
$

6.1.4 SQL Now Supports the MISSING VALUE Clause as Part of CREATE and
ALTER DOMAIN Statement

Bug 19882369

This release of Oracle Rdb adds a MISSING VALUES FOR RDO clause to SQL.
This functionality has been supported by the Rdb Server for users of the RDO
interface since the earliest releases of Rdb.

6–4 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

This new clause is provided in SQL to allow applications written using the
RDBPRE precompilers and databases created using the RDO database definition
language to be migrated to SQL-only interfaces and still retain this functionality.

Note

Oracle does not recommend the use of MISSING VALUE for modern
applications because these semantics are not defined by the ANSI nor ISO
SQL Database Language Standards. MISSING VALUE was introduced
for RDO as a way to manage NULL (unknown) values in the database.
SQL supports well defined standard functions IS NULL, NULLIF, and
COALESCE for such purposes, as well as allowing applications to fetch
the null indication into an INDICATOR variable.

The following example shows the specification of MISSING VALUE on a CREATE
DOMAIN statement.

SQL> create domain STATUS_CODE
cont> CHAR (1)
cont> check((value in (’0’, ’1’, ’2’)
cont> or (value is null)))
cont> not deferrable
cont> missing value for RDO is ’N’
cont> comment is
cont> ’ A number’;
SQL>

The CREATE and ALTER DOMAIN statements allow the MISSING VALUE
clause to be defined for a domain. The ALTER DOMAIN statement allows
an existing MISSING VALUE clause to be removed using the NO MISSING
VALUE clause. All tables that use these domains will implicitly inherit the new
semantics.

The literal value specified for the MISSING VALUE must be compatible with
the data type of the domain. Only simple literal expressions are supported;
namely DATE VMS literals, character string literals and numeric values (fixed or
floating).

The RMU/EXTRACT/ITEM=DOMAIN command will implicitly output the new
MISSING VALUE FOR RDO clause for any domain that has that attribute
defined. Previously, a log message would report that it was not supported and
only /LANGUAGE=RDO would extract the MISSING VALUE clause.

6.1.5 Comma Statement Separator Now Deprecated
The syntax for trigger actions in the CREATE TRIGGER statement has supported
the comma (,) as well as the semicolon (;) as statement separators. The use of the
comma separator has been problematic in Oracle Rdb SQL because it conflicts
in various places with the comma used as an element separator within some
statements. For example, the TRACE statement allows a comma separated list of
values, and the INSERT INTO ... SELECT ... FROM statement allows a comma
separated list of table names in the FROM clause. In these cases, a comma can
not be used as a statement separator because the current statement appears to
be continued.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–5

Future versions of Oracle Rdb are expected to include enhancements to the
TRIGGER action syntax which will allow other statements to include comma
as an element separator. Therefore, the comma statement separator is now
deprecated. A future functionality release of Oracle Rdb will remove or severely
restrict the usage of the comma separator. Therefore, Oracle recommends that
any scripts or applications that include the CREATE TRIGGER statement be
modified to use only the semicolon (;) as a separator.

The following example shows the new diagnostic issued by Interactive SQL.
Similar diagnostics are issued by the SQL Module Language compiler and the
SQL Precompiler.

SQL> create trigger employee_id_cascade_insert
cont> after insert on employees
cont> (insert into job_history (employee_id) values (employees.employee_id)
cont> ,
%SQL-I-DEPR_FEATURE, Deprecated Feature: use ; instead of , as a statement
separator in trigger actions
cont> insert into salary_history (employee_id) values (employees.employee_id)
cont> ,
%SQL-I-DEPR_FEATURE, Deprecated Feature: use ; instead of , as a statement
separator in trigger actions
cont> insert into degrees (employee_id) values (employees.employee_id)
cont>)
cont> for each row;
SQL>

This change does not affect existing database triggers, only new triggers defined
using the CREATE TRIGGERS statement. RMU Extract Item=TRIGGERS
command already uses the semicolon separator in extracted CREATE TRIGGER
statements.

6.1.6 New Logical Name RDMS$BIND_DEADLOCK_WAIT to Control
Sub-second Deadlock Wait

OpenVMS allows the system manager to establish a DEADLOCK_WAIT by
setting this system parameter as small as 1 second. OpenVMS will establish a
default value of 10 seconds. More recent releases of OpenVMS allow applications
to establish a process specific DEADLOCK_WAIT smaller than 1 second using the
system service SYS$SET_PROCESS_PROPERTIESW.

This release of Oracle Rdb provides an interface to this system service for Rdb
applications that wish to make use of sub-second DEADLOCK_WAIT times. The
logical name RDMS$BIND_DEADLOCK_WAIT can be defined to a numeric value
that specifies the deadlock wait time in 100 nanosecond units. The smallest value
is 100000 (which is 10 milliseconds) and the largest value is 10000000 (which is
1 second). If the value specified for the logical name is outside this range, it will
be ignored and the application will default to the setting of the system parameter
DEADLOCK_WAIT.

This logical name can be defined as a process, group, job or system wide logical
name. Rdb only translates this logical name on the first database connection.
Any effects of this logical name are removed when the image which attached to
the database exits.

Please note that the smaller the deadlock wait setting, the more often the
OpenVMS lock manager will initiate a deadlock search. The use of the logical
name for Rdb is only recommended for high-end transaction processing systems
which have the database load and sufficiently powerful CPU systems to require
such fine tuning.

6–6 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

6.1.7 Query Optimization Improvements for IN Clause
Bugs 12548885 and 14471918

The EXISTS and IN predicates can often be used interchangeably in queries to
check for the existence of values in another result set. If possible, the EXISTS
query should be the first preference because its structure allows for the best
query optimization. However, the semantics of these predicates are not identical
when NULL values are present in one or both tables, especially when used with
the NOT operator. Care should be taken to ensure correct query behavior in such
cases.

With this release of Oracle Rdb, the optimizer will attempt to transform the IN
predicate to an EXISTS predicate when the source columns are known to be not
nullable. Such a transformation will return the same results and additionally
present a better query for optimization.

The following example shows the strategy selected for NOT IN when the
optimization is not (or cannot be) applied.

SQL> select s.badge_number
cont> from STAFF s
cont> where s.badge_number NOT IN (select kb.badge_number from KNOWN_BADGES kb)
cont> ;
Tables:
0 = STAFF
1 = KNOWN_BADGES

Cross block of 2 entries Q1
Cross block entry 1
Index only retrieval of relation 0:STAFF
Index name STAFF_I [0:0]

Cross block entry 2
Conjunct: <agg0> = 0
Aggregate-F1: 0:COUNT-ANY (<subselect>) Q2
Conjunct: MISSING (0.BADGE_NUMBER) OR MISSING (1.BADGE_NUMBER) OR (

0.BADGE_NUMBER = 1.BADGE_NUMBER)
Index only retrieval of relation 1:KNOWN_BADGES
Index name KNOWN_BADGES_I [0:0]

BADGE_NUMBER
4

1 row selected
SQL>

When the target columns (for example BADGE_NUMBER) in each table have a
NOT DEFERRABLE constraint of the type PRIMARY KEY or NOT NULL, then
the following strategy is used. The resulting strategy will likely result in faster
query execution.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–7

SQL> select s.badge_number
cont> from STAFF s
cont> where s.badge_number NOT IN (select kb.badge_number from KNOWN_BADGES kb)
cont> ;
Tables:
0 = STAFF
1 = KNOWN_BADGES

Conjunct: <agg0> = 0
Match (Agg Outer Join) Q1
Outer loop
Match_Key:0.BADGE_NUMBER
Index only retrieval of relation 0:STAFF
Index name STAFF_I [0:0]

Inner loop (zig-zag)
Match_Key:1.BADGE_NUMBER
Index_Key:BADGE_NUMBER
Aggregate-F1: 0:COUNT-ANY (<subselect>) Q2
Index only retrieval of relation 1:KNOWN_BADGES
Index name KNOWN_BADGES_I [0:0]

BADGE_NUMBER
4

1 row selected
SQL>

This transformation is enabled by default but can be disabled using SET FLAGS
’NOREWRITE(IN_CLAUSE)’ and re-enabled using SET FLAGS ’REWRITE(IN_
CLAUSE)’.

This new feature was actually introduced in Oracle Rdb Release 7.3.1 but was
inadvertently left out of the release notes.

6.1.8 New SHOW AUDIT Command Added to Interactive SQL
This release of Oracle Rdb adds a SHOW AUDIT command to Interactive
SQL. Modeled closely on the SHOW PROTECTION and SHOW PRIVILEGES
commands, it allows the database administrator to display audit and alarm
information for each database object.

When using the database ALIAS, information is displayed about the database
such as whether auditing is enabled or not and the list of identifiers (users
and roles) and privileges that trigger auditing. For other database objects
(tables, views, sequences, modules, procedures, functions and columns), only the
privileges for audit and alarms are displayed (if any).

The following example shows the output for SHOW AUDIT ON DATABASE. A
list of two database ALIAS are specified, one database has auditing enabled, the
other has no auditing.

6–8 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

SQL> SHOW AUDIT ON DATABASE RDB$DBHANDLE, DB1;
Audit information for Alias RDB$DBHANDLE
Auditing is enabled
Alarms will be written to the operator
Audit every object access
Forced writes of audit journal records is enabled
Audit Event Classes:

PROTECTION (Grant and Revoke)
DACCESS (Discretionary Access)

Identifiers:
[DEV,TEST_EXECUTE]
[PRD,*]
[MGR,ADMIN]
[AUD,*]

Audit Privileges:
SELECT,DISTRIBTRAN

Alarm Privileges:
DROP,SECURITY

Audit information for Alias DB1
Auditing is disabled

SQL>

6.1.9 RMU/RECLAIM Can Now Skip to the Next SPAM Interval and/or Storage
Area to Avoid Lock Contention

Bug 11813831

The Oracle Rdb RMU/RECLAIM command reclaims deleted dbkeys and locked
space from database pages. It is designed for customer sites where database
users attach to an Oracle Rdb database in DBKEY SCOPE IS ATTACH mode.

To avoid lock contention with other database users, RMU/RECLAIM sequentially
fetches data pages in a storage area but does not process data pages in the
storage area that are currently locked in an incompatible mode by other
users. However, once RMU/RECLAIM is processing a page, it can conflict
with other database users who must wait for the page that RMU/RECLAIM is
processing. RMU/RECLAIM is designed to run in the background and avoid
lock contention with other users; this new optional feature will detect that other
users are currently locking pages in the same storage area or SPAM interval that
RMU/RECLAIM is processing and skip to the next storage area or SPAM interval
based on a percent of the pages that RMU/RECLAIM is not able to process in a
SPAM interval or storage area when reaching a specified limit.

For this new functionality, the following new qualifiers have been added to the
RMU/RECLAIM command.

• /PAGE_SKIP_LIMIT[=n]

If this qualifier is specified without the qualifier /SPAM_SKIP_LIMIT, the
current storage area will be skipped by RMU/RECLAIM once this percent
of pages in the area have been ignored by RMU/RECLAIM due to lock
contention with other users. If this qualifier is specified with the qualifier
/SPAM_SKIP_LIMIT, the current SPAM interval will be abandoned and
RMU will skip to the next SPAM interval in the current storage area once
this percent of pages in the current SPAM interval have been ignored by
RMU/RECLAIM due to lock contention with other users. The minimum value
that can be specified is 1 percent. The maximum value that can be specified
is 100 percent. The default value is 25 percent.

• /SPAM_SKIP_LIMIT[=n]

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–9

This qualifier specifies the percent of SPAM intervals that can be skipped
in the current storage area due to lock contention with other users before
the current storage area is skipped and the next storage area is processed.
This qualifier can only be specified if the /PAGE_SKIP_LIMIT qualifier is
also specified. The minimum value that can be specified is 1 percent. The
maximum value that can be specified is 100 percent. The default value is 25
percent.

• /RETRY_TIME[=n]

Before completing, RMU/RECLAIM will perform one retry of the processing
of any storage areas that have been skipped when /PAGE_SKIP_LIMIT
or /SPAM_SKIP_LIMIT have been specified. The /RETRY_TIME qualifier
specifies a wait time in seconds before RMU/RECLAIM reprocesses the
storage areas where pages and SPAM intervals were previously skipped in
order to allow more time for page contention to decrease. This qualifier can
only be specified if the /PAGE_SKIP_LIMIT qualifier is also specified. The
minimum value that can be specified is 0 seconds. The maximum value that
can be specified is 3600 seconds (one hour). The default value is 60 seconds.

In the following examples, the /LOG qualifier is specified to show the new
messages that will be output if the /LOG qualifier is specified. The first example
shows that the %RMU-I-RCLMPRCT message will be output even if this new
feature is not used to show the percentage of pages that the RMU/RECLAIM
command was able to process and did not have to skip because other users were
accessing those pages in an incompatible locking mode. The second example
shows just a /PAGE_SKIP_LIMIT of 1 percent being specified causing the
DEPARTMENTS storage area to be skipped. The immediate reprocessing of
the area has the same result. In the third example, the immediate reprocessing
of the area succeeds. In the fourth example, a /RETRY_TIMEOUT wait of 20
seconds is specified before the reprocessing of the area, which has the same
results. In the fifth example, a /SPAM_SKIP_LIMIT of 1 percent is also specified.
A /RETRY_TIMEOUT wait of 60 seconds is specified and the reprocessing of the
area succeeds.

$ RMU/RECLAIM/LOG/AREA=DEPARTMENTS MF_PERSONNEL
%RMU-I-RCLMAREA, Reclaiming area DEPARTMENTS
%RMU-I-RCLMPRCT, 704 pages processed of 706 total pages for area DEPARTMENTS,
approximately 99 %
ELAPSED: 0 00:00:00.18 CPU: 0:00:00.02 BUFIO: 20 DIRIO: 257 FAULTS: 207
$
$ RMU/RECLAIM/LOG/AREA=SALARY_HISTORY/PAGE_SKIP_LIMIT=1 MF_PERSONNEL
%RMU-I-RCLMAREA, Reclaiming area SALARY_HISTORY
%RMU-I-RCLMPRCT, 1 pages processed of 706 total pages for area SALARY_HISTORY,
approximately 1 %
%RMU-I-RCLMRTRY, Retrying processing of area DEV:[DIR]SALARY_HISTORY.RDA;1
that did not complete
%RMU-I-RCLMAREA, Reclaiming area DEV:[DIR]SALARY_HISTORY.RDA;1
%RMU-I-RCLMPRCT, 1 pages processed of 706 total pages for area
DEV:[DIR]SALARY_HISTORY.RDA;1, approximately 1 %
%RMU-I-RCLMNOPRC, Retry of area DEV:[DIR]SALARY_HISTORY.RDA;1 did not complete
due to continued lock contention
ELAPSED: 0 00:01:00.11 CPU: 0:00:00.04 BUFIO: 29 DIRIO: 23 FAULTS: 201
$
$ RMU/RECLAIM/LOG/AREA=SALARY_HISTORY/PAGE_SKIP_LIMIT=1 MF_PERSONNEL
%RMU-I-RCLMAREA, Reclaiming area SALARY_HISTORY
%RMU-I-RCLMPRCT, 1 pages processed of 706 total pages for area SALARY_HISTORY,
approximately 1 %
%RMU-I-RCLMRTRY, Retrying processing of area DEV:[DIR]SALARY_HISTORY.RDA;1
that did not complete
%RMU-I-RCLMAREA, Reclaiming area DEV:[DIR]SALARY_HISTORY.RDA;1

6–10 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

%RMU-I-RCLMPRCT, 706 pages processed of 706 total pages for area
DEV:[DIR]SALARY_HISTORY.RDA;1, approximately 100 %
%RMU-I-RCLMPROC, Retry of area DEV:[DIR]SALARY_HISTORY.RDA;1 succeeded
ELAPSED: 0 00:01:00.11 CPU: 0:00:00.04 BUFIO: 29 DIRIO: 23 FAULTS: 201
$
$ RMU/RECLAIM/LOG/AREA=SALARY_HISTORY/PAGE_SKIP_LIMIT=1/RETRY_TIMEOUT=20
MF_PERSONNEL
%RMU-I-RCLMAREA, Reclaiming area SALARY_HISTORY
%RMU-I-RCLMPRCT, 1 pages processed of 706 total pages for area SALARY_HISTORY,
approximately 1 %
%RMU-I-RCLMWAIT, Reclaim waiting for 20 seconds before reprocessing areas that
did not complete
%RMU-I-RCLMRTRY, Retrying processing of area DEV:[DIR]SALARY_HISTORY.RDA;1
that did not complete
%RMU-I-RCLMAREA, Reclaiming area DEV:[DIR]SALARY_HISTORY.RDA;1
%RMU-I-RCLMPRCT, 1 pages processed of 706 total pages for area
DEV:[DIR]SALARY_HISTORY.RDA;1, approximately 1 %
%RMU-I-RCLMNOPRC, Retry of area DEV:[DIR]SALARY_HISTORY.RDA;1 did not complete
due to continued lock contention
ELAPSED: 0 00:00:01.11 CPU: 0:00:00.02 BUFIO: 29 DIRIO: 27 FAULTS: 200
$
$ RMU/RECLAIM/LOG/AREA=DEPARTMENTS/PAGE_SKIP_LIMIT=1/SPAM_SKIP_LIMIT=1
/RETRY_TIMEOUT=60 MF_PERSONNEL
%RMU-I-RCLMAREA, Reclaiming area DEPARTMENTS
%RMU-I-RCLMPRCT, 1 pages processed of 706 total pages for area DEPARTMENTS,
approximately 1 %
%RMU-I-RCLMWAIT, Reclaim waiting for 60 seconds before reprocessing areas that
did not complete
%RMU-I-RCLMRTRY, Retrying processing of area DEV:[DIR]DEPARTMENTS.RDA;1 that
did not complete
%RMU-I-RCLMAREA, Reclaiming area DEV:[DIR]DEPARTMENTS.RDA;1
%RMU-I-RCLMPRCT, 706 pages processed of 706 total pages for area
DEV:[DIR]DEPARTMENTS.RDA;1, approximately 100 %
%RMU-I-RCLMPROC, Retry of area DEV:[DIR]DEPARTMENTS.RDA;1 succeeded
ELAPSED: 0 00:00:01.10 CPU: 0:00:00.02 BUFIO: 29 DIRIO: 23 FAULTS: 200
$

6.1.10 RMU Open Statistics Supports PROCESS_GLOBAL Qualifier
The RMU Open command, with the Statistics qualifier, now supports the optional
keyword [No]Process_Global, which indicates whether or not you are able to
collect per-process statistics. The Statistics=Process_Global qualifier indicates
that all processes attached to the database are eligible for per-process monitoring.
The default qualifier, Statistics=Noprocess_Global, indicates that attached
processes are not automatically eligible; however, you can still activate these
processes at run-time using one of the other activation methods described below.

When you use the global activation method, the RMU Show Statistics utility
changes the screen header Mode attribute from Online to Global.

Oracle Corporation recommends this method only when there are a small number
of active processes. The Statistics=Process_Global qualifier causes each process
attached to the database on that node to create a sizable global section into which
the process global statistic collection occurs. Oracle Corporation recommends
that you activate process global statistic collection on a per-process basis. That
is, you should activate only those processes you are currently interested in, and
deactivate them when you are finished with them.

Refer to the RMU Show Statistics Handbook for further details on per-process
monitoring with RMU Show Statistics.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–11

Example 6–1 Example showing use of PROCESS_GLOBAL option

$ RMU/OPEN/STATISTICS=(IMPORT,PROCESS_GLOBAL) MF_PERSONNEL
$ RMU/SHOW USER MF_PERSONNEL
Oracle Rdb V7.3-13 on node GANDLF 4-MAR-2015 08:23:26.93

- monitor started 3-MAR-2015 19:14:07.75 (uptime 0 13:09:19)
- monitor log filename is "1DGA231:[LOGS]RDMMON731_GANDLF.LOG;2991"

Database 1DGA170:[DATABASES.V73]MF_PERSONNEL.RDB;1
- opened 4-MAR-2015 08:22:52.63 (elapsed 0 00:00:34)
* database is opened by an operator
* statistic information import failed
* global per-process statistic collection activated
* next statistic information checkpoint at 4-MAR-2015 08:52:52.66

This example shows the PROCESS_GLOBAL option as well as an indication from
RMU/SHOW USER that it has been specified.

6.1.11 RMU/SHOW LOGICAL_NAME Now Supports /DESCRIPTION Qualifier
Bugs 3264793, 3682207, 5634563, and 19545970

With this release of Oracle Rdb, the RMU Show Logical_Name command includes
a Description qualifier. This new qualifier retrieves a brief description of the
logical name and displays it along with the current definition. If wildcards are
used for the logical name, then any matching logical names will also include
output of the description.

The following example shows the use of the Description qualifier, a wildcard
logical name specification and the use of the Undefined qualifier to include output
- even for logical names not defined for this process.

$ RMU/SHOW LOGICAL_NAME/UNDEFINE/DESCRIPTION RDMS$BIND_WORK*
"RDMS$BIND_WORK_FILE" = Undefined

You can define this logical name to redirect the location of
temporary files that Oracle Rdb creates for use in matching
operations. These temporary files are deleted when they are no
longer used.

See also the logical name RDMS$BIND_WORK_VM.

"RDMS$BIND_WORK_VM" = Undefined

This logical name permits you to reduce the overhead of disk
I/O for matching operations by letting you specify the amount of
virtual memory (VM), in bytes, to be allocated to your process.
Once the allocation is exhausted, additional data values will be
written to a temporary file on disk.

If the logical name RDMS$BIND_WORK_FILE is undefined, the
temporary file is located in SYS$LOGIN, otherwise the value
defined by RDMS$BIND_WORK_FILE will be used.

The default is 100,000 bytes. The maximum allowed value is
restricted only by the amount of memory available on your
system.

The definitions of all logical names are maintained in a HELP library called
SYS$HELP:RMUDISPLAY73.HLB. Users can also use the DCL HELP command
to query this help library.

6–12 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

$ HELP/LIBR=SYS$HELP:RMUDISPLAY73.HLB Rdb_Logical_names RDMS$RUJ

RDB_LOGICAL_NAMES

RDMS$RUJ

You can use the RDMS$RUJ logical name to locate the .ruj file on
a different disk and directory from the default directory. This
can help to reduce contention in that directory.

Topic?

6.1.12 Using Per-Process Monitoring for RMU Show Statistics
This feature has actually been available since the early Rdb 7.1 releases but the
documentation about it seems to have gotten lost. Therefore, we are including it
here again.

RMU Show Statistics has a Per-Process Monitoring facility to provide a powerful
drill-down capability to allow a database administrator to analyze process-specific
information for a single process, class of processes, or all attached database
processes. The facility also provides several screens that display a side-by-side
comparison of individual process statistic information such as I/O, transaction,
and record statistics.

The Per-Process Monitoring facility presents real-time information and,
consequently, does not write its information to the binary output file. Therefore,
the Per-Process Monitoring facility is not available during the replay of a binary
input file.

The Per-Process Monitoring facility is also not available if cluster wide statistic
collection is active. Conversely, the cluster wide statistic collection facility is not
available when the Per-Process Monitoring facility is active.

The RMU Show Statistics utility requires SYSGBL privilege in order to use the
Per-Process Monitoring facility. This privilege is required even if the facility
activation is implicitly performed by the database monitor. See Section 6.1.12.2,
Per-Process Monitoring Facility Activation for activation details.

6.1.12.1 Per-Process Monitoring Operational Modes
The RMU Show Statistics utility provides two separate operational modes for the
Per-Process Monitoring facility. These are:

* Process Overview Information

This operational mode allows you to compare statistic information for various
activated processes for the purpose of easily identifying performance and
behavioral discrepancies. The information presented is very similar to the
main-menu summary screen information.

* Process Drill-Down Information

This operational mode allows you to operate the RMU Show Statistics
utility against a specific attached process. All of the statistic screens display
information for that process only.

Together, these operational modes allow you to completely analyze process
information, especially as it correlates to the statistic information of other
processes.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–13

6.1.12.2 Per-Process Monitoring Facility Activation
You can select the Per-Process Monitoring facility using any of the following
methods:

* Global Activation

Global per-process statistic collection means that all processes attached to
the database are automatically eligible to be monitored using the RMU Show
Statistics utility.

The RMU Open command, with the Statistics qualifier, now supports the
optional keyword [No]Process_Global, which indicates whether or not you
are able to collect per-process statistics. The Statistics=Process_Global
qualifier indicates that all processes attached to the database are eligible for
per-process monitoring. The default qualifier, Statistics=Noprocess_Global,
indicates that attached processes are not automatically eligible; however, you
can still activate these processes at run-time using one of the other activation
methods described below.

When you use the global activation method, the RMU Show Statistics utility
changes the screen header Mode attribute from Online to Global.

Oracle Corporation recommends this method only when there are a small
number of active processes. The Statistics=Process_Global qualifier causes
each process attached to the database on that node to create a sizable global
section into which the process global statistic collection occurs. Oracle
Corporation recommends that you activate process global statistic collection
on a per-process basis. That is, you should activate only those processes you
are currently interested in, and deactivate them when you are finished with
them.

The following formula (expressed in bytes) defines the global section memory
requirements for each process when it is activated:

4096 +
(512 * "# storage areas") +
((128 * "# row caches") / 4) +
(512 * "max # logical areas")

The maximum number of logical areas is determined using the RMU Dump
Header command. Search the generated output for the line containing
"Logical area count is n". Note that the logical area count is not necessarily
the actual number of tables and indexes contained in the database.

For example, the MF_PERSONNEL.RDB database requires approximately
300K (580 pages) of global section backing store memory for each attached
process by the facility. Obviously, this memory requirement increases as the
size of the database increases.

* Local Activation

Local per-process statistic collection means that selected processes attached to
the database are automatically eligible to be monitored from the RMU Show
Statistics utility.

You can define the RDM$BIND_GLOBAL_STATISTICS logical name, located
in the LNM$FILE_DEV name table, to identify those non-server database
processes that are accessible. The default value "0" indicates that the process
is not eligible for monitoring. The value "1" indicates that the process is
eligible for monitoring.

6–14 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

You can designate the database server processes eligibility using server-
specific logical names (see below) also located in the LNM$SYSTEM_TABLE
name table.

Note that the database recovery process (DBR) does not participate in the
per-process monitoring facility.

Oracle Corporation recommends this method only when you know in advance
which processes, or class of processes, you intend to monitor. However, this is
seldom the case.

* Dynamic Activation

You can dynamically activate processes attached to the database, at run-
time, for per-process monitoring using the RMU Show Statistics utility. You
commonly use this method when you want to monitor a few specific processes
that exhibit run-time behavior that requires more investigation.

Refer to Section 6.1.12.4, Per-Process Monitoring Run-Time Options for more
information on this using this method.

The following table summarizes the logical names and their respective name
table:

Logical Name Name Table Affected Process

RDM$BIND_GLOBAL_STATISTICS LNM$FILE_DEV Application
processes

RDM$BIND_ABS_GLOBAL_STATISTICS LNM$SYSTEM_TABLE AIJ Backup Server

RDM$BIND_ALS_GLOBAL_STATISTICS LNM$SYSTEM_TABLE AIJ Log Server

RDM$BIND_LCS_GLOBAL_STATISTICS LNM$SYSTEM_TABLE Log Catch-up
Server

RDM$BIND_LRS_GLOBAL_STATISTICS LNM$SYSTEM_TABLE Log Replication
Server

RDM$BIND_RCS_GLOBAL_STATISTICS LNM$SYSTEM_TABLE Row Cache Server

6.1.12.3 Per-Process Monitoring Facility Process Activation
When you activate the Per-Process Monitoring facility, attached database
processes are in one of the following states:

* Inactive State

By default, attached database processes are inactive for per-process
monitoring. This means that their per-process statistic information is not
globally available to the RMU Show Statistics utility.

You can activate inactive processes at run-time. Refer to Section 6.1.12.4,
Per-Process Monitoring Run-Time Options for more information.

* Eligible State

Processes that are eligible for per-process monitoring, but that you are not
currently monitoring, are identified on RMU Show Statistics utility screens
with the "G" suffix in the Process.ID field. The "G" suffix means statistics are
being collected globally for this process, but cannot be displayed by the RMU
Show Statistics utility.

* Activated State

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–15

The RMU Show Statistics utility is able to display overview information for
any eligible process. The RMU Show Statistics utility identifies any process
activated for per-process monitoring with the "A" suffix in the Process.ID
field.

The fundamental difference between eligible and activated processes is that
the RMU Show Statistics utility displays process-specific information for
activated processes. You are only able to activate eligible processes.

For example, if you open the database using the RMU Open
Statistics=Process_Global command, the "G" suffix identifies all eligible
processes, as shown in the following screen:

Node: GANDLF (1/3/24) Oracle Rdb V7.3-13 Perf. Monitor 16-JUN-2014 15:47:28.89
Rate: 1.00 Second Active User Stall Messages Elapsed: 159 01:35:39.64
Page: 1 of 1 USER_TEST:[DB_TESTING.TCS_MASTER]TCS.RDB;3 Mode: Global
--
Process.ID Elapsed.... T Stall.reason............................. Lock.ID.
2A51334D:1s waiting for AIJ journal lock 0 (PW) 3E007869
2A50D94E:1s waiting for standby database activity request
2A54A759:53 02:40:05.77 W waiting for page 1:1091 (PR) 5D00FE93
2A51A75A:1G 02:58:00.85 W waiting for page 3:2181 (PR) 1D005613
2A55155B:1G 02:40:04.45 W waiting for page 1:1091 (PW) 7000495D
2A53135C:1G 02:47:42.57 W waiting for page 1:1200 (PW) 1D0087FB
2A51C603:1G 02:40:09.20 W waiting for page 1:1091 (PW) 7500B779
2A559A06:1G 02:47:36.84 W waiting for page 33:1711 (PW) 0700EDD2
2A50FA1A:1G 02:56:11.84 R waiting for page 1:1006 (PR) 5500EC46
2A469E1F:1G 02:47:05.52 W waiting for record 50:9591:0 (PR) 4600FC19
2A49061C:1G locking page 33:1713

--
Config Exit Help LockID Menu >next_page <prev_page PageInfo Set_rate Write Zoom

When the RMU Show Statistics utility activates eligible processes, the "A"
suffix identifies these processes, as shown in the following screen:

Node: GANDLF (1/3/24) Oracle Rdb V7.3-13 Perf. Monitor 16-JUN-2014 15:47:28.89
Rate: 1.00 Second Active User Stall Messages Elapsed: 159 01:35:39.64
Page: 1 of 1 USER_TEST:[DB_TESTING.TCS_MASTER]TCS.RDB;3 Mode: Global
--
Process.ID Elapsed.... T Stall.reason............................. Lock.ID.
2A51334D:1s waiting for AIJ journal lock 0 (PW) 3E007869
2A50D94E:1s waiting for standby database activity request
2A54A759:53 02:40:05.77 W waiting for page 1:1091 (PR) 5D00FE93
2A51A75A:1G 02:58:00.85 W waiting for page 3:2181 (PR) 1D005613
2A55155B:1G 02:40:04.45 W waiting for page 1:1091 (PW) 7000495D
2A53135C:1G 02:47:42.57 W waiting for page 1:1200 (PW) 1D0087FB
2A51C603:1A 02:40:09.20 W waiting for page 1:1091 (PW) 7500B779
2A559A06:1A 02:47:36.84 W waiting for page 33:1711 (PW) 0700EDD2
2A50FA1A:1G 02:56:11.84 R waiting for page 1:1006 (PR) 5500EC46
2A469E1F:1G 02:47:05.52 W waiting for record 50:9591:0 (PR) 4600FC19
2A49061C:1G locking page 33:1713
--
Config Exit Help LockID Menu >next_page <prev_page PageInfo Set_rate Write Zoom

Note that it is possible to activate specific processes and leave others as
eligible for future activation.

Upon startup, the RMU Show Statistics utility automatically activates any
eligible processes. You can either implicitly or explicitly activate eligible
processes that attach to the database after the RMU Show Statistics utility,
depending on which screen you are currently displaying.

6–16 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

The following table summarizes the possible Process.ID suffix values:

Type Tag Description

(blank) Ordinary application process.

D Process is being recovered by a database recovery (DBR) process.

R Process is a remote-connection server.

s Process is a database server (note that the "s" suffix is lowercase to
differentiate it from the character "8").

u Process is a database utility (note that the "u" suffix is lowercase
to differentiate it from the character "0").

* Process is attached on a remote node.

A Process is activated by the RMU Show Statistics utility for global
statistic collection.

G Process is eligible for global statistic collection but is not activated.

6.1.12.4 Per-Process Monitoring Run-Time Options
The RMU Show Statistics utility provides run-time options to manage the Per-
Process Monitoring facility. The run-time options are available in the Tools menu,
obtained using the exclamation mark (!). Selecting the Process Monitoring option
displays one or more of the following menu options:

* Activate all eligible processes

The RMU Show Statistics utility displays this option when the current
screen is not one of the process overview screens. Process overview screens
automatically activate all eligible processes.

Selecting this option activates all eligible processes on the current node.

* De-activate all processes

The RMU Show Statistics utility displays this option when the current
screen is not one of the process overview screens. Process overview screens
automatically activate all eligible processes.

Selecting this option de-activates all previously activated processes. However,
they are still eligible to be re-activated if needed.

* Activate specific eligible process

The RMU Show Statistics utility displays this option when the current
screen is not one of the process overview screens. Process overview screens
automatically activate all eligible processes.

Selecting this option activates the selected eligible processes on the current
node that are not currently activated.

Note that you cannot activate database server processes using this option.
You must explicitly define the RDM$BIND_xxx_GLOBAL_STATISTICS
logical name to activate database server processes.

Also, it may take a few seconds for the selected process to activate itself.
Activating an already activated process has no effect on the selected process.

* De-activate specific process

The RMU Show Statistics utility displays this option when the current
screen is not one of the process overview screens. Process overview screens
automatically activate all eligible processes.

Selecting this option de-activates the selected, previously activated processes.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–17

* Select activated process to monitor

The RMU Show Statistics utility displays this option when there are one or
more processes activated for per-process monitoring.

Selecting this option allows the RMU Show Statistics utility screens to display
information for the specified process only.

The Node portion of the screen header displays the identifier of the selected
process you are currently monitoring.

* Cancel process monitoring

The RMU Show Statistics utility displays this option when you have
previously selected a specific activated process to monitor.

Selecting this option reverts the RMU Show Statistics utility screens to
display information for all database processes.

6.1.12.5 Detached Process Monitoring
If the process actively being monitored detaches from the database, the RMU
Show Statistics utility screens will inquire whether or not you wish to continue
monitoring the information of the detached process.

If you wish to continue monitoring the detached process, the process identifier
in the screen header will blink. The blinking process identifier lets you know
that the process information you are viewing is stale. In the event of an
abnormal process termination, reviewing the stale information can be useful
for determining the cause of the termination.

If you do not wish to continue monitoring the detached process, the RMU
Show Statistics utility will automatically revert to displaying information for
all database processes.

There is no method available to activate a process once it has detached from the
database.

6.1.12.6 Per-Process Monitoring Overview Information
The RMU Show Statistics utility contains seven new screens, located in the
Process Information menu, to provide overview and side-by-side comparison of
information for all attached processes. The screens provide information similar to
the main menu summary screens.

All of the process overview screens implicitly attach to any eligible process not
already attached.

Note that you are unable to transfer statistic information from these screens onto
the Custom Statistics screen.

The following is a list of the new screens:

* Process IO Overview

* Process Journal IO Overview

* Process Lock Overview

* Process Object Overview

* Process Transaction Overview

* Process Record Overview

* Process Snapshot Overview

6–18 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

Process IO Overview Screen
The Process IO Overview screen summarizes database I/O activity for each
attached process.

Node: GANDLF (1/3/24) Oracle Rdb V7.3-13 Perf. Monitor 17-JUN-2014 14:44:29.66
Rate: 1.00 Second Process IO Overview Elapsed: 160 00:32:40.41
Page: 1 of 1 USER_TEST:[DB_TESTING.TCS_MASTER]TCS.RDB;2 Mode: Global
--
Process.ID Sync.Reads SyncWrites Read.Stall WriteStall AsyncReads AsyncWrits
2A46BE1F:1s 0 0 0 0 0 0
2A562A21:1s 0 0 0 0 0 0
2A56002D:1A 1058 4221 8230 11400 0 0
2A53DC2E:1A 566 560 333 9729 0 0
2A540E31:1A 5948 6764 32374 8377 0 0
2A532E37:1A 543 453 689 9240 0 0
2A52A43B:1A 0 0 0 0 0 0
2A536E3A:1A 198 1634 743 3660 13 0
2A50C047:1A 0 0 0 0 0 0
2A4CDE49:1A 0 0 0 0 0 0
--
Exit Help Menu >next_page <prev_page Options Set_rate Write Zoom !

The screen fields are the following:

* Process.ID

Identifies the attached database process. All processes on this screen contain
the "A" suffix unless the process is a database server.

* Sync.Reads

This field gives the number of synchronous read queued I/O requests (QIO)
issued to the database storage area for single-file and multi-file databases
(.RDA) and snapshot (.SNP) files. This operation reads database pages
synchronously from the database.

* SyncWrites

This field gives the number of synchronous write queued I/O requests (QIO)
issued to the database storage area for single-file and multi-file databases
(.RDA) and snapshot (.SNP) files. This operation writes modified database
pages synchronously back to the database.

* Read.Stall

This field gives the time in hundredths of a second spent reading database
pages from the database rootfile (.RDB), storage area (.RDA) files, and
snapshot (.SNP) files. An excessively high number often indicates disk
contention that might be alleviated by moving some files to other disks.

This statistic field includes both synchronous and asynchronous I/O read stall
durations.

* WriteStall

This field gives the time in hundredths of a second spent writing database
pages to the database rootfile (.RDB), storage area (.RDA), and snapshot
(.SNP) files. An excessively high number often indicates disk contention that
might be alleviated by moving some files to other disks.

This statistic field includes both synchronous and asynchronous I/O write
stall durations.

* AsyncReads

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–19

This field gives the number of asynchronous read queued I/O requests (QIO)
issued to the database storage area for single-file and multi-file databases
(.RDA) and snapshot (.SNP) files. This operation reads database pages
asynchronously from the database.

* AsyncWrits

This field gives the number of asynchronous write queued I/O requests (QIO)
issued to the database storage area for single-file and multi-file databases
(.RDA) and snapshot (.SNP) files. This operation writes modified database
pages asynchronously back to the database.

Process Journal IO Overview Screen
The Process Journal IO Screen summarizes journal I/O activity for each attached
process.

Node: GANDLF (1/3/24) Oracle Rdb V7.3-13 Perf. Monitor 17-JUN-2014 14:44:31.20
Rate: 1.00 Second Process Journal IO Overview Elapsed: 160 00:32:41.95
Page: 1 of 1 USER_TEST:[DB_TESTING.TCS_MASTER]TCS.RDB;2 Mode: Global
--
Process.ID RUJ.Reads. RUJ.Writes RUJ.Extend AIJ.Reads. AIJ.Writes AIJ.Extend
2A46BE1F:1s 0 0 0 41 3960 0
2A562A21:1s 0 0 0 197 1 0
2A56002D:1A 0 71 1 4 0 0
2A53DC2E:1A 0 152 1 4 0 0
2A540E31:1A 0 13 1 3 0 0
2A532E37:1A 0 117 1 3 0 0
2A52A43B:1A 0 0 0 0 0 0
2A536E3A:1A 0 2 1 2 0 0
2A50C047:1A 0 0 0 0 0 0
2A4CDE49:1A 0 0 0 0 0 0
--
Exit Help Menu >next_page <prev_page Options Set_rate Write Zoom !

The screen fields are the following:

* Process.ID

Identifies the attached database process. All processes on this screen contain
the "A" suffix unless the process is a database server.

* RUJ.Reads

This field gives the number of read queued I/O requests (QIO) issued to the
database recovery unit journal (.RUJ) files. This operation reads before-image
records from the .RUJ file to roll back a verb or a transaction.

This statistic field includes both synchronous and asynchronous I/O read
requests.

* RUJ.Writes

This field gives the number of write queued I/O requests (QIO) issued to the
database recovery unit journal (.RUJ) files. This operation writes before-
image records to the .RUJ file in case a verb or transaction must be rolled
back. Before-images must be written to the .RUJ file before the corresponding
database page can be written back to the database.

This statistic field includes both synchronous and asynchronous I/O write
requests.

* RUJ.Extend

6–20 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

This field identifies the number of times an RUJ file has been extended.
Ideally, this value should be "0" or as close to "0" as possible. Each .RUJ file
extension represents a performance bottleneck that is easily resolved.

* AIJ.Reads.

The number of read queued I/O requests (QIO) issued to the database after-
image journal (.AIJ) file. If after-image journaling is not enabled for the
database, this statistic will be zero.

This statistic field includes both synchronous and asynchronous I/O read
requests.

* AIJ.Writes

This field gives the total number of write queued I/O requests (QIO) issued
to the database after-image journal (.AIJ) file. If after-image journaling
is not enabled for the database, this statistic will be zero. This operation
writes after-image records to the after-image journal to facilitate roll-forward
recovery using the RMU Recover command.

This statistic field includes both synchronous and asynchronous I/O write
requests.

* AIJ.Extend

This field identifies the number of times an AIJ journal has been extended.
Ideally, this value should be "0" or as close to "0" as possible. Each AIJ
journal extension represents a performance bottleneck that is easily resolved.

Process Lock Overview Screen
The Process Lock Overview screen summarizes database locking activity for each
attached process.

Node: GANDLF (1/3/24) Oracle Rdb V7.3-13 Perf. Monitor 17-JUN-2014 14:44:32.23
Rate: 1.00 Second Process Lock Overview Elapsed: 160 00:32:42.98
Page: 1 of 1 USER_TEST:[DB_TESTING.TCS_MASTER]TCS.RDB;2 Mode: Global
--
Process.ID Lock.Rqsts Prom.Rqsts Deadlocks. Blasted... Demotes... Unlocks...
2A46BE1F:1s 64 7519 0 214 7456 22
2A562A21:1s 1098 1355 0 247 346 1087
2A56002D:1A 8293 8803 7 2779 13331 5347
2A53DC2E:1A 10104 4359 8 2621 3581 5908
2A540E31:1A 18831 3409 7 788 13662 16509
2A532E37:1A 7337 2982 4 1694 2508 4109
2A52A43B:1A 0 0 0 0 0 0
2A536E3A:1A 6170 3836 0 1384 5604 3093
2A50C047:1A 0 0 0 0 0 0
2A4CDE49:1A 0 0 0 0 0 0
--
Exit Help Menu >next_page <prev_page Options Set_rate Write Zoom !

The screen fields are the following:

* Process.ID

Identifies the attached database process. All processes on this screen contain
the "A" suffix unless the process is a database server.

* Lock.Rqsts

This field gives the number of lock requests (also referred to as "enqueue"
lock requests) for new locks. Whether the lock request succeeds or fails, it is
included in this count.

* Prom.Rqsts

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–21

This field gives the number of enqueue lock requests to promote an existing
lock to a higher lock mode. Whether or not the lock request succeeds, it is
included in this count.

* Deadlocks.

This field gives the number of stalled enqueue lock requests for both new
and promoted locks that ultimately resulted in a deadlock. Most deadlocks
are tried again and resolved by Oracle Rdb without the application program
ever knowing there was a deadlock. Therefore, the number shown in this
field does not necessarily reflect the number of deadlocks reported to the
application program.

* Blasted...

This field gives the number of blocking ASTs, sometimes referred to as
"blasts", delivered to Oracle Rdb by the lock manager. A blocking AST is
delivered to the holder of a lock when a lock conflict is detected, which is a
good indication of contention problems. When Oracle Rdb receives a blocking
AST, it often demotes or releases a lock in an attempt to avoid unnecessary
deadlocks.

The number of blocking ASTs reported is composed of two different types of
blocking ASTs: those generated externally and those generated internally.

An externally generated blocking AST occurs when a blocking AST is actually
received by the process from the operating system in response to some lock
conflict with another process. A blocking AST routine is executed and the
RMU Show Statistics utility records the blocking AST activity.

An internally generated blocking AST occurs when a lock-blocking AST
routine is executed by the process in anticipation that the same work would
have to be performed anyway if a blocking AST were to be received from the
operating system. This algorithm serves as an optimistic code optimization.
The process, assuming it would eventually receive a blocking AST for the
particular lock, executes the blocking AST routine. The RMU Show Statistics
utility does not differentiate between these two types of blocking ASTs.

* Demotes...

This field gives the number of enqueue lock requests to demote an existing
lock to a lower lock mode. These requests always succeed.

* Unlocks...

This field gives the number of deallocating lock requests to release an existing
lock. These requests always succeed.

Process Object Overview Screen
The Process Object Overview screen summarizes rootfile object activity for each
attached process. The rootfile objects are the KROOT, FILID, SEQBLK, TSNBLK,
AIJDB, AIJFB, RTUPB, ACTIVE bitmap, CPT, RCACHE, CLIENT, UTILITY, and
the CLIENT SEQUENCE.

6–22 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

Node: GANDLF (1/3/24) Oracle Rdb V7.3-13 Perf. Monitor 17-JUN-2014 14:44:33.34
Rate: 1.00 Second Process Object Overview Elapsed: 160 00:32:44.09
Page: 1 of 1 USER_TEST:[DB_TESTING.TCS_MASTER]TCS.RDB;2 Mode: Global
--
Process.ID Objs.Shrd. Objs.Excl. Objs.Rfrsh Objs.Updt. Objs.Write Objs.Relsd
2A46BE1F:1s 135255 25 52 24 24 135280
2A562A21:1s 1497 48 103 20 20 1545
2A56002D:1A 6162 1712 107 510 510 7874
2A53DC2E:1A 5111 1620 70 479 479 6731
2A540E31:1A 1844 416 42 150 150 2260
2A532E37:1A 3190 953 61 297 297 4143
2A52A43B:1A 0 0 0 0 0 0
2A536E3A:1A 3959 1016 57 302 302 4975
2A50C047:1A 0 0 0 0 0 0
2A4CDE49:1A 0 0 0 0 0 0
--
Exit Help Menu >next_page <prev_page Options Set_rate Write Zoom !

The screen fields are the following:

* Process.ID

Identifies the attached database process. All processes on this screen contain
the "A" suffix unless the process is a database server.

* Objs.Shrd

This field displays the number of objects that are fetched for shared retrieval
access.

* Objs.Excl

This field displays the number of objects that are fetched for exclusive access
with the intention of subsequently being updated. This statistic does not
indicate that the object was actually updated.

* Objs.Rfrsh

This field displays the number of objects whose information in the global
section was detected as being stale, so the information was read again from
the database root file.

* Objs.Updt

This field displays the number of objects whose information was modified.
Only objects fetched for exclusive access can be modified.

* Objs.Write

This field displays the number of objects whose information was written back
to the database root file.

* Objs.Relsd

This field displays the number of objects whose shared or exclusive access was
released to other processes.

Process Transaction Overview Screen
The Process Transaction Overview screen summarizes transaction and checkpoint
activity for each attached process.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–23

Node: GANDLF (1/3/24) Oracle Rdb V7.3-13 Perf. Monitor 18-JUN-2014 13:09:48.19
Rate: 1.00 Second Process Transaction Overview Elapsed: 160 22:57:58.94
Page: 1 of 1 USER_TEST:[DB_TESTING.TCS_MASTER]TCS.RDB;3 Mode: Global
--
Process.ID Transactns TxCommited TxRollback Checkpoint VerbSucces VerbFailur
2A565E77:1s 2 2 0 0 2 0
2A53B278:1s 1 1 0 0 1 0
2A55DC81:38 22 22 0 1 204 0
2A54348E:1A 4 4 0 0 73 0
2A562A89:1A 53 53 0 8 3056 0
2A520A84:1A 542 542 0 43 3357 5
2A43A88C:1A 489 489 0 40 3030 4
2A561A8D:1A 1 1 0 0 60 0
2A539A90:1A 1 1 0 0 60 0
2A55FA8F:1A 1 1 0 0 60 0
--
Exit Help Menu >next_page <prev_page Options Set_rate Write Zoom !

The screen fields are the following:

* Process.ID

Identifies the attached database process. All processes on this screen contain
the "A" suffix unless the process is a database server.

* Transactns

This field gives the number of completed database transactions. This is the
count of the transaction COMMIT and ROLLBACK statements that have
executed.

* TxCommited

This field identifies the actual number of transactions that committed
successfully to the database.

* TxRollback

This field identifies the actual number of transactions that aborted and were
not applied to the database.

* Checkpoint

This field identifies the number of checkpoints performed by users. This field
does not include the initial checkpoint when the user first attaches to the
database.

* VerbSucces

This field gives the number of completed verbs that returned a successful
status code.

A verb is an atomic SQL statement or action. For example, a record insert is
a verb, as is a record deletion.

Also, within a compound statement, each individual statement is atomic
and Oracle Rdb performs a verb-success operation after processing each one.
To avoid this overhead, you can use the SQL BEGIN ATOMIC compound
statement to treat the entire block as a single verb.

* VerbFailur

This field gives the number of completed verbs that returned an error status
code. Errors include end-of-collection and deadlocks, as well as all other
exception conditions.

A verb is an atomic SQL statement or action. For example, a record insert is
a verb, as is a record deletion.

6–24 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

Excessive verb failures are usually an indication of a failed constraint, such as
uniqueness criteria or an invalid data definition language (DDL) statement.
Note that in the case of cursors and scans, reaching the end-of-stream always
results in a verb failure.

Note that SQL performs its own internal queries to identify metadata, such
as relation or index names.

Oracle Rdb rarely issues a verb-failure unless there is an exception of some
kind, such as a constraint failure.

Process Record Overview
The Process Record Overview screen summarizes database record activity for
each attached process.

Node: GANDLF (1/3/24) Oracle Rdb V7.3-13 Perf. Monitor 17-JUN-2014 14:44:34.65
Rate: 1.00 Second Process Record Overview Elapsed: 160 00:32:45.40
Page: 1 of 1 USER_TEST:[DB_TESTING.TCS_MASTER]TCS.RDB;2 Mode: Global
--
Process.ID RecFetched Rec.Marked Rec.Stored Pag.Checkd PagDiscard Rec.Erased
2A46BE1F:1s 0 0 0 0 0 0
2A562A21:1s 0 0 0 0 0 0
2A56002D:1A 276020 50497 23890 23890 0 0
2A53DC2E:1A 2676 475 448 448 0 0
2A540E31:1A 42975 12291 10341 10492 151 0
2A532E37:1A 1845 286 273 273 0 0
2A52A43B:1A 0 0 0 0 0 0
2A536E3A:1A 164922 32011 15046 15046 0 0
2A50C047:1A 0 0 0 0 0 0
2A4CDE49:1A 0 0 0 0 0 0
--
Exit Help Menu >next_page <prev_page Options Set_rate Write Zoom !

The screen fields are the following:

* Process.ID

Identifies the attached database process. All processes on this screen contain
the "A" suffix unless the process is a database server.

* RecFetched

This field gives the number of records fetched, including snapshot records.
This field does not include records retrieved from a temporary table.

Note that this value may be more than the actual number of records returned
by a query. The reason is that queries may fetch records during the search
phase and then re-fetch the selected records so that they may be returned to
the user. Also, for uniform format storage areas, a sequential scan needs to
fetch the next record on each page of the clump, even if there are no records
on that page. In addition, every page in a uniform format storage area incurs
an extra fetch to verify that there are no more records residing on that page.

* Rec.Marked

This field gives the number of records marked. A record is marked when it
is modified or erased, but not when it is stored. This field does not include
records modified in a temporary table.

* Rec.Stored

This field gives the number of records stored in the database. This field does
not include records stored in temporary tables.

* Pag.Checkd

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–25

This field indicates the number of pages checked in order to store a record.
Ideally, very few candidate pages need to be checked when storing a record.
However in certain cases, depending on record size, access method, locked
space on a page, and SPAM thresholds, storing a record requires a number of
page fetches.

* PagDiscard

This field identifies the number of pages checked but discarded because the
actual free space on that page did not meet the physical requirements needed
to store a new record.

* Rec.Erased

This field gives the number of records erased from the database. This field
does not include records erased from temporary tables.

Process Snapshot Overview Screen
The Process Snapshot Overview screen summarizes snapshot area activity for
each attached process.

Node: GANDLF (1/3/24) Oracle Rdb V7.3-13 Perf. Monitor 17-JUN-2014 14:44:36.44
Rate: 1.00 Second Process Snapshot Overview Elapsed: 160 00:32:47.19
Page: 1 of 1 USER_TEST:[DB_TESTING.TCS_MASTER]TCS.RDB;2 Mode: Global
--
Process.ID SnpRecRtrv SnpLinFtch SnpPagRead SnpRecStor SnpPagFull SnpLckCnft
2A46BE1F:1s 0 0 0 0 0 0
2A562A21:1s 0 0 0 0 0 0
2A56002D:1A 303 0 0 6581 916 0
2A53DC2E:1A 0 0 0 193 50 2
2A540E31:1A 303 0 0 3467 29 0
2A532E37:1A 0 0 0 157 38 0
2A52A43B:1A 0 0 0 0 0 0
2A536E3A:1A 303 0 0 70 1 0
2A50C047:1A 0 0 0 0 0 0
2A4CDE49:1A 0 0 0 0 0 0
--
Exit Help Menu >next_page <prev_page Options Set_rate Write Zoom !

The screen fields are the following:

* Process.ID

Identifies the attached database process. All processes on this screen contain
the "A" suffix unless the process is a database server.

* SnpRecRtrv

This field gives the number of records retrieved by read-only transactions.

* SnpLinFtch

This field gives the number of lines fetched by read-only transactions. To
retrieve a single record, a transaction might actually check a number of lines,
some of which may be empty.

* SnpPagRead

This field gives the number of snapshot pages fetched by read-only
transactions. If this count is high relative to the other read fields, read-
only transactions are fetching records that are being updated frequently and
the snapshot file is being used extensively.

* SnpRecStor

6–26 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

This field gives the number of records stored in the snapshot file by update
transactions. Every snapshot record stored by an update transaction implies
that a snapshot page was found and utilized. In the best case, this is a single-
page fetch. The page in use, page too full, page conflict, and extended file
sub-fields indicate some of the extra overhead involved in finding suitable
snapshot pages on which to store snapshot records.

* SnpPagFull

This field gives the number of pages fetched that were unsuitable for storing
snapshot records because there was not enough room on the snapshot page to
include another version of a record. In this case, a new snapshot page must
be fetched and linked with the full page. This allows read-only transactions
to follow a chain of snapshot pages to find the correct version of a record.

* SnpLckCnft

This field gives the number of times a snapshot page fetch was requested
but aborted due to a lock conflict with another process. When a page fetch
conflicts with another process, another target page is fetched and checked so
the lock conflict does not cost a disk I/O operation.

6.1.13 RMU Error Messages Which Suggest Altering Backup File Attributes
Enhancement Bug 10330130

Oracle Rdb database backup (RBF) files are created by the RMU/BACKUP
command with specific OpenVMS RMS file attributes. If some of these attributes
are then changed by ZIP or other file utilities which can change file attributes,
the RMU commands RMU/RESTORE, RMU/RESTORE/ONLY_ROOT and
RMU/DUMP/BACKUP which read Oracle Rdb database backup (RBF) files may
not be able to read the backup file and will abort and return an error. When this
happens, the OpenVMS SET FILE/ATTRIBUTE command can sometimes be used
to alter the backup file attributes so that the RMU commands RMU/RESTORE,
RMU/RESTORE/ONLY_ROOT and RMU/DUMP/BACKUP can then read the
backup file.

Starting with Oracle Rdb V7.2-57 and Oracle Rdb V7.3-13, when the
RMU commands RMU/RESTORE, RMU/RESTORE/ONLY_ROOT and
RMU/DUMP/BACKUP cannot read a database backup file and the file attributes
indicate that the problem may possibly be corrected by the OpenVMS SET
FILE/ATTRIBUTE command, the RMU command will be aborted and one of the
two following fatal error messages will be output to suggest that the OpenVMS
SET FILE/ATTRIBUTE command may be able to make the backup file readable
by the RMU command by altering the file attributes to a fixed record format
and/or specifying the longest record length to be the suggested number of bytes.
The longest record length is often 32256 bytes but may vary. Note that this is
only a suggestion. Oracle Rdb cannot guarantee that this will make the backup
file readable by the RMU command.

%RMU-F-INVBACFIL, DISK:[DIRECTORY]FILENAME.EXT; is not a valid backup file
-RMU-I-INVFILATR, possibly use SET FILE/ATTRIBUTE=(RFM:FIX,LRL:32256) on this
backup file

or

%RMU-F-NOTBLKSIZ, invalid block size in backup file
-RMU-I-INVFILLRL, possibly use SET FILE/ATTRIBUTE=(LRL:32256) on this backup
file

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–27

The following example shows the fatal RMU-F-INVBACFIL message put out
when the RMU/DUMP/BACKUP command cannot read a backup file, followed
by the informational RMU-I-INVFILATR message, which suggests the possibility
that the OpenVMS SET FILE/ATTRIBUTE=(RFM:FIX,LRL:32256) command can
be used to change the backup file attributes to the specified values so that the
RMU/DUMP/BACKUP command can read the backup file. In this case, executing
the suggested SET FILE/ATTRIBUTE=(RFM:FIX,LRL:32256) command does
correct the problem and the RMU/DUMP/BACKUP command now succeeds.
However, there is no guarantee that this will fix the problem.

$ RMU/DUMP/BACKUP DISK:[DIRECTORY]BACKUP_FILE.RBF
%RMU-I-DMPTXT_163, No dump option selected. Performing read check.
%RMU-F-INVBACFIL, DISK:[DIRECTORY]BACKUP_FILE.RBF; is not a valid backup file
-RMU-I-INVFILATR, possibly use SET FILE/ATTRIBUTE=(RFM:FIX,LRL:32256) on this
backup file
%RMU-F-FATALERR, fatal error on DUMP_BACKUP
%RMU-F-FTL_DUMP, Fatal error for DUMP operation at 7-MAY-2015 17:01:15.03
$
$ SET FILE/ATTRIBUTE=(RFM:FIX,LRL:32256) DISK:[DIRECTORY]BACKUP_FILE.RBF
$
$ RMU/DUMP/BACKUP DISK:[DIRECTORY]BACKUP_FILE.RBF
%RMU-I-DMPTXT_163, No dump option selected. Performing read check.

The following example shows the fatal RMU-F-NOTBLKSIZ message put out
when the RMU/DUMP/BACKUP command cannot read a backup file block,
followed by the informational RMU-I-INVFILLRL message, which suggests the
possibility that the OpenVMS SET FILE/ATTRIBUTE=(LRL:32256) command
can be used to change the backup file attributes to the specified value so that the
RMU/DUMP/BACKUP command can read the backup file. In this case, executing
the suggested SET FILE/ATTRIBUTE=(LRL:32256) command does correct the
problem and the RMU/DUMP/BACKUP command now succeeds. However, there
is no guarantee that this will fix the problem. The same error is returned when
the RMU/RESTORE command tries to read the same backup file and again in
this case using the SET FILE/ATTRIBUTE command to change the backup file
attributes allows RMU/RESTORE to read the backup file.

$ RMU/DUMP/BACKUP DISK:[DIRECTORY]BACKUP_FILE.RBF
%RMU-I-DMPTXT_163, No dump option selected. Performing read check.
%RMU-F-NOTBLKSIZ, invalid block size in backup file
-RMU-I-INVFILLRL, possibly use SET FILE/ATTRIBUTE=(LRL:32256) on this backup
file
%RMU-F-FATALERR, fatal error on DUMP_BACKUP
%RMU-F-FTL_DUMP, Fatal error for DUMP operation at 8-MAY-2015 13:25:25.61
$
$ SET FILE/ATTRIBUTE=(LRL:32256) DISK:[DIRECTORY]BACKUP_FILE.RBF
$
$ RMU/DUMP/BACKUP DISK:[DIRECTORY]BACKUP_FILE.RBF
%RMU-I-DMPTXT_163, No dump option selected. Performing read check.
$
$ RMU/RESTORE/DIRECTORY=DEVICE:[DIRECTORY]/NOCDD/NOLOG BACKUP_FILE.RBF
%RMU-F-NOTBLKSIZ, invalid block size in backup file
-RMU-I-INVFILLRL, possibly use SET FILE/ATTRIBUTE=(LRL:32256) on this backup
file
%RMU-F-FATALERR, fatal error on RESTORE
%RMU-F-FTL_RSTR, Fatal error for RESTORE operation at 8-MAY-2015 13:26:15.44
$
$ SET FILE/ATTRIBUTE=(LRL:32256) DISK:[DIRECTORY]BACKUP_FILE.RBF
$
$ RMU/RESTORE/DIRECTORY=DEVICE:[DIRECTORY]/NOCDD/NOLOG BACKUP_FILE.RBF
%RMU-I-AIJRSTAVL, 0 after-image journals available for use
%RMU-I-AIJISOFF, after-image journaling has been disabled
%RMU-W-USERECCOM, Use the RMU Recover command. The journals are not available.

6–28 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

6.1.14 Query Optimization Improvements for DATE ANSI Queries
In prior releases of Oracle Rdb, a query such as the following would not use the
index on the source column because the CAST function obscured the column
reference from the optimizer.

The following example shows a query that is required to select all the transaction
records that appeared on a specific date. That is, the query wants to ignore the
time portion during the query.

SQL> select posting_timestamp
cont> from TRANSACTION_LOG
cont> where cast (posting_timestamp as DATE ANSI) = date ansi’2015-3-19’
cont> ;
Tables:
0 = TRANSACTION_LOG

Index only retrieval of relation 0:TRANSACTION_LOG
Index name TRANS_NXD [1:1]
Keys: (0.POSTING_TIMESTAMP >= DATE ’2015-03-19’) AND (0.POSTING_TIMESTAMP <

(DATE ’2015-03-19’ + INTERVAL ’1’ DAY))
POSTING_TIMESTAMP
19-MAR-2015 00:25:21.73
1 row selected
SQL>

The Oracle Rdb optimizer now detects that an index column is within the CAST
function and rewrites such queries to expose the index column. As can be seen,
this query now performs an index range retrieval for all values in the specified
date/time range.

6.1.15 New RMU Dump Metadata_File Command
The new RMU Dump Metadata_File command dumps the metadata file created
by the RMU Unload After_Journal command in a user readable format. The
metadata file is created when using the /SAVE_METADATA qualifier of the RMU
Unload After_Journal command.

The metadata file can also be dumped if both the /RESTORE_METADATA and
the /OPTIONS=DUMP qualifiers are specified with the RMU Unload After_
Journal command.

For complete information on the use and restrictions of the /SAVE_METADATA
and /RESTORE_METADATA qualifiers, see the Oracle RMU Reference Manual
section on the RMU Unload After_Journal command.

The RMU Dump Metadata_File command provides an independent command to
dump the file and optionally outputs just the metadata file header record which
identifies the database root file and version and other general information about
the metadata file dump without having to dump the entire metadata file.

Note

Oracle Corporation reserves the right to change the format of the
metadata file as required by future releases. The metadata file is
intended to only be used internally by the RMU UNLOAD AFTER_
JOURNAL command. New metadata files should be generated to
reflect changing metadata definitions in the database. Metadata files
incompatible with the current database version or metadata file version
level will not be processed and will need to be recreated from the current
database.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–29

Syntax
The format of the RMU Dump Metadata_File command is:

RMU/DUMP/METADATA_FILE metadata-file-name

The default file type for the metadata-file-name is ".metadata".

Qualifiers
Additional qualifiers that can be used with this command are the following:

• /HEADER_ONLY

If this qualifier is specified, only the first header record in the metadata file
will be output. The default if this qualifier is not specified is to output all
records in the metadata file.

• /OUTPUT=output_filename

If this qualifier is specified, the metadata file will be dumped to the required
named output file. The default file type for the output file is ".lis". The
default if this qualifier is not specified is to output the metadata file records
to the default output device.

Usage Notes
To use the RMU Dump Metadata_File command, you must have OpenVMS
READ and READALL access to the metadata file to be dumped or be granted the
OpenVMS SYSPRV or BYPASS privileges.

Examples
The following example first creates the TEST_DATABASE.METADATA file from
the database using the /SAVE_METADATA qualifier of the RMU/UNLOAD
AFTER_JOURNAL command. The RMU/DUMP/METADATA_FILE/HEADER_
ONLY command is used to dump only the metadata file header information to the
default output device. The RMU/DUMP/METADATA_FILE/OUTPUT command is
then used to save the entire dump of the TEST_DATABASE.METADATA file to
the TEST_DATABASE.LIS file.

$ RMU/UNLOAD/AFTER_JOURNAL DEVICE:[DIRECTORY]TEST_DATABASE.RDB -
/SAVE_METADATA=DEVICE:[DIRECTORY]TEST_DATABASE.METADATA/NOLOG
$ RMU/DUMP/METADATA_FILE/HEADER_ONLY DEVICE:[DIRECTORY]TEST_DATABASE.METADATA
*--
* Oracle Rdb V7.3-2 27-JUL-2015 16:02:56.29
*
* Dump of LogMiner Metadata File
* Filename: DEVICE:[DIRECTORY]TEST_DATABASE.METADATA;1
* Database: DEVICE:[DIRECTORY]TEST_DATABASE.RDB;1
*
*--

Created 7-JUL-2015 15:33:05.91 by JONES
Version 73.0 (Oracle Rdb V7.3-2) / Checksum 0043000D
Metadata file version level is 101
Database timestamp is 18-MAY-2015 12:01:05.75
Logical Area Information Count is 280

$ RMU/DUMP/METADATA_FILE/OUTPUT=DEVICE:[DIRECTORY]TEST_DATABASE.LIS -
DEVICE:[DIRECTORY]TEST_DATABASE.METADATA
$

6–30 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

6.1.16 New REPLACE_ROWS Qualifier Added to RMU Load Command
This release of Oracle Rdb adds a /REPLACE_ROWS qualifier to the RMU Load
command.

If a PRIMARY KEY exists for the table, then the REPLACE_ROWS qualifier
will instruct Oracle Rdb to delete the row matching the primary key columns
prior to replacing the whole row with new values from the source data file. If
no PRIMARY KEY exists for the table, then the REPLACE_ROWS qualifier is
ignored (i.e. no delete will be performed before inserting new data).

$ rmu/unload sql$database employees employees
%RMU-I-DATRECUNL, 100 data records unloaded 18-AUG-2015 22:32:10.48.
$ rmu/load/replace_rows sql$database employees employees
%RMU-I-DATRECREAD, 100 data records read from input file.
%RMU-I-DATRECSTO, 100 data records stored 18-AUG-2015 22:32:17.36.

Please refer to the SQL REPLACE Statement for a complete description of the
affects of the /REPLACE_ROWS qualifier.

6.1.17 RMU/SET SHARED_MEMORY/SECTION_NAME
Bug 7238283

When Oracle Rdb databases are opened, global sections containing important and
shared data get created and mapped into memory. A global section name, used to
identify that memory, is dynamically generated based, in part, on the root file’s
device name. The same name persists from one database open to another, so long
as the root remains on the same storage device. If the root is moved to a different
device, the global section name will change.

The OpenVMS SYSMAN utility allows the DBA to reserve physical memory
for use by those global sections that have been declared by Rdb to be "memory
resident". Please refer to the OpenVMS System Management Utilities Reference
Manual for a complete description of the RESERVED_MEMORY commands.

Reserving memory can be problematic for DBAs that want to utilize this feature
but who also occasionally may have a need to move the root file to a different
disk. To add or delete reserved memory, an AUTOGEN and system reboot is
required.

Starting in this release, Oracle Rdb provides syntax that allows the DBA to set
a global section name that will persist regardless of where the root file resides.
This name is stored in the database root file until it is overwritten by another
name or negated. The syntax is as follows:

$ RMU /SET SHARED_MEMORY /[NO]SECTION_NAME = secname dbname

where "secname" is a string that will be used as the common name portion for
all memory resident global sections associated with this database. At runtime,
Rdb will add a prefix to the common portion in order to distinguish the different
global section types. Currently, there are three Rdb global section types that can
be made memory resident:

• The database global section (TROOT/NODGBL),

• Row Cache global sections,

• Row Cache RUJ Buffers.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–31

The prefix is composed using: "RDM" + (RDB major-minor version) + (a single
character identifying the global section type). For example, in this current Oracle
Rdb release, the prefixes would be:

• RDM73N for the database global section (TROOT/NODGBL),

• RDM73R for the Row Cache global sections,

• RDM73J for the Row Cache RUJ Buffers.

After using the above syntax to set the section name, you can see
the actual complete name for each affected global section using the
RMU/DUMP/HEADER/OPT=DEBUG command. For this example, all three
global sections are set as memory-resident:

$ RMU/SET SHARED_MEMORY/SECTION_NAME=$$MFP MF_PERSONNEL
$ RMU/DUMP/HEADER/OPT=DEBUG/OUT=MFP.DMP MF_PERSONNEL
$ SEARCH MFP.DMP "GLOBAL SECTION NAME"

- Global Section Name is "RDM73N$$MFP00000000"
- Global Section Name is "RDM73J$$MFP00000000"
- Global Section Name is "RDM73R$$MFP00000001"
- Global Section Name is "RDM73R$$MFP00000002"
- Global Section Name is "RDM73R$$MFP00000003"
- Global Section Name is "RDM73R$$MFP00000004"
- Global Section Name is "RDM73R$$MFP00000005"
- Global Section Name is "RDM73R$$MFP00000006"
- Global Section Name is "RDM73R$$MFP00000007"
- Global Section Name is "RDM73R$$MFP00000008"
- Global Section Name is "RDM73R$$MFP00000009"
- Global Section Name is "RDM73R$$MFP0000000A"
- Global Section Name is "RDM73R$$MFP0000000B"
- Global Section Name is "RDM73R$$MFP0000000C"
- Global Section Name is "RDM73R$$MFP0000000D"
- Global Section Name is "RDM73R$$MFP0000000E"
- Global Section Name is "RDM73R$$MFP0000000F"

$
$ RMU/SET SHARED_MEMORY/NOSECTION_NAME MF_PERSONNEL
$ RMU/DUMP/HEADER/OPT=DEBUG/OUT=MFP.DMP MF_PERSONNEL
$ SEARCH MFP.DMP "GLOBAL SECTION NAME"

- Global Section Name is "RDM73N1DGA21235C714FC000000000000"
- Global Section Name is "RDM73J1DGA21235C714FC000000000000"
- Global Section Name is "RDM73R1DGA21235C714FC000000000001"
- Global Section Name is "RDM73R1DGA21235C714FC000000000002"
- Global Section Name is "RDM73R1DGA21235C714FC000000000003"
- Global Section Name is "RDM73R1DGA21235C714FC000000000004"
- Global Section Name is "RDM73R1DGA21235C714FC000000000005"
- Global Section Name is "RDM73R1DGA21235C714FC000000000006"
- Global Section Name is "RDM73R1DGA21235C714FC000000000007"
- Global Section Name is "RDM73R1DGA21235C714FC000000000008"
- Global Section Name is "RDM73R1DGA21235C714FC000000000009"
- Global Section Name is "RDM73R1DGA21235C714FC00000000000A"
- Global Section Name is "RDM73R1DGA21235C714FC00000000000B"
- Global Section Name is "RDM73R1DGA21235C714FC00000000000C"
- Global Section Name is "RDM73R1DGA21235C714FC00000000000D"
- Global Section Name is "RDM73R1DGA21235C714FC00000000000E"
- Global Section Name is "RDM73R1DGA21235C714FC00000000000F"

6–32 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

6.1.18 RESTART Clause of ALTER SEQUENCE No Longer Needs Value
With this release of Oracle Rdb, the ALTER SEQUENCE statement no longer
requires a value for the RESTART clause. If the WITH literal value is omitted,
then the existing START WITH (initial value) of the sequence will be used by the
restart.

The following example shows the changed syntax and the result of the RESTART
clause.

SQL> show sequence A;
A

Sequence Id: 1
Initial Value: 33
Minimum Value: 1
Maximum Value: 1000
Next Sequence Value: 93
Increment by: 1
Cache Size: 20
No Order
Cycle
No Randomize
Wait
SQL>
SQL> alter sequence A
cont> restart;
SQL>
SQL> show sequence A;

A
Sequence Id: 1
Initial Value: 33
Minimum Value: 1
Maximum Value: 1000
Next Sequence Value: 33
Increment by: 1
Cache Size: 20
No Order
Cycle
No Randomize
Wait
SQL>

6.1.19 New Options to SET SQLDA Statement
Starting in Oracle Rdb Release 7.3.1, the COUNT(*), COUNT (ALL value-expr)
and COUNT (DISTINCT value-expr) functions returned BIGINT results. In
some cases, applications using Dynamic SQL were not prepared to handle the
larger type for COUNT. Therefore, in this release of Oracle Rdb, SQL allows the
application to revert to accepting INTEGER counts.

enable-option =
-+-> INSERT RETURNING -+-->
| |
+-> INTEGER COUNT ----+
| |
+-> NAMED MARKERS ----+
| |
+-> ROWID TYPE -------+

The following example uses Dynamic SQL and accepts various statements from
the user. When using SET SQLDA, the returned data type of COUNT is altered
from the default (BIGINT) to INTEGER.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–33

-> ATTACH ’filename sql$database’;
inputs: 0
-> SELECT COUNT(*) FROM RDB$DATABASE;
inputs: 0
out: [0] typ=Bigint {505} len=8
[SQLDA - displaying 1 fields]
0/: 1
-> SET SQLDA ’enable integer count’;
inputs: 0
-> SELECT COUNT(*) FROM RDB$DATABASE;
inputs: 0
out: [0] typ=Integer {497} len=4
[SQLDA - displaying 1 fields]
0/: 1
-> EXIT;

Usage Notes

INTEGER COUNT - The default behavior for Dynamic SQL is to expect the
result data type of the COUNT function as BIGINT. When this option is
enabled, Dynamic SQL will implicitly cast the result to INTEGER. If this
option is disabled, then SQL will revert to a BIGINT result data type.

6.1.20 Support for External Authentication (LDAP)
Oracle Rdb now supports externally authenticated users when used with the
USER clause of the ATTACH, ALTER DATABASE, CREATE DATABASE,
CONNECT, DECLARE ALIAS, DROP DATABASE, and SET SESSION
AUTHORIZATION statements.

SQL> attach ’filename APP_SYSTEM user -
cont> ’’jenny.p.jones’’ using ’’thepassword’’ ’;

OpenVMS allows the system administrator to install and configure the ACME
login and ACME authentication agents. Please refer to the HPE OpenVMS
documentation for details and instructions. These services allow OpenVMS to use
credentials from an external source (such as LDAP server) to authenticate the
login.

Once enabled on the OpenVMS system, the system administrator can use the
AUTHORIZE utility to mark selected users as being externally authorized (also
see the description of the flag EXTAUTH). When these users log in to OpenVMS,
they use their credentials from an LDAP server.

$ RUN SYS$SYSTEM:AUTHORIZE
UAF> MODIFY J_JONES /FLAGS=EXTAUTH

Oracle Rdb uses the Authentication and Credentials Management Extensions
(ACME) subsystem through the SYS$ACMW system service to also accept and
authenticate user credentials through an LDAP server.

Note

Oracle Rdb returns the OpenVMS username when calling the built in
functions CURRENT_USER, SESSION_USER and SYSTEM_USER.
Therefore, when you login using an LDAP user, Rdb will use the
mapping information (indirectly through SYS$ACMW) that is defined
in SYS$STARTUP:LDAP_LOCALUSER_DATABASE.TXT to identify the
user. This will include the username written to the after image journal.

6–34 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

Please see the HPE OpenVMS ACME LDAP Installation and Configuration Guide
(SYS$HELP:ACMELDAP_STD_CONFIG_INSTALL.TXT) for full details.

6.1.21 New RMU Extract Options to Control Output for DATABASE and
ALTER_DATABASE Items

This release of Oracle Rdb adds the following new OPTIONS that control the
output of the ALTER_DATABASE, DATABASE, and IMPORT items.

• JOURNALS

By default, /ITEM=ALTER_DATABASE will extract the after image journal
settings and definitions for the database. Using /OPTION=NOJOURNALS
will prevent that output.

• ROW_CACHES

By default, /ITEM=DATABASE or /ITEM=IMPORT will include the row cache
definitions for the database. Using /OPTION=NOROW_CACHES will prevent
that output.

Using /OPTION=ROW_CACHES with /ITEM=ALTER_DATABASE will
include the cache definitions as ADD CACHE clauses.

• STORAGE_AREAS

By default, /ITEM=DATABASE or /ITEM=IMPORT will include the storage
area definitions for the database. Using /OPTION=NOSTORAGE_AREAS
will prevent that output.

Using /OPTION=STORAGE_AREAS with /ITEM=ALTER_DATABASE will
include the storage area definitions as ADD STORAGE AREA clauses.

• In addition, the qualifier /OPTION=MATCH is now used to filter the storage
area, row caches and journal names for ALTER_DATABASE, DATABASE,
and IMPORT items.

Examples
The following example shows how to generate an ALTER DATABASE command
that defines the three storage areas used for the EMPLOYEES table in the
sample MF_PERSONNEL database. Here we disable the output of the journals,
but request the storage areas with a matching wildcard string.

Example 6–2 Using the STORAGE_AREAS and JOURNALS options to control
output

$ RMU/EXTRACT -
/ITEM=ALTER_DATABASE -
/DEFAULT=(NOALLOCATION,NOSNAPSHOT_ALLOCATION) -
/OPTION=(NOHEADER,FILENAME_ONLY,ORDER_BY_NAME, -

MATCH:EMPIDS%,STORAGE_AREAS,NOJOURNALS) -
MF_PERSONNEL

This example shows the MATCH option being used to extract a row cache
definition which is then used to recreate the row cache, possibly after database
maintenance.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–35

Example 6–3 Using MATCH option to extract just one row cache definition

$! use MATCH to just get the definition for the EMPLOYEES cache
$ RMU/EXTRACT -

/ITEM=ALTER_DATABASE -
RMU_EXTRACT_ALTER_DATABASE_EX -
/OUTPUT=BEFORE.SQL -
/DEFAULTS=(NOALLOCATION,NOSNAPSHOT_ALLOCATION) -
/OPTION=(NOHEADER,FILENAME_ONLY,NOJOURNALS,ROW_CACHES,-

MATCH=EMPLOYEES%)
$ SQL$
alter database

filename RMU_EXTRACT_ALTER_DATABASE_EX

drop cache EMPLOYEES
;
@BEFORE.SQL
SQL> set verify;
SQL> set language ENGLISH;
SQL> set default date format ’SQL92’;
SQL> set quoting rules ’SQL92’;
SQL> set date format DATE 001, TIME 001;
SQL> alter database
cont> filename ’RMU_EXTRACT_ALTER_DATABASE_EX’
cont>
cont> add cache EMPLOYEES
cont> cache size is 300 rows
cont> row length is 256 bytes
cont> row replacement is DISABLED
cont> shared memory is PROCESS
cont> large memory is ENABLED
cont> window count is 100
cont> working set count is 10
cont> number of reserved rows is 20
cont> allocation is 100 blocks
cont> extent is 100 blocks
cont> row snapshot is ENABLED
cont> (cache size is 900 rows)
cont> ; -- end alter database
$

6.1.22 RMU/SET AFTER_JOURNAL/SWITCH_JOURNAL Now Can Create an
Emergency AIJ

Bug 21656497

The Oracle Rdb RMU/SET AFTER_JOURNAL/SWITCH_JOURNAL command
changes the currently active After Image Journal (AIJ) file to the next available
AIJ file if a fixed size AIJ journaling configuration is defined for an Rdb database.
Normally, it is not necessary to use this command because the switch to the next
available journal occurs automatically when the currently active fixed size AIJ
file is full. However, the RMU/SET AFTER_JOURNAL/SWITCH_JOURNAL
command can be used in cases where it is necessary to force a switch to the next
available AIJ file, such as when it is necessary to switch to the next AIJ file
on another disk when the disk used by the currently active fixed size AIJ file
requires maintenance.

If a switch over to the next AIJ file cannot complete because the next AIJ file is
not available (since it has not been backed up by the Automatic Backup Server
(ABS) or for any other reason), the database enters the "AIJ suspended" state
to avoid the loss of database data because it cannot be later recovered from an
AIJ file. During this state, the database administrator can add new AIJ files

6–36 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

or backup existing AIJ files to terminate the AIJ suspended state and allow
suspended AIJ operations to continue.

Currently, if a database recovery (DBR) process is active during the AIJ
suspended state, or a Hot Standby database replication process is active during
the AIJ suspended state, or the AIJ Log Server (ALS) process is active and
the RDM$BIND_ALS_CREATE_AIJ system database bind logical is either not
defined or defined as TRUE "1" and not FALSE "0", a new permanent "emergency"
AIJ file will automatically be created for the switch over to terminate the AIJ
suspended state. If for any reason an emergency journal cannot be created
(because the maximum number of AIJ files defined for the database has already
been reached or for any other reason), the AIJ suspended state will continue
and the database administrator must resolve the situation or the database may
be shut down (please see the Rdb AIJ related documentation for the complete
details).

Functionality has been added to the RMU/SET AFTER_JOURNAL/SWITCH_
JOURNAL command to allow it also to automatically create a permanent
emergency AIJ journal file. The only way to prevent RMU/SET AFTER/SWITCH
from creating an emergency journal is to explicitly define the system logical
RDM$BIND_ALS_CREATE_AIJ to be "0" in the LNM$SYSTEM_TABLE.

As with emergency journals created in the already existing cases mentioned
above, the emergency journals created by the RMU/SET AFTER_
JOURNAL/SWITCH_JOURNAL command are permanent AIJ journals defined
for the database. By default, they are created using the same device and directory
as the currently active AIJ journal being switched from, unless the RDM$BIND_
AIJ_EMERGENCY_DIR database bind logical is defined to specify a different
device and directory. Emergency AIJ journals are created using the same
allocation definitions as the currently active AIJ journal being switched from. As
currently, the generated name of the emergency AIJ is "EMERGENCY_XXX",
where XXX is a series of 16 characters generated to create a unique name.

The following example shows this new feature. The RDM$BIND_ALS_CREATE_
AIJ logical has been defined as "1" in the LNM$SYSTEM_TABLE to allow
emergency AIJ journals to be created. This is also the default if the RDM$BIND_
ALS_CREATE_AIJ logical is not defined. If the RDM$BIND_ALS_CREATE_AIJ
logical is defined as "0", the RMU/SET AFTER_JOURNAL/SWITCH_JOURNAL
command will not create an emergency AIJ file. The TEST database currently
has two journals defined, "JOURNAL1" and "JOURNAL2", but additional
AIJ slots are reserved in the database definition in case additional journals
need to be created. The RMU/SET AFTER_JOURNAL/SWITCH_JOURNAL
command is used to switch from "JOURNAL1" to "JOURNAL2". Then, when
the RMU/SET AFTER_JOURNAL/SWITCH_JOURNAL command is used to
switch from "JOURNAL2" back to "JOURNAL1", "JOURNAL1" is not available
because it has not been backed up for some reason, perhaps because the Rdb
AIJ AUTOMATIC BACKUP SERVER (ABS) is not running. The RMU/SET
AFTER_JOURNAL/SWITCH_JOURNAL command automatically creates an
emergency AIJ journal with the unique generated name "EMERGENCY_
00B03639309BF694" and switches over to this permanent new database AIJ
journal. Note that this is an exceptional case that only happens if no currently
defined AIJ journal is available.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–37

$ DEFINE/SYSTEM RDM$BIND_ALS_CREATE_AIJ 1
$ SHOW LOGICAL RDM$BIND_ALS_CREATE_AIJ

"RDM$BIND_ALS_CREATE_AIJ" = "1" (LNM$SYSTEM_TABLE)
$
$! Put data in the first defined journal.
$
$ SQL$
ATTACH ’FILENAME TEST’;
INSERT INTO TABLE1 VALUES (1, ’Text’);
1 row inserted
INSERT INTO TABLE1 VALUES (1, ’Text’);
1 row inserted
INSERT INTO TABLE1 VALUES (1, ’Text’);
1 row inserted
INSERT INTO TABLE1 VALUES (1, ’Text’);
1 row inserted
INSERT INTO TABLE1 VALUES (1, ’Text’);
1 row inserted
COMMIT;
EXIT;
$
$! Switch to the next defined journal.
$
$ RMU/SET AFTER_JOURNAL/SWITCH_JOURNAL/LOG TEST
%RMU-I-OPERNOTIFY, system operator notification:
After-image journal 0 switch-over in progress (to 1)
%RMU-I-OPERNOTIFY, system operator notification:
Last unmodified AIJ journal has been selected
%RMU-I-OPERNOTIFY, system operator notification:
After-image journal switch-over complete
%RMU-I-LOGMODSTR, switching to after-image journal
"JOURNAL2"
$
$! Put data in the next defined journal.
$
$ SQL$
ATTACH ’FILENAME TEST’;
INSERT INTO TABLE1 VALUES (1, ’Text’);
1 row inserted
INSERT INTO TABLE1 VALUES (1, ’Text’);
1 row inserted
INSERT INTO TABLE1 VALUES (1, ’Text’);
1 row inserted
INSERT INTO TABLE1 VALUES (1, ’Text’);
1 row inserted
INSERT INTO TABLE1 VALUES (1, ’Text’);
1 row inserted
COMMIT;
EXIT;
$
$! Switch to the next journal.
$! An EMERGENCY journal with a generated
$! name such as "EMERGENCY_00B0333F5D37E224"
$! will be created since the existing
$! journals have not been backed up.
$
$ RMU/SET AFTER_JOURNAL/SWITCH_JOURNAL/LOG TEST
%RMU-I-OPERNOTIFY, system operator notification:
After-image journal 1 switch-over in progress (to 2)
%RMU-I-OPERNOTIFY, system operator notification:
Last unmodified AIJ journal has been selected
%RMU-I-OPERNOTIFY, system operator notification:
After-image journal switch-over complete
%RMU-I-LOGMODSTR, switching to after-image journal
"EMERGENCY_00B03639309BF694"

6–38 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

$
$ SQL$
ATTACH ’FILENAME TEST’;
INSERT INTO TABLE1 VALUES (1, ’Text’);
1 row inserted
INSERT INTO TABLE1 VALUES (1, ’Text’);
1 row inserted
INSERT INTO TABLE1 VALUES (1, ’Text’);
1 row inserted
INSERT INTO TABLE1 VALUES (1, ’Text’);
1 row inserted
INSERT INTO TABLE1 VALUES (1, ’Text’);
1 row inserted
COMMIT;
EXIT;
$

6.1.23 New Support for Second OpenVMS Account Password
Bug 627287

This release of Oracle Rdb supports connecting to a database with two passwords
so that application environments which wish to use OpenVMS secondary
password support can now participate with Rdb.

The following example shows the syntax that allows a second password to be
specified.

SQL> connect to
cont> ’alias "ALIAS3" file date, file personnel’
cont> as ’connection_name_3’
cont> user ’prodsystem’
cont> using (:password, :passwords)
cont> ;
SQL>

The following statements include this enhancement.

• ALTER DATABASE Statement

• ATTACH Statement

• CONNECT Statement (when part of the connect-expression or part of the
ATTACH expression)

• CREATE DATABASE Statement

• DECLARE ALIAS Statement

• DROP DATABASE Statement

• EXPORT DATABASE Statement

• IMPORT DATABASE Statement

• SET SESSION AUTHORIZATION statement

Note

Remote access using two passwords requires the remote system to be
running Oracle Rdb V7.3.2 or later.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–39

6.1.24 New "Index Counts" Optimization for SORTED Indices
In prior releases of Oracle Rdb, a special optimization was applied to SORTED
RANKED indices that reduced the I/O and CPU overhead for counting values
within an index. In this release of Oracle Rdb, a similar optimization has been
implemented for SORTED indices. The main benefit of this optimization is to
greatly reduce the CPU overhead for processing SORTED indices with duplicate
values.

The following example shows the new strategy applied for COUNT(*),
COUNT(column), and COUNT(DISTINCT column). Here the column being
referenced is the leading segment of a SORTED index.

SQL> select count(*) from employees;
Tables:
0 = EMPLOYEES

Aggregate: 0:COUNT (*) Q2
Index only retrieval of relation 0:EMPLOYEES
Index name MI_NDX [0:0] Index counts

100
1 row selected
SQL> select count(middle_initial)
cont> from employees where middle_initial = ’A’;
Tables:
0 = EMPLOYEES

Aggregate: 0:COUNT (0.MIDDLE_INITIAL) Q2
Index only retrieval of relation 0:EMPLOYEES
Index name MI_NDX [1:1] Index counts
Keys: 0.MIDDLE_INITIAL = ’A’

4
1 row selected
SQL> select count(distinct middle_initial)
cont> from employees where middle_initial = ’A’;
Tables:
0 = EMPLOYEES

Aggregate: 0:COUNT (DISTINCT 0.MIDDLE_INITIAL) Q2
Index only retrieval of relation 0:EMPLOYEES
Index name MI_NDX [1:1] Index distinct counts
Keys: 0.MIDDLE_INITIAL = ’A’

1
1 row selected
SQL>

This optimization is enabled by default and controlled by the flag COUNT_SCAN.
Use the SET FLAGS ’NOCOUNT_SCAN’ statement to disable this optimization,
if necessary.

6.1.25 Support for Proxy Access to Remote Databases Using TCP/IP Transport
Bugs 861258, 18106129 and 18246149

In prior releases of Oracle Rdb, proxy access to remote databases was supported
only via OpenVMS and DECnet. This release of Oracle Rdb now also supports
remote proxy access when using transport set to TCPIP.

Proxy access allows the system administrator to define the incoming node and
user as being permitted to impersonate some other user. This new support in
Rdb uses the same proxy database as used by OpenVMS DECnet proxy access.
Therefore, if the environment is already established for DECnet proxy access,
then very little is required to start using the support in Oracle Rdb when the
transport is set to TCPIP.

6–40 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

The following changes will be required in such environments.

• Applications which attach using the DECnet node specification syntax that
includes the target username.

For example, if the node specification looks like NODENAME"targetuser"::
then this must be changed to use the USER clause of ATTACH, CONNECT,
DECLARE ALIAS and similar statements that accept the database file
specification. This is because the user and password specified as part of the
node specification is part of the OpenVMS DECnet support and is not directly
used by Oracle Rdb. So the following ATTACH statement needs to be changed
to the updated format listed.

SQL> ATTACH ’filename lulu"targetuser"::dev:[dir]dbname’;

SQL> ATTACH ’filename lulu::dev:[dir]dbname USER ’’targetuser’’ ’;

Alternately, the USER clause can be omitted and a configuration file can
include the SQL_USERNAME parameter which will be used for the remote
attach. If the proxy database on the target node includes this node and the
specified user in the list of allowable proxies, then the connection will succeed.

Note

If DECnet proxy was previously used and the credentials (username) were
not provided then, as with DECnet, the TCP/IP proxy lookup will expect a
default entry for this node and the current user.

• A configuration file should be created at the system, group or user level that
includes this line:

SQL_NETWORK_TRANSPORT_TYPE TCPIP

This configuration parameter directs the Rdb/Dispatch layer of Rdb to use
TCP/IP to connect to the remote database.

TCP/IP proxy access to Rdb databases is enabled by default if the remote node
is also running Oracle Rdb V7.3.2.0 or later. If the system administrator does
not wish to allow proxy access via TCP/IP, then the following parameter can be
defined.

SQL_ENABLE_TCPIP_PROXY FALSE

This can appear on the client in the RDB$CLIENT_DEFAULTS.DAT file or on
the server in the RDB$SERVER_DEFAULTS.DAT.

Please refer to Oracle Rdb for OpenVMS Installation Guide for more information
about remote access and configuration files.

6.1.26 Support for INTEGER Result Type for COUNT Function
Bug 22313534

In Oracle Rdb V7.3.1, the COUNT(*), COUNT(ALL value_expression), and
COUNT(DISTINCT value_expression) functions return BIGINT results. In
some applications, this size integer is not handled or has special meaning to the
application and therefore, with this release of Rdb, a new option is provided for
the database so that SQL will revert to use INTEGER count results.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0 6–41

The following example show this.

SQL> alter database
cont> filename MF_PERSONNEL
cont> set count result as integer
cont> ;

The clause SET COUNT RESULT [AS] { INTEGER | BIGINT } can be specified
on the CREATE DATABASE, ALTER DATABASE and IMPORT DATABASE
statement. When the setting is INTEGER, that will be indicated by the SHOW
DATABASE statement in Interactive SQL.

This flag will result in two changes:

1. Any database definition language (DDL) commands that derive data type
results from expressions will now assume COUNT returns INTEGER. This
includes: AUTOMATIC AS and COMPUTED BY columns, and columns of a
CREATE VIEW or ALTER VIEW statement.

2. SQL applications will now also derive data types in a similar way to prior
releases of Oracle Rdb. Namely, Interactive SQL will return INTEGER
results from COUNT functions and Dynamic SQL will return an integer type
(SQLDA_INTEGER) in the SQLDA or SQLDA2 when executing a DESCRIBE
statement.

Applications written in SQL Module Language or using the SQL Pre-compiler
will need to be recompiled after the database has been altered. In particular,
if the application uses the COMPILETIME clause on the DECLARE ALIAS
statement, the referenced database must have been altered with the SET
COUNT RESULT AS INTEGER clause. If Dynamic SQL is being used, the
type information will be derived from the target (RUNTIME) database so it
must also be altered with SET COUNT RESULT AS INTEGER clause.

Use the ALTER VIEW statement to correct any views which were created with
Oracle Rdb V7.3.1 and later. The EXPORT DATABASE and IMPORT DATABASE
statement will preserve this setting.

6–42 Enhancements And Changes Provided in Oracle Rdb Release 7.3.2.0

7
Enhancements And Changes Provided in

Oracle Rdb Release 7.3.1.3

7.1 Enhancements And Changes Provided in Oracle Rdb Release
7.3.1.3

7.1.1 Oracle Rdb 7.3.1.3 Certified on OpenVMS 8.4-1H1 from VMS Software
Inc. and Integrity i4 systems from HPE

This version of Rdb, Release 7.3.1.3, has been certified to run on OpenVMS
Version 8.4-1H1 from VMS Software Inc. on Integrity i4 systems from HPE.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.3 7–1

8
Enhancements And Changes Provided in

Oracle Rdb Release 7.3.1.2

8.1 Enhancements And Changes Provided in Oracle Rdb Release
7.3.1.2

8.1.1 New FULBCKREQ Message Output When a Full Backup is Required
Bug 18328148

There are some Oracle Rdb database changes that require the next database
backup to be a full backup to guarantee correct database recovery using an
incremental backup. If an incremental database backup is executed without a
preceding full database backup, the incremental backup will be aborted with a
fatal error.

$ rmu/backup/incremental/nolog mf_personnel.rdb -
DEVICE:[DIRECTORY]mfp.rbf

%RMU-F-NOFULLBCK, no full backup of this database exists
%RMU-F-FTL_BCK, Fatal error for BACKUP operation at 14-MAR-2014 13:45:21.35

A dump of the database header will show if this root flag is set.

$ rmu/dump/header mf_personnel
*--
* Oracle Rdb V7.3-12 14-MAR-2014 13:45:18.51
*
* Dump of Database header
* Database: DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
*
*--
Database Parameters:

Database Backup...

- Incremental backup not allowed until full backup

A new warning message will now be output at the end of an ALTER DATABASE
command if the ALTER DATABASE command contains one or more operations
which require the next database backup to be a full database backup.

%RDMS-W-FULBCKREQ, The next database backup must be a full backup

These are the operations that require the next database backup to be a full
database backup.

• Add one or more storage areas to the database.

$ SQL$
alter data filename mf_personnel
add storage area new_area;

%RDMS-W-FULBCKREQ, The next database backup must be a full backup
$

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2 8–1

• Delete one or more storage areas from the database.

$ SQL$
alter database filename mf_personnel
drop storage area area1
drop storage area area2
drop storage area area3
drop storage area area4;

%RDMS-W-FULBCKREQ, The next database backup must be a full backup
$

• Reserve database entries for additional storage areas.

$ SQL$
alter database filename mf_personnel
reserve 10 storage areas;

%RDMS-W-FULBCKREQ, The next database backup must be a full backup
$

• Modify the live storage area page allocation.

$ SQL$
alter database filename mf_personnel
alter storage area jobs allocation is 2000 pages;

%RDMS-W-FULBCKREQ, The next database backup must be a full backup
$

• Modify the maximum number of database users.

$ SQL$
alter database filename mf_personnel
number of users is 50;

%RDMS-W-FULBCKREQ, The next database backup must be a full backup
$

• Modify the maximum number of database cluster nodes.

$ SQL$
alter database filename mf_personnel
number of cluster nodes is 4;

%RDMS-W-FULBCKREQ, The next database backup must be a full backup

8.1.2 New TRACE Option for EXPORT DATABASE Statement
This release of Oracle Rdb adds a TRACE option to the EXPORT DATABASE
Statement. This option enables tracing of certain operations internal to EXPORT.
For example, when COMPRESSION and TRACE are specified, the TRACE option
causes output of the compression percentages for each table, null bit vector (NBV)
and list of byte varying data.

8–2 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2

SQL> export database filename personnel into pers compression trace;
** compress nbv : <CANDIDATES> too small to compress
** compress data: <CANDIDATES> input 846 output 244 deflate 72%
** compress nbv : <COLLEGES> too small to compress
** compress data: <COLLEGES> input 896 output 556 deflate 38%
** compress nbv : <DEGREES> too small to compress
** compress data: <DEGREES> input 4785 output 2268 deflate 53%
** compress nbv : <DEPARTMENTS> too small to compress
** compress data: <DEPARTMENTS> input 1222 output 750 deflate 39%
** compress data: <EMPLOYEES> input 11700 output 4559 deflate 62%
** compress nbv : <EMPLOYEES> input 1200 output 808 deflate 33%
** compress nbv : <JOBS> too small to compress
** compress data: <JOBS> input 495 output 434 deflate 13%
** compress nbv : <JOB_HISTORY> too small to compress
** compress data: <JOB_HISTORY> input 9316 output 6095 deflate 35%
** compress nbv : <RESUMES> too small to compress
** compress data: <RESUMES> too small to compress
** compress nbv : <SALARY_HISTORY> too small to compress
** compress data: <SALARY_HISTORY> input 18225 output 13695 deflate 25%
** compress nbv : <WORK_STATUS> too small to compress
** compress data: <WORK_STATUS> input 69 output 66 deflate 5%
SQL>

In this example, several tables and null bit vectors (NBV) can not be reduced by
compression because of their small size.

8.1.3 New /NOAFTER_JOURNAL Qualifier to Disable AIJ File Creation by
RMU/RECOVER

Bug 6656199

Oracle Rdb normally writes information to the after image journal (AIJ) file
describing the creation of new after image journal files. There are cases
where the user does not want RMU/RECOVER to process this information
and recreate AIJ files, such as lack of disk space. This release of Oracle Rdb
adds a new /NOAFTER_JOURNAL qualifier to the RMU/RECOVER command.
If this qualifier is specified, no new Rdb AIJ files will be created by the current
RMU/RECOVER command and any AIJ file deletion records for those AIJ files
which were not created will also be ignored.

The syntax for this new RMU/RECOVER qualifier is as follows.

/[NO]AFTER_JOURNAL

The default if this qualifier is not specified is /AFTER_JOURNAL. Therefore,
/NOAFTER_JOURNAL must be specified to ignore the creation of new AIJ
files recorded in any AIJ file being recovered by the current RMU/RECOVER
command.

In the following example, the creation of the new after image journal file J2.AIJ
for the MF_PERSONNEL database is journaled to the current after image journal
file RMU_RECOVER_4.AIJ_1. When the MF_PERSONNEL database is deleted
and then restored from the MF_PERSONNEL.RBF file and then recovered from
RMU_RECOVER_4.AIJ_1 using the new /NOAFTER_JOURNAL qualifier, the
J2.AIJ file does not get created.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2 8–3

$!
$! Change the database to enable after image journaling to the
$! RMU_RECOVER_4.AIJ_1 AIJ file
$!
$ SQL$

alter database filename MF_PERSONNEL
reserve 10 journals
journal filename disk:[directory]RMU_RECOVER_4.AIJ_1;

%RDMS-W-DOFULLBCK, full database backup should be done to ensure future recovery
exit

$!
$! Backup the database
$!
$ RMU/BACKUP/NOLOG MF_PERSONNEL DISK:[DIRECTORY]MF_PERSONNEL.RBF
$!
$! Add a new AIJ file J2.AIJ to put a create AIJ file record in the current
$! RMU_RECOVER_4.AIJ_1 AIJ file
$!
$ SQL$
alter database file mf_personnel

add journal j2 filename disk:[directory]j2 allocation is 1000 blocks;
exit
$!
$! Drop the database and then restore the database from the backup RBF file
$!
$ SQL$
drop database filename MF_PERSONNEL;
exit

$!
$! Delete the added j2.aij file
$!
$ DELETE DISK:[DIRECTORY]J2.AIJ;*
$!
$! Restore the database
$!
$ RMU/RESTORE/NOCDD/NOLOG/NOAFTER_JOURNAL -
/ROOT=DISK:[DIRECTORY]MF_PERSONNEL.RDB DISK:[DIRECTORY]MF_PERSONNEL.RBF

$!
$! Recover the database from RMU_RECOVER_4.AIJ_1 to show that the J2.AIJ
$! file does not get created if RMU/RECOVER/NOAFTER_JOURNAL is specified
$!
$ RMU /RECOVER /NOAFTER_JOURNAL /NOLOG /ROOT=DISK:[DIRECTORY]MF_PERSONNEL.RDB -

DISK:[DIRECTORY]RMU_RECOVER_4.AIJ_1
%RMU-I-LOGRECDB, recovering database file DISK:[DIRECTORY]MF_PERSONNEL.RDB;1
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence number
needed will be 1
%RMU-I-AIJNOENABLED, after-image journaling has not yet been enabled
$ DIR DISK:[DIRECTORY]J2.AIJ
%DIRECT-W-NOFILES, no files found

8.1.4 Enhance Dumper of Merge Range List
Bug 18530761

In prior releases of Oracle Rdb, the strategy display for a query with OR
predicates could be misleading when multiple range lists were merged. The
following example demonstrates this problem with a query performed with IN
and OR predicates to restrict values to selected ranges.

8–4 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2

create table TEST_TABLE
(a char);

create index TEST_TABLE_INDEX on TEST_TABLE (A);

select * from TEST_TABLE
where a in (’A’, ’A’, ’V’, ’B’) or a between ’C’ and ’Y’;
Tables:
0 = TEST_TABLE

Conjunct: (0.A = ’A’) OR (0.A = ’V’) OR (0.A = ’B’) OR ((0.A >= ’C’) AND (0.A
<= ’Y’))

Index only retrieval of relation 0:TEST_TABLE
Index name TEST_TABLE_INDEX [(1:1)4]
Keys: r0: (0.A >= ’C’) AND (0.A <= ’Y’)

r1: 0.A = ’B’
r2: 0.A = ’V’
r3: 0.A = ’A’

0 rows selected

Rdb has merged the OR ranges into a single range list (’A’ .. ’Y’) and eliminated
duplicate ranges. However, the STRATEGY and DETAIL display do not reflect
this state.

In this release, use the SET FLAGS ’MERGE_RANGE_LIST’ flag in addition to
STRATEGY and DETAIL to display further details.

! turn on the display of merge_range_list
set flags ’merge_range_list’;

select * from TEST_TABLE
where a in (’A’, ’A’, ’V’, ’B’) or a between ’C’ and ’Y’;
Tables:
0 = TEST_TABLE

Conjunct: (0.A = ’A’) OR (0.A = ’V’) OR (0.A = ’B’) OR ((0.A >= ’C’) AND (0.A
<= ’Y’))

Index only retrieval of relation 0:TEST_TABLE
Index name TEST_TABLE_INDEX [(1:1)4]
Keys: r0: (0.A >= ’C’) AND (0.A <= ’Y’)

r1: 0.A = ’B’
r2: 0.A = ’V’
r3: 0.A = ’A’

Index name TEST_TABLE_INDEX [1:1]
Columns: r0:{(0.A),(0.A)}
IKeys: r0:{(’A’), (’Z’)}

0 rows selected

Note that the upper range is encoded as a higher value internally so that the
index scan is terminated correctly.

8.1.5 RMU Extract Now Extracts SYS_GET_DIAGNOSTIC Function
With this release of Oracle Rdb, the RMU Extract command now correctly formats
the SYS_GET_DIAGNOSTIC function, which was added in earlier releases.

8.1.6 Alter Index Now Supports REVERSE and NOREVERSE Clauses
This release of Oracle Rdb now supports the REVERSE keyword on the ALTER
INDEX statement as part of the REBUILD action. This clause requests that the
named index be rebuilt as a REVERSE key index.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2 8–5

Syntax
The revised syntax for the ALTER INDEX statement is:
ALTER INDEX <index-name>

add-partition-clause
BUILD PARTITION <partition-name>
BUILD ALL PARTITIONS
DROP PARTITION <partition-name>
MOVE PARTITION <partition-name> TO area-spec
REBUILD PARTITION <partition-name>
REBUILD ALL PARTITIONS

NOREVERSE
REVERSE

RENAME PARTITION <partition-name> TO <new-partition-name>
TRUNCATE PARTITION <partition-name>
TRUNCATE ALL PARTITIONS
alter-index-attributes

index-store-clause

REVERSE
NOREVERSE

An existing SORTED or SORTED RANKED index can be converted to a
REVERSE index by using this variation of the REBUILD ALL PARTITIONS
clause. An already REVERSE index can be changed to a non-REVERSE index
using the NOREVERSE keyword.

The following example shows an existing index being converted to a REVERSE
index.

SQL> alter index DOCUMENTS
cont> rebuild reverse;
SQL>

Usage Notes

If an index is already defined as REVERSE, then REBUILD REVERSE is
equivalent to REBUILD ALL PARTITIONS.

If an index is not defined as REVERSE, then REBUILD NOREVERSE is
equivalent to REBUILD ALL PARTITIONS.

The clause REVERSE may not be applied to a HASHED index.

When applying REVERSE to an existing index, any column defined as DESC
will be modified to remove the descending ordering.

8.1.7 SQL Precompiler Now Generates C++ Compatible Intermediate C Source
Enhancement Bug 1504425

This release of Oracle Rdb includes some support for using SQL Precompiler
with the C++ compiler (CXX). The Rdb SQL precompiler now generates C++
compatible definitions when processing embedded SQL commands in a .SC
source. This support does not support the C++ language, and the processed .SC
file must conform to a legal C source format and language features.

8–6 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2

Please note the following changes:

• The SQL$PRE command line now accepts CXX as an option to the /CC
qualifier. This option will direct the SQL precompiler to generate C code
which is acceptable to the C++ compiler.

• The CXX DCL command will be used to invoke the C++ compiler, instead of
the CC command. Additional qualifiers on the SQL$PRE command line will
be passed to the CXX compiler and must be legal qualifiers for C++.

• Function prototypes will include parameter definitions

• Function prototypes are enclosed by extern "C" to prevent the names being
interpreted as C++ routines.

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
...
#ifdef __cplusplus
}
#endif /* __cplusplus */

• SQLCODE is expected to be defined as type int.

• On OpenVMS Alpha systems, the application is expected to be linked with the
special library SYS$LIBRARY:LIBCXXSTD.OLB. Please refer to the relevant
HPE C++ documentation.

Syntax
The revised syntax for the PRE-LANG-QUALIFIERS qualifier is:
pre-lang-qualifiers =

/ ADA
CC

= CXX
= DECC
= VAXC

COBOL
FORTRAN
PASCAL
PLI

8.1.8 New RMU/RECOVER Feature to Alter Storage Areas, After_Journal and
Record_Cache Directories

Enhancement Bug 867636

A new feature has been added to RMU/RECOVER and RMU/DUMP to alter
the directory specifications for new storage areas, after image journal files and
row caches created during the recovery of an Oracle Rdb database. This is only
for the creation of new storage areas, after image journal files and row caches
as recorded in the after image journal files used for a database recovery by the
RMU/RECOVER command, and only for modifying the directory specifications
defined in the after image journal files for the new storage areas, after image
journal files and row caches at the time RMU/RECOVER creates them.

This new feature will allow the user to control where newly created storage areas,
after image journal files and row caches are located. Previously, they could only
be put in the directory locations recorded in the after image journal files used for
the recovery.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2 8–7

Logicals can be used for the directory specifications but must translate to valid
directory specifications that exist when the RMU/RECOVER or RMU/DUMP
command is executed.

A new RMU/RECOVER /DIRECTORY qualifier can be used to specify one
directory specification for all storage areas created, one directory specification for
all after image journal files created and/or one directory specification for all row
caches created.

The syntax for this new qualifier for storage areas is:

/DIRECTORY=AREAS=directory_specification

The syntax for this new qualifier for after image journal files is:

/DIRECTORY=AFTER_JOURNAL=directory_specification

The syntax for this new qualifier for row caches is:

/DIRECTORY=ROW_CACHE=directory_specification

To specify two or more of these options with the /DIRECTORY qualifier, use the
following syntax.

/DIRECTORY=(AREAS=directory_specification, -
AFTER_JOURNAL=directory_specification, -
ROW_CACHE=directory_specification)

The following example shows all three options used with the /DIRECTORY
qualifier in the RMU/RECOVER command.

$ RMU/RECOVER/NOLOG/NOTRACE/NOCONFIRM/NOAUTOMATIC-
/DIRECTORY=(AREAS=DISK:[DIRECTORY], -
AFTER_JOURNAL=DISK:[DIRECTORY], -
ROW_CACHE=DISK:[DIRECTORY]) -
DISK:[DIRECTORY]:TEST_J1_BCK.AIJ

To specify different directory specifications for specific storage areas, after
journal files and row caches, option files can be designated using the new
RMU/RECOVER /OPTIONS qualifier. One option file must be specifed to select
one or more storage areas for directory modification, one option file must be
specified to select one or more after image journal files for directory modification
and one option file must be specified to select one or more row caches for directory
modification.

The syntax for this new qualifier for storage areas is:

/OPTIONS=AREAS=option_file_specification

The syntax for this new qualifier for after image journal files is:

/OPTIONS=AFTER_JOURNAL=option_file_specification

The syntax for this new qualifier for row caches is:

/OPTIONS=ROW_CACHE=option_file_specification

To specify two or more of these options with the /OPTIONS qualifier, use the
following syntax.

/OPTIONS=(AREAS=option_file_specification, -
AFTER_JOURNAL=option_file_specification, -
ROW_CACHE=option_file_specification)

8–8 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2

The following example shows all three options used with the /OPTIONS qualifier
in the RMU/RECOVER command.

$ RMU/RECOVER/NOLOG/NOTRACE/NOCONFIRM/NOAUTOMATIC-
/OPTIONS=(AREAS=DISK:[DIRECTORY]RECOVOPTAREAS.OPT, -
AFTER_JOURNAL=DISK:[DIRECTORY]RECOVOPTAIJ.OPT, -
ROW_CACHE=DISK:[DIRECTORY]RECOVOPTRCACHE.OPT) -
DISK:[DIRECTORY]TEST_J1_BCK.AIJ

A new /DIRECTORY_OPTIONS qualifier has been added to the RMU/DUMP
command to create storage area, after image journal and row cache option files
for use with the /OPTIONS qualifier in the RMU/RECOVER command. These
option files will contain entries for all storage areas, after image journal files and
row caches defined for the database. These option files can then be edited by the
user to eliminate storage area, after image journal or row cache entries that will
not be created during the RMU/RECOVER session, or they can be used without
being edited since entries for storage areas, after image journal files and row
caches not created during the recovery operation will be ignored.

The syntax for this new qualifier for storage areas is:

/DIRECTORY_OPTIONS=AREAS=option_file_specification

The syntax for this new qualifier for after image journal files is:

/DIRECTORY_OPTIONS=AFTER_JOURNAL=option_file_specification

The syntax for this new qualifier for row caches is:

/DIRECTORY_OPTIONS=ROW_CACHE=option_file_specification

To specify two or more of these options with the /DIRECTORY_OPTIONS
qualifier, use the following syntax.

/DIRECTORY_OPTIONS=(AREAS=option_file_specification, -
AFTER_JOURNAL=option_file_specification, -
ROW_CACHE=option_file_specification)

The following example shows all three options used with the /DIRECTORY_
OPTIONS qualifier in the RMU/DUMP command.

$ RMU/DUMP-
/NOHEADER-
/DIRECTORY_OPTIONS=(AREAS=DISK:[DIRECTORY]RECOVOPTAREAS.OPT, -
AFTER_JOURNAL=DISK:[DIRECTORY]RECOVOPTAIJ.OPT, -
ROW_CACHE=DISK:[DIRECTORY]RECOVOPTRCACHE.OPT) -
DISK:[DIRECTORY]TEST

The following example, created by the new RMU/DUMP /DIRECTORY_OPTIONS
qualifier, shows the format of the option file used with the new RMU/RECOVER
/OPTIONS qualifier for storage areas. The live data storage area name is
followed by /DIRECTORY=DISK:[DIRECTORY] for the live storage area file
to specify the directory specification for the storage area *.RDA file. This is
followed by /SNAPSHOT_DIRECTORY=DISK:[DIRECTORY] for the storage area
snaphot file to specify the directory specification for the storage area *.SNP file.
If /SNAPSHOT_DIRECTORY is not specified, the directory specification specified
by /DIRECTORY is used for both the live and snapshot storage area files.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2 8–9

! Recover Areas Directory Options file for database
! DISK:[DIRECTORY]FILENAME.EXT;VERSION
! Created 22-JUL-2014 09:37:24.29
! Created by DUMP command

RDB$SYSTEM -
/directory=DISK:[DIRECTORY] -
/snapshot_directory=DISK:[DIRECTORY]

TEST_A1 -
/directory=DISK:[DIRECTORY] -
/snapshot_directory=DISK:[DIRECTORY]

TEST_A2 -
/directory=DISK:[DIRECTORY] -
/snapshot_directory=DISK:[DIRECTORY]

TEST_A3 -
/directory=DISK:[DIRECTORY] -
/snapshot_directory=DISK:[DIRECTORY]

TEST_A4 -
/directory=DISK:[DIRECTORY] -
/snapshot_directory=DISK:[DIRECTORY]

The following example, created by the new /DIRECTORY_OPTIONS qualifier
of the RMU/DUMP command, shows the format of the option file used with
the new RMU/RECOVER /OPTIONS qualifier for after image journal files. The
after image journal file name is followed by /DIRECTORY=DISK:[DIRECTORY]
to specify the after image journal file directory specification. This is followed
by /BACKUP_DIRECTORY=DISK:[DIRECTORY] to specify the directory
specification for the after image journal backup file. If /BACKUP_DIRECTORY
is not specified, the directory specification specified by /DIRECTORY is used for
both the after image journal file and the after image journal backup file. If no
backup directory is defined for the after image journal entry in the database, the
backup directory specification will be ignored.

! Recover After Journal Options file for database
! DISK:[DIRECTORY]FILENAME.EXT;VERSION
! Created 22-JUL-2014 09:37:24.29
! Created by DUMP command

TEST_J1 -
/directory=DISK:[DIRECTORY] -
/backup_directory=DISK:[DIRECTORY]

TEST_J2 -
/directory=DISK:[DIRECTORY] -
/backup_directory=DISK:[DIRECTORY]

TEST_J3 -
/directory=DISK:[DIRECTORY] -
/backup_directory=DISK:[DIRECTORY]

TEST_J4 -
/directory=DISK:[DIRECTORY] -
/backup_directory=DISK:[DIRECTORY]

8–10 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2

The following example, created by the new /DIRECTORY_OPTIONS qualifier
of the RMU/DUMP command, shows the format of the option file used with the
new RMU/RECOVER /OPTIONS qualifier for row caches. The row cache name is
followed by /DIRECTORY=DISK:[DIRECTORY] to specify the row cache directory
specification. If no directory specification is defined for the row cache entry in the
database, the directory specification will be ignored.

! Recover Row Cache Directory Options file for database
! DISK:[DIRECTORY]FILENAME.EXT;VERSION
! Created 22-JUL-2014 09:37:24.29
! Created by DUMP command

TEST_A1 -
/directory=DISK:[DIRECTORY]

TEST_A2 -
/directory=DISK:[DIRECTORY]

TEST_A3 -
/directory=DISK:[DIRECTORY]

TEST_A4 -
/directory=DISK:[DIRECTORY]

In the following example for database DISK:[HOME]TEST.RDB, the first
RMU/RECOVER command uses the /DIRECTORY qualifier to change all
directories from DISK:[HOME] to DISK:[NEW] for the storage areas TEST_
A3 and TEST_A4, the after image journal files TEST_J3 and TEST_J4 and the
row caches TEST_A3 and TEST_A4, whose creation was recorded in the journal
file TEST_J1_BCK.AIJ. Then, the new /DIRECTORY_OPTIONS qualifier in the
RMU/DUMP command is used to create option files for all TEST database after
image journal files, storage areas and row caches, including those with directories
changed to DISK:[NEW]. The TEST database is then deleted and again restored
with all directories again set to DISK:[HOME]. The second RMU/RECOVER
command then uses the /OPTIONS qualifier to specify the option files created
by RMU/DUMP, which include the after image journal file, storage area and
row cache directories changed by the first RMU/RECOVER to DISK:[NEW], to
change the directories back again from the journaled directory specification of
DISK:[HOME] to DISK:[NEW].

$! Create the TEST database
$
$ SQL

CREATE DATABASE FILENAME DISK:[HOME]TEST
NUMBER OF CLUSTER NODES 1
RESERVE 6 STORAGE AREAS
RESERVE 6 JOURNALS
RESERVE 6 CACHE SLOTS
ROW CACHE IS ENABLED
CREATE STORAGE AREA RDB$SYSTEM FILENAME DISK:[HOME]TEST_SYS
CREATE STORAGE AREA TEST_A1 FILENAME DISK:[HOME]TEST_A1
CREATE STORAGE AREA TEST_A2 FILENAME DISK:[HOME]TEST_A2
CREATE CACHE TEST_A1
CACHE SIZE 100 ROWS ROW LENGTH 100 BYTES LOCATION IS ’DISK:[HOME]’

CREATE CACHE TEST_A2
CACHE SIZE 200 ROWS ROW LENGTH 200 BYTES LOCATION IS ’DISK:[HOME]’;

DISCONNECT ALL;

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2 8–11

ALTER DATABASE FILENAME TEST
ADD JOURNAL TEST_J1 FILENAME DISK:[HOME]TEST_J1.AIJ
BACKUP FILENAME DISK:[HOME]TEST_J1_BCK.AIJ
ADD JOURNAL TEST_J2 FILENAME DISK:[HOME]TEST_J2.AIJ
BACKUP FILENAME DISK:[HOME]TEST_J2_BCK.AIJ
JOURNAL IS ENABLED
(FAST COMMIT ENABLED);

%RDMS-W-DOFULLBCK, full database backup should be done to ensure future recovery
EXIT;

$
$! Back up the original database configuration.
$
$ RMU/BACKUP/NOLOG DISK:[HOME]TEST DISK:[HOME]TEST
$
$! Add new journals, row caches and storage areas
$
$ SQL

ALTER DATABASE FILENAME DISK:[HOME]TEST
ADD JOURNAL TEST_J3 FILENAME DISK:[HOME]TEST_J3.AIJ
BACKUP FILENAME DISK:[HOME]TEST_J3_BCK.AIJ
ADD JOURNAL TEST_J4 FILENAME DISK:[HOME]TEST_J4.AIJ
BACKUP FILENAME DISK:[HOME]TEST_J4_BCK.AIJ
ADD CACHE TEST_A3

CACHE SIZE 100 ROWS ROW LENGTH 100 BYTES LOCATION IS ’DISK:[HOME]’
ADD CACHE TEST_A4

CACHE SIZE 100 ROWS ROW LENGTH 100 BYTES LOCATION IS ’DISK:[HOME]’
ADD STORAGE AREA TEST_A3 FILENAME DISK:[HOME]TEST_A3
ADD STORAGE AREA TEST_A4 FILENAME DISK:[HOME]TEST_A4;

%RDMS-W-FULBCKREQ, The next database backup must be a full backup
EXIT;

$
$! Backup TEST_J1.AIJ, where the creation of the new journals, row caches
$! and storage areas in DISK:[HOME] is recorded.
$
$ RMU/BACKUP/AFTER/NOLOG/NOQUIET DISK:[HOME]TEST DISK:[HOME]TEST_J1_BCK.AIJ
$
$! Delete the database.
$
$ SQL

DROP DATABASE FILENAME DISK:[HOME]TEST;
EXIT;

$
$! Restore the database with all storage areas, after image journals
$! and row caches in DISK:[HOME]
$
$ RMU/RESTORE/NOCDD/NOLOG/NORECOVER/DIR=DISK:[HOME] DISK:[HOME]TEST
%RMU-I-AIJRSTAVL, 2 after-image journals available for use
%RMU-I-AIJRSTMOD, 1 after-image journal marked as "modified"
%RMU-I-AIJISON, after-image journaling has been enabled
%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery
$
$! Recover the database and change the directories from DISK:[HOME] to
$! DISK:[NEW] for the new storage areas, after image journals and row
$! caches whose creation was recorded in the backed up journal file
$! TEST_J1_BCK.AIJ
$
$ RMU/RECOVER/NOLOG/NOTRACE/NOCONFIRM/NOAUTOMATIC-
/DIRECTORY=(AREAS=DISK:[NEW], -
AFTER_JOURNAL=DISK:[NEW], -
ROW_CACHE=DISK:[NEW]) -
DISK:[HOME]TEST_J1_BCK.AIJ
%RMU-I-LOGRECDB, recovering database file DISK:[HOME]TEST_J1_BCK.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 0 roll-forward operations completed
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed
%RMU-I-AIJSUCCES, database recovery completed successfully

8–12 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2

%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence number
needed will be 1
$
$! Create directory option files for all storage areas,
$! after image journals and row caches in DISK:[HOME]
$! or DISK:[NEW]
$
$ RMU/DUMP-
/NOHEADER-
/DIRECTORY_OPTIONS=(AREAS=DISK:[HOME]RECOVOPTAREAS.OPT, -
AFTER_JOURNAL=DISK:HOME]RECOVOPTAIJ.OPT, -
ROW_CACHE=DISK:[HOME]RECOVOPTRCACHE.OPT) -
DISK:[HOME]TEST
$
$! Delete the database.
$
$ SQL$
DROP DATABASE FILENAME DISK:[HOME]TEST;
EXIT;

$
$! Restore the database with all storage areas, after image journals
$! and row caches again in DISK:[HOME]
$
$ RMU/RESTORE/NOCDD/NOLOG/NORECOVER/DIR=DISK:[HOME] DISK:[HOME]TEST
%RMU-I-AIJRSTAVL, 2 after-image journals available for use
%RMU-I-AIJRSTMOD, 2 after-image journals marked as "modified"
%RMU-F-AIJENBOVR, enabling AIJ journaling would overwrite an existing journal
%RMU-I-AIJISOFF, after-image journaling has been disabled
$
$! Recover the database and again change the directories from DISK:[HOME]
$! to DISK:[NEW] for the new storage areas, after image journals and row
$! caches whose creation was recorded in the backed up journal file
$! TEST_J1_BCK.AIJ
$
$ RMU/RECOVER/NOLOG/NOTRACE/NOCONFIRM/NOAUTOMATIC-
/OPTIONS=(AREAS=DISK:[HOME]RECOVOPTAREAS.OPT, -
AFTER_JOURNAL=DISK:[HOME]RECOVOPTAIJ.OPT, -
ROW_CACHE=DISK:[HOME]RECOVOPTRCACHE.OPT) -
TEST$SCRATCH:TEST_J1_BCK.AIJ
! Recover Areas Directory Options file for database
! DISK:[HOME]TEST.RDB;1
! Created 22-JUL-2014 09:37:24.29
! Created by DUMP command

RDB$SYSTEM -
/directory=DISK:[HOME] -
/snapshot_directory=DISK:[HOME]

TEST_A1 -
/directory=DISK:[HOME] -
/snapshot_directory=DISK:[HOME]

TEST_A2 -
/directory=DISK:[HOME] -
/snapshot_directory=DISK:[HOME]

TEST_A3 -
/directory=DISK:[NEW] -
/snapshot_directory=DISK:[NEW]

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2 8–13

TEST_A4 -
/directory=DISK:[NEW] -
/snapshot_directory=DISK:[NEW]

! Recover After Journal Directory Options file for database
! DISK:[HOME]TEST.RDB;1
! Created 22-JUL-2014 09:37:24.29
! Created by DUMP command

TEST_J1 -
/directory=DISK:[HOME] -
/backup_directory=DISK:[HOME]

TEST_J2 -
/directory=DISK:[HOME] -
/backup_directory=DISK:[HOME]

TEST_J3 -
/directory=DISK:[NEW] -
/backup_directory=DISK:[NEW]

TEST_J4 -
/directory=DISK:[NEW] -
/backup_directory=DISK:[NEW]

! Recover Row Cache Directory Options file for database
! DISK:[HOME]TEST.RDB;1
! Created 22-JUL-2014 09:37:24.29
! Created by DUMP command

TEST_A1 -
/directory=DISK:[HOME]

TEST_A2 -
/directory=DISK:[HOME]

TEST_A3 -
/directory=DISK:[NEW]

TEST_A4 -
/directory=DISK:[NEW]

%RMU-I-LOGRECDB, recovering database file DISK:[HOME]TEST.RDB;1
%RMU-I-AEDONE, AIJ file sequence 0 roll-forward operations completed
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence number
needed will be 1
%RMU-I-AIJNOENABLD, after-image journaling has not yet been enabled

8.1.9 RMU Unload Record_Definition File Can Include Offset and Length
Comment

The record definition (.rrd) file created by the RMU Unload Record_Definition
command has been enhanced to include a comment containing each field length
and offset within the output record.

This optional information is included when the qualifier /DEBUG_
OPTIONS=OFFSET is included on the command line. The following example
shows the comment string for each field:

8–14 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2

$ RMU/UNLOAD-
/RECORD=(FILE=SALARY_HISTORY)-
/DEBUG_OPTIONS=OFFSET-
PERSONNEL -
SALARY_HISTORY -
SALARY_HISTORY

%RMU-I-DATRECUNL, 729 data records unloaded
$ type SALARY_HISTORY.RRD
DEFINE FIELD EMPLOYEE_ID DATATYPE IS TEXT SIZE IS 5.
DEFINE FIELD SALARY_AMOUNT DATATYPE IS SIGNED LONGWORD SCALE -2.
DEFINE FIELD SALARY_START DATATYPE IS DATE.
DEFINE FIELD SALARY_END DATATYPE IS DATE.
DEFINE RECORD SALARY_HISTORY.

EMPLOYEE_ID . /* Offset = 0 Length = 5 */
SALARY_AMOUNT . /* Offset = 5 Length = 4 */
SALARY_START . /* Offset = 9 Length = 8 */
SALARY_END . /* Offset = 17 Length = 8 */

END SALARY_HISTORY RECORD. /* Total Length = 25 */
$

8.1.10 New RMU/DUMP/BACKUP Enhanced Error Handling Features
When the RMU/DUMP/BACKUP command detected a non-fatal error as it was
reading an Oracle Rdb database backup file, it reported the error but continued
with the dump to determine if there were other errors in the backup file. In
addition, RMU/DUMP/BACKUP returned a success status in the $STATUS
symbol when it finished reading the backup file and had a normal termination,
whether or not it had output errors it detected while reading the backup file.

If the RMU/DUMP/BACKUP command is being used just to verify the validity of
the backup file, reading the entire backup file just to determine if it is valid can
take a long time for large backup files, especially if they are on tape media. In
addition, the success status in the $STATUS symbol when the dump completed
sometimes caused errors output during the dump to be missed or unnecessary
time to be spent searching for any errors in an RMU/DUMP/BACKUP batch job
log file.

To fix these problems, the RMU/DUMP/BACKUP error handling has been
enhanced. The last most serious error detected by RMU/DUMP/BACKUP during
the dump of the backup file will now always be put in the symbol $STATUS which
can be tested when RMU/DUMP/BACKUP completes or aborts by executing the
VMS command "SHOW SYMBOL $STATUS". In addition, a new [NO]EXIT_
ERROR qualifier has been added to the RMU/DUMP/BACKUP command to
optionally abort the dump operation as soon as an error is detected reading the
backup file.

[NO]EXIT_ERROR

NOEXIT_ERROR, the default, keeps the current functionality: the
RMU/DUMP/BACKUP operation will only be aborted if a fatal error is detected
which prevents RMU/DUMP/BACKUP from continuing to dump the database
backup file.

In the following example, the /EXIT_ERROR qualifier is specified with the
RMU/DUMP/BACKUP command. When the first error is detected while reading
the backup file, MF_PERSONNEL.RBF, the dump operation is aborted and the
status of the error which caused the dump to be aborted, RMU-E-BLOCKLOST, is
saved in the $STATUS symbol when the RMU/DUMP/BACKUP command exits.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2 8–15

$ RMU/DUMP/BACKUP/EXIT_ERROR MF_PERSONNEL.RBF
%RMU-I-DMPTXT_163, No dump option selected. Performing read check.
%RMU-E-BLOCKLOST, block of DEVICE:[DIRECTORY]MF_PERSONNEL.RBF; lost due to
unrecoverable error
%RMU-F-FATALERR, fatal error on DUMP_BACKUP
%RMU-F-FTL_DUMP, Fatal error for DUMP operation at 1-MAY-2013 11:32:13.45
$ SHOW SYMBOL $STATUS
$STATUS == "%X12C8821A"

In the following example, the /NOEXIT_ERROR qualifier is first specified
with the RMU/DUMP/BACKUP command. This is the default so the second
RMU/DUMP/BACKUP command, which does not specify the /NOEXIT_ERROR
qualifier, has the same results as the first RMU/DUMP/BACKUP command which
does specify the /NOEXIT_ERROR qualifier. When non-fatal errors are detected
reading the backup file, MF_PERSONNEL.RBF, the dump operation continues
and is not aborted. But now the status of the last most severe error detected
reading the backup file, RMU-E-BLOCKLOST, is saved in the $STATUS symbol
when the RMU/DUMP/BACKUP command finishes reading the backup file, not
a success status. A count is also given of any soft media errors which were not
reported because they did not reoccur when retrying the media read operations.

$ RMU/DUMP/BACKUP/NOEXIT_ERROR MF_PERSONNEL.RBF
%RMU-I-DMPTXT_163, No dump option selected. Performing read check.
%RMU-E-BLOCKLOST, block of DEVICE:[DIRECTORY]MF_PERSONNEL.RBF; lost due to
unrecoverable error
%RMU-I-SOFTRERRS, 5 recoverable media errors occurred reading
DEVICE:[DIRECTORY]MF_PERSONNEL.RBF;
$ SHOW SYMBOL $STATUS
$STATUS == "%X12C8821A"

$ RMU/DUMP/BACKUP MF_PERSONNEL.RBF
%RMU-I-DMPTXT_163, No dump option selected. Performing read check.
%RMU-E-BLOCKLOST, block of DEVICE:[DIRECTORY]MF_PERSONNEL.RBF; lost due to
unrecoverable error
%RMU-I-SOFTRERRS, 5 recoverable media errors occurred reading
DEVICE:[DIRECTORY]MF_PERSONNEL.RBF;
$ SHOW SYMBOL $STATUS
$STATUS == "%X12C8821A"

8.1.11 New REVERSE Attribute for CREATE SEQUENCE Statement and
IDENTITY Clause

This release of Oracle Rdb adds support for a new type of sequence. The
REVERSE clause causes the value returned by NEXTVAL and CURRVAL to
be bit/byte reversed. While the sequence of values computed internally by the
sequence generator are regularly increasing, the values presented through the
CURRVAL and NEXTVAL pseudo columns, and assigned to IDENTITY columns
may not be adjacent. The advantage of such a sequence is scattered I/O when
SORTED or SORTED RANKED indices are defined on such columns. This
scattering of values may reduce I/O contention on nodes containing the new
values generated from a normal sequence.

The new REVERSE keyword can be used in CREATE SEQUENCE, or as part of
the IDENTITY clause of CREATE and ALTER TABLE statements.

The following example shows creating a table with an identity clause.

8–16 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2

SQL> create table T3
cont> (a bigint identity (reverse
cont> increment by 1000000
cont> start with -1000000)
cont> ,rel_id integer);
SQL> insert into T3
cont> select rel_id
cont> from relations
cont> order by 1 fetch
cont> first 10 rows only;
10 rows inserted
SQL>
SQL> select t3.currval from rdb$database;

20369552416178176
1 row selected
SQL>
SQL> table t3 order by a;

A REL_ID
0 2

20369552416178176 12
40739104832356352 6
81478209664712704 4
122118358450569216 8
162956419329425408 3
203279908766482432 7
244236716901138432 5
269389144898142207 1
284665759454461952 9

10 rows selected
SQL>

Usage Notes

• Sequences created using REVERSE generate a full 64 bit value, so columns
should be created as BIGINT. Allocating a target data type that is too small
will result in an integer overflow error as shown in the following example.

SQL> create table T2
cont> (a integer identity (reverse increment by 20)
cont> ,rel_id integer);
cont> insert into T2 select rel_id from relations;
%RDB-E-ARITH_EXCEPT, truncation of a numeric value at runtime
-COSI-F-INTOVF, integer overflow

• The REVERSE clause is incompatible with RANDOMIZE.

• REVERSE sequences are maintained as a normal sequence. RDB$NEXT_
SEQUENCE_VALUE will return the current last value, but not bit/byte
reversed.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2 8–17

9
Enhancements And Changes Provided in

Oracle Rdb Release 7.3.1.1

9.1 Enhancements And Changes Provided in Oracle Rdb Release
7.3.1.1

9.1.1 New LIMIT_TO Qualifier Added to RMU Load Command
This release of Oracle Rdb adds a /LIMIT_TO qualifier to the RMU Load
command.

The LIMIT_TO qualifier defines the maximum number of rows to read from the
source data file. Depending upon the value specified for the SKIP qualifier, this
also controls the number of rows written to the database.

The value of LIMIT_TO may not be zero, and the value of SKIP may not exceed
this limit.

The default is NOLIMIT_TO which indicates that all rows read from the unload
data file can be inserted into the database table, depending on other factors such
as the value of the SKIP qualifier.

The following example shows loading a sample from the EMPLOYEES table
using the LIMIT_TO qualifier.

$ RMU/LOAD -
/LIMIT_TO=80 -
/RECORD=(FILE:EMP_TXT,FORMAT:DELIMIT) -
PERSONNEL_SAMPLE -
EMPLOYEES -
EMP.TXT

DEFINE FIELD EMPLOYEE_ID DATATYPE IS TEXT SIZE IS 5.
DEFINE FIELD LAST_NAME DATATYPE IS TEXT SIZE IS 14.
DEFINE FIELD FIRST_NAME DATATYPE IS TEXT SIZE IS 10.
DEFINE FIELD MIDDLE_INITIAL DATATYPE IS TEXT SIZE IS 1.
DEFINE FIELD ADDRESS_DATA_1 DATATYPE IS TEXT SIZE IS 25.
DEFINE FIELD ADDRESS_DATA_2 DATATYPE IS TEXT SIZE IS 25.
DEFINE FIELD CITY DATATYPE IS TEXT SIZE IS 20.
DEFINE FIELD STATE DATATYPE IS TEXT SIZE IS 2.
DEFINE FIELD POSTAL_CODE DATATYPE IS TEXT SIZE IS 5.
DEFINE FIELD SEX DATATYPE IS TEXT SIZE IS 1.
DEFINE FIELD BIRTHDAY DATATYPE IS TEXT SIZE IS 16.
DEFINE FIELD STATUS_CODE DATATYPE IS TEXT SIZE IS 1.
DEFINE RECORD EMPLOYEES.

EMPLOYEE_ID .
LAST_NAME .
FIRST_NAME .
MIDDLE_INITIAL .
ADDRESS_DATA_1 .
ADDRESS_DATA_2 .
CITY .
STATE .
POSTAL_CODE .

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.1 9–1

SEX .
BIRTHDAY .
STATUS_CODE .

END EMPLOYEES RECORD.
%RMU-I-DATRECREAD, 80 data records read from input file.
%RMU-I-DATRECSTO, 80 data records stored 14-OCT-2013 07:14:03.52.
$

This enhancement has been added in Oracle Rdb Release 7.3.1.1.

9.1.2 New BEFORE and SINCE Qualifiers Added to RMU Load Audit
Bug 17859712

This release of Oracle Rdb adds new qualifiers to RMU Load Audit to allow audit
records to be filtered by timestamp. The qualifiers BEFORE and SINCE can
specify the date/time range which will be extracted from the OpenVMS audit
journal and saved in the target auditing table.

These qualifiers accept the standard OpenVMS date/time specification that
includes special keywords such as YESTERDAY, TODAY and TOMORROW.
These values can be very effective when used with the List_Plan qualifier and
used later when using RMU Load Plan.

If these qualifiers are omitted, then their values default to minimum and
maximum possible date/time values.

This example shows the use of DCL symbols to be used at runtime to provide the
date/time range.

$ RMU/LOAD/AUDIT -
/SINCE=&start_ts -
/BEFORE=&end_ts -
TESTDB AUDIT_RECORDS -
SYS$COMMON:[SYSMGR]SECURITY.AUDIT$JOURNAL

%RMU-I-DATRECREAD, 91 data records read from input file.
%RMU-I-DATRECSTO, 63 data records stored 27-NOV-2013 00:59:33.18.
$

This example uses explicit date and time values to load a specific range of audit
records.

$ RMU/LOAD/AUDIT -
/SINCE=1-JAN-2011 -
/BEFORE="1-NOV-2013 13:00" -
TESTDB AUDIT_RECORDS -
SYS$COMMON:[SYSMGR]SECURITY.AUDIT$JOURNAL

%RMU-I-DATRECREAD, 91 data records read from input file.
%RMU-I-DATRECSTO, 0 data records stored 27-NOV-2013 00:59:33.75.
$

Additionally, RMU/LOAD/PLAN now supports the AUDIT keyword and the
new associated BEFORE and SINCE keywords that correspond to this new
functionality.

$ RMU/LOAD/AUDIT -
/SINCE=YESTERDAY -
/NOEXECUTE -
/LIST_PLAN=SAMPLE.PLAN -
TESTDB AUDIT_RECORDS -
SYS$COMMON:[SYSMGR]SECURITY.AUDIT$JOURNAL

$

9–2 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.1

Later the Plan can be executed and inherit the current value for YESTERDAY.

$ RMU/LOAD/PLAN SAMPLE.PLAN
%RMU-I-PROCPLNFIL, Processing plan file SAMPLE.PLAN.
! Plan created on 28-NOV-2013 by RMU/LOAD.

Plan Name = LOAD_PLAN
Plan Type = LOAD

Plan Parameters:
Database Root File = DISK1:[TESTING]TESTDB.RDB;
Table Name = AUDIT_RECORDS
Input File = SYS$COMMON:[SYSMGR]SECURITY.AUDIT$JOURNAL
Audit = TESTDB

Since = "YESTERDAY"

! Fields = <all>
NoVirtual_Fields
NoMatch_Name
Dialect = SQL99
Transaction_Type = PROTECTED
! Buffers = <default>
! Commit_Every = <never>
Row_Count = 500
! Skip = <none>
! Limit_To = <none>
NoReplace_Rows
NoLog_Commits
NoCorresponding
NoDefer_Index_Updates
Constraints
NoParallel
NoRestricted_Access
NoPlace
! Statistics = <none>
! Trigger_Relations = <not specified>

End Plan Parameters

Executor Parameters:
Executor Name = EXECUTOR_1
! Place_Only = <none>
! Exception_File = <none>
! RUJ Directory = <default>
Communication Buffers = 1

End Executor Parameters
%RMU-I-DATRECREAD, 195 data records read from input file.
%RMU-I-DATRECSTO, 21 data records stored 28-NOV-2013 23:34:50.27.
$

This enhancement has been added in Oracle Rdb Release 7.3.1.1.

9.1.3 New RMU/SHOW/STATISTICS Output File Periodic Buffer Flushes
When a system failure occurred, important diagnostic data could be lost from the
Oracle Rdb RMU/SHOW STATISTICS output files: the binary file used to record
Oracle Rdb database statistics for later replay; the logical area access log file; the
record access dbkey log file; the process deadlock log file; the lock timeout log file;
the OPCOM messages log file; the Hot Standby log file; the online analysis log
file; and the stall messages log file. To minimize the loss of diagnostic data from
these RMU/SHOW STATISTICS output files, periodic buffer data flushes will now
occur if these files are created. These periodic output file data flushes will be the
default. The user will be able to modify the periodic flush interval or specify that
periodic buffer flushes are not to occur.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.1 9–3

The syntax for this new RMU/SHOW STATISTICS qualifier is as follows.

/FLUSH_INTERVAL=seconds
/NOFLUSH_INTERVAL

The default if the new /FLUSH_INTERVAL qualifier is not specified will be a
periodic flush interval of 60 seconds. The minimum flush interval that can be
specified is 0 seconds. The maximum flush interval that can be specified is 3600
seconds (1 hour). Specifying 0 seconds for the flush interval is equivalent to
specifying /NOFLUSH_INTERVAL. If the flush interval is active and less than
the statistics collection interval, to avoid unnecessary buffer flushes the flush
interval will be set to the statistics collection interval, which has a default of 3
seconds and can be set by the existing /TIME qualifier, or by typing an "S" if "Set
rate" is displayed at the bottom of the statistics screen. The currrent collection
interval is displayed following "Rate:" in the statistics screen header.

The first and second command examples below use the default flush interval of 60
seconds. The third and fourth command examples below specify a flush interval
of 10 seconds. Note that the flush interval can be set even if the RMU/SHOW
STATISTICS command does not specify any log or output files. This is because
the TOOLS menu can be used later in the RMU/SHOW STATISTICS session to
create log files for which the flush interval of 60 or 10 will be used.

$ RMU/SHOW STATISTICS MF_PERSONNEL
$ RMU/SHOW STATISTICS/OUTPUT=SHOWSTAT.DAT/DBKEY_LOG=D.LOG MF_PERSONNEL
$ RMU/SHOW STATISTICS/FLUSH_INTERVAL=10 MF_PERSONNEL
$ RMU/SHOW STATISTICS/FLUSH_INTERVAL=10/OUTPUT=SHOWSTAT.DAT/DBKEY_LOG=D.LOG
MF_PERSONNEL

The following command example specifies a statistics collection interval of 12
seconds using the /TIME command qualifier. This is larger than the 10 seconds
specified by the new /FLUSH_INTERVAL qualifier. Since the collection interval
is larger than the flush interval, the collection interval will be used for the flush
interval to avoid excess buffer flushes.

$ RMU/SHOW STATISTICS/FLUSH_INTERVAL=10/TIME=12/OUTPUT=SHOWSTAT.DAT
/DBKEY_LOG=D.LOG MF_PERSONNEL

The following command examples are equivalent and specify that periodic buffer
flushes will not be used for the RMU/SHOW STATISTICS binary output and log
files.

$ RMU/SHOW STATISTICS/NOFLUSH_INTERVAL/OUTPUT=SHOWSTAT.DAT/DBKEY_LOG=D.LOG
MF_PERSONNEL
$ RMU/SHOW STATISTICS/FLUSH_INTERVAL=0/OUTPUT=SHOWSTAT.DAT/DBKEY_LOG=D.LOG
MF_PERSONNEL

This enhancement has been added to Oracle Rdb Release 7.3.1.1.

9.1.4 New Error and Log Messages Added for Segmented String Verification
To verify segmented strings for all Oracle Rdb database tables, the commands
RMU/VERIFY/ALL or RMU/VERIFY/SEGMENTED_STRINGS/LAREAS or
RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=* can be used. To verify
segmented strings for individual tables, the /LAREAS qualifier must be used with
the /SEGMENTED_STRINGS qualifier to specify one or more names of tables to
be verified.

9–4 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.1

There was a problem where, if the /LAREAS qualifier was used with the
/SEGMENTED_STRINGS qualifier, logical area identifier numbers or the
names of logical areas that were not tables could be specified with the /LAREAS
qualifier without an error, even though segmented string data is verified only on
a table-wide basis for a table which contains segmented string columns, including
all table records that may be vertically or horizontally partitioned across multiple
logical areas.

Allowing logical area id numbers or the names of logical areas that were not table
names to be specified could cause confusion or lead the user to falsely assume
that segmented strings contained in these logical areas were being verified.
Therefore, the RMU/VERIFY operation will now be aborted and a new fatal
"%RMU-I-TBLSEGVER" error will be output if the /SEGMENTED_STRINGS
qualifier is specified in the same RMU/VERIFY command as the /LAREAS
qualifier and the /LAREAS qualifier specifies a logical area id or a logical area
name which is not a valid table name.

The following example shows the previous behavior. In the first command,
"RESUMES" is a valid table that contains segmented strings and the segmented
strings are therefore verified. In the second command, RMU/VERIFY detected
that the "NOTATABLE" table did not exist and returned the fatal "%RMU-
F-NOTLAREA" error. In the third command, the logical area id number "95"
was ignored and no segmented string verification took place but the user could
wrongly assume that segmented string data had been verified. In the fourth
command, the index logical area name "SH_EMPLOYEE_ID" was also ignored
so the user could again wrongly assume that segmented string data had been
verified.

$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=RESUMES MF_PERSONNEL
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=NOTATABLE MF_PERSONNEL
%RMU-F-NOTLAREA, "NOTATABLE" is not a valid logical area name or number
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=95 MF_PERSONNEL
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=SH_EMPLOYEE_ID MF_PERSONNEL

The following example shows the new behavior. In the first command,
"RESUMES" is a valid table that contains segmented strings so the segmented
string data is verified as previously. In the second command, a fatal error is
returned as previously but the error is detected earlier and a more specific error
message is output using the new "%RMU-F-INVSEGTBL" fatal error message.
In the third command and the fourth command, the invalid table names are now
detected and the new "%RMU-F-INVSEGTBL" fatal error message is output.

$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=RESUMES MF_PERSONNEL
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=NOTATABLE MF_PERSONNEL
%RMU-F-INVSEGTBL, Invalid table name NOTATABLE specified for segmented string
verification
%RMU-F-FTL_VER, Fatal error for VERIFY operation at 27-JAN-2014 15:09:05.08
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=95 MF_PERSONNEL
%RMU-F-INVSEGTBL, Invalid table name 95 specified for segmented string
verification
%RMU-F-FTL_VER, Fatal error for VERIFY operation at 27-JAN-2014 15:02:39.04
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=SH_EMPLOYEE_ID MF_PERSONNEL
%RMU-F-INVSEGTBL, Invalid table name SH_EMPLOYEE_ID specified for segmented
string verification
%RMU-F-FTL_VER, Fatal error for VERIFY operation at 27-JAN-2014 15:03:42.15

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.1 9–5

A new LOG message has also been added to RMU/VERIFY to list the tables
containing columns defined for segmented string data for which the segmented
string data will be verified. If log messages are activated for the RMU/VERIFY
command, the new log message "%RMU-I-TBLSEGVER" will be output at the
beginning of the verify operation and will be repeated for each table selected for
segmented string data verification. In the first command, only the "RESUMES"
table specified by the /LAREA qualifier is verified. In the second command,
"RMU/VERIFY/ALL" is specified which, by default, verifies all tables in the
database with segmented string columns, including the system tables. Note
that in the second command, most of the log messages that follow the "%RMU-I-
TBLSEGVER" messages have been left out to save space.

$ RMU/VERIFY/LOG/SEGMENTED_STRINGS/LAREAS=RESUMES MF_PERSONNEL
%RMU-I-BGNROOVER, beginning root verification
%RMU-I-ENDROOVER, completed root verification
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RESUMES
%RMU-I-DBBOUND, bound to database "DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1"
%RMU-I-OPENAREA, opened storage area RDB$SYSTEM for protected retrieval
%RMU-I-BGNAIPVER, beginning AIP pages verification
%RMU-I-ENDAIPVER, completed AIP pages verification
%RMU-I-BGNABMSPM, beginning ABM pages verification
%RMU-I-OPENAREA, opened storage area MF_PERS_SEGSTR for protected retrieval
%RMU-I-ENDABMSPM, completed ABM pages verification
%RMU-I-BSGPGLARE, beginning verification of RESUMES logical area

as part of EMP_INFO storage area
%RMU-I-OPENAREA, opened storage area EMP_INFO for protected retrieval
%RMU-I-ESGPGLARE, completed verification of RESUMES logical area

as part of EMP_INFO storage area
%RMU-I-CLOSAREAS, releasing protected retrieval lock on all storage areas
%RMU-S-ENDVERIFY, elapsed time for verification : 0 00:00:00.80
$ RMU/VERIFY/ALL/LOG MF_PERSONNEL
%RMU-I-BGNROOVER, beginning root verification
%RMU-I-ENDROOVER, completed root verification
%RMU-I-TBLSEGVER, Segmented strings will be verified for table CANDIDATES
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RESUMES
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$COLLATIONS
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$CONSTRAINTS
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$DATABASE
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$FIELDS
%RMU-I-TBLSEGVER, Segmented strings will be verified for table
RDB$FIELD_VERSIONS
%RMU-I-TBLSEGVER, Segmented strings will be verified for table
RDB$INDEX_SEGMENTS
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$INDICES
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$MODULES
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$PARAMETERS
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$PRIVILEGES
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$PROFILES
%RMU-I-TBLSEGVER, Segmented strings will be verified for table
RDB$QUERY_OUTLINES
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$RELATIONS
%RMU-I-TBLSEGVER, Segmented strings will be verified for table
RDB$RELATION_CONSTRAINTS
%RMU-I-TBLSEGVER, Segmented strings will be verified for table
RDB$RELATION_FIELDS
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$ROUTINES
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$SEQUENCES
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$STORAGE_MAPS
%RMU-I-TBLSEGVER, Segmented strings will be verified for table
RDB$STORAGE_MAP_AREAS
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$TRIGGERS
%RMU-I-TBLSEGVER, Segmented strings will be verified for table
RDB$TRIGGER_ACTIONS

9–6 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.1

%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$TYPES
%RMU-I-TBLSEGVER, Segmented strings will be verified for table RDB$TYPE_FIELDS
%RMU-I-BGNVCONST, beginning verification of constraints for database
DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
%RMU-I-ENDVCONST, completed verification of constraints for database
DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
%RMU-I-DBBOUND, bound to database "DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1"
$

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.1 9–7

10
Enhancements And Changes Provided in

Oracle Rdb Release 7.3.1.0

10.1 Enhancements And Changes Provided in Oracle Rdb Release
7.3.1.0

10.1.1 Changes to Default and Limits Behavior in Oracle Rdb
This release of Oracle Rdb changes the following default behavior.

CREATE DATABASE Statement
These new defaults will be used when creating a database.

* The default PAGE SIZE changes from 2 to 4 blocks

* The default BUFFER SIZE changes from 3 pages to 4 pages

* The default NUMBER OF BUFFERS changes from 20 to 250 buffers

* The default NUMBER OF RECOVERY BUFFERS changes from 20 to 250
buffers

* The default for SECURITY CHECKING clause is now (PERSONA IS
ENABLED)

* The default for SYSTEM INDEX is now (TYPE IS SORTED RANKED,
COMPRESSION IS ENABLED)

The SYSTEM INDEX changes are applied to all new databases created with
CREATE DATABASE statement and IMPORT DATABASE statement. Older
databases converted using RMU/CONVERT or RMU/RESTORE (with the implicit
Convert action) will also result in the new SYSTEM INDEX default.

The other new defaults do not affect databases created in Rdb V7.2 (or
older versions) that are converted to Oracle Rdb V7.3.1 (or later) using
RMU/CONVERT or RMU/RESTORE. In most cases, recreating databases using
the SQL IMPORT DATABASE statement using an interchange file (.rbr) from
older versions of Oracle Rdb will preserve the settings from the source database.

Interchanges files (.rbr) created with Oracle Rdb SQL EXPORT from V7.2.4 and
later do export the PAGE SIZE of the database. However, older versions of Rdb
did not export the PAGE SIZE if it was 2 pages (the old default). If you are using
older interchange files then the IMPORT DATABASE statement should include
PAGE SIZE definitions for the database and each storage area that used PAGE
SIZE 2. Tools such as RMU/EXTRACT/ITEM=IMPORT can be used to create a
script for this purpose.

These new limits are now enforced by Oracle Rdb.

* The maximum BUFFER SIZE can now be specified up to 256 blocks.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–1

Previously, the maximum allowed database buffer size was 128 blocks. Be
aware that using larger database buffer sizes will require additional virtual
memory.

* The minimum NUMBER OF USERS is now 5.

In prior versions of Oracle Rdb, the minimum number of allowed database
users was one (1). This minimum has been increased to five to allow for
various optional database servers (such as the ABS or RCS or ALS) to access
the database.

When RMU Convert or SQL IMPORT DATABASE are used to create
databases in Rdb Release 7.3, they will automatically establish a new
minimum if the one defined for the original database was less than 5 users.

ALTER DATABASE Statement
When adding a new storage area to a database, that new storage area will assume
a default PAGE SIZE of 4 blocks. This may be problematic if the database has a
small (for instance the default) BUFFER SIZE from older database versions.

In this example, a database created under Oracle Rdb Release 7.2.5.3 was
converted to Rdb Release 7.3.1.0.

SQL> alter database filename ABC add storage area XYZ;
SQL> attach ’filename ABC’;
SQL> show storage area XYZ

XYZ
Access is: Read write
Page Format: Uniform
Page Size: 4 blocks
Area File: USER2:[TESTING]XYZ.RDA;1
Area Allocation: 700 pages
Extent: Enabled
Area Extent Minimum: 99 pages
Area Extent Maximum: 9999 pages
Area Extent Percent: 20 percent
Snapshot File: USER2:[TESTING]XYZ.SNP;1
Snapshot Allocation: 100 pages
Snapshot Extent Minimum: 99 pages
Snapshot Extent Maximum: 9999 pages
Snapshot Extent Percent: 20 percent
Locking is Row Level
No Cache Associated with Storage Area

No database objects use Storage Area XYZ
SQL>

The problem lies in the fact that the current BUFFER SIZE is only 6 blocks (see
the SHOW DATABASE output below). This would mean that I/O to the new
storage area would only be adding one page to the buffer, with over 33% of the
buffer wasted.

SQL> show database rdb$dbhandle
Default alias:

Oracle Rdb database in file ABC
Multischema mode is disabled
Number of users: 50
Number of nodes: 16
Buffer Size (blocks/buffer): 6
Number of Buffers: 20
Number of Recovery Buffers: 20

.

.

.

10–2 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

Oracle recommends that an explicit PAGE SIZE clause be used when defining a
new storage area.

CREATE INDEX Statement
These new defaults will be used when creating an index.

* The default NODE SIZE for SORTED RANKED and unique SORTED indices
is now chosen to be large enough to fill the free space in the new logical area.
In prior versions, a smaller NODE SIZE was chosen based on the index key
length. However, these small nodes left unused space on the database pages
and so were wasteful of disk space and virtual memory (when in buffers).

No changes were made to the default node size for SORTED indices with
duplicates. In this case, the smaller duplicate nodes may fill the unused space
on the page.

* The default PERCENT FILL changes from 70% to 85%

These changes do not affect indices created in Rdb V7.2 (or older versions) when
the database is converted to Oracle Rdb Release 7.3.1 using RMU/CONVERT or
RMU/RESTORE.

Importing a database using the IMPORT DATABASE statement will fix up the
metadata for the PERCENT FILL and NODE SIZE so that the output from
SHOW INDEX will provide more information than in prior versions.

Logical Name RDMS$BIND_WORK_VM
The Oracle Rdb query optimizer might make use of temporary virtual memory
(VM) during query processing. This memory is used to cache index keys during
zig-zag match strategy and dbkey lists during temporary-relation processing (not
related to the SQL temporary table feature). In either case, the virtual memory
size defined by the logical name RDMS$BIND_WORK_VM is used for each buffer
which might overflow to a temporary disk file (located using the RDMS$BIND_
WORK_FILE logical name).

With this release the new default has increased from 10,000 to 100,000 bytes.
This change makes it more likely that queries can complete entirely in VM rather
than opening and using a small disk file.

Logical Name RDMS$BIND_MAX_QSORT_COUNT
When the number of rows is relatively small, the Oracle Rdb query processor
can avoid using SORT32 (which has a higher setup cost) by using an in-memory
Quick Sort. In prior versions, the default threshold was 63 rows. This release
of Oracle Rdb defaults to 5,000 rows. The larger threshold should allow more
sorting to consume less resources. This threshold can be changed (for instance
to return to the prior default of 63) using the logical name RDMS$BIND_MAX_
QSORT_COUNT.

10.1.2 New /ERROR_LIMIT Qualifier Added as the Default to RMU/VERIFY
New default functionality has been added to RMU/VERIFY to limit the number
of diagnostics output when verifying an Oracle Rdb database. By default,
RMU/VERIFY will now limit the number of diagnostic messages output by
RMU/VERIFY to 100. If this limit is exceeded, the RMU/VERIFY will terminate
with a warning messsage.

%RMU-W-MAXVERERR, Maximum error limit 100 exceeded - ending verification

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–3

To disable this behavior and have no limit on the number of diagnostic messages
output by the verification, /NOERROR_LIMIT must be specified on the command
line.

RMU/VERIFY/ALL/NOERROR_LIMIT mf_personnel

To override the default of 100, the user can specify a numeric value for the
/ERROR_LIMIT between 1 and 2147483647.

RMU/VERIFY/ALL/ERROR_LIMIT=50 mf_personnel

If /ERROR_LIMIT is specified without a value, the default limit of 100 diagnostics
will be used.

RMU/VERIFY/ALL/ERROR_LIMIT mf_personnel

The /ERROR_LIMIT does not include any logging messages put out when the
/LOG qualifier is used with RMU/VERIFY. It only includes diagnostic messages
which are defined as messages of any severity which are not logging messages put
out when the /LOG qualifier is specified. The %RMU-W-MAXVERERR message is
not included in the /ERROR_LIMIT count but is output once the /ERROR_LIMIT
in force is exceeded in place of the diagnostic message that would have exceeded
the error limit.

We have done everything we can to make the /ERROR_LIMIT count as accurate
as possible but related messages output together in one output operation may
be counted as one message in a limited number of cases. Therefore, we do
not guarantee absolute accuracy in the /ERROR_LIMIT count in all cases but
consider it as an acceptably accurate way to limit the potentially large number of
diagnostics that can be output by the RMU/VERIFY of a database.

The syntax for this qualifier is as follows:

/[NO]ERROR_LIMIT[=n]

"n" is a positive numeric value between 1 and 2147483647.

In the following example, the RMU/VERIFY of a database completes normally
with 6 diagnostics since the default error limit of 100 is not exceeded.

$ rmu/verify/all mf_personnel
%RMU-W-PAGCKSBAD, area EMP_INFO, page 2

contains an invalid checksum
expected: A77B3D6D, found: A7713D6D

%RMU-W-PAGLIXFRS, area EMP_INFO, page 2
line index entry 15 maps free space at offset 00000106 (hex)

%RMU-W-PAGLIXSML, area EMP_INFO, page 2
line index entry 19, length too small
expected at least 2, found: 0

%RMU-W-PAGLIXSML, area EMP_INFO, page 2
line index entry 20, length too small
expected at least 2, found: 0

%RMU-W-PAGLIXSML, area EMP_INFO, page 2
line index entry 21, length too small
expected at least 2, found: 0

%RMU-W-PAGLIXSML, area EMP_INFO, page 2
line index entry 22, length too small
expected at least 2, found: 0

$

10–4 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

In the following example, the RMU/VERIFY is of the same database as in
the previous example but an error limit of 5 diagnostic messages is specified.
Therefore, 5 diagnostic messages are output and instead of the 6th diagnostic
message being output, the %RMU-W-MAXVERERR is output and the database
verify terminates.

$ rmu/verify/all/error_limit=5 mf_personnel
%RMU-W-PAGCKSBAD, area EMP_INFO, page 2

contains an invalid checksum
expected: A77B3D6D, found: A7713D6D

%RMU-W-PAGLIXFRS, area EMP_INFO, page 2
line index entry 15 maps free space at offset 00000106 (hex)

%RMU-W-PAGLIXSML, area EMP_INFO, page 2
line index entry 19, length too small
expected at least 2, found: 0

%RMU-W-PAGLIXSML, area EMP_INFO, page 2
line index entry 20, length too small
expected at least 2, found: 0

%RMU-W-PAGLIXSML, area EMP_INFO, page 2
line index entry 21, length too small
expected at least 2, found: 0

%RMU-W-MAXVERERR, Maxium error limit 5 exceeded - ending verification

10.1.3 RMU /VERIFY Root Displays the Corrupt Page Table Entries
Bug 870984

In previous releases of Oracle Rdb, the command RMU/VERIFY ROOT did
not show any Corrupt Page Table (CPT) entries even when they existed.
The commands RMU/SHOW CORRUPT, RMU/DUMP/HEAD=CORRUPT and
RMU/VERIFY/ALL would show them.

A new feature has been added to RMU/VERIFY ROOT so that it now displays the
CPT entries.

The following example shows that RMU/VERIFY/ROOT now displays the corrupt
page entries in the database corrupt page table. The RMU/SHOW CORRUPT
command is first executed to display the corrupt page entries in the corrupt page
table for the PERSONNEL database. When the RMU/VERIFY/ROOT command
is then executed it outputs a message for each corrupt page entry in the corrupt
page table. This is the same message output by the RMU/VERIFY/ALL command.

$ RMU/SHOW CORRUPT PERSONNEL
*--
* Oracle Rdb V7.3-100 1-FEB-2013 16:41:40.77
*
* Dump of Corrupt Page Table
* Database: DEVICE:[DIRECTORY]PERSONNEL.RDB;2
*
*--
Entries for storage area RDB$SYSTEM

Page 300
- AIJ recovery sequence number is -1
- Live area ID number is 1
- Consistency transaction sequence number is 0
- State of page is: corrupt

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–5

*--
* Oracle Rdb V7.3-100 1-FEB-2013 16:41:40.77
*
* Dump of Storage Area State Information
* Database: DEVICE:[DIRECTORY]PERSONNEL.RDB;2
*
*--

All storage areas are consistent.

$ RMU/VERIFY/ROOT/LOG PERSONNEL
%RMU-I-BGNROOVER, beginning root verification
%RMU-I-ENDROOVER, completed root verification
%RMU-I-DBBOUND, bound to database "DEVICE:[DIRECTORY]PERSONNEL.RDB;2"
%RMU-I-OPENAREA, opened storage area DEVICE:[DIRECTORY]PERSONNEL.RDB;2 for protected retrieval
%RMU-I-BGNAIPVER, beginning AIP pages verification
%RMU-I-ENDAIPVER, completed AIP pages verification
%RMU-I-BGNABMSPM, beginning ABM pages verification
%RMU-I-ENDABMSPM, completed ABM pages verification
%RMU-E-CORRUPTPG, Page 300 in area DEVICE:[DIRECTORY]PERSONNEL.RDB;2 is marked as corrupt.
%RMU-I-CLOSAREAS, releasing protected retrieval lock on all storage areas
%RMU-S-ENDVERIFY, elapsed time for verification : 0 00:00:00.49
$

10.1.4 DECLARE LOCAL TEMPORARY TABLE Supports COMMENT IS Clause
With this release of Oracle Rdb, the DECLARE LOCAL TEMPORARY TABLE
statement now supports the COMMENT IS clause. This comment is not stored
by Rdb but can be used to document the DECLARE statement when it appears in
a CREATE MODULE statement or when used in Interactive SQL scripts.

The following example shows the placement of the clause.

SQL> declare local temporary table module.STBL
cont> (a int)
cont> on commit preserve rows
cont> comment is ’Test for local temporary table’
cont> large memory is enabled
cont> ;

For further details please refer to the Oracle Rdb SQL Reference Manual.

10.1.5 Temporary Tables Now Support LARGE MEMORY Option
With this release of Oracle Rdb, the DECLARE LOCAL TEMPORARY TABLE
statement, the CREATE GLOBAL TEMPORARY TABLE statement, and the
CREATE LOCAL TEMPORARY TABLE statement all support the use of LARGE
MEMORY on OpenVMS.

A new LARGE MEMORY IS { ENABLED | DISABLED } clause has been added
to these statements so that the temporary table virtual memory now resides in 64
bit memory. This allows much larger temporary tables than in previous releases
of Oracle Rdb.

The following example shows the placement of the clause.

SQL> create local temporary table LTBL
cont> (a int)
cont> on commit preserve rows
cont> comment is ’Test for local temporary table’
cont> large memory is enabled
cont> ;
SQL> show table (column) LTBL;
Information for table LTBL

10–6 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

A local temporary table.
On commit Preserve rows

Large Memory: Enabled

Columns for table LTBL:
Column Name Data Type Domain
----------- --------- ------
A INTEGER

SQL>

Additionally, the ALTER TABLE statement has been enhanced to enable (or
disable) this feature on existing temporary table definitions. This clause is not
permitted for information on base tables.

For further details please refer to the Oracle SQL Reference Manual.

10.1.6 COUNT Now Returns BIGINT Result
The SQL aggregate function COUNT now returns BIGINT (aka 64 bit values)
in this release of Oracle Rdb (Release 7.3.1.0). This change has been made to
accommodate large tables and result sets.

The side effects of this change that may be visible are:

• Wider column output in interactive SQL for queries that perform SELECT
COUNT(*), COUNT(DISTINCT expression) and COUNT(expression).

• COMPUTED BY and AUTOMATIC columns will now be displayed as BIGINT
type because of an expression that uses a COUNT function.

• SQLDA data type change for COUNT expressions.

In general, this change is backward compatible with existing applications. The
computed BIGINT value will automatically be converted to INTEGER for older
SQL precompiler or SQL module language applications.

10.1.7 Aggregate Functions Now Use BIGINT Counters
COUNT and related aggregate functions AVG, VARIANCE, and STDDEV all
process counters in BIGINT registers. This allows Rdb to process aggregation
across much larger row sets than in previous releases.

With this release of Oracle Rdb, the COUNT aggregate function will return
BIGINT data type results. In prior releases, an INTEGER type was the result.
Applications that create COMPUTED BY or AUTOMATIC columns may notice
that the data type of such columns changed to BIGINT.

Note

Oracle Rdb will implicitly convert internal results to INTEGER if the
target data type in the application has not changed.

10.1.8 /[NO]KEY_VALUES Qualifier Added to RMU/VERIFY/INDEX
A new /KEY_VALUES qualifier has been added to the Oracle Rdb RMU/VERIFY
command for verifying the integrity of Rdb databases. The /KEY_VALUES
qualifier verifies the key field values contained in a sorted, sorted ranked or
hashed index against the key field values in the matching table row to make
sure the key field values contained in the index match the field values in the
table. This qualifier can only be specified if indexes are being verified explicitly
as with the RMU/VERIFY/INDEX command or if indexes are being verified by

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–7

default such as with the RMU/VERIFY/ALL command. Key field values will be
verified for all indexes or a specified list of one or more indexes. Diagnostic error
messages will be put out if the index key field value does not match the table row
key field value, if a DBKEY contained in the index node or hash bucket does not
match the DBKEY of a table row, or if the DBKEY of a table row is not contained
in the index node or hash bucket. Indexes with one key field or multiple key
fields can be verified using the /KEY_VALUES qualifier.

The /KEY_VALUES qualifier will ignore index fields that have a collating
sequence or are of type character varying. The character encoding for the
collating sequence prevents a byte by byte comparison with the column row
values. The key encoding for character varying pads with spaces so the precise
length cannot be compared with the column row values. For these index fields,
a warning message will be output and a comparison with the column row values
will not be done.

The syntax for this new qualifier is as follows -

/[NO]KEY_VALUES

Note that /KEY_VALUES is not the default and must be specified.

The following example shows the error message put out if the index key field
value in the index structure does not match the key field value in the table row.
The DBKEY pointer to the index node or hash bucket that contains the row
DBKEY is output as well as the table row DBKEY.

$ RMU/VERIFY/INDEX=JH_EMPLOYEE_ID/KEY_VALUES MF_PERSONNEL
%RMU-E-BADIDXFLD, Index JH_EMPLOYEE_ID key field EMPLOYEE_ID value at dbkey
93:810:3 does not match stored value for table JOB_HISTORY at dbkey 90:289:5 .

The following example shows the error message put out if the key field value(s)
returned from index only retrieval of the key fields do not match on row DBKEY
with the key fields returned sequentially from the table row. Because the
retrieval is out of sequence, the key field values cannot be compared.

$ RMU/VERIFY/INDEX/KEY_VALUES MF_PERSONNEL
%RMU-E-BADIDXDBK, Index JH_EMPLOYEE_ID dbkey 91:413:3 does not match
table JOB_HISTORY row dbkey 90:200:4 .

The following example shows the error message put out if the table contains a
DBKEY pointing to a table row that is not in the index.

$ RMU/VERIFY/INDEX/KEY_VALUES/ERROR_LIMIT=200 MF_PERSONNEL
%RMU-E-NOTIDXDBK, Table COLLEGES row dbkey 68:2:1 is not in index
COLL_COLLEGE_CODE .

The following example shows the error message put out if the index contains a
DBKEY pointing to a table row that is not in the table.

$ RMU/VERIFY/INDEX/KEY_VALUES/ERROR=200 MF_PERSONNEL
%RMU-E-NOTTABDBK, Index COLL_COLLEGE_CODE dbkey 68:2:1 is not in table
COLLEGES .

The following example shows that a warning message is put out for index key
fields that have a collating sequence or that are of type character varying. These
index fields cannot be compared with row values using the /KEY_VALUES
qualifier.

10–8 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

$ RMU/VERIFY/INDEX/KEY_VALUES ABC.RDB
%RMU-W-NOTTYPNDX, Index MANUFACTURING_INDEX field MANUFACTURER_NAME cannot
be verified with the row value in table MANUFACTURING;
reason - COLLATING SEQUENCE.
$ RMU/VERIFY/INDEX/KEY_VALUES DBASE_INDEX.RDB
%RMU-W-NOTTYPNDX, Index FORECAST_HASH field PART_NO cannot be verified with
the row value in table FORECAST_VOLUME; reason - CHARACTER VARYING.

10.1.9 The /LOCK_TIMEOUT Qualifier Now Allows the Database Default
For the Oracle Rdb RMU commands RMU/BACKUP/ONLINE,
RMU/COPY/ONLINE, and RMU/BACKUP/AFTER/QUIET_POINT, the /LOCK_
TIMEOUT qualifier can be specified. Previously the /LOCK_TIMEOUT qualifier
required a value, the maximum time in seconds to wait for acquiring the database
QUIET POINT and other locks used for online database access. If "/LOCK_
TIMEOUT = n" was not specified, RMU would wait indefinitely to acquire the
database lock it needed.

Now the /LOCK_TIMEOUT qualifier can be specified without a value. In
this case, the default lock timeout value specified for the database will be
used. Specifically, the default lock timeout value used will be the value of the
logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL if it has been specified,
otherwise the "LOCK TIMEOUT INTERVAL" specified by the SQL CREATE
DATABASE or ALTER DATABASE command will be used. If neither value has
been specified, the value used will be the maximum possible lock timeout value
which can be specified for an Oracle Rdb database.

The new syntax for this qualifier is as follows -

/LOCK_TIMEOUT [= n]

Note that /LOCK_TIMEOUT is not the default and must be specified. The
default, if /LOCK_TIMEOUT is not specified, continues to be to wait indefinitely
to acquire the QUIET POINT or other database locks requested by RMU.

The following example shows the different RMU commands which accept the
/LOCK_TIMEOUT qualifier. In the first command, the specified lock timeout
value of 100 seconds will be used. In the other commands, since a lock timeout
value is not specified, the default database lock timeout value described above
will now be used.

$ RMU/BACKUP/ONLINE/LOCK_TIMEOUT=100/NOLOG MF_PERSONNEL MFP.RBF
$ RMU/BACKUP/ONLINE/LOCK_TIMEOUT/NOLOG MF_PERSONNEL MFP.RBF
$ RMU/COPY/ONLINE/LOCK_TIMEOUT/ROOT=DISK:[DIRECTORY]MF_PERSONNEL-
/NOAFTER/NOLOG MF_PERSONNEL

$ RMU/BACKUP/AFTER/NOLOG/QUIET_POINT/LOCK_TIMEOUT -
DISK:[DIRECTORY]MF_PERSONNEL MFP_AIJ_1

The following example shows that the PLAN file used with the RMU PARALLEL
BACKUP command will accept either the specified lock timeout value of 100
seconds or will now accept the default database lock timeout value described
above.

$ RMU/BACKUP/PARALLEL=EXEC=1/DISK=WRITER=2/LIST=TMP.PLAN/ONLINE-
/LOCK_TIMEOUT=100 MF_PERSONNEL DISK:[DIRECTORY]MFP,DISK:[DIRECTORY]

$ SEAR TMP.PLAN LOCK_TIMEOUT
Lock_Timeout = 100

$ RMU/BACKUP/PARALLEL=EXEC=1/DISK=WRITER=2/LIST=TMP.PLAN/ONLINE-
/LOCK_TIMEOUT MF_PERSONNEL DISK:[DIRECTORY]MFP,DISK:[DIRECTORY]

$ SEAR TMP.PLAN LOCK_TIMEOUT
Lock_Timeout

$ RMU/BACKUP/PLAN TMP.PLAN

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–9

10.1.10 Compression of AIJ Backup Files for Automatic AIJ Backups
A new feature has been added to allow compression of AIJ files during automatic
AIJ backups.

Also backups of after image journals using /Format=Old_File can be compressed
using the ZLIB compression method.

To set the compression level, the RMU SET command has been extended:

$ RMU /SET AFTER_JOURNAL /BACKUPS=(...,[[NO]COMPRESSION[=ZLIB[=n]]])
default is NOCOMPRESSION
n = ZLIB compression level,

default is 6, minimum is 1, maximum is 9

The RMU recover command has been enhanced to automatically decompress AIJ
backup files in the ’Old_file’ format which have been compressed using the ZLIB
compression method.

10.1.11 Global Statistics Sections for Better Performance
On systems with many CPUs, updating database statistics from many application
processes causes memory cache invalidation and therefore prolongs the update of
the statistics data.

With the change in this release of Oracle Rdb, the RDM Monitor creates 16 global
statistic sections for systems with 16 or more CPUs. Application processes attach
to a statistics section based on the modulo 16 of their process ID value. This
should reduce the coincidence that two or more processes use the same global
section from different processors and thus cause memory cache invalidation when
updating statistics data.

The default used for RAD (Resource Allocation Domain) systems still remains
(see below).

The use of multiple global statistic sections can be overridden with the following
system logical name:

$ DEFINE /SYSTEM RDM$BIND_MONITOR_GLOBAL_STATS_SECTIONS n
n = 0 - always use statistics in the database’s shared memory section
n = 1..16 - use statistics in separate global sections

with n the number of global sections being used
If n is equal -1 or if the logical is not defined, use the default (see
below).

By default, the statistics area in the database’s shared memory section is used
unless a system has more than one RAD with memory or the system has 16 or
more CPUs. In the case of more than one RAD with memory, one global statistics
section is created per RAD with memory. In the case of 16 or more CPUs, 16
global statistics sections are created. The more than one RAD with memory case
has precedence over the 16 or more CPUs case.

10.1.12 RMU/SET AUDIT Supports Wildcard Table and Column Names
Bug 5865199

In prior versions of Oracle Rdb, the RMU Set Audit command did not allow
wildcards to be used to specify tables or column names for the DACCESS
qualifier. A database administrator was required to enumerate all tables and
columns to be audited. Further, if a table was specified as * then this was ignored
by RMU.

10–10 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

With this release, Rdb RMU Set Audit has been enhanced to provide more flexible
naming conventions for tables and columns.

• TABLE=* and COLUMN=*.* are now accepted to specify all tables or all
columns of all tables.

• Table and column names may also contain OpenVMS style wildcards "*" and
"%". For instance, in the PERSONNEL database, JOB* will match both the
JOBS and JOB_HISTORY table and *HISTORY.EMPLOYEE_ID will match
all EMPLOYEE_ID columns in any table ending in HISTORY which includes
both the JOB_HISTORY and SALARY_HISTORY tables.

The following example shows the simplified commands for enabling auditing for
important fields in the PERSONNEL database.

$ rmu/set audit-
/enable=daccess=column=(-

*.employee_id,-
*_history.*end,-
*_history.*start)-

/privileges=(insert,select,update,delete) personnel
$
$ rmu/show audit/daccess=(DATABASE,TABLE,COLUMN) personnel
Security auditing STOPPED for:

DACCESS (disabled)
DATABASE

(NONE)
COLUMN : DEGREES.EMPLOYEE_ID

(SELECT,INSERT,UPDATE,DELETE)
COLUMN : EMPLOYEES.EMPLOYEE_ID

(SELECT,INSERT,UPDATE,DELETE)
COLUMN : JOB_HISTORY.EMPLOYEE_ID

(SELECT,INSERT,UPDATE,DELETE)
COLUMN : JOB_HISTORY.JOB_START

(SELECT,INSERT,UPDATE,DELETE)
COLUMN : JOB_HISTORY.JOB_END

(SELECT,INSERT,UPDATE,DELETE)
COLUMN : RESUMES.EMPLOYEE_ID

(SELECT,INSERT,UPDATE,DELETE)
COLUMN : SALARY_HISTORY.EMPLOYEE_ID

(SELECT,INSERT,UPDATE,DELETE)
COLUMN : SALARY_HISTORY.SALARY_START

(SELECT,INSERT,UPDATE,DELETE)
COLUMN : SALARY_HISTORY.SALARY_END

(SELECT,INSERT,UPDATE,DELETE)

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–11

Security alarms STOPPED for:
DACCESS (disabled)

DATABASE
(NONE)

COLUMN : DEGREES.EMPLOYEE_ID
(SELECT,INSERT,UPDATE,DELETE)

COLUMN : EMPLOYEES.EMPLOYEE_ID
(SELECT,INSERT,UPDATE,DELETE)

COLUMN : JOB_HISTORY.EMPLOYEE_ID
(SELECT,INSERT,UPDATE,DELETE)

COLUMN : JOB_HISTORY.JOB_START
(SELECT,INSERT,UPDATE,DELETE)

COLUMN : JOB_HISTORY.JOB_END
(SELECT,INSERT,UPDATE,DELETE)

COLUMN : RESUMES.EMPLOYEE_ID
(SELECT,INSERT,UPDATE,DELETE)

COLUMN : SALARY_HISTORY.EMPLOYEE_ID
(SELECT,INSERT,UPDATE,DELETE)

COLUMN : SALARY_HISTORY.SALARY_START
(SELECT,INSERT,UPDATE,DELETE)

COLUMN : SALARY_HISTORY.SALARY_END
(SELECT,INSERT,UPDATE,DELETE)

Usage Notes
When using wildcard characters with /ENABLE=DACCESS or
/DISABLE=DACCESS option, only user defined objects will be selected.

TABLE - only user defined tables will be matched by the wildcard search.
Views, system tables and special tables created by OCI Services for Rdb will
not be returned. For excluded tables, you must specify their full name on the
RMU command line.

SEQUENCE - only user defined sequences will be matched by the wildcard
search. This includes sequences implicity created for IDENTITY columns.
For excluded sequences, you must specify their full name on the RMU
command line.

MODULE - only user defined modules will be matched by the wildcard search.
For excluded modules, you must specify their full name on the RMU command
line.

ROUTINE - only user defined routines will be matched by the wildcard
search. Any routine defined in a module with USAGE IS LOCAL will be
excluded from this matching. Such routines can only be called from within
the module itself and so additional auditing is not required. For excluded
routines, you must specify their full name on the RMU command line.

VIEW - only user defined views will be matched by the wildcard search. Base
tables, system views, and special views created by OCI Services for Rdb will
not be returned. For excluded views, you must specify their full name on the
RMU command line.

10.1.13 RMU/BACKUP Database Root Verification Performance Enhancement
By default, RMU/BACKUP verifies the database root at the start of the backup
before backing up an Oracle Rdb database. If the database root is invalid, the
error diagnostics from the verification are output and the backup is terminated.
This is to prevent backing up a corrupt database. To not verify the database
root, the user must specify /NODATABASE_VERIFICATION. As part of this
verification, all live and snapshot database storage areas were opened to verify
the area prologue block and the area maximum page number and then closed.

10–12 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

Later, the storage areas were again opened and closed a second time to do the
actual backup of the data in each storage area.

To improve the performance of RMU/BACKUP, the extra open and close of the
live and snapshot database storage areas just to verify the database root has
been eliminated. The same verification is still done but the storage areas are
now only opened and closed once during the backup. Note that /DATABASE_
VERIFICATION remains the default for RMU/BACKUP.

As part of this change, the following new syntax has been added to the
RMU/BACKUP/PARALLEL *.PLAN file.

[No]Database_Verification

The existing command line qualifier "/[NO]DATABASE_VERIFICATION" is
used to set the new "[No]Database_Verification" option in the initial *.PLAN
file created from the RMU/BACKUP command line. The *.PLAN file can
then be edited to change this option if desired. The default is "/DATABASE_
VERIFICATION".

The following example shows some of the verification diagnostics that can be
output when the database root is verified by RMU/BACKUP.

$ RMU/BACKUP/NOLOG MF_PERSONNEL MFP.RBF
%RMU-E-BADMAXPNO, unable to read last page (1052) in file
DEVICE:[DIRECTORY]DEPARTMENTS.RDA;1
%RMU-F-ABORTVER, fatal error encountered; aborting verification
%RMU-F-FATALERR, fatal error on BACKUP
%RMU-F-FTL_BCK, Fatal error for BACKUP operation at 11-MAY-2009
11:16:59.46
$ RMU/BACKUP/NOQUIET/ONLINE/NOLOG MF_PERSONNEL MFP
%RMU-W-BADPROID, DEVICE:[DIRECTORY]EMPIDS_MID.SNP;1
file contains a bad identifier
Expected "RDMSDATA", found "NOTRDBDB"
%RMU-W-INVALFILE, inconsistent database file
DEVICE:[DIRECTORY]EMPIDS_MID.SNP;1
%RMU-F-ABORTVER, fatal error encountered; aborting verification
%RMU-F-FATALERR, fatal error on BACKUP
%RMU-F-FTL_BCK, Fatal error for BACKUP operation at 11-MAY-2009
11:11:25.68

The following example shows that the RMU/BACKUP *.PLAN file "[No]Database_
Verification" option is set based on the "/DATABASE_VERIFICATION" qualifier
on the RMU/BACKUP command line. The default is "Database_Verification" so
unless "/NODATABASE_VERIFICATION" is specified, the "Database_Verification"
option will be set in the *.PLAN file.

$ RMU/BACKUP/PARALLEL=EXEC=1/DISK=WRITER=2/LIST=TMP.PLAN/ONLINE-
MF_PERSONNEL DISK:[DIRECTORY1]MFP,DISK:[DIRECTORY2]

$ SEAR TMP.PLAN DATABASE_VERIFICATION
Database_Verification

$ RMU/BACKUP/PARALLEL=EXEC=1/DISK=WRITER=2/LIST=TMP.PLAN/ONLINE-
/DATABASE_VERIFICATION MF_PERSONNEL DISK:[DIRECTORY1]MFP,-
DISK:[DIRECTORY2]

$ SEAR TMP.PLAN DATABASE_VERIFICATION
Database_Verification

$ RMU/BACKUP/PARALLEL=EXEC=1/DISK=WRITER=2/LIST=TMP.PLAN/ONLINE-
/NODATABASE_VERIFICATION MF_PERSONNEL -
DISK:[DIRECTORY1]MFP,DISK:[DIRECTORY2]

$ SEAR TMP.PLAN DATABASE_VERIFICATION
NoDatabase_Verification

$ RMU/BACKUP/PLAN TMP.PLAN

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–13

10.1.14 RMU /UNLOAD /AFTER_JOURNAL New Qualifier /DELETES_FIRST
Bug 3388774

The qualifier ‘‘/DELETES_FIRST’’ has been added to the RMU /UNLOAD
/AFTER_JOURNAL command. Specifying ‘‘/DELETES_FIRST’’ indicates that
all delete operations within each transaction are to be returned before any
add/modify operations.

Record Order Unpredictable

Within the output stream for a transaction, the order of records returned
from the LogMiner remains unpredictable.

10.1.15 Add Option to Pass Values to /CONFIRM During RESTORE Operation
Bug 411144

In prior releases of Oracle Rdb, if problems occurred during tape operation of
an RMU/RESTORE command and the /CONFIRM option was selected, then the
operation would wait for user input on the terminal before continuing.

$RMU/RESTORE/NOCDD/REWIND LMA1001:VOL002.RBF MF_PERSONNEL /DIRECTORY=[] /LOG
%RMU-I-WRNGLBL, Tape on LMA1001 was incorrectly labeled. Expected VOL002 -
Found MF_PER
%RMU-I-TAPEDISPR, Specify tape disposition for LMA1001 (QUIT,OVERRIDE,RETRY,
UNLOAD)
RMU> QUIT (User has to enter the RESPONSE.)
%RMU-F-ABORT, operator requested abort on fatal error
%RMU-F-FATALERR, fatal error on RESTORE
%RMU-F-FTL_RSTR, Fatal error for RESTORE operation at 13-JUL-2013 11:22:32.90

$RMU/RESTORE/NOCDD/REWIND LMA1001:VOL002.RBF MF_PERSONNEL /DIRECTORY=[] /LOG
%RMU-I-WRNGLBL, Tape on LMA1001 was incorrectly labeled. Expected VOL002 -
Found MF_PER
%RMU-I-TAPEDISPR, Specify tape disposition for LMA1001 (QUIT,OVERRIDE,RETRY,
UNLOAD)
RMU> RETRY (User has to enter the RESPONSE.)
%MOUNT-I-MOUNTED, MF_PER mounted on LMA1001:
%RMU-I-WRNGLBL, Tape on LMA1001 was incorrectly labeled. Expected VOL002 -
Found MF_PER
%RMU-I-TAPEDISPR, Specify tape disposition for LMA1001 (QUIT,OVERRIDE,RETRY,
UNLOAD)
RMU> QUIT (User has to enter the RESPONSE.)
%RMU-F-ABORT, operator requested abort on fatal error
%RMU-F-FATALERR, fatal error on RESTORE
%RMU-F-FTL_RSTR, Fatal error for RESTORE operation at 13-JUL-2013 11:22:55.86

$RMU/RESTORE/NOCDD/REWIND LMA1001:VOL002.RBF MF_PERSONNEL /DIRECTORY=[] /LOG
%RMU-I-WRNGLBL, Tape on LMA1001 was incorrectly labeled. Expected VOL002 -
Found MF_PER
%RMU-I-TAPEDISPR, Specify tape disposition for LMA1001 (QUIT,OVERRIDE,RETRY,
UNLOAD)
RMU> OVERRIDE (User has to enter the RESPONSE.)
%RMU-F-FILACCERR, error opening input file LMA1001:[000000]VOL002.RBF;
-SYSTEM-W-NOSUCHFILE, no such file
%RMU-F-FATALERR, fatal error on RESTORE
%RMU-F-FTL_RSTR, Fatal error for RESTORE operation at 13-JUL-2013 11:23:05.59

10–14 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

A new feature has been added in this release to correct this problem. The user
has the option of selecting values for /CONFIRM during a RESTORE from tape
operation. The new syntax and valid values are:

RMU/RESTORE... /CONFIRM[=QUIT|RETRY=x|OVERRIDE|UNLOAD]

See the following examples of this new feature.

$RMU/RESTORE/NOCDD/REWIND LMA1001:VOL002.RBF MF_PERSONNEL /DIRECTORY=[]
/LOG /CONFIRM=QUIT
%MOUNT-I-MOUNTED, MF_PER mounted on LMA1001:
%RMU-I-TAPEDEF, Terminating restore operation as requested by user
%RMU-F-ABORT, operator requested abort on fatal error
%RMU-F-FATALERR, fatal error on RESTORE
%RMU-F-FTL_RSTR, Fatal error for RESTORE operation at 13-JUL-2013 11:43:31.35

$RMU/RESTORE/NOCDD/REWIND LMA1001:VOL002.RBF MF_PERSONNEL /DIRECTORY=[]
/LOG /CONFIRM=RETRY=2
%RMU-I-TAPEDEF, Retrying tape operation as requested by user
%MOUNT-I-MOUNTED, MF_PER mounted on LMA1001:
%RMU-I-TAPEDEF, Retrying tape operation as requested by user
%MOUNT-I-MOUNTED, MF_PER mounted on LMA1001:
%RMU-F-ABORT, operator requested abort on fatal error
%RMU-F-FATALERR, fatal error on RESTORE
%RMU-F-FTL_RSTR, Fatal error for RESTORE operation at 13-JUL-2013 11:43:42.97

$RMU/RESTORE/NOCDD/REWIND LMA1001:VOL002.RBF MF_PERSONNEL /DIRECTORY=[]
/LOG /CONFIRM=OVERRIDE
%RMU-I-TAPEDEF, Overriding tape label as requested by user
%RMU-F-FILACCERR, error opening input file LMA1001:[000000]VOL002.RBF;
-SYSTEM-W-NOSUCHFILE, no such file
%RMU-F-FATALERR, fatal error on RESTORE
%RMU-F-FTL_RSTR, Fatal error for RESTORE operation at 13-JUL-2013 11:43:58.38

10.1.16 Table Names Can Now Be Specified For Index Verification
A new feature has been added to the Oracle Rdb RMU/VERIFY command which
allows table names to be specified for database index verification. Currently, only
a list of one or more index names can be specified with either the /INDEXES or
/INDICES qualifier. Now, if one or more database table names is specified with
the new /FOR_TABLE qualifier, all the indexes defined for the named table(s)
will be selected for verification. If the /FOR_TABLE qualifier is used, then
either the /INDEXES or /INDICES qualifier must also be specified in the same
RMU/VERIFY command.

The /INDEXES or /INDICES qualifiers can continue to specify a list of one
or more index names to be verified in addition to the /FOR_TABLE list of
one or more table names for which all the indexes defined for each table are
to be verified. Index names cannot be specified with the new /FOR_TABLE
qualifier and table names cannot be specified with the existing /INDEXES or
/INDICES qualifiers. Either the syntax RMU/VERIFY/INDEXES/FOR_TABLE=*
or RMU/VERIFY/INDEXES/FOR_TABLE can be used to specify that all indexes
defined for all database tables should be verified. If lower case charcters are not
to be converted to upper case in table names, table names must be delimited with
double quotes.

The following new syntax can be specified for the /FOR_TABLE qualifier.

/FOR_TABLE=(table_name,...)
/FOR_TABLE=table_name
/FOR_TABLE=*
/FOR_TABLE

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–15

The following examples show that both the /FOR_TABLE and /INDEXES or
/INDICES qualifiers can specify either no values or lists of one or more table or
index names in the same RMU/VERIFY command line. Only table name values
can be specified with the /FOR_TABLE qualifier, and only index name values can
be specified with the /INDEXES or /INDICES qualifiers. If table name values are
specified, all the indexes defined for each named table will be verified.

$RMU/VERIFY/INDEXES/FOR_TABLE=EMPLOYEES/NOLOG MF_PERSONNEL
$RMU/VERIFY/INDEXES=(EMPLOYEES_HASH,EMP_EMPLOYEE_ID)/FOR_TABLE=COLLEGES/NOLOG
MF_PERSONNEL
$RMU/VERIFY/INDICES=EMP_EMPLOYEE_ID/FOR_TABLE=(COLLEGES,JOB_HISTORY)/NOLOG
MF_PERSONNEL

The following examples show that both of the following commands are equivalent
and will verify all indexes defined for all tables in the database.

$RMU/VERIFY/INDEXES/FOR_TABLE=*/NOLOG MF_PERSONNEL
$RMU/VERIFY/INDICES/FOR_TABLE/NOLOG MF_PERSONNEL

The following examples shows that if the /FOR_TABLE qualifier is specified,
either the /INDEXES or /INDICES qualifiers must be specified in the same
RMU/VERIFY command or a fatal error will occur.

$RMU/VERIFY/FOR_TABLE=EMPLOYEES MF_PERSONNEL
%RMU-F-CONFLSWIT, conflicting qualifiers /FOR_TABLE and /INDEXES or /INDICES
not specified
%RMU-F-FTL_VER, Fatal error for VERIFY operation at 14-FEB-2013 14:58:47.09

10.1.17 New RMU/VERIFY Feature to Detect Orphan Hash Index Buckets
To ensure Oracle Rdb database integrity, a new feature has been added to the
RMU/VERIFY command to detect "orphan" hash index buckets on database pages
in mixed storage areas which do not belong to any existing hash index defined
for the database. Orphan hash buckets are either not referenced in a SYSTEM
RECORD on a mixed area database page or are not refernced by another hash
bucket.

This is not a default feature but must be activated by specifying the new
"/ORPHAN_INDEXES" qualifier on the command line. Orphan hash index
buckets will only be reported if RMU/VERIFY is verifying one or more hash
indexes as part of the database verification. For each orphan hash bucket
detected, an error message will be output specifying the storage area name and
physical "dbkey" address of the orphan hash bucket. The physical dbkey address
specifies the storage area number, the storage area page number, and the storage
area line number of the orphan hash bucket. This information can be used with
the RMU/DUMP command to dump the area page where the orphan hash bucket
is located.

In the short term, these orphaned hash index elements are harmless but consume
space which would otherwise be used by new inserts. Eventually, as objects get
dropped and created, these elements may be confused with current structures.
Therefore, Oracle recommends cleaning them up as soon as practical.

However, these orphaned hash index elements can no longer be removed using the
standard DROP commands in SQL. To reclaim the space used by these elements
will require a DROP STORAGE AREA for the affected area. The database
administrator should create a replacement storage area and use ALTER or DROP
commands to move other tables and indices out of the affected storage area.
Then use DROP STORAGE AREA to remove the unused area. Alternatively, you
can use the SQL EXPORT DATABASE and IMPORT DATABASE commands to
rebuild the whole database.

10–16 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

If RMU/VERIFY detects and reports any structural problems with the database
pages or hash index stuctures for the area being verified, or any problems
with VMS sort which is used in the process of detecting orphan hash buckets,
detection of orphan hash buckets will be aborted for the area and the following
error message will be output.

$ RMU/VERIFY/ALL/ORPHAN_INDEXES MF_PERSONNEL
%RMU-E-ORPHANERR, Error searching for orphan index nodes in area EMPIDS_LOW

The user should correct the reported problems and repeat the verification.

The new syntax for this feature which can be specified with the RMU/VERIFY
command is the following.

/[NO]ORPHAN_INDEXES

The default is "/NOORPHAN_INDEXES" - orphan hash buckets will not be
detected or reported. To activate this feature "/ORPHAN_INDEXES" must be
specified.

The following example shows the diagnostic error message that will be put out
by RMU/VERIFY for each orphan hash bucket found on a database page in the
current storage area. Both the storage area name and the physical dbkey address
of the orphan hash bucket are reported. The dbkey address in the message
following the word "at" specifies the storage area number followed by the page
number followed by the line number where the orphan hash bucket is located.

$ RMU/VERIFY/ALL/ORPHAN_INDEXES/NOERROR_LIMIT DATABASE.RDB
%RMU-E-ORPHANIDX, Orphan hashed index bucket found in area
DATABASE_AREA at 21:2:5
%RMU-E-ORPHANIDX, Orphan hashed index bucket found in area
DATABASE_AREA at 21:2:9
%RMU-E-ORPHANIDX, Orphan hashed index bucket found in area
DATABASE_AREA at 21:2510:32
%RMU-E-ORPHANIDX, Orphan hashed index bucket found in area
DATABASE_AREA at 21:2510:43

10.1.18 New COMPILE Clause for ALTER TRIGGER Statement
This release of Oracle Rdb supports a new COMPILE clause for the ALTER
TRIGGER statement. This clause directs Rdb to re-compile the trigger to ensure
that it is valid. If COMPILE is successful and the trigger was marked invalid,
but "Can be revalidated" then the invalid flag will be cleared.

Triggers can be marked "invalid" when a procedure, function or sequence is
dropped using the CASCADE clause.

The following example shows how this new clause could be used.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–17

SQL> set flags ’warn_invalid’;
SQL>
SQL> alter module M
cont> drop procedure PP cascade;
~Xw: Trigger "C_INSERT" marked invalid
SQL>
SQL> show trigger C_INSERT

C_INSERT
Current state is INVALID

Can be revalidated
Source:
c_insert

after insert on C
when (C.b is NULL)

(call PP())
for each row

SQL>
SQL> alter trigger C_INSERT
cont> compile;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-BAD_SYM, unknown routine symbol - PP
SQL>
SQL> alter module M
cont> add procedure PP;
cont> trace ’in PP’;
cont> end module;
SQL>
SQL> alter trigger C_INSERT
cont> compile;
SQL>
SQL> show trigger C_INSERT

C_INSERT
Source:
c_insert

after insert on C
when (C.b is NULL)

(call PP())
for each row

SQL>

Note

Any trigger marked with the invalid flag will still be used by Oracle
Rdb if at runtime it can be compiled successfully. However, only the
COMPILE clause of the ALTER TRIGGER statement, or the COMPILE
ALL TRIGGERS clause of the ALTER TABLE statement will clear the
"invalid" flag.

10.1.19 New COMPILE ALL TRIGGERS Clause for ALTER TABLE Statement
This release of Oracle Rdb supports a new COMPILE ALL TRIGGERS clause
for the ALTER TABLE statement. This clause directs Rdb to re-compile all
the triggers defined for the table to ensure that they are valid. If COMPILE
ALL TRIGGERS is successful and any trigger was marked invalid and "Can be
revalidated" then the invalid flag will be cleared.

Triggers can be marked "invalid" when a procedure, function or sequence is
dropped using the CASCADE clause.

10–18 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

The following example shows how this new clause could be used.

SQL> set flags ’warn_invalid’;
SQL>
SQL> alter module M
cont> drop procedure PP cascade;
~Xw: Trigger "C_INSERT" marked invalid
SQL>
SQL> show trigger C_INSERT

C_INSERT
Current state is INVALID

Can be revalidated
Source:
c_insert

after insert on C
when (C.b is NULL)

(call PP())
for each row

SQL>
SQL> alter table C
cont> compile all triggers;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-BAD_SYM, unknown routine symbol - PP
SQL>
SQL> ! Replace missing procedure PP
SQL> alter module M
cont> add procedure PP;
cont> trace ’in PP’;
cont> end module;
SQL>
SQL> alter table C
cont> compile all triggers;
SQL>
SQL> ! Show that the INVALID flag is now cleared
SQL> show trigger C_INSERT

C_INSERT
Source:
c_insert

after insert on C
when (C.b is NULL)

(call PP())
for each row

SQL>

Note

Any trigger marked with the invalid flag will still be used by Oracle
Rdb if at runtime it can be compiled successfully. However, only the
COMPILE clause of the ALTER TRIGGER statement or the COMPILE
ALL TRIGGERS clause of the ALTER TABLE statement will clear the
"invalid" flag.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–19

10.1.20 New RETRY Clause for ACCEPT Statement
This release of Oracle Rdb adds a new RETRY clause to the ACCEPT Statement.
The RETRY clause specifies the number of times that SQL will reprompt the user
when an error occurs after processing the user’s input.

The following example shows that after an erroneous input, the user is prompted
again for the data.

SQL> declare :v integer = 0;
SQL> accept :v retry 5;
Enter value for V: xxxx
%RDB-E-ARITH_EXCEPT, truncation of a numeric value at runtime
-COSI-F-INPCONERR, input conversion error
Enter value for V: 42
SQL> print :v;

V
42

SQL>

10.1.21 New Character Sets ISOLATIN2 and WIN_LATIN2 Supported
This release of Oracle Rdb adds two new character sets, ISOLATIN2 and WIN_
LATIN2.

Usage Notes
ISOLATIN2 is a single octet character set that has the following characteristics:

• Encodes Extended East European characters as defined by the ISO/IEC
8859-2 standard.

• Fixed single octet characters.

• May be used as an Identifier character set.

• Contains the full set of ASCII characters.

• EE8ISO8859P2 is the Oracle NLS equivalent character set.

• The translation name to translate to ISOLATIN2 characters is
RDB$ISOLATIN2.

• The Wildcard Underscore character is %X5F.

• The Wildcard Percent character is %X25.

WIN_LATIN2 is a single octet character set that has the following characteristics:

• Encodes Extended East European characters as defined by the MS Windows
Code Page 1250 8-Bit standard.

• Fixed single octet characters.

• May be used as an Identifier character set.

• Contains the full set of ASCII characters.

• EE8MSWIN1250 is the Oracle NLS equivalent character set.

• The translation name to translate to WIN_LATIN2 characters is RDB$WIN_
LATIN2.

• The Wildcard Underscore character is %X5F.

• The Wildcard Percent character is %X25.

10–20 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

10.1.22 Changes and Enhancements to Trigger Support
In this release of Oracle Rdb, the handling of trigger definitions has been changed
to allow future enhancements to triggers.

The following changes may be observed with this release.

• In prior versions, the entire definition was stored in a single row in the
system table Rdb$TRIGGERS. With this release, all new trigger definitions
are split into separate rows stored in Rdb$TRIGGER_ACTIONS with a single
base row in Rdb$TRIGGERS.

• Each trigger action is given a generated action name.

• Each trigger is assigned a unique trigger identification.

• Trigger definitions that existed in prior releases of Oracle Rdb will remain
unchanged in a database converted to Oracle Rdb Release 7.3 using
RMU/CONVERT or RMU/RESTORE (which implicitly calls RMU/CONVERT).
All new triggers created with Oracle Rdb Release 7.3 or later will use the new
format.

• Oracle Rdb no longer supports the export of Triggers from remote databases
older than Rdb V6.0. These would be older systems running on VAX and
Alpha systems with Rdb V5.1 or earlier. The EXPORT DATABASE will need
to be run under that Rdb release and not remotely from an Oracle Rdb V7.3
system.

It should be noted that the SQL (and RDO) EXPORT DATABASE statement will
now save extended attributes. Therefore, interchange files created with Oracle
Rdb V7.3 used with older versions will not support new trigger definitions. Oracle
Rdb V7.2.5.3 or later is required to handle the new interchange format.

The following example shows the errors reported when triggers created using Rdb
V7.3 and exported, are imported using an older Rdb V7.2 release.

SQL> IMPORT DATABASE FROM TP_EXP.RBR FILENAME TP2;
%SQL-F-NOTRGRES, Unable to IMPORT trigger TELLER_DELETE
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-BAD_CODE, corruption in the query string
%SQL-F-NOTRGRES, Unable to IMPORT trigger TELLER_INSERT
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-BAD_CODE, corruption in the query string
SQL>

Oracle recommends using RMU/EXTRACT/ITEM=TRIGGERS if the triggers need
to be recreated in prior versions. RMU Extract is a best-effort utility and some
manual editing of the generated SQL syntax may be required.

10.1.23 New RMU BACKUP RBF File BRHK_ROOT1, BRHK_ROOT2,
BRH$K_ROOT3 Records /kroot_records

In this release of Oracle Rdb, three new BRH record types have been added
to the RBF file used to back up Oracle Rdb databases. New BRH$K_ROOT1,
BRH$K_ROOT2, and BRH$K_ROOT3 records have been added for backing up
the enlarged Rdb root file KROOT structure in three parts. This will preserve the
current minimum /BLOCK_SIZE of 2048 that can be specified for determining
the buffer size used for backing up BRH records to the backup RBF file. For this
release of Rdb, the KROOT has been enlarged to 5120 bytes which will not fit
into the smaller block sizes that can be specified with the optional /BLOCK_SIZE
qualifier for the RMU /BACKUP, DUMP/BACKUP, /BACKUP/AFTER_JOURNAL
and /OPTIMIZE/AFTER_JOURNAL commands. Since the enlarged KROOT is

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–21

now backed up and restored in three parts, the current range of between 2048
and 65,024 bytes that can be specified with the optional /BLOCK_SIZE qualifier
has not changed for this release.

The BRH record type previously used to back up the smaller 1536 byte Rdb
KROOT root structure for Rdb V7.2 and earlier releases in one record was
BRH$K_ROOT. This record type will no longer be in RBF backup files produced
by RMU BACKUP commands created by this version of Rdb, but it will be
accepted by the RMU/RESTORE and RMU/DUMP/BACKUP commands which
currently accept RBF files produced by previous V72, V71 and V70 versions
of Oracle Rdb. However, V72 and previous versions of Oracle Rdb will not
accept RBF records produced by this release but will return the error %RMU-E-
INVRECTYP, invalid record type in backup file for the new BRH$K_ROOT1,
BRH$K_ROOT2 and BRH$K_ROOT3 backup record types.

The following example shows the Oracle Rdb V7.3 database backup file
MFP73.DMP created by the RMU/BACKUP command, which is then dumped
with the most detailed "DEBUG" option by the RMU/DUMP/BACKUP command.
The portion of the dump file shown contains the new BRH$K_ROOT1 (TYPE =
32), BRH$K_ROOT2 (TYPE = 33) and BRH$K_ROOT3 (TYPE = 34) records now
used to backup the enlarged Rdb root file KROOT structure.

$ RMU/BACKUP MF_PERSONNEL.RDB MFP73.RBF
$ RMU/DUMP/BACKUP/OPTION=DEBUG/OUTPUT=MFP73.DMP MFP73.RBF
$ TYPE MFP73.DMP

REC_SIZE = 1708 REC_TYPE = 32 BADDATA = 00
ROOT = 01 AREA_ID = 0 LAREA_ID = 0
PNO = 0

00000000000000000000000A002006AC 0000 ’.’

KODA database root record
0000000000000049544F4F52534D4452 0000 ’RDMSROOTI.......’
2EC700C900A66EB9EBCF255B00000000 0010 ’.....[%Ïë¹n.É.Ç.’
0000002100000088000000170000000F 0020 ’............!...’
0000000B000000280000001900000022 0030 ’".......(.......’
00000070000000800000003A0000006C 0040 ’l...:.......p...’
00000010000000040000001200000001 0050 ’................’
00000014000000140000001000000032 0060 ’2...............’
0000000300000005000000FA00000006 0070 ’....ú...........’
000000000000000A0000000A0000000A 0080 ’................’
00000000000000000000000000000000 0090 ’................’
00000100000000000000000000000000 00A0 ’................’
00000000000000000000000000000000 00B0 ’................’

:::: (1 duplicate line)
00000003000000020000000200000000 00D0 ’................’
000000080000000800AC93EB3CA7391C 00E0 ’.9§<ë...........’
00000001000000040000000500000005 00F0 ’................’
00000000000000040000002400000002 0100 ’....$...........’
00000004000000010000008A00000000 0110 ’................’
0000000000000000000000FF00000004 0120 ’................’
00000200000000000000000000000000 0130 ’................’
20571AEA00000000000000200000008B 0140 ’....ê.W ’
0000000000AC93EB216424E900AC93EB 0150 ’ë...é$d!ë.......’
00000000000000000000000000000000 0160 ’................’
0000008C000000000000000000000000 0170 ’................’
00000000000000000000001400000010 0180 ’................’
00000000000000000000000000000000 0190 ’................’
00AC93EB205B2CA40000000000000000 01A0 ’.........,[ë...’
00000000000000000000000000000000 01B0 ’................’

:::: (20 duplicate lines)
4F485B3A31524553555F424452455347 0300 ’GSERDB_USER1:[HO’
37562E545245564E4F432E494C554843 0310 ’CHULI.CONVERT.V7’

10–22 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

545345542E544944452E4B524F572E33 0320 ’3.WORK.EDIT.TEST’
4E4E4F535245505F464D5D504C45482E 0330 ’.HELP]MF_PERSONN’
0000000000000000313B4244522E4C45 0340 ’EL.RDB;1........’
00000000000000000000000000000000 0350 ’................’

:::: (52 duplicate lines)
000000000000000000000000 06A0 ’............’

REC_SIZE = 1706 REC_TYPE = 33 BADDATA = 00
ROOT = 01 AREA_ID = 0 LAREA_ID = 0
PNO = 0

00000000000000000000000A002106AA 0000 ’ª.!.............’

KODA database root record
00000000000000000000000000000000 0000 ’................’

:::: (105 duplicate lines)
00000000000000000000 06A0 ’..........’

REC_SIZE = 1706 REC_TYPE = 34 BADDATA = 00
ROOT = 01 AREA_ID = 0 LAREA_ID = 0
PNO = 0

00000000000000000000000A002206AA 0000 ’ª.".............’

KODA database root record
00000000000000000000000000000000 0000 ’................’

:::: (105 duplicate lines)
00000000000000000000 06A0 ’..........’

10.1.24 New Functions NUMTODSINTERVAL, NUMTOYMINTERVAL Supported
This release of Oracle Rdb adds two new functions for compatibility with the
Oracle database.

• NUMTODSINTERVAL

NUMTODSINTERVAL (n, ’interval_unit’)

NUMTODSINTERVAL converts n to an INTERVAL DAY TO SECOND value.

The first argument, n, can be any numeric value. The value for interval_unit
specifies the interval qualifier and must resolve to one of the following string
values: ’day’, ’hour’, ’minute’, ’second’. Interval_unit is case insensitive.
Leading and trailing values within the parentheses are ignored. The interval
leading precision of the return is 9.

• NUMTOYMINTERVAL

NUMTOYMINTERVAL (n, ’interval_unit’)

NUMTOYMINTERVAL converts n to an INTERVAL YEAR TO MONTH
literal.

The first argument, n, can be any numeric value. The value for interval_unit
specifies the interval qualifier and must resolve to one of the following string
values: ’year’, ’month’. Interval_unit is case insensitive. Leading and trailing
values within the parentheses are ignored. The interval leading precision of
the return is 9.

Usage Notes

• This function is implicitly converted by SQL to the equivalent CAST function.
Therefore, other facilities such as RMU Extract or SET FLAGS with the
STRATEGY,DETAIL options will show CAST only.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–23

SQL> select last_name
cont> from employees
cont> where birthday + NUMTOYMINTERVAL (20, ’year’) > current_date;
Tables:
0 = EMPLOYEES

Conjunct: (0.BIRTHDAY + CAST (20 AS INTERVAL YEAR(9))) > CURRENT_DATE
Get Retrieval sequentially of relation 0:EMPLOYEES
0 rows selected

Examples
This example queries the PERSONNEL database and lists any employees who
are more than 20 years older than their manager.

SQL> select e.last_name || e.first_name as employee,
cont> e.birthday,
cont> m.last_name || m.first_name as manager,
cont> m.birthday
cont> from job_history jh, employees e, departments d, employees m
cont> where jh.employee_id = e.employee_id
cont> and jh.job_end is null
cont> and jh.department_code = d.department_code
cont> and d.manager_id <> e.employee_id
cont> and d.manager_id = m.employee_id
cont> and e.birthday + NUMTOYMINTERVAL (20, ’year’) < m.birthday;
EMPLOYEE E.BIRTHDAY MANAGER M.BIRTHDAY
Iacobone Eloi 1-May-1933 Stornelli James 10-Jan-1960
Nash Walter 19-Jan-1925 Keisling Edward 21-Mar-1957
Hall Lawrence 10-Jul-1933 Belliveau Paul 9-May-1955
Clairmont Rick 23-Dec-1924 Clarke Karen 16-May-1950
Johnson Bill 13-Apr-1927 Clarke Karen 16-May-1950
5 rows selected
SQL>

10.1.25 RMU Dump Audit Command
When RMU/SET AUDIT is used to enable auditing for a database,
Oracle Rdb writes records to the OpenVMS audit journal (for example
SYS$MANAGER:SECURITY.AUDIT$JOURNAL). This command can be used to
dump selected records from an OpenVMS AUDIT journal for a specific database
for review.

This command is closely related to the RMU/LOAD/AUDIT command in that it
reads and processes the rows from the audit journal.

Format
RMU/DUMP/AUDIT root-file-spec input-file-name

Command Qualifiers Defaults

/BEFORE=timestamp none

/FORMAT=formatting-
options

/FORMAT=LIST

/LOG /NOLOG

/OUTPUT=outputfile /OUTPUT=SYS$OUTPUT

/SINCE=timestamp none

/TYPE=(type-list) /TYPE=ALL

Command Parameters

• root-file-spec

10–24 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

The file specification for the database root file into which the table will be
loaded. The default file extension is .rdb.

• input-file-name

The input-file-name parameter is the name of the journal containing the audit
record data to be dumped. The default file extension is .AUDIT$JOURNAL.
You can determine the name of the security audit journal by using the DCL
SHOW AUDIT/JOURNAL command.

Command Qualifiers

• Before=date-time

Specifies the ending date and time for records extracted from the audit
journal. The value is a standard OpenVMS date and time. Enclose the date
in quotes if it also includes a space between the date and time fields. If
omitted, then all records to the end of the journal will be dumped.

• Format=formatting-options

This qualifier allows the database administrator to change the default format
(LIST) to XML. The XML output is more useful for archiving and historical
analysis.

The following formatting options are accepted:

* LIST - the default output displays the attribute and value on a single line.
Long values will be split across multiple lines if necessary.

* XML - formats the audit details as an XML record that can be archived.

* CHARACTER_ENCODING_XML - adjusts the character encoding to that
appropriate to the data being dumped in XML format. CHARACTER_
ENCODING_XML is not compatible with the LIST keyword.

• Log

If specified, RMU will display a summary line reporting the number of records
read from the audit journal and the count of those displayed by RMU Dump.

• Since=date-time

Specifies the starting date and time for records extracted from the audit
journal. The value is a standard OpenVMS date and time. Enclose the date
in quotes if it also includes a space between the date and time fields. If
omitted, then all records from the start of the journal will be dumped.

• Type=type-list

Select different types of audit records. Values include: ALL, NONE, AUDIT,
DACCESS, PROTECTION, and RMU. The list may contain negated values,
such as /TYPE=(ALL,NORMU) so that some categories are removed. The
default is to display all types of audit records.

• Output[=files-spec]

Specifies the name of the file where output is sent. The default is
SYS$OUTPUT. The default output file type is .LIS, if you specify a file
name.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–25

Usage Notes

• To use the RMU Dump Audit command you must have the RMU$SECURITY
privilege in the root file ACL for the database whose security audit records are
being loaded. If you do not have this privilege, you must have the OpenVMS
SYSPRV or BYPASS privilege.

• The OpenVMS audit journal may contain data from multiple facilities
in addition to Oracle Rdb and may also contain audit records for other
databases. Therefore, only a subset may be read and formatted by RMU
Dump.

• Each audit record is divided into packets. Each packet contains a piece of
audit information. The output from RMU Dump Audit displays the type for
the packet (for instance NSA$C_PKT_FINAL_STATUS), and the formatted
value. If necessary, long text packets will be wrapped across multiple lines.

• Oracle Rdb uses a combination of OpenVMS types (those starting with
NSA$C) and Oracle Rdb tags (those starting with RDBNSA$K). These tags
are described below. Please refer to the relevant OpenVMS documentation for
descriptions of the NSA$C types).

• The width of the terminal session is used to limit the lines for the output to
SYS$OUTPUT.

Table 10–1 RDBNSA$K types

Type Description

RDBNSA$K_PKT_DBNAME File specification for the database root file

RDBNSA$K_PKT_TSN TSN (transaction sequence number) for the user
process

RDBNSA$K_PKT_DACCESS Discretionary access privileges for the user; based
on object ACL, and OpenVMS override privileges

RDBNSA$K_PKT_NEW_ACE Result of a GRANT or REVOKE statement

RDBNSA$K_PKT_OBJ_TYPE Type of object being altered

RDBNSA$K_PKT_OLD_ACE Prior value before a GRANT or REVOKE statement

RDBNSA$K_PKT_OPERATION_
CODE

Description of the operation

RDBNSA$K_PKT_RDB_PRIV_
USED

Oracle Rdb privilege used for the operation

RDBNSA$K_PKT_RMU_ARGS The RMU command line for the operation

RDBNSA$K_PKT_STATUS_CODE OpenVMS condition following the operation
attempt

Examples
Example 1: Dumping output of DACCESS records

The following example extracts just the DACCESS records since a known time.

10–26 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

$ RMU/DUMP/AUDIT-
MF_PERSONNEL-
SYS$MANAGER:SECURITY.AUDIT$JOURNAL-
/TYPE=(NONE,DACCESS)-
/LOG-
/SINCE="14-MAR-2013 14:36:16.70"
.
.
.

-------------------------------:
REC_SUBTYPE : DACCESS
RDBNSA$K_PKT_DBNAME : _$1$DGA174:[SMITH.WORK.DB]MF_PE

: RSONNEL.RDB;1
NSA$C_PKT_AUDIT_NAME : SECURITY
NSA$C_PKT_SYSTEM_ID : 44262
NSA$C_PKT_IMAGE_NAME : 1DGA2:[SYS1.SYSCOMMON.][SYSEX

: E]SQL$73.EXE
NSA$C_PKT_PROCESS_ID : 2B60A272
NSA$C_PKT_PROCESS_NAME : Ian Smith
NSA$C_PKT_SYSTEM_NAME : MALIBU
NSA$C_PKT_TIME_STAMP : 14-MAR-2013 14:36:16.7079869
NSA$C_PKT_TERMINAL : TNA38:
RDBNSA$K_PKT_TSN : 0:9985
NSA$C_PKT_SUBJECT_OWNER : [PROD,SMITH]
NSA$C_PKT_USERNAME : SMITH
NSA$C_PKT_MESSAGE_TYPE_STR : Attempted table access
NSA$C_PKT_OBJECT_NAME : JOB_HISTORY
RDBNSA$K_PKT_OBJ_TYPE : TABLE
RDBNSA$K_PKT_OPERATION_CODE : Protection Change
RDBNSA$K_PKT_DACCESS : SELECT,INSERT,UPDATE,DELETE,CRE

: ATE,ALTER,DROP,OPERATOR,DBADM,R
: EFERENCES

RDBNSA$K_PKT_PRIV_DESIRED : DBCTRL
RDBNSA$K_PKT_STATUS_CODE : Oracle Rdb privilege override
NSA$C_PKT_FINAL_STATUS : %SYSTEM-S-NORMAL
RDBNSA$K_PKT_RDB_PRIV_USED : DBADM
-------------------------------:
%RMU-I-DATRECREAD, 6454 data records read from input file.
%RMU-I-DATRECUNL, 4 data records unloaded.

Example 2: Dumping Output in XML Format

The following example extracts details for a time range in XML format.

$ RMU/DUMP/AUDIT -
EVENTS_DB -
SYS$MANAGER:SECURITY.AUDIT$JOURNAL -
/FORMAT=XML -
/SINCE="12-MAR-2013 16:02:01.40" -
/BEFORE="12-MAR-2013 16:02:01.97" -
/LOG

<?xml version="1.0" encoding="iso-8859-1"?>
<!-- RMU Dump Audit for Oracle Rdb V7.3-10 -->
<!-- Generated: 12-MAR-2013 16:10:16.15 -->
<!-- Database: _1DGA174:[PRODUCTION.DATABASES]EVENTS_DB.RDB;1 -->
<!-- Since: 2013-03-12T16:02:01.4000000 -->
<!-- Before: 2013-03-12T16:02:01.9700000 -->

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–27

<audit>
<audit_record type="AUDIT">
<database_name>_1DGA174:[PRODUCTION.DATABASES]EVENTS_DB.RDB;1</database_name>
<audit_name>SECURITY</audit_name>

<system_id>44390</system_id>
<image_name>DISK$VMSSYS:<SYS0.SYSCOMMON.SYSEXE>RMU73.EXE</image_name>
<process_id>15928887</process_id>
<process_name>DB_Admin</process_name>
<system_name>PROD03</system_name>
<time_stamp>2013-03-12T16:02:01.5802476</time_stamp>
<terminal>TNA465:</terminal>
<tsn>0</tsn>
<subject_owner>[DBA,SMITH]</subject_owner>
<username>SMITH </username>
<message_type>Auditing change</message_type>
<rmu_command>RMU/SET AUDIT/TYPE=ALARM/START EVENTS_DB</rmu_command>
<privilege_desired>RMU$SECURITY</privilege_desired>
<status_code>RMU required privilege</status_code>
<final_status>%SYSTEM-S-NORMAL</final_status>
<rdb_privilege_used>RMU$SECURITY</rdb_privilege_used>

</audit_record>
</audit>
<!-- 1 row unloaded -->
%RMU-I-DATRECREAD, 207 data records read from input file.
%RMU-I-DATRECUNL, 1 data records unloaded 12-MAR-2013 16:10:16.16.
$ set noverify

Example 3: Dumping output in LIST format

The following example extracts details for a time range in LIST format.

$ RMU/DUMP/AUDIT -
EVENTS_DB -
SYS$MANAGER:SECURITY.AUDIT$JOURNAL -
/TYPE=(AUDIT) -
/SINCE="12-MAR-2013 16:02:01.40" -
/BEFORE="12-MAR-2013 16:02:01.97" -
/LOG

REC_SUBTYPE : AUDIT
RDBNSA$K_PKT_DBNAME : _$1$DGA174:[PRODUCTION.DATABASES]EVENTS_DB.RDB;1
NSA$C_PKT_AUDIT_NAME : SECURITY
NSA$C_PKT_SYSTEM_ID : 44390
NSA$C_PKT_IMAGE_NAME : DISK$VMSSYS:<SYS0.SYSCOMMON.SYSEXE>RMU73.EXE
NSA$C_PKT_PROCESS_ID : 215ECCE5
NSA$C_PKT_PROCESS_NAME : DB_Admin
NSA$C_PKT_SYSTEM_NAME : PROD03
NSA$C_PKT_TIME_STAMP : 2013-03-12 16:02:01.5802476
NSA$C_PKT_TERMINAL : TNA465:
RDBNSA$K_PKT_TSN : 0:0
NSA$C_PKT_SUBJECT_OWNER : [DBA,SMITH]
NSA$C_PKT_USERNAME : SMITH
NSA$C_PKT_MESSAGE_TYPE_STR : Auditing change
RDBNSA$K_PKT_RMU_ARGS : RMU/SET AUDIT/TYPE=ALARM/START EVENTS_DB
RDBNSA$K_PKT_PRIV_DESIRED : RMU$SECURITY
RDBNSA$K_PKT_STATUS_CODE : RMU required privilege
NSA$C_PKT_FINAL_STATUS : %SYSTEM-S-NORMAL
RDBNSA$K_PKT_RDB_PRIV_USED : RMU$SECURITY
-------------------------------:
%RMU-I-DATRECREAD, 207 data records read from input file.
%RMU-I-DATRECUNL, 1 data records unloaded 12-MAR-2013 16:19:22.31.
$

10–28 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

10.1.26 New BIN_TO_NUM Numeric Function
The function BIN_TO_NUM converts a bit vector to its equivalent number. Each
argument to this function represents a bit in the bit vector (the last argument is
the least significant bit of the number). This function takes as arguments any
numeric datatype. Each expression must evaluate to 0 or 1. This function returns
a BIGINT value with zero scale. If any argument evaluates to NULL, then the
result of the conversion is NULL. This function accepts from 1 to 64 arguments.

Syntax
-+-> BIN_TO_NUM (-+-> value_expr -+->) -+-->

| |
+----- , <------+

Examples
The following example shows the result from using BIN_TO_NUM.

SQL> select bin_to_num (x, y, z), x, y, z from bin_tab order by 1;
X Y Z

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

8 rows selected
SQL>

10.1.27 RMU /PROGRESS_REPORT and Control-T for RMU Backup and
Restore

This release of Oracle Rdb adds a new feature to display the performance
and progress of backup and restore operations. This feature can be activated
by typing Control-T after the RMU Backup or Restore operation has been
started from the command line or by adding /PROGRESS_REPORT to the RMU
command line.

The use of Control-T has to be enabled at the DCL level using:

$ SET CONTROL=T

While a Control-T just displays the information once, the /PROGRESS_REPORT
qualifier can be used to periodically print the information to SYS$OUTPUT in a
batch job.

The /PROGRESS_REPORT qualifier will default to 60 seconds.

Example to display backup performance every 10 seconds:

$ RMU/BACKUP 1DGA10:[DB]SAMPLE 1DGA20:[BCK]SAMPLE /DISK /PROGRESS_REPORT=10
Read 18 MB (0%) at 18 MB/s, estimated completion time 14:10:41.15

.

.

.
Read 3934 MB (99%) at 28 MB/s, estimated completion time 14:10:39.86

Read n MB = raw blocks read so far
(n%) = percent of total blocks read
n MB/s = transfer rate since last display
estimated completion time = recalculated using the current transfer rate

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–29

For parallel backups with the /PROGRESS_REPORT qualifier, each worker
process puts out its own progress report as in the following example:

WORKER_001: Read 41 MB (25%) at 41 MB/s, estimated completion time 14:55:32.96
WORKER_002: Read 37 MB (25%) at 37 MB/s, estimated completion time 14:55:32.96
WORKER_001: Read 75 MB (46%) at 34 MB/s, estimated completion time 14:55:33.62
WORKER_002: Read 69 MB (47%) at 31 MB/s, estimated completion time 14:55:33.57
WORKER_001: Read 104 MB (65%) at 29 MB/s, estimated completion time 14:55:33.96
WORKER_002: Read 100 MB (67%) at 30 MB/s, estimated completion time 14:55:33.62
WORKER_001: Read 135 MB (84%) at 30 MB/s, estimated completion time 14:55:33.92
WORKER_002: Read 130 MB (88%) at 30 MB/s, estimated completion time 14:55:33.66

The following restrictions currently exist:

• Restores from other than disk files do not display the percentage completed
nor the estimated completion time:

$ RMU/RESTORE/NOCDD 1MGA500:SAMPLE,1MGA600: /REWIND /PROG=10
Read 72 MB at 14 MB/s
Read 135 MB at 15 MB/s

.

.

.
Read 1441 MB at 12 MB/s

10.1.28 /[NO]SNAPSHOTS, /[NO]DATA_FILE Added to RMU/MOVE_AREA
Currently, RMU/MOVE_AREA moves or creates a new version of BOTH the
storage area data (*.RDA) and snapshot (*.SNP) files. This new syntax allows
moving ONLY the data area file or ONLY the snapshot area file for all or for
named storage areas. /NODATA_FILE and /NOSNAPSHOTS are positional
qualifiers that can be specified globally as a default and/or for one or more named
storage areas. They can be specified on the command line or in an options file
using the existing RMU/MOVE_AREA /OPTION=filespec qualifier.

The syntax for these qualifiers is as follows:

/[NO]SNAPSHOTS[=([FILE=filespec],[ALLOCATION=n])]

NOSNAPSHOTS does not move the storage area snapshot file(s). It
only moves the data storage area file(s). SNAPSHOTS is the default.
[=([FILE=filespec],[ALLOCATION=n])] cannot be specified with NOSNAPSHOTS.
SNAPSHOTS[=([FILE=filespec],[ALLOCATION=n])] is an existing qualifier
but now it can be negated. SNAPSHOTS as a local qualifier can override
NOSNAPSHOTS as a global qualifier. NOSNAPSHOTS as a local qualifier can
override SNAPSHOTS as a global qualifier.

/[NO]DATA_FILE

NODATA_FILE does not move the storage area data file(s). It only moves the
snapshot storage area file(s). DATA_FILE is the default. It does not accept any
values. DATA_FILE as a local qualifier can override NODATA_FILE as a global
qualifier. NODATA_FILE as a local qualifier can override DATA_FILE as a global
qualifier.

If NODATA_FILE is specified, the storage area data file is not moved or modified.
A new version of the file will not be created. If NOSNAPSHOT is specified, the
storage area snapshot file is not moved or modified. A new version of the file will
not be created. Any existing RMU/MOVE_AREA qualifiers that would require an
update/change to the data area file are disallowed if /NODATA_FILE is specified
and any qualifiers that would require an update/change to the snapshot area file
are disallowed if /NOSNAPSHOTS is specified.

10–30 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

Therefore, the following existing /MOVE_AREA qualifiers cannot be specified
with either /NODATA_FILE or /NOSNAPSHOTS.

• /ROOT

• /BLOCKS_PER_PAGE

• /NODES_MAX

• /USERS_MAX

The following existing /MOVE_AREA qualifiers cannot be specified with
/NODATA_FILE.

• /FILE

• /SPAMS

• /THRESHOLDS

• /READ_ONLY

• /READ_WRITE

• /EXTENSION

The following existing /MOVE_AREA qualifiers cannot be specified with
/NOSNAPSHOTS.

• /SNAPSHOTS=(FILE=filespec)

• /SNAPSHOTS=(ALLOCATION=n)

In the following example, only the storage area snapshot files are moved for all
database storage areas.

$ RMU/MOVE_AREA/ALL/NODATA_FILE/NOLOG/DIR=[.MOVE] MF_PERSONNEL.RDB
%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery

In the following example, only the storage area data files are moved for all
database storage areas.

$ RMU/MOVE_AREA/ALL/NOSNAPSHOTS/NOLOG/DIR=[.MOVE] MF_PERSONNEL.RDB
%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery

In the following example, only the snapshot storage area file is moved for the
EMP_INFO storage area and only the data storage area file is moved for the
JOBS storage area. Note that for the JOBS storage area, /DATA_FILE did not
need to be specified since it is the default.

$ RMU/MOVE_AREA/NOLOG MF_PERSONNEL.RDB -
EMP_INFO /nodata_file -

/snapshots=(file=DISK:[DIRECTORY]test_emp_info.snp), -
JOBS /data_file -

/file=DISK:[DIRECTORY]test_jobs -
/nosnapshots

%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery

In the following example, an options file is used to specify the storage areas to
be moved. Only the data storage area file is moved for EMP_INFO; only the
snapshot storage area file is moved for JOBS; and both the snapshot and data
storage area files are moved for DEPARTMENTS. NOTE that /DATA_FILE and
/SNAPSHOT are the defaults.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–31

$ RMU/MOVE_AREA/NOLOG/DIR=DISK:[DIRECTORY]/OPTION=TESTMORE.OPT -
MF_PERSONNEL.RDB
EMP_INFO -

/file=DISK:[DIRECTORY]test_emp_info.rda -
/nosnapshot -

JOBS /nodata_file -
/snapshot = (file=DISK:[DIRECTORY]test_jobs.snp)

DEPARTMENTS -
/file=DISK:[DIRECTORY]test_departments -
/snapshot = (file=DISK:[DIRECTORY]test_departments.snp)

%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery

In the following example, the global default qualifiers designate that only the
snapshot files should be moved for all storage areas. However, an options file
is used to override the default for specific storage areas. Therefore, only the
data storage area file is moved for EMP_INFO, only the snapshot storage area
file is moved for JOBS, and both the snapshot and data storage area files are
moved for DEPARTMENTS. Note that, in this case, /DATA_FILE needed to be
specified in the options file to override the global specification of /NODATA_
FILE but /NODATA_FILE did not have to be specified in the options file. Also
/NOSNAPSHOT had to be specified in the options file to override the assumed
global default of /SNAPSHOT.

$ RMU/MOVE_AREA/ALL/DIR=DISK:[DIRECTORY]/NOLOG/NODATA_FILE-
/OPTION=TESTMOVE.OPT MF_PERSONNEL.RDB
EMP_INFO /data_file -

/file=DISK:[DIRECTORY]test_emp_info.rda -
/nosnapshot

JOBS /nodata_file -
/snapshot = (file=DISK:[DIRECTORY]test_jobs.snp)

DEPARTMENTS -
/data_file -
/file=DISK:[DIRECTORY]test_departments -
/snapshot = (file=DISK:[DIRECTORY]test_departments.snp)

%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery

10.1.29 Enhancements for Compression Support in SQL EXPORT DATABASE
Command

This release of Oracle Rdb introduces support for compression to the SQL
EXPORT DATABASE statement and associated decompression to the SQL
IMPORT DATABASE statement.

Data compression is applied to the user data exported to the internal
(interchange) format file. Table rows, null byte vector and LIST OF BYTE
VARYING data is compressed using either the LZW (Lempel-Ziv-Welch) technique
or the ZLIB algorithm developed by Jean-loup Gailly and Mark Adler. Table
metadata (column names and attributes) are never compressed and the resulting
file remains a structured interchange file.

In past releases, it was possible that table data, stored in the database with
compression enabled, would be many times smaller in the database than when
exported by SQL. In the database, a simple and fast RLE (run-length encoding)
algorithm is used to store rows but this data is fully expanded by the EXPORT
DATABASE statement. Enabling compression allows the result data file to be
more compact using less disk space and permitting faster network transmission.
The tradeoff is that more CPU time will be required for the compression and
decompression of the data.

10–32 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

Changes to the SQL EXPORT DATABASE Statement
A new COMPRESSION clause has been added to the SQL EXPORT DATABASE
statement. The default remains NO COMPRESSION. This clause accepts the
following optional keywords: LZW, and ZLIB. The compression algorithms used
are ZLIB (the default) or LZW. ZLIB allows further tuning with the LEVEL
option that accepts a numeric level between 1 and 9. The default of 6 is usually a
good trade off between result file size and the CPU cost of the compression.

-+-> NO COMPRESSION ---+->
| |
+-> COMMPRESSION -+---+

| |
+-> USING -+-> LZW -----------------------------------+-+

| |
+-> ZLIB -+------------------------------+-+

| |
+-> (LEVEL numeric-literal) -+

The following example shows the specification of the COMPRESSION clause.

SQL> export database
cont> filename COMPLETE_WORKS
cont> into COMPLETE_WORKS.RBR
cont> compression using ZLIB (level 9)
cont> ;

Changes to the IMPORT DATABASE Statement
The metadata in the interchange file defines the compression algorithm to be
used by the IMPORT DATABASE statement and indicates which tables were
compressed by the EXPORT DATABASE statement.

Usage Notes

• Only the user data is compressed, therefore, additional compression may be
applied using various third party compression tools such as ZIP. It is not the
goal of SQL to replace such tools.

• Only one of LZW or ZLIB may be specified for the COMPRESSION option.
The LEVEL clause may not be used with LZW compression technique.

• The generated interchange file (.rbr) can be processed using the RMU Dump
Export command.

• The EXPORT DATABASE statement uses compression in multiple streams.
Each table is treated as a separate compression stream as is each table’s null
byte vector and LIST OF BYTE VARYING columns.

• In some cases, compression may automatically be disabled. When the null
byte vector or row data is small (less than 9 octets), the compression overhead
would typically grow the data.

10.1.30 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/INDEXES
A new /PARTITIONS qualifier has been added to RMU/ANALYZE/INDEXES
which allows data to be collected and output for individual index partitions for
sorted, sorted ranked and hashed indexes which are partitioned across multiple
Oracle Rdb database storage areas. Previously, only index wide data was
displayed by RMU/ANALYZE/INDEXES whether or not an index was partitioned.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–33

The new /PARTITIONS qualifier will work with existing
RMU/ANALYZE/INDEXES qualifiers. RMU/ANALYZE/INDEXES/PARTITIONS
can be used with /OPTIONS=FULL and /OPTIONS=DEBUG to include
data for different numbered levels of individual index partitions.
RMU/ANALYZE/INDEXES/PARTITIONS can be used with /BINARY_OUTPUT to
output record definition (*.RRD) and unload files (*.UNL) that can be used to load
partition data records into an Oracle Rdb database table using the RMU/LOAD
command.

If /PARTITIONS is not specified or if /PARTITIONS is specified and
an index is not partitioned, only index wide data will be output by
RMU/ANALYZE/INDEXES.

The syntax for this new qualifier is as follows:

/[NO]PARTITIONS

/NOPARTITIONS is the default.

The following example shows that only index wide data is output for index I1 in
database PART_IND_DB.RDB if /PARTITIONS is not specified.

$ RMU/ANALYZE/INDEX PART_IND_DB I1
--

Indices for database - DISK:[DIRECTORY]PART_IND_DB.RDB;
Created dd-mmm-yyyy hh:mm:ss.xxxx

--
Index I1 for relation T1 duplicates allowed
Max Level: 3, Nodes: 898, Used/Avail: 194731/357404 (54%), Keys: 10892,
Records: 10000

Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

--

The following example shows that data for each index partition is output after the
index wide data for index I1 in database PART_IND_DB.RDB if /PARTITIONS
is specified. The partition names are P1 through P6 and the storage area names
for the partitions are INDEX1 through INDEX6. The partition data is sorted by
partition name.

$ RMU/ANALYZE/INDEX/PARTITION PART_IND_DB I1
--

Indices for database - DISK:[DIRECTORY]PART_IND_DB.RDB;
Created dd-mmm-yyyy hh:mm:ss.xxxx

--
Index I1 for relation T1 duplicates allowed
Max Level: 3, Nodes: 898, Used/Avail: 194731/357404 (54%), Keys: 10892,
Records: 10000

Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

Partition P1 in area INDEX1
Max Level: 1, Nodes: 1, Used/Avail: 0/398 (0%), Keys: 0, Records: 0

Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

Partition P2 in area INDEX2
Max Level: 1, Nodes: 1, Used/Avail: 21/398 (5%), Keys: 1, Records: 1

Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

Partition P3 in area INDEX3
Max Level: 1, Nodes: 1, Used/Avail: 72/398 (18%), Keys: 4, Records: 4

Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

10–34 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

Partition P4 in area INDEX4
Max Level: 2, Nodes: 9, Used/Avail: 1789/3582 (49%), Keys: 103, Records: 95

Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

Partition P5 in area INDEX5
Max Level: 3, Nodes: 885, Used/Avail: 192849/352230 (54%), Keys: 10784,
Records: 9900

Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

Partition P6 in area INDEX6
Max Level: 1, Nodes: 1, Used/Avail: 0/398 (0%), Keys: 0, Records: 0

Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

--

The following example shows that data for each level within each index partition
is output after the index wide data for index I1 in database PART_IND_DB.RDB
if /OPTION=FULL is specified. The partition names are P1 through P6 and the
storage area names for the partitions are INDEX1 through INDEX6. The levels
are numbered in descending order.

$ RMU/ANALYZE/INDEX/PARTITION/OPTION=FULL PART_IND_DB I1
--

Indices for database - DISK:[DIRECTORY]PART_IND_DB.RDB;
Created dd-mmm-yyyy hh:mm:ss.xxxx

--
Index I1 for relation T1 duplicates allowed
Max Level: 3, Nodes: 898, Used/Avail: 194731/357404 (54%), Keys: 10892,

Records: 10000
Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

Level: 3, Nodes: 1, Used/Avail: 184/398 (46%), Keys: 23, Records: 0
Level: 2, Nodes: 24, Used/Avail: 6197/9552 (64%), Keys: 869, Records: 0
Level: 1, Nodes: 873, Used/Avail: 188350/347454 (54%), Keys: 10000,
Records: 10000

Partition P1 in area INDEX1
Max Level: 1, Nodes: 1, Used/Avail: 0/398 (0%), Keys: 0, Records: 0

Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

Level: 1, Nodes: 1, Used/Avail: 0/398 (0%), Keys: 0, Records: 0

Partition P2 in area INDEX2
Max Level: 1, Nodes: 1, Used/Avail: 21/398 (5%), Keys: 1, Records: 1

Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

Level: 1, Nodes: 1, Used/Avail: 21/398 (5%), Keys: 1, Records: 1

Partition P3 in area INDEX3
Max Level: 1, Nodes: 1, Used/Avail: 72/398 (18%), Keys: 4, Records: 4

Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

Level: 1, Nodes: 1, Used/Avail: 72/398 (18%), Keys: 4, Records: 4

Partition P4 in area INDEX4
Max Level: 2, Nodes: 9, Used/Avail: 1789/3582 (49%), Keys: 103, Records: 95

Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

Level: 2, Nodes: 1, Used/Avail: 56/398 (14%), Keys: 8, Records: 0
Level: 1, Nodes: 8, Used/Avail: 1733/3184 (54%), Keys: 95, Records: 95

Partition P5 in area INDEX5
Max Level: 3, Nodes: 885, Used/Avail: 192849/352230 (54%), Keys: 10784,

Records: 9900
Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–35

Level: 3, Nodes: 1, Used/Avail: 184/398 (46%), Keys: 23, Records: 0
Level: 2, Nodes: 23, Used/Avail: 6141/9154 (67%), Keys: 861, Records: 0
Level: 1, Nodes: 861, Used/Avail: 186524/342678 (54%), Keys: 9900,
Records: 9900

Partition P6 in area INDEX6
Max Level: 1, Nodes: 1, Used/Avail: 0/398 (0%), Keys: 0, Records: 0

Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

Level: 1, Nodes: 1, Used/Avail: 0/398 (0%), Keys: 0, Records: 0

--

The following example shows that, if /BINARY_OUTPUT is specified, a
PARTIND.UNL file and a PARTIND.RRD file are created that can be used
with the RMU/LOAD command to load partition data for the index I1 into
an Oracle Rdb database table. The PARTIND.RRD file contains the fields
RMU$PARTITION_NAME and RMU$AREA_NAME which will contain the
partition name and area name for each record in the PARTIND.UNL file which
contains partition specific data.

$ RMU/ANALYZE/INDEX/PARTITION/BINARY=(FILE=PARTIND.UNL,RECORD=PARTIND.RRD) -
/OUTPUT=I1.OUT PART_IND_DB I1
$ TYPE PARTIND.RRD
DEFINE FIELD RMU$DATE DATATYPE IS DATE.
DEFINE FIELD RMU$INDEX_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$RELATION_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$PARTITION_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$AREA_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$LEVEL DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$FLAGS DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$USED DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$AVAILABLE DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_MAP DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_USED DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_AVAILABLE DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$KEY_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DATA_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_KEY_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_DATA_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_COMPRESSED_IKEY_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_IKEY_COUNT DATATYPE IS F_FLOATING.
DEFINE RECORD RMU$ANALYZE_INDEX.

RMU$DATE.
RMU$INDEX_NAME.
RMU$RELATION_NAME.
RMU$PARTITION_NAME.
RMU$AREA_NAME.
RMU$LEVEL.
RMU$FLAGS.
RMU$COUNT.
RMU$USED.
RMU$AVAILABLE.
RMU$DUPLICATE_COUNT.
RMU$DUPLICATE_MAP.
RMU$DUPLICATE_USED.
RMU$DUPLICATE_AVAILABLE.
RMU$KEY_COUNT.
RMU$DATA_COUNT.
RMU$DUPLICATE_KEY_COUNT.
RMU$DUPLICATE_DATA_COUNT.
RMU$TOTAL_COMPRESSED_IKEY_COUNT.
RMU$TOTAL_IKEY_COUNT.

END RMU$ANALYZE_INDEX RECORD.

10–36 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

10.1.31 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE Storage Statistics
A new /[NO]PARTITIONS[=(TABLES,INDEXES)] qualifier has been added to
RMU/ANALYZE storage statistics which allows data to be collected and output
for individual table and/or index partitions across multiple Oracle Rdb database
storage areas. Previously, only statistics for storage areas and the logical areas
contained within each storage area could be displayed. Now, if /PARTITIONS is
specified, first statistics for each Oracle Rdb database storage area containing
partitions is output. Then statistics for each partition logical area defined for
each partitioned table is output. Finally, statistics for each partition logical area
defined for each partitioned index is output.

The syntax for this new qualifier is as follows:

/[NO]PARTITIONS[=(TABLES,INDEXES)]

/NOPARTITIONS is the default.
/PARTITIONS=TABLES only outputs partitioned table statistics.
/PARTITIONS=INDEXES only outputs partitioned index statistics.
If only /PARTITIONS is specified, both partitioned table and partitioned index
statistics are output.

If /PARTITIONS=TABLES is specified, only statistics for partitioned tables are
output. If /PARTITIONS=INDEXES is specified, only statistics for partitioned
indexes are output. If the /LAREAS qualifier is used to specify a list of names
of partitioned tables and/or partitioned indexes, only statistics for those tables
and/or indexes will be output. If the /LAREAS qualifier is used to specify a list of
logical area identifier numbers, only those logical area partitions for partitioned
tables and/or indexes will be output. IF /BINARY_OUTPUT is specified with
/PARTITIONS, record definition (*.RRD) and binary unload files (*.UNL) are
created that can be used to load storage area and logical area data records for
partitioned tables and/or indexes into an Oracle Rdb database table using the
RMU/LOAD command.

The RMU/ANALYZE/PARTITIONS qualifier for storage statistics cannot
be specified with the following RMU/ANALYZE qualifiers: /PLACEMENT,
/CARDINALITY, /INDEXES, /AREAS, /START, /END and /EXCLUDE. Note that
a new qualifier not discussed here has been added to RMU/ANALYZE/INDEXES
with the syntax /[NO]PARTITIONS for index specific statistics (see previous
topic). If /LAREAS is used, it must specify a partitioned table name or
index name or a logical area identifier number for a logical area defined for a
partitioned table or partitioned index.

In the following example, for the PART_DB database with one partitioned
table T1 and one partitioned index I1, first statistics for the storage areas
containing table and index partitions are output: DATA1.RDA, INDEX1.RDA
and INDEX2.RDA. Then statistics for the partitioned table T1, defined with
one partition SYS_P00059 in area DATA1, is output. Then statistics for the two
partitioned index I1 partitions, P1 in the INDEX1 storage area and P2 in the
INDEX2 storage area, are output. Note that if /PARTITIONS=TABLES was
specified for the PART_DB database, only statistics for the partitioned table T1
would be output and if /PARTITIONS=INDEXES was specified, only statistics for
the partitioned index I1 would be output.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–37

$ RMU/ANALYZE/PARTITIONS PART_DB

Areas containing partitions for database - DISK:[DIRECTORY]PART_DB.RDB;1
Created 9-JUN-2012 14:11:38.43

--

Storage analysis for storage area: DATA1 - file: DISK:[DIRECTORY]DATA1.RDA;1
Area_id: 2, Page length: 1024, Last page: 703

Bytes free: 366675 (51%), bytes overhead: 164457 (23%)
Spam count: 1, AIP count: 0, ABM count: 3
Data records: 10000, bytes used: 188740 (26%)
average length: 19, compression ratio: 0.90
index records: 0, bytes used: 0 (0%)

--

Storage analysis for storage area: INDEX1 - file: DISK:[DIRECTORY]INDEX1.RDA;1
Area_id: 3, Page length: 1024, Last page: 703

Bytes free: 685993 (95%), bytes overhead: 33451 (5%)
Spam count: 1, AIP count: 0, ABM count: 3
Data records: 1, bytes used: 428 (0%)
average length: 428, compression ratio: 1.00
index records: 1, bytes used: 428 (0%)
B-Tree: 428, Hash: 0, Duplicate: 0, Overflow: 0

--

Storage analysis for storage area: INDEX2 - file: DISK:[DIRECTORY]INDEX2.RDA;1
Area_id: 4, Page length: 1024, Last page: 703

Bytes free: 685993 (95%), bytes overhead: 33451 (5%)
Spam count: 1, AIP count: 0, ABM count: 3
Data records: 1, bytes used: 428 (0%)
average length: 428, compression ratio: 1.00
index records: 1, bytes used: 428 (0%)
B-Tree: 428, Hash: 0, Duplicate: 0, Overflow: 0

--
--

Partitioned Tables for database - DISK:[DIRECTORY]PART_DB.RDB;1
Created 9-JUN-2012 14:11:38.43

--

Storage analysis for Partitioned Table: T1

Partition SYS_P00059 in area DATA1
Logical area: T1 Logical area id : 59

Larea id: 59, Record type: 31, Record length: 26, Compressed

Data records: 10000, bytes used: 188740 (26%)
average length: 19, compression ratio: 0.90

--
--

Partitioned Indexes for database - DISK:[DIRECTORY]PART_DB.RDB;1
Created 9-JUN-2012 14:11:38.43

--

Storage analysis for Partitioned Index: I1

Partition P1 in area INDEX1
Logical area: I1 Logical area id : 60

10–38 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

Larea id: 60, Record type: 0, Record length: 215, Not Compressed

Data records: 1, bytes used: 428 (0%)
average length: 428

Partition P2 in area INDEX2
Logical area: I1 Logical area id : 61

Larea id: 61, Record type: 0, Record length: 215, Not Compressed

Data records: 1, bytes used: 428 (0%)
average length: 428

--

In the following example for the PART_DB database with one partitioned table
T1 and one partitioned index I1, the /LAREA qualifier is specified to name the
index I1. Therefore only data for the partitioned index I1 is output.

$ RMU/ANALYZE/PARTITIONS=INDEXES/LAREA=I1 PART_DB

Areas containing partitions for database - DISK:[DIRECTORY]PART_DB.RDB;1
Created 9-JUN-2013 14:17:47.13

--

Storage analysis for storage area: INDEX1 - file: DISK:[DIRECTORY]INDEX1.RDA;1
Area_id: 3, Page length: 1024, Last page: 703

Bytes free: 685993 (95%), bytes overhead: 33451 (5%)
Spam count: 1, AIP count: 0, ABM count: 3
Data records: 1, bytes used: 428 (0%)
average length: 428, compression ratio: 1.00
index records: 1, bytes used: 428 (0%)
B-Tree: 428, Hash: 0, Duplicate: 0, Overflow: 0

--

Storage analysis for storage area: INDEX2 - file: DISK:[DIRECTORY]INDEX2.RDA;1
Area_id: 4, Page length: 1024, Last page: 703

Bytes free: 685993 (95%), bytes overhead: 33451 (5%)
Spam count: 1, AIP count: 0, ABM count: 3
Data records: 1, bytes used: 428 (0%)
average length: 428, compression ratio: 1.00
index records: 1, bytes used: 428 (0%)
B-Tree: 428, Hash: 0, Duplicate: 0, Overflow: 0

--
--

Partitioned Indexes for database - DISK:[DIRECTORY]PART_DB.RDB;1
Created 9-JUN-2012 14:17:47.13

--

Storage analysis for Partitioned Index: I1

Partition P1 in area INDEX1
Logical area: I1 Logical area id : 60

Larea id: 60, Record type: 0, Record length: 215, Not Compressed

Data records: 1, bytes used: 428 (0%)
average length: 428

Partition P2 in area INDEX2
Logical area: I1 Logical area id : 61

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–39

Larea id: 61, Record type: 0, Record length: 215, Not Compressed

Data records: 1, bytes used: 428 (0%)
average length: 428

--

In the following example for the PART_DB database with one partitioned table
T1 and one partitioned index I1, the /LAREA qualifier specifies the logical area
identifier number "60". Therefore only data for the single partition P1 for the
index I1 is output.

$ RMU/ANALYZE/PARTITIONS/LAREA=60 PART_DB.RDB

Areas containing partitions for database - DISK:[DIRECTORY]PART_DB.RDB;1
Created 9-JUN-2012 15:25:23.68

--

Storage analysis for storage area: INDEX1 - file: DISK:[DIRECTORY]INDEX1.RDA;1
Area_id: 3, Page length: 1024, Last page: 703

Bytes free: 685993 (95%), bytes overhead: 33451 (5%)
Spam count: 1, AIP count: 0, ABM count: 3
Data records: 1, bytes used: 428 (0%)
average length: 428, compression ratio: 1.00
index records: 1, bytes used: 428 (0%)
B-Tree: 428, Hash: 0, Duplicate: 0, Overflow: 0

--
--

Partitioned Indexes for database - DISK:[DIRECTORY]PART_DB.RDB;1
Created 9-JUN-2012 15:25:23.68

--

Storage analysis for Partitioned Index: I1

Partition P1 in area INDEX1
Logical area: I1 Logical area id : 60

Larea id: 60, Record type: 0, Record length: 215, Not Compressed

Data records: 1, bytes used: 428 (0%)
average length: 428

--

The following example shows that if /BINARY_OUTPUT is specified, a PART.UNL
file and a PART.RRD file are created that can be used with the RMU/LOAD
command to load storage partition data into an Oracle Rdb database table. The
PART.RRD file contains the new fields RMU$TABLE_NAME, RMU$INDEX_
NAME, RMU$PARTITION_NAME and RMU$ST_AREA_NAME for partition
specific data. Note that RMU$AREA_NAME contains the logical area name
and RMU$ST_AREA_NAME contains the storage area name that contains the
partition or index.

10–40 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

$ RMU/ANALYZE/PARTITIONS -
-$ /BINARY=(FILE=PART.UNL,RECORD=PART.RRD) -
-$ /OUTPUT=PART.OUT PART_DB
$ TYPE PART.RRD
DEFINE FIELD RMU$DATE DATATYPE IS DATE.
DEFINE FIELD RMU$AREA_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$TABLE_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$INDEX_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$PARTITION_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$ST_AREA_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$STORAGE_AREA_ID DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$FLAGS DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$TOTAL_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$EXPANDED_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$FRAGMENTED_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$EXPANDED_FRAGMENT_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$FRAGMENTED_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$FRAGMENT_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$PAGE_LENGTH DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$MAX_PAGE_NUMBER DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD RMU$FREE_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$OVERHEAD_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$AIP_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$ABM_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$SPAM_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$INDEX_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$BTREE_NODE_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$HASH_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATES_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$OVERFLOW_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$LOGICAL_AREA_ID DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$RELATION_ID DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$RECORD_ALLOCATION_SIZE DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$TOTAL_SPACE DATATYPE IS F_FLOATING.
DEFINE RECORD RMU$ANALYZE_AREA.

RMU$DATE.
RMU$AREA_NAME.
RMU$TABLE_NAME.
RMU$INDEX_NAME.
RMU$PARTITION_NAME.
RMU$ST_AREA_NAME.
RMU$STORAGE_AREA_ID.
RMU$FLAGS.
RMU$TOTAL_BYTES.
RMU$EXPANDED_BYTES.
RMU$FRAGMENTED_BYTES.
RMU$EXPANDED_FRAGMENT_BYTES.
RMU$TOTAL_COUNT.
RMU$FRAGMENTED_COUNT.
RMU$FRAGMENT_COUNT.
RMU$PAGE_LENGTH.
RMU$MAX_PAGE_NUMBER.
RMU$FREE_BYTES.
RMU$OVERHEAD_BYTES.
RMU$AIP_COUNT.
RMU$ABM_COUNT.
RMU$SPAM_COUNT.
RMU$INDEX_COUNT.
RMU$BTREE_NODE_BYTES.
RMU$HASH_BYTES.
RMU$DUPLICATES_BYTES.
RMU$OVERFLOW_BYTES.
RMU$LOGICAL_AREA_ID.
RMU$RELATION_ID.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–41

RMU$RECORD_ALLOCATION_SIZE.
RMU$TOTAL_SPACE.

END RMU$ANALYZE_AREA RECORD.

10.1.32 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/PLACEMENT
The RMU/ANALYZE/PLACEMENT command collects and displays statistical
information describing table row placement relative to the index structure for
an Oracle Rdb database. A new /PARTITIONS qualifier has been added to
RMU/ANALYZE/PLACEMENT which allows placement data to be collected
and output for individual index partitions for sorted, sorted ranked and hashed
indexes which are partitoned across multiple Oracle Rdb database storage areas.
Previously, only index wide data was displayed by RMU/ANALYZE/PLACEMENT
whether or not an index was partitioned. The new /PARTITIONS qualifier will
work with existing RMU/ANALYZE/PLACEMENT qualifiers.

RMU/ANALYZE/PLACEMENT/PARTITIONS can be used with /OPTIONS=FULL
and /OPTIONS=DEBUG to include histogram displays for individual index
partitions. RMU/ANALYZE/PLACEMENT/PARTITIONS can be used with
/BINARY_OUTPUT to output record definition (*.RRD) and unload files (*.UNL)
that can be used to load partition placement data records into an Oracle Rdb
database table using the RMU/LOAD command.

The syntax for this new qualifier is as follows:

/[NO]PARTITIONS

/NOPARTITIONS is the default.

If /PARTITIONS is not specified or if /PARTITIONS is specified and an
index is not partitioned, only index wide placement data will be output by
RMU/ANALYZE/PLACEMENT.

The following example shows that only index wide placement data is output for
index I1 in database PART_IND_DB.RDB, if /PARTITIONS is not specified.

$ RMU/ANALYZE/PLACEMENT PART_IND_DB I1
--

Indices for database - DISK:[DIRECTORY]PART_IND_DB.RDB;
Created dd-mmm-yyyy hh:mm:ss.xxxx

--
Index I1 for relation T1 duplicates allowed
Levels: 3, Nodes: 898, Keys: 10892, Records: 10000
Dup nodes: 0, Dup keys: 0, Dup records: 0

Maximum path length -- dbkeys: 4, IO range: 2 to 4
Average path length -- dbkeys: 3.99, IO range: 3.96 to 3.96

--

The following example shows that placement data for each index partition is
output after the index wide placement data for index I1 in database PART_IND_
DB.RDB, if /PARTITIONS is specified. The partition names are P1 through P6
and the storage area names for the partitions are INDEX1 through INDEX6. The
partition data is sorted by partition name.

$ RMU/ANALYZE/PLACEMENT/PARTITION PART_IND_DB I1
--

10–42 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

Indices for database - DISK:[DIRECTORY]PART_IND_DB.RDB;
Created dd-mmm-yyyy hh:mm:ss.xxxx
--
Index I1 for relation T1 duplicates allowed
Levels: 3, Nodes: 898, Keys: 10892, Records: 10000
Dup nodes: 0, Dup keys: 0, Dup records: 0

Maximum path length -- dbkeys: 4, IO range: 2 to 4
Average path length -- dbkeys: 3.99, IO range: 3.96 to 3.96

Partition P1 in area INDEX1
Levels: 1, Nodes: 1, Keys: 0, Records: 0
Dup nodes: 0, Dup keys: 0, Dup records: 0

Maximum path length -- dbkeys: 0, IO range: 0 to 0
Average path length -- dbkeys: 0.00, IO range: 0.00 to 0.00

Partition P2 in area INDEX2
Levels: 1, Nodes: 1, Keys: 1, Records: 1
Dup nodes: 0, Dup keys: 0, Dup records: 0

Maximum path length -- dbkeys: 2, IO range: 2 to 2
Average path length -- dbkeys: 2.00, IO range: 2.00 to 2.00

Partition P3 in area INDEX3
Levels: 1, Nodes: 1, Keys: 4, Records: 4
Dup nodes: 0, Dup keys: 0, Dup records: 0

Maximum path length -- dbkeys: 2, IO range: 2 to 2
Average path length -- dbkeys: 2.00, IO range: 2.00 to 2.00

Partition P4 in area INDEX4
Levels: 2, Nodes: 9, Keys: 103, Records: 95
Dup nodes: 0, Dup keys: 0, Dup records: 0

Maximum path length -- dbkeys: 3, IO range: 2 to 3
Average path length -- dbkeys: 3.00, IO range: 2.87 to 2.87

Partition P5 in area INDEX5
Levels: 3, Nodes: 885, Keys: 10784, Records: 9900
Dup nodes: 0, Dup keys: 0, Dup records: 0

Maximum path length -- dbkeys: 4, IO range: 3 to 4
Average path length -- dbkeys: 4.00, IO range: 3.97 to 3.97

Partition P6 in area INDEX6
Levels: 1, Nodes: 1, Keys: 0, Records: 0
Dup nodes: 0, Dup keys: 0, Dup records: 0

Maximum path length -- dbkeys: 0, IO range: 0 to 0
Average path length -- dbkeys: 0.00, IO range: 0.00 to 0.00

--

The following example shows that placement data and histograms for each index
partition are output after the index wide placement data and histograms for
index I1 in database PART_IND_DB.RDB, if /OPTION=FULL is specified. The
partition names are P1 through P6 and the storage area names for the partitions
are INDEX1 through INDEX6.

$ RMU/ANALYZE/PLACEMENT/PARTITION/OPTION=FULL PART_IND_DB I1
--

Indices for database - DISK:[DIRECTORY]PART_IND_DB.RDB;
Created dd-mmm-yyyy hh:mm:ss.xxxx

--
Index I1 for relation T1 duplicates allowed
Levels: 3, Nodes: 898, Keys: 10892, Records: 10000
Dup nodes: 0, Dup keys: 0, Dup records: 0

Maximum path length -- dbkeys: 4, IO range: 2 to 4
Average path length -- dbkeys: 3.99, IO range: 3.96 to 3.96

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–43

dbkey path length vs. frequency

6 | (0)
5 | (0)
4 |== (9900)
3 | (95)
2 | (5)
1 | (0)

MAX IO path length vs. frequency

6 | (0)
5 | (0)
4 |== (9624)
3 |== (359)
2 | (17)
1 | (0)

MIN IO path length vs. frequency

6 | (0)
5 | (0)
4 |== (9624)
3 |== (359)
2 | (17)
1 | (0)

Partition P1 in area INDEX1
Levels: 1, Nodes: 1, Keys: 0, Records: 0
Dup nodes: 0, Dup keys: 0, Dup records: 0

Maximum path length -- dbkeys: 0, IO range: 0 to 0
Average path length -- dbkeys: 0.00, IO range: 0.00 to 0.00

Partition P2 in area INDEX2
Levels: 1, Nodes: 1, Keys: 1, Records: 1
Dup nodes: 0, Dup keys: 0, Dup records: 0

Maximum path length -- dbkeys: 2, IO range: 2 to 2
Average path length -- dbkeys: 2.00, IO range: 2.00 to 2.00

dbkey path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 | (0)
2 |== (1)
1 | (0)

MAX IO path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 | (0)
2 |== (1)
1 | (0)

MIN IO path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 | (0)
2 |== (1)
1 | (0)

10–44 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

Partition P3 in area INDEX3
Levels: 1, Nodes: 1, Keys: 4, Records: 4
Dup nodes: 0, Dup keys: 0, Dup records: 0

Maximum path length -- dbkeys: 2, IO range: 2 to 2
Average path length -- dbkeys: 2.00, IO range: 2.00 to 2.00

dbkey path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 | (0)
2 |== (4)
1 | (0)

MAX IO path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 | (0)
2 |== (4)
1 | (0)

MIN IO path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 | (0)
2 |== (4)
1 | (0)

Partition P4 in area INDEX4
Levels: 2, Nodes: 9, Keys: 103, Records: 95
Dup nodes: 0, Dup keys: 0, Dup records: 0

Maximum path length -- dbkeys: 3, IO range: 2 to 3
Average path length -- dbkeys: 3.00, IO range: 2.87 to 2.87

dbkey path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 |== (95)
2 | (0)
1 | (0)

MAX IO path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 |== (83)
2 |======= (12)
1 | (0)

MIN IO path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 |== (83)
2 |======= (12)
1 | (0)

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–45

Partition P5 in area INDEX5
Levels: 3, Nodes: 885, Keys: 10784, Records: 9900
Dup nodes: 0, Dup keys: 0, Dup records: 0

Maximum path length -- dbkeys: 4, IO range: 3 to 4
Average path length -- dbkeys: 4.00, IO range: 3.97 to 3.97

dbkey path length vs. frequency

6 | (0)
5 | (0)
4 |== (9900)
3 | (0)
2 | (0)
1 | (0)

MAX IO path length vs. frequency

6 | (0)
5 | (0)
4 |== (9624)
3 |= (276)
2 | (0)
1 | (0)

MIN IO path length vs. frequency

6 | (0)
5 | (0)
4 |== (9624)
3 |= (276)
2 | (0)
1 | (0)

Partition P6 in area INDEX6
Levels: 1, Nodes: 1, Keys: 0, Records: 0
Dup nodes: 0, Dup keys: 0, Dup records: 0

Maximum path length -- dbkeys: 0, IO range: 0 to 0
Average path length -- dbkeys: 0.00, IO range: 0.00 to 0.00
--

The following example shows that, if /BINARY_OUTPUT is specified, a
PARTIND.UNL file and a PARTIND.RRD file are created that can be used
with the RMU/LOAD command to load partition placement data for the index
I1 into an Oracle Rdb database table. The PARTIND.RRD file contains the
fields RMU$PARTITION_NAME and RMU$AREA_NAME, which will contain
the partition name and area name for each record in the PARTIND.UNL file.
PARTIND.UNL contains partition specific data.

10–46 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

$ RMU/ANALYZE/PARTITION/PARTITION/BINARY=(FILE=PARTIND.UNL,RECORD=PARTIND.RRD) -
/OUTPUT=I1.OUT PART_IND_DB I1
$ TYPE PARTIND.RRD
DEFINE FIELD RMU$DATE DATATYPE IS DATE.
DEFINE FIELD RMU$INDEX_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$RELATION_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$PARTITION_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$AREA_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$LEVEL DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$FLAGS DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_MAP_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$KEY_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_KEY_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DATA_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_DATA_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_KEY_PATH DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_PAGE_PATH DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_BUFFER_PATH DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$MAX_KEY_PATH DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$MAX_PAGE_PATH DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$MIN_BUF_PATH DATATYPE IS F_FLOATING.
DEFINE RECORD RMU$ANALYZE_PLACEMENT.

RMU$DATE.
RMU$INDEX_NAME.
RMU$RELATION_NAME.
RMU$PARTITION_NAME.
RMU$AREA_NAME.
RMU$LEVEL.
RMU$FLAGS.
RMU$COUNT.
RMU$DUPLICATE_COUNT.
RMU$DUPLICATE_MAP_COUNT.
RMU$KEY_COUNT.
RMU$DUPLICATE_KEY_COUNT.
RMU$DATA_COUNT.
RMU$DUPLICATE_DATA_COUNT.
RMU$TOTAL_KEY_PATH.
RMU$TOTAL_PAGE_PATH.
RMU$TOTAL_BUFFER_PATH.
RMU$MAX_KEY_PATH.
RMU$MAX_PAGE_PATH.
RMU$MIN_BUF_PATH.

END RMU$ANALYZE_PLACEMENT RECORD.

10.1.33 New RMU/[NO]ASSIST Qualifier for Commands Using Tape Drives
A new qualifier has been added to improve tape handling when using RMU
commands which use tape volumes. The following commands have been enhanced
with the new "/[NO]ASSIST" qualifier:

• RMU/BACKUP

• RMU/BACKUP/AFTER_JOURNAL

• RMU/DUMP/BACKUP_FILE

• RMU/DUMP/AFTER_JOURNAL

• RMU/OPTIMIZE

• RMU/RECOVER

• RMU/RESTORE

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–47

This qualifier specifies where tape handling requests are to be sent. With
’NoAssist’ these requests are sent to the current process’s SYS$OUTPUT device
and allows a command line user to respond to these requests interactively.

With ’Assist’, the requests are sent to an operator terminal and mount commands
are issued with assistance enabled (see MOUNT/ASSIST).

The default for an interactive process (which can be deterined by using
F$MODE()) is ’NoAssist’ and for any other process is ’Assist’ (for example: a
batch job).

10.1.34 New RMU/ALTER Feature to Modify the Area Header Root File
Specification

The Oracle Rdb RMU/ALTER user could change the file specification of
the storage area and snapshot files in the Rdb database root file using the
DISPLAY FILE and DEPOSIT FILE commands. He could also change the
root file specification in the database root file using the DEPOSIT ROOT
SPECIFICATION and DISPLAY ROOT SPECIFICATION commands. However,
the RMU/ALTER user previously could not change the database root file
specification contained in the storage area file and snapshot file header block
which identifies the database that the storage area or snapshot file belongs to.
This enhancement adds this functionality.

The new syntax, which can only be used at the RMU/ALTER commands’s
"RdbALTER>" prompt, is the following, where "name" is the storage area name,
and "id" is the storage area identification number in the database root file.

DISPLAY AREA_HEADER {name|id} [SNAPSHOT] SPECIFICATION

This command displays the current full root file specification in the storage area
file or snapshot file header block for the storage area with the specified name or
number.

DEPOSIT AREA_HEADER {name|id} [SNAPSHOT] SPECIFICATION
[=DEV:[DIR]root_file_spec.rdb;version]

If the root file is not specified, this command deposits the current full root file
specification in the database root in the storage area or snapshot file header block
for the storage area with the specified name or number.

If the root file is specified, this command deposits the specified full database root
file specification "DEV:[DIR]root_file.rdb;1" in the storage area or snapshot header
block for the storage area with the specified name or number.

Any specified root file must exist or must have been changed by a previous
RMU/ALTER DEPOSIT ROOT SPECIFICATION command. Only full VMS root
file specifications are valid and must include a device, directory, extension and
version number. Any changes to the area file headers will only be written to the
actual area files when the "COMMIT" command is executed at the "RdbALTER>"
prompt. Any changes to area file headers since the last "COMMIT" command
was issued can be undone by executing the "ROLLBACK" command at the
"RdbALTER>" prompt. "COMMIT" and "ROLLBACK" are existing RMU/ALTER
commands and affect any current uncommitted changes made in RMU/ALTER,
not just changes to the storage area header files.

This new feature only allows modification of the root file specification in area
headers, not other area header data. The "DISPLAY AREA_HEADER" command
can be used with single file databases but the root file specification will always
be blank, which is standard for single file databases. The "DEPOSIT AREA_

10–48 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

HEADER" command cannot be used with single file databases since a root file
specification is not specified in area headers in single file databases. To use either
the DISPLAY or DEPOSIT AREA_HEADER command, the user must be attached
to the database which the areas belong to, either by specifying the database
name when issuing the RMU/ALTER command or by executing the "ATTACH"
command from the "RdbALTER>" prompt.

The RMU/ALTER command should be used with caution and by those familiar
with the internal structure of Oracle Rdb databases. All necessary interrelated
changes need to be made to the database root file, the storage area and snapshot
files, and the After Image Journaling files, etc, or the database will be corrupt.
A full RMU/BACKUP of the database should be done previous to invoking
RMU/ALTER and a full RMU/VERIFY of the database should be done once the
RMU/ALTER changes have been commited and RMU/ALTER is exited.

The following example shows that RMU/ALTER is invoked specifying
the multi-file database MULTIFILE_DB.RDB which has been previously
backed up using RMU/BACKUP. The DEPOSIT ROOT SPECIFICATION
command is used to change the full root file specification in the root file
to DEVICE:[DIRECTORY]NEW_ROOT.RDB;1. Then the DEPOSIT AREA_
HEADER command is used without a root file specification to change the root
file specification in the storage area header to the current root file specification
set by the previous DEPOSIT ROOT SPECIFICATION command for both the
ST_AREA.RDA and ST_AREA.SNP files. Then the DEPOSIT AREA_HEADER
command is used with a full root file specification "DEVICE:[DIRECTORY]NEW_
ROOT.RDB;1" for both the ST_AREA.RDA and ST_AREA.SNP files. This just
repeats the previous change but is included to show the use of the DEPOSIT
AREA_HEADER COMMAND with and without an explicit root file specification.
Then a COMMIT command is used to write the changes to the database
files. After exiting RMU/ALTER, the name of the old root file is changed to
DEVICE:[DIRECTORY]NEW_ROOT.RDB;1 from the VMS prompt. Then the
RMU/VERIFY command is used to verify the integrity of the database. The
DISPLAY AREA_HEADER command is used throughout to see the current
root file specification in the storage area or snapshot file headers. In the
display output "(marked)" means a change has been made but has not yet
been committed. Note that, although this is not shown, in this case the area
headers of all storage area and snapshot files in the database need to be changed
to contain the new root file specification.

$ rmu/alter device:[directory]multifile_db
%RMU-I-ATTACH, now altering database "DEVICE:[DIRECTORY]MULTIFILE_DB.RDB;1"

RdbALTER> deposit root specification = DEVICE:[DIRECTORY]NEW_ROOT.RDB;1
Root file specification is: "DEVICE:[DIRECTORY]NEW_ROOT.RDB;1"

RdbALTER> display root specification
(marked) Root file specification is: "DEVICE:[DIRECTORY]NEW_ROOT.RDB;1"

RdbALTER> display area_header st_area specification
Area ST_AREA:

Root file specification is: "DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1"

RdbALTER> display area_header st_area snapshot specification
Area ST_AREA:

Root file specification is: "DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1"

RdbALTER> deposit area_header st_area specification
Area ST_AREA:
(marked) Root file specification is: "DEVICE:[DIRECTORY]NEW_ROOT.RDB;1"

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–49

RdbALTER> deposit area_header st_area snapshot specification
Area ST_AREA:
(marked) Root file specification is: "DEVICE:[DIRECTORY]NEW_ROOT.RDB;1"

RdbALTER> deposit area_header st_area specification =
DEVICE:[DIRECTORY]NEW_ROOT.RDB;1
Area ST_AREA:
(marked) Root file specification is: "DEVICE:[DIRECTORY]NEW_ROOT.RDB;1"

RdbALTER> deposit area_header st_area snapshot specification =
DEVICE:[DIRECTORY]NEW_ROOT.RDB;1
Area ST_AREA:
(marked) Root file specification is: "DEVICE:[DIRECTORY]NEW_ROOT.RDB;1"

RdbALTER> commit
RdbALTER> exit

$ RENAME DEVICE:[DIRECTORY]MULTIFILE_DB.RDB;1 DEVICE:[DIRECTORY]NEW_ROOT.RDB;1
$ RMU/VERIFY/ALL DEVICE:[DIRECTORY]NEW_ROOT.RDB

10.1.35 Create Index Supports the REVERSE Keyword to Create Reverse Key
Indices

Bug 5710904

This release of Oracle Rdb introduces a new sorted index attribute: REVERSE.
A REVERSE key index reverses the bits of the key value before entering it in
the index. Conceptually, a key value 24538 would become 83542 in the index
(in reality, the bits of the key are reversed as opposed to the digits shown here).
Reversing the key value can be particularly useful for indexing data, such as
sequence numbers, where each new key value is greater than the prior value.
This may help distribute access within the index among the leaf nodes rather
than concentrating the access on the lower right corner of the index.

Reverse key indexes may be helpful in several situations including:

• High volume transaction processing systems where they can help reduce
contention for index nodes.

• Applications that delete data that is older on average (with lower values of
the sequence) before deleting newer data because in traditional B-trees, many
index nodes may end up containing few values, with a commensurate increase
in unused space.

A reverse key index can be used for direct key lookup in a similar fashion to hash
indexes. Range scans, partial key lookups and certain index optimizations are
not applicable to reverse key indexes. See the SQL Reference Manual for further
details.

10.1.36 Support for New Syntax for Sequence Generator Statements
This release of Oracle Rdb enhances the support for CREATE SEQUENCE,
ALTER SEQUENCE and the IDENTITY clause by adding features from the
ANSI and ISO SQL Language Standard.

• Alternate keywords supported in the ALTER SEQUENCE and CREATE
SEQUENCE statements

The original Rdb implementation used single keywords for negated items:
NOMAXVALUE, NOMINVALUE, NOCYCLE, NOORDER, NORANDOM, and
NOWAIT. However, in the SQL Standard that was published after Oracle
Rdb was released, SQL uses a separate NO keyword. Rdb now supports both
formats.

10–50 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

The following are equivalent clauses: NOMAXVALUE and NO MAXVALUE,
NOMINVALUE and NO MINVALUE, NOCYCLE and NO CYCLE,
NOORDER and NO ORDER, NORANDOM and NO RANDOM, NOWAIT
and NO WAIT.

• Support for IDENTITY column creation

IDENTITY can now be followed by a list of sequence attributes: START
WITH, INCREMENT BY, MAXVALUE, NO MAXVALUE, MINVALUE, NO
MINVALUE, CYCLE, NO CYCLE, ORDER, and NO ORDER.

The previous numeric list that represented a starting with and an optional
increment value is supported for backward compatibility.

Any IDENTITY created in Oracle Rdb Release 7.3 or later will default to
a NO CYCLE sequence, unlike the default in prior releases. If CYCLE
is desired, then include the CYCLE clause as part of the IDENTITY
specification.

SQL> create table SAMPLE1
cont> (a integer identity (cycle minvalue 100 no maxvalue cache 2000)
cont> ,b integer
cont>);
SQL>

• Support for IDENTITY clause source

SQL now captures the source for the IDENTITY clause and therefore SHOW
TABLE includes more details than previous versions.

SQL> show table (column) SAMPLE1;
Information for table SAMPLE1

Columns for table SAMPLE1:
Column Name Data Type Domain
----------- --------- ------
A INTEGER
Computed: Identity (cycle minvalue 100 no maxvalue cache 2000)
B INTEGER

SQL>

As in prior versions, you can use the SHOW SEQUENCE command with the
name of the table to show details of the identity sequence.

SQL> show sequence SAMPLE1;
SAMPLE1

Sequence Id: 4
An identity column sequence.
Initial Value: 100
Minimum Value: 100
Maximum Value: (none)
Next Sequence Value: 100
Increment by: 1
Cache Size: 2000
No Order
Cycle
No Randomize
Wait
Comment: column IDENTITY sequence
SQL>

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–51

10.1.37 RMU/SET AUDIT Supports MODULE, ROUTINE, SEQUENCE and VIEW
This release of Oracle Rdb adds several enhancements to the RMU/SET AUDIT
command. The /ENABLE=DACCESS and /DISABLE=DACCESS qualifiers now
accept the following new keywords for auditing.

• SEQUENCE - The SEQUENCE keyword specifies the names of sequences,
either explicitly, as in this command:

$ RMU/SET AUDIT/ENABLE=DACCESS=SEQUENCE:NEW_DEPT MF_PERSONNEL

or via a wildcard as in this command:

$ RMU/SET AUDIT/ENABLE=DACCESS=SEQUENCE:*ID*

Only user defined sequences will be selected by this type of wildcard
command. Those created by Oracle Rdb must be completely specified.

• ROUTINE - The ROUTINE keyword specifies the names of functions and
procedures, either explicitly, as in this command:

$ RMU/SET AUDIT/ENABLE=DACCESS=ROUTINE:CHECKSUM13 ACCOUNTING

or via a wildcard as in this command:

$ RMU/SET AUDIT/ENABLE=DACCESS=ROUTINE:CHECKSUM%%

Only user defined routines will be selected by this type of wildcard command.
Those created by Oracle Rdb must be completely specified.

• MODULE - The MODULE keyword specifies the names of modules, either
explicitly, as in this command:

$ RMU/SET AUDIT/ENABLE=DACCESS=MODULE:PROD_SUPPORT MF_PERSONNEL

or via a wildcard as in this command:

$ RMU/SET AUDIT/ENABLE=DACCESS=MODULE:UTIL*

Only user defined modules will be selected by this type of wildcard command.
Those created by Oracle Rdb must be completely specified. Note also that
routines defined with the clause USAGE IS LOCAL will not be selected
by wildcards. Such routines can only be activated by routines in the same
module.

The MODULE keyword provides a time saving shortcut for auditing related
routines. In a similar way that routine access control is inherited from the
containing module, audit and alarm settings are inherited from the owning
module when a routine is first referenced. When a subsequent ALTER
MODULE ... ADD FUNCTION, or ALTER MODULE ... ADD PROCEDURE
statement is used, these new routines will also inherit audit and alarm
settings from the module.

• VIEW - The VIEW keyword specifies the names of views, either explicitly, as
in this command:

$ RMU/SET AUDIT/ENABLE=DACCESS=VIEW:CURRENT_JOB MF_PERSONNEL

or via a wildcard as in this command:

$ RMU/SET AUDIT/ENABLE=DACCESS=VIEW:CURRENT*

Only user defined views will be selected by this type of wildcard command.
Views created by Oracle Rdb must be completely specified.

10–52 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

In prior releases, views could be marked for audit using the TABLE keyword.
The TABLE keyword remains a superset of VIEW and selects both table and
view objects. However, to perform wildcard selection of views you must use
the VIEW keyword.

Note

At this time RMU/SET AUDIT accesses multischema databases
using MULTISCHEMA IS OFF. Therefore, the external (possibly
generated) names must be specified for the /ENABLE=DACCESS and
/DISABLE=DACCESS qualifiers.

10.1.38 RMU/SHOW AUDIT Supports MODULE, ROUTINE, SEQUENCE and
VIEW

This release of Oracle Rdb adds several enhancements to the RMU/SHOW AUDIT
command.

The /DACCESS qualifier now accepts the following new keywords for auditing.

• SEQUENCE

The SEQUENCE keyword reports those sequences that have audit and/or
alarm settings.

• ROUTINE

The ROUTINE keyword reports those functions and procedures that have
audit and/or alarm settings. Note that routines defined within a module may
inherit audit and alarm settings from the containing module and will not be
reported in such cases.

• MODULE

The MODULE keyword reports those modules that have audit and/or alarm
settings.

• VIEW

The VIEW keyword reports those views that have audit and/or alarm
settings. Note that the TABLE keyword reports both tables and views that
have auditing enabled.

In addition to these changes, the /DACCESS=TABLE option shows that the
audited relation is a view or a table.

Note

At this time, RMU/SHOW AUDIT accesses multischema databases using
MULTISCHEMA IS OFF. Therefore, the external (possibly generated)
names will be displayed for all objects.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–53

10.1.39 SQL Now Supports SQL Standard Syntax for SET CONSTRAINTS ALL
Statement

This release of Oracle Rdb now supports the ANSI/ISO SQL Standard statement
SET CONSTRAINTS in addition to the older Rdb syntax.

SET ALL CONSTRAINTS DEFERRED
CONSTRAINT ALL IMMEDIATE
CONSTRAINTS DEFAULT

ON
OFF

The existing SET ALL CONSTRAINTS statement is retained for backward
compatibility.

Please see the Oracle SQL/Services Release 7.3.1.1 Release Notes, Note 4.3.1
SET CONSTRAINTS Command Now Translated to Oracle Rdb Format, for more
information.

This syntax has been implemented in Oracle Rdb Release 7.3.1.0.

10.1.40 Support ANSI and ISO SQL Standard Length Units
This release of Oracle Rdb allows the specification of the length used by data
type definitions and string handling functions. In prior releases, the SET
CHARACTER LENGTH statement had to precede the CREATE, DECLARE,
or ALTER data definition (DDL) statements, or any usage of the SUBSTRING
function in a data manipulation (DML) statement to effect the choice of character
or octet units for string length and position values.

The following functions and data types are affected by this change.

• The SUBSTRING function now includes an optional USING clause to specify
that either OCTETS or CHARACTERS units are used for the FROM and
FOR clauses.

SUBSTRING (char-value-expr
FROM start-position
[FOR string-length]
[USING { CHARACTERS | OCTETS }])

• The new OVERLAY function includes an optional USING clause to specify
that either OCTETS or CHARACTERS units are used for the FROM and
FOR clauses.

OVERLAY (char-value-expr
PLACING char-value-expr
FROM start-position
[FOR string-length]
[USING { CHARACTERS | OCTETS }])

• CHARACTER, NATIONAL CHARACTER (NCHAR), CHARACTER VARYING
(VARCHAR), NATIONAL CHARACTER VARYING (NCHAR VARYING) and
related types now accept an optional OCTETS or CHARACTERS option, as in
the following example.

CHAR (20 CHARACTERS)
NATIONAL CHARACTER VARYING (300 OCTETS)

10–54 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

• The SIZE IS clause of the CREATE INDEX statement also accepts an optional
OCTETS or CHARACTERS option.

SIZE IS <n> [CHARACTERS | OCTETS]

Using these clauses will override any current setting of the SET CHARACTER
LENGTH statement or the SET DIALECT statement.

The following shows examples of these changes.

SQL> create database
cont> filename SAMPLE_DB
cont> national character set DEC_KANJI
cont> ;
SQL>
SQL> set character length ’characters’;
SQL>
SQL> create table EMPLOYEES
cont> (name nchar(10 characters)
cont> ,department char(10 octets)
cont> ,comments character varying (300 characters)
cont>);
SQL>
SQL> create index EMPLOYEES_COMMENTS
cont> on EMPLOYEES (comments size is 30 characters)
cont> ;
SQL>
SQL> declare :fl char(20 octets);
SQL> select rdb$flags into :fl from rdb$database;
SQL> print :fl;
FL
131328

SQL>
SQL> select name
cont> ,department
cont> ,substring (comments from 1 for 30 using characters) as part_comment
cont> from EMPLOYEES
cont> where comments starting with ’Review:’;
0 rows selected
SQL>
SQL> commit;
SQL>

10.1.41 New SET FLAGS Clause Supported by CREATE and ALTER PROFILE
In this release of Oracle Rdb, the CREATE and ALTER PROFILE statements
have been enhanced with a SET FLAGS clause. This new clause is related to
the SET FLAGS statement; refer to that documentation for the list of available
keywords that can be specified.

The string associated with the SET FLAGS clause is saved with the created
profile. Any user that has this assigned profile will implicitly execute SET
FLAGS during session start.

Note

Please notice that some SET FLAGS keywords affect actions during
database attach and so have no action when defined within a profile. For
example, DATABASE_PARAMETERS, generates minimal effects in such
cases.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–55

The following example shows the creation of a profile with flags and the assigning
of the profile to a user.

SQL> create profile SF_USER
cont> set flags
cont> ’old_cost_model,noindex_column_group,optimization_level(total_time)’
cont> ;
SQL>
SQL> alter user SMITH
cont> profile SF_USER;
SQL>

When this user (SMITH) attaches to a database (ATTACH, CONNECT,
DECLARE ALIAS), or uses SET SESSION AUTHORIZATION, a SET FLAGS
statement will implicitly be executed using this string of keywords.

Note that the CREATE PROFILE and ALTER PROFILE statements will validate
the listed keywords.

SQL> alter profile SF_USER
cont> set flags ’THIS_OLD_HOUSE’
cont> ;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-EXT_ERR, Oracle Rdb extension error
-RDMS-E-UNKAMBFLAG, ’THIS_OLD_HOUSE’ is an unknown or ambiguous flag name
SQL>

The clause NO SET FLAGS can be used to remove any flags associated with
the profile. All users assigned that profile will no longer perform a SET FLAGS
action during session start.

SQL> show profile SF_USER
SF_USER
Flags: "old_cost_model,noindex_column_group,optimization_level(total_time)"

SQL> alter profile SF_USER
cont> no set flags;
SQL> show profile SF_USER

SF_USER
SQL>

10.1.42 New Support for SAVEPOINT Syntax and Semantics
This release of Oracle Rdb adds support for a SAVEPOINT. The SAVEPOINT
feature allows the programmer to place a marker within a transaction that
can later be used to undo part of the transaction using the ROLLBACK TO
SAVEPOINT statement. Additionally, this marker can be freed using the
RELEASE SAVEPOINT statement.

Note

At this time, Oracle Rdb only supports a single active SAVEPOINT per
transaction.

Some SQL DDL statements currently use this feature to implement SQL
semantics and therefore mixing SAVEPOINT and these statements is not
supported. Some SQL statements that use SAVEPOINT include: GRANT and
REVOKE using * wildcard object names, SET CONSTRAINT MODE ’ON’, some
forms of ALTER MODULE statement, and an INSERT ... SELECT statement
that uses two database aliases.

10–56 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

10.1.42.1 SAVEPOINT Statement
The SAVEPOINT statement establishes a marker in the current transaction that
allows the programmer to undo part of the transaction (using ROLLBACK TO
SAVEPOINT) without resorting to a full transaction ROLLBACK.

Syntax

savepoint-statement =

SAVEPOINT savepoint-name
alias-name .

Arguments

• alias-name
This optional alias name can be used to target a specific database alias. If no
alias-name is provided, then the current default database will be used.

• savepoint-name
Name of a unique identifier for this savepoint. This name will be used
with subsequent ROLLBACK TO SAVEPOINT and RELEASE SAVEPOINT
statements.

Usage Notes

• If the SAVEPOINT statement is used more than once with the same name,
then the prior SAVEPOINT is destroyed and replaced with this new location.

• Any established savepoints will be discarded by a ROLLBACK statement
(which does not use the TO SAVEPOINT clause), and by a COMMIT
statement.

• If more savepoints are created than are supported by Rdb, then the error
RDB$_EXCESS_SVPT will be raised. SQLCODE will be returned as -880 and
SQLSTATE will be returned as 3B002.

%RDB-E-EXCESS_SVPT, maximum number of savepoints are already active -
"BOOK2" failed

• The SAVEPOINT statement may not be used in a SQL function definition nor
can it be called indirectly from a function.

• The SAVEPOINT statement may not be called indirectly from a trigger action.

• A SAVEPOINT statement is only valid if a transaction is in progress. This
can be either a READ WRITE or READ ONLY transaction. Note that
temporary tables can be updated during a read only transaction.

SQL> commit;
SQL> savepoint BK;
%RDB-E-NOTXNINPRGS, no transaction is in progress
-RDB-E-SVPT_NOALLOWED, a savepoint may not be established in this context -
"BK" failed

The following example shows the use of the SAVEPOINT statement. Note that
reusing the savepoint name will re-establish that marker and so affect different
rows in the transaction.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–57

SQL> declare local temporary table module.SAMPLE
cont> (a integer)
cont> on commit preserve rows
cont> ;
SQL>
SQL> --
SQL>
SQL> set transaction read only;
SQL>
SQL> insert into module.SAMPLE values (1);
1 row inserted
SQL>
SQL> -- Establish the initial marker
SQL> savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (2);
1 row inserted
SQL> insert into module.SAMPLE values (3);
1 row inserted
SQL>
SQL> table module.SAMPLE;

A
1
2
3

3 rows selected
SQL>
SQL> -- Move the marker
SQL> savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (4);
1 row inserted
SQL>
SQL> rollback to savepoint BOOK_IT;
SQL>
SQL> table module.SAMPLE;

A
1
2
3

3 rows selected
SQL>
SQL> commit;
SQL>

10.1.42.2 RELEASE SAVEPOINT Statement
The RELEASE SAVEPOINT Statement destroys the named savepoint established
by the SAVEPOINT statement. Changes made by the transaction are unaffected
by this statement.

Syntax

release-savepoint-statement =

RELEASE SAVEPOINT savepoint-name
alias-name .

Arguments

• alias-name
This optional alias name can be used to target a specific database alias. If no
alias-name is provided, then the current default database will be used.

10–58 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

• savepoint-name
Name of a unique identifier for this savepoint. This name is declared using
the SAVEPOINT statement.

Usage Notes

• If no established savepoint exists with this name, then the error RDB$_
BAD_SVPT_HANDLE will be raised. SQLCODE will be returned as -882 and
SQLSTATE will be returned as 3B001.

%RDB-E-BAD_SVPT_HANDLE, invalid savepoint handle - "BOOKMARK2" is unknown

• The RELEASE SAVEPOINT statement may not be used in a SQL function
definition nor can it be called indirectly from a function.

• The RELEASE SAVEPOINT statement may not be called indirectly from a
trigger action.

The following example shows the use of the RELEASE SAVEPOINT statement.

SQL> set transaction read write;
SQL>
SQL> insert into module.SAMPLE values (1);
1 row inserted
SQL>
SQL> savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (2);
1 row inserted
SQL> insert into module.SAMPLE values (3);
1 row inserted
SQL>
SQL> table module.SAMPLE;

A
1
2
3

3 rows selected
SQL>
SQL> release savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (4);
1 row inserted
SQL>
SQL> table module.SAMPLE;

A
1
2
3
4

4 rows selected
SQL>
SQL> commit;
SQL>

10.1.42.3 ROLLBACK TO SAVEPOINT Statement
The ROLLBACK TO SAVEPOINT statement destroys the named savepoint
established by the SAVEPOINT statement and removes all database changes
made from the time the SAVEPOINT statement established the named
savepoint.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–59

Syntax

rollback-savepoint-statement =

ROLLBACK TO savepoint-name
SAVEPOINT alias-name .

Arguments

• alias-name
This optional alias name can be used to target a specific database alias. If no
alias-name is provided then the current default database will be used.

• savepoint-name
Name of a unique identifier for this savepoint. This name is declared using
the SAVEPOINT statement.

Usage Notes

• If no established savepoint exists with this name then the error RDB$_BAD_
SVPT_HANDLE will be raised. SQLCODE will be returned as -882 and
SQLSTATE will be returned as 3B001.

%RDB-E-BAD_SVPT_HANDLE, invalid savepoint handle - "BOOKMARK2" is unknown

• The ROLLBACK TO SAVEPOINT statement may not be used in a SQL
function definition nor can it be called indirectly from a function.

• The ROLLBACK TO SAVEPOINT statement may not be called indirectly
from a trigger action.

The following example shows the use of SAVEPOINT and ROLLBACK TO
SAVEPOINT to exclude rows inserted during the transaction. In an actual
application, the ROLLBACK TO SAVEPOINT statement would probably be
within a conditional statement such as IF-THEN-ELSE or CASE statement.

SQL> declare local temporary table module.SAMPLE
cont> (a integer)
cont> on commit preserve rows
cont> ;
SQL>
SQL> set transaction read only;
SQL>
SQL> insert into module.SAMPLE values (1);
1 row inserted
SQL>
SQL> savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (2);
1 row inserted
SQL> insert into module.SAMPLE values (3);
1 row inserted
SQL>
SQL> table module.SAMPLE;

A
1
2
3

3 rows selected
SQL>
SQL> rollback to savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (4);
1 row inserted

10–60 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

SQL>
SQL> table module.SAMPLE;

A
1
4

2 rows selected
SQL>
SQL> commit;
SQL>

10.1.43 New OPTIMIZE OUTLINE Clause Allows Outline Specification
Bug 2835544

This release of Oracle Rdb extends the use of query outlines so they can be
specified in-line with SELECT, DELETE, UPDATE, INSERT and BEGIN
PRAGMA statements.

In some cases, using the CREATE OUTLINE statement to define a query
outline might not be possible or permitted. The OUTLINE option is part of the
OPTIMIZE clause and allows the query outline to be packaged with the query.

The following example shows a query modified with an outline.

SQL> set flags ’strategy,detail(2),request_name’;
SQL> select last_name, middle_initial, first_name
cont> from employees2
cont> where last_name = ’Toliver’ and first_name = ’Alvin’
cont> optimize
cont> as test3
cont> outline (
cont> mode 0
cont> as (
cont> query (
cont> subquery (
cont> EMPLOYEES2 0 access path index E3_INDEX
cont>)
cont>)
cont>)
cont> compliance optional
cont> execution options (total time)
cont>);
~Query Name: "TEST3"
~S: Outline "(unnamed)" used
Tables:
0 = EMPLOYEES2

Leaf#01 BgrOnly 0:EMPLOYEES2 Card=100
Bool: (0.LAST_NAME = ’Toliver’) AND (0.FIRST_NAME = ’Alvin’)
BgrNdx1 E3_INDEX [1:1] Fan=14
Keys: 0.LAST_NAME = ’Toliver’

LAST_NAME MIDDLE_INITIAL FIRST_NAME
Toliver A. Alvin
1 row selected
SQL>

This example was produced by using the output from the SET FLAGS ’OUTLINE’
statement and capturing the portion that defines the outline actions.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–61

Usage Notes

• If MODE is specified with the OPTIMIZE OUTLINE clause, then the specified
query outline will be ignored unless that mode is established using the SET
FLAGS ’MODE(n)’ statement or if the logical name RDMS$BIND_OUTLINE_
MODE is used to define a matching mode value.

set flags ’strategy’;

call DELETE_EMP (’Toliver’, ’Alvin’);
~S: Specified mode (99) does not match current mode - outline ignored
~Query Name: "TEST6"
Tables:
0 = EMPLOYEES2

Conjunct: (0.LAST_NAME = <var0>) AND (0.FIRST_NAME = <var1>)
Get Temporary relation Retrieval by index of relation 0:EMPLOYEES2
Index name E1_INDEX [2:2]
Keys: (0.LAST_NAME = <var0>) AND (0.FIRST_NAME = <var1>)

set flags ’mode(99)’;

call DELETE_EMP (’Toliver’, ’Alvin’);
~Query Name: "TEST6"
~S: Outline "(unnamed)" used
Tables:
0 = EMPLOYEES2

Conjunct: (0.LAST_NAME = <var0>) AND (0.FIRST_NAME = <var1>)
Get Retrieval sequentially of relation 0:EMPLOYEES2

• The SET FLAGS ’OUTLINE’ statement can be used to have the Rdb optimizer
provide a template query outline that can then be modified and incorporated
into the problem query.

• Refer to the CREATE OUTLINE statement for detail of the query outline
definition language.

10.1.44 RMU/DUMP/HEADER=ROW_CACHE Now Displays Whether Row
Cache is Enabled

Prior to Oracle Rdb Release 7.3.1.0, the RMU RMU/DUMP/HEADER=ROW_
CACHE command displayed the database-wide Row Cache definitions for an
Rdb database and the RMU/DUMP/HEADER/AREA command displayed the
Row Cache to be used and whether the Row Cache feature was enabled for a
particular storage area. The RMU/DUMP/HEADER=ROW_CACHE command
will now display whether Row Cache is enabled for ANY database storage
areas. The RMU/DUMP/HEADER=ROW_CACHE command will now display the
following:

Row caching is enabled

if the Row Cache feature is currently enabled for one or more database storage
areas. If the Row Cache feature is not currently enabled for at least one database
storage area the RMU/DUMP/HEADER=ROW_CACHE command will now
display the following:

Row caching is disabled

Note that Row Cache definitions can exist in the database but a Row
Cache must be enabled for a particular database storage area. The
RMU/DUMP/HEADER/AREA command must still be used to see the per area
Row Cache settings and whether Row Cache is currently enabled or disabled for
a particular storage area.

10–62 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

In the following example, a database is defined with two Row Caches
which are assigned to storage areas for which row caching is enabled. An
RMU/DUMP/HEADER=AREA command shows the row cache parameters
and whether or not row caching is enabled for each storage area. The
RMU/DUMP/HEADER=ROW_CACHE command shows the database-wide
Row Cache definitions. The new display "Row caching is enabled" is output since
row caching is enabled for at least one storage area (in this case for all storage
areas).

$ sql
create database filename DEVICE:[DIRECTORY]:ROW_CACHEDB

number of cluster nodes is 1
reserve 5 cache slots
reserve 5 storage areas
row cache is enabled (checkpoint updated rows to database)
create cache tbl_phys_cache row length is 44 bytes cache size is 40 rows
create cache idx_phys_cache row length is 432 bytes cache size is 10 rows
create storage area tbl_sto_ar_low filename rcachedb_emp_sal_low

cache using tbl_phys_cache
create storage area tbl_sto_ar_high filename rcachedb_emp_sal_high

cache using tbl_phys_cache
create storage area idx_sto_ar filename rcachedb_emp_no

cache using idx_phys_cache;
exit;
$ RMU/DUMP/HEADER=AREA DEVICE:[DIRECTORY]ROW_CACHEDB
*--
* Oracle Rdb V7.3-01 dd-mmm-yyyy hh:mm:ss.xxxx
*
* Dump of Database header
* Database: DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1
*
*--

Database Parameters:
Root filename is "DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1"

Storage area "RDB$SYSTEM"

Row Caching...
- Row caching is enabled
- No row cache is defined for this area

Storage area "TBL_STO_AR_LOW"

Row Caching...
- Row caching is enabled
- Row cache ID is 1

Storage area "TBL_STO_AR_HIGH"

Row Caching...
- Row caching is enabled
- Row cache ID is 1

Storage area "IDX_STO_AR"

Row Caching...
- Row caching is enabled
- Row cache ID is 2

$ RMU/DUMP/HEADER=ROW_CACHE DEVICE:[DIRECTORY]:ROW_CACHEDB
*--
* Oracle Rdb V7.3-01 dd-mmm-yyyy hh:mm:ss.xxxx
*
* Dump of Database header
* Database: DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1
*
*--

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–63

Database Parameters:
Root filename is "DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1"
Row Caches...
- Active row cache count is 2
- Reserved row cache count is 5
- Checkpoint information

No time interval is specified
Default source is updated rows
Default target is database
Default backing file directory is database directory
RUJ Global Buffers are enabled
No RCS sweep time interval is specified

- WARNING: After-image journaling is disabled
- WARNING: Fast commit is disabled

Row caching is enabled

Row cache "TBL_PHYS_CACHE"
Cache ID number is 1
Allocation...
- Row slot count is 40
- Snapshot slot count is 1000
- Snapshots in cache disabled

- Maximum row size allowed in cache is 44 bytes
- Working set count is 10
- Maximum slot reservation count is 20
- Row replacement is enabled

Sweeping...
- Sweep row count is 0
- Maximum batch I/O count is 3000

Checkpointing...
- Source is updated rows (database default)
- Target is database (database default)
- No checkpoint information available
- Checkpoint sequence is 0

Files...
- Derived cache file directory is "DEVICE:[DIRECTORY]"
- File allocation is 100 blocks
- File extension is 100 blocks

Hashing...
- Hash value for logical area DBIDs is 31
- Hash value for page numbers is 7

Shared Memory...
- Global Section Name is "RDM73R1DGA22084690010000000000001"
- Shared memory section requirement is 16,384 bytes (1MB)

10–64 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

Row cache "IDX_PHYS_CACHE"
Cache ID number is 2
Allocation...
- Row slot count is 10
- Snapshot slot count is 1000
- Snapshots in cache disabled

- Maximum row size allowed in cache is 432 bytes
- Working set count is 10
- Maximum slot reservation count is 20
- Row replacement is enabled

Sweeping...
- Sweep row count is 0
- Maximum batch I/O count is 3000

Checkpointing...
- Source is updated rows (database default)
- Target is database (database default)
- No checkpoint information available
- Checkpoint sequence is 0

Files...
- Derived cache file directory is "DEVICE:[DIRECTORY]"
- File allocation is 100 blocks
- File extension is 100 blocks

Hashing...
- Hash value for logical area DBIDs is 31
- Hash value for page numbers is 7

Shared Memory...
- Global Section Name is "RDM73R1DGA22084690010000000000002"
- Shared memory section requirement is 16,384 bytes (1MB)

Now an SQL statement is used to disable row caching for all storage areas.
The RMU/DUMP/HEADER=AREA display shows that row caching is disabled
for all storage areas and the RMU/DUMP/HEADER=ROW_CACHE command
also displays "Row caching is disabled" since row caching is now disabled for all
storage areas.

$ SQL
alter database filename DEVICE:[DIRECTORY]ROW_CACHEDB
row cache is disabled;
exit;
$ RMU/DUMP/HEADER=AREA DEVICE:[DIRECTORY]:ROW_CACHEDB
*--
* Oracle Rdb V7.3-01 dd-mmm-yyyy hh:mm:ss.xxxx
*
* Dump of Database header
* Database: DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1
*
*--

Database Parameters:
Root filename is "DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1"

Storage area "RDB$SYSTEM"

Row Caching...
- Row caching is disabled
- No row cache is defined for this area

Storage area "TBL_STO_AR_LOW"

Row Caching...
- Row caching is disabled
- Row cache ID is 1

Storage area "TBL_STO_AR_HIGH"
Row Caching...
- Row caching is disabled
- Row cache ID is 1

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–65

Storage area "IDX_STO_AR"
Row Caching...
- Row caching is disabled
- Row cache ID is 2

$ RMU/DUMP/HEADER=ROW_CACHE DEVICE:[DIRECTORY]ROW_CACHEDB
*--
* Oracle Rdb v7.3-01 dd-mmm-yyyy hh:mm:ss.xxxx
*
* Dump of Database header
* Database: DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1
*
*--

Database Parameters:
Root filename is "DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1"
Row Caches...
- Active row cache count is 2
- Reserved row cache count is 5
- Checkpoint information

No time interval is specified
Default source is updated rows
Default target is database
Default backing file directory is database directory
RUJ Global Buffers are enabled
No RCS sweep time interval is specified

- WARNING: After-image journaling is disabled
- WARNING: Fast commit is disabled

Row caching is disabled

Row cache "TBL_PHYS_CACHE"
Cache ID number is 1
Allocation...
- Row slot count is 40
- Snapshot slot count is 1000
- Snapshots in cache disabled

- Maximum row size allowed in cache is 44 bytes
- Working set count is 10
- Maximum slot reservation count is 20
- Row replacement is enabled

Sweeping...
- Sweep row count is 0
- Maximum batch I/O count is 3000

Checkpointing...
- Source is updated rows (database default)
- Target is database (database default)
- No checkpoint information available
- Checkpoint sequence is 0

Files...
- Derived cache file directory is "DEVICE:[DIRECTORY]"
- File allocation is 100 blocks
- File extension is 100 blocks

Hashing...
- Hash value for logical area DBIDs is 31
- Hash value for page numbers is 7

Shared Memory...
- Global Section Name is "RDM73R1DGA22084690010000000000001"
- Shared memory section requirement is 16,384 bytes (1MB)

10–66 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

Row cache "IDX_PHYS_CACHE"
Cache ID number is 2
Allocation...
- Row slot count is 10
- Snapshot slot count is 1000
- Snapshots in cache disabled

- Maximum row size allowed in cache is 432 bytes
- Working set count is 10
- Maximum slot reservation count is 20
- Row replacement is enabled

Sweeping...
- Sweep row count is 0
- Maximum batch I/O count is 3000

Checkpointing...
- Source is updated rows (database default)
- Target is database (database default)
- No checkpoint information available
- Checkpoint sequence is 0

Files...
- Derived cache file directory is "DEVICE:[DIRECTORY]"
- File allocation is 100 blocks
- File extension is 100 blocks

Hashing...
- Hash value for logical area DBIDs is 31
- Hash value for page numbers is 7

Shared Memory...
- Global Section Name is "RDM73R1DGA22084690010000000000002"
- Shared memory section requirement is 16,384 bytes (1MB)

$ EXIT

10.1.45 RMU/LOAD Now Supports CSV Formatted Files
This release of Oracle Rdb adds limited support for the CSV (comma separated
list of values) format used by many tools to load data. RMU/LOAD now supports
the keyword CSV, which is a variation of the DELIMITED_TEXT format currently
supported by Oracle Rdb.

Usage Notes
FORMAT=CSV support is almost identical to FORMAT=DELIMITED_TEXT with
some additional semantics:

• RMU/UNLOAD will create TIMESTAMP(2) format strings that are
compatible with various CSV knowledgeable tools (such as Microsoft EXCEL).
RMU/LOAD will implicitly convert these strings to DATE VMS during load.

• The first row is a list of column names. RMU/LOAD will implicitly skip this
first row. If the CSV file is generated with multiple header lines, use the
/SKIP qualifier to skip the additional lines.

• The file type defaults to .CSV

10.1.46 RMU/UNLOAD Now Supports CSV Formatted Files
This release of Oracle Rdb adds support for the CSV (comma separated list of
values) format used by many tools to load data. RMU/UNLOAD now supports the
keyword CSV which is a variation of the DELIMITED_TEXT format currently
supported by Oracle Rdb.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–67

Usage Notes

• Implicit conversion of DATE VMS to TIMESTAMP(2) so that formatting of
text string is compatible with various CSV knowledgeable tools (such as
Microsoft EXCEL).

• The first row is a list of column names. These values are formatted using the
same PREFIX, SUFFIX, SEPARATOR and TERMINATOR strings as defined
for the table data.

• The list of column names is re-generated when the unload file is reopened.
See REOPEN_COUNT qualifier.

• The file type defaults to .CSV.

Examples
The following example shows using the RMU/UNLOAD command to generate a
portable data file. The output RRD (record definition) file is suppressed using
the NOFILE keyword as it is usually not useful for the target tool. The TRIM
keyword is used to remove unnecessary padding spaces.

Example 10–1 Using CSV format for Microsoft EXCEL export

$ rmu/unload-
/record=(nofile,format=csv,trim=trailing,term=";") -
sql$database -
work_status -
ws.csv

%RMU-I-DATRECUNL, 4 data records unloaded.
$ ty ws.csv
"STATUS_CODE","STATUS_NAME","STATUS_TYPE";
"0","INACTIVE","RECORD EXPIRED";
"1","ACTIVE","FULL TIME";
"2","ACTIVE","PART TIME";

This example changes the delimiters for the data as required by the target
loading tool.

Example 10–2 Using options to change delimiters in a CSV formatted file

$ rmu/unload-
/record=(nofile,format=csv,trim=trailing,-

term=";",pref="{",suff="}") -
sql$database -
current_job -
cj.csv

. . .
{LAST_NAME},{FIRST_NAME},{EMPLOYEE_ID},{JOB_CODE},{DEPARTMENT_CODE},
{SUPERVISOR_ID},{JOB_START};
{Toliver},{Alvin},{00164},{DMGR},{MBMN},{00228},{1981-09-21 00:00:00.00};
. . .

10–68 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

10.1.47 RMU/UNLOAD Supports BITMAPPED_SCAN Optimize Option
This release of Oracle Rdb adds the keyword BITMAPPED_SCAN to the
RMU/UNLOAD/Optimize qualifier.

• Bitmapped_scan

This option requests that the Rdb optimizer attempt to perform bitmapped
scan when accessing multiple indices during the unload. This option is
particularly useful for RMU/UNLOAD from complex views.

This option cannot be specified at the same time as the Sequential_Access
option.

The following shows an example of this new keyword.

$ define RDMS$SET_FLAGS "item_list,noprefix,strategy,detail(2)"
$ define RDMS$DEBUG_FLAGS_OUTPUT flags.log
$
$ RMU/UNLOAD-

/OPTIMIZE=BITMAPPED_SCAN-
RMU_UNLOAD_BITMAPPED_SCAN_4_DB-
CURRENT_SALARY-
CURRENT_SALARY

%RMU-I-DATRECUNL, 100 data records unloaded 5-AUG-2013 12:32:11.11.
$ SEARCH/REMAINING FLAGS.LOG "~H Request"
~H Request Information Item List: (len=11)
RDB$K_SET_REQ_OPT_PREF "0"
RDB$K_SET_REQ_OPT_BITMAPPED "1"
RDB$K_INFO_END
Tables:
0 = SALARY_HISTORY
1 = EMPLOYEES

Cross block of 2 entries Q2
Cross block entry 1
Leaf#01 BgrOnly 0:SALARY_HISTORY Card=729 Bitmapped scan
Bool: MISSING (0.SALARY_END)
BgrNdx1 SH_EMPLOYEE_SS [1:1] Fan=75
Keys: MISSING (0.SALARY_END)

Cross block entry 2
Get Retrieval by index of relation 1:EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
Keys: 1.EMPLOYEE_ID = 0.EMPLOYEE_ID

$
$ deassign RDMS$DEBUG_FLAGS_OUTPUT
$ deassign RDMS$SET_FLAGS

10.1.48 New EDIT STRING Clause for CREATE FUNCTION and CREATE
MODULE Functions

This release of Oracle Rdb adds support for the EDIT STRING clause on a
function definition. It allows the value returned from the function invocation to
be implicitly formatted using the EDIT STRING associated with the function.
This is similar to defining an EDIT STRING on a column or domain.

The EDIT STRING clause is only used by queries in Interactive SQL.

The following example shows a simple SQL function that returns the
EMPLOYEE_ID but uses the EDIT STRING for Interactive SQL to add
formatting.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–69

SQL> create module SAMPLE
cont> function SHOW_EMP_ID
cont> (in :last_name varchar(30)
cont> ,in : birthday date)
cont> returns integer
cont> edit string ’9999"-"9999"-"99?"VOID"’
cont> ;
cont> return
cont> (select cast(employee_id as integer) * 100
cont> from EMPLOYEES
cont> where birthday = :birthday
cont> and last_name = :last_name);
cont> end module;
SQL>
SQL> select SHOW_EMP_ID (last_name, birthday), last_name, first_name
cont> from EMPLOYEES
cont> where employee_id < ’00170’;

LAST_NAME FIRST_NAME
0000-0164-00 Toliver Alvin
0000-0165-00 Smith Terry
0000-0166-00 Dietrich Rick
0000-0167-00 Kilpatrick Janet
0000-0168-00 Nash Norman
0000-0169-00 Gray Susan
6 rows selected
SQL>
SQL> -- demonstrate the output when a NULL result is returned
SQL> select SHOW_EMP_ID (’Unknown’, current_date)
cont> from EMPLOYEES
cont> fetch first row only;

VOID
1 row selected
SQL>

The ALTER FUNCTION statement can be used to remove the edit string from
a function (DROP EDIT STRING clause), or add/replace an edit string (EDIT
STRING clause).

The "DROP EDIT STRING" clause removes any EDIT STRING that was
previously defined for the function. No error is reported if there is no current edit
string.

SQL> create function lib$lp_lines () returns integer;
cont> external language general
cont> general parameter style
cont> edit string ’S9(9)’;
SQL> show function lib$lp_lines
Information for function LIB$LP_LINES

Function ID is: 4
Edit String: S9(9)
Language is: GENERAL
GENERAL parameter passing style used
Number of parameters is: 0

Parameter Name Data Type Domain or Type
-------------- --------- --------------

INTEGER
Function result datatype
Return value is passed by value

SQL> alter function lib$lp_lines drop edit string;

10–70 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

10.1.49 Changes to RMU/VERIFY/CONSTRAINTS and ALTER TABLE Statement
With this release of Oracle Rdb, the RMU/VERIFY/CONSTRAINTS processing
and the action of ALTER TABLE ... ENABLE ALL CONSTRAINTS has changed.

These changes include:

• PRIMARY KEY and UNIQUE constraints are now verified using a rewritten
query that performs a single table scan. In the absence of a suitable index,
the I/O required should be considerably reduced.

• NOT NULL constraints and the not null restriction for PRIMARY KEY
constraints are validated using a single table scan for all such constraints
on a table. This should reduce the table sequential scans in the absence of a
suitable index for each constraint. Note that the side effect is that only the
first failing constraint name is reported.

• When multiple tables are verified, the constraints are now ordered by table
name. The goal is to make use of any buffered table rows for subsequent
constraint queries. In prior versions, the constraints were verified in
(approximately) definition order which might result in other tables being
read and buffered data not being available.

• During RMU/VERIFY/CONSTRAINTS or during ALTER TABLE ... ENABLE
ALL CONSTRAINTS, more detailed information on the verify can be seen by
defining the ITEM_LIST flag. This can be done using either the SET FLAGS
statement in SQL or defining the logical name RDMS$SET_FLAGS.

In the case of a failing NOT NULL constraint, the DBKEY of the failing row
is reported. The failure status (VMS condition code) is also reported along
with the associated message text.

• The algorithms used by prior releases of Oracle Rdb remain available to
RMU/VERIFY/CONSTRAINTS using the new FALLBACK keyword of the
/CONSTRAINTS qualifier.

$ DEFINE/USER RDMS$SET_FLAGS ITEM_LIST
$ RMU/VERIFY/CONSTRAINTS=FALLBACK PERSONNEL
~H Extension (VERIFY CONSTRAINTS) Item List: (len=0)
~H: ...verify constraint "COLLEGE_CODE_REQUIRED"
~H: ...verify constraint "DEPT_CODE_REQUIRED"
~H: ...verify constraint "EMPLOYEE_ID_REQUIRED"
~H: ...verify constraint "JH_EMP_ID_EXISTS"
~H: ...verify constraint "JOB_CODE_REQUIRED"
~H: ...verify constraint "SH_EMP_ID_EXISTS"
~H: 6 tables processed.
$

10.1.50 New SQRT Numeric Function
The function SQRT returns the square-root of the passed value expression. If
the expression is NULL then the result will be NULL. Only positive values can
produce a square-root. Input values are converted to DOUBLE PRECISION, if
necessary. The result of the function is a DOUBLE PRECISION value.

Note

Applications which call a user defined function with the same name will
continue to do so if the name is delimited (for example "SQRT") or is part
of an SQL Precompiler or SQL Module Language application compiled by
a prior Rdb version. In other cases, Interactive and Dynamic SQL and

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–71

applications compiled using Oracle Rdb Release 7.3.1 or later will use the
new built-in function.

Syntax
-+-> SQRT (-+-> value_expr -+->) -+-->

Examples
The following examples show the result of using SQRT.

Example 10–3 Example 1: Invalid request for square root of a negative value

SQL> select SQRT (min (salary_amount) - max (salary_amount))
cont> from salary_history
cont> where employee_id < ’00170’
cont> group by employee_id;
%RDB-E-ARITH_EXCEPT, truncation of a numeric value at runtime
-SYSTEM-F-FLTINV, floating invalid operation, PC=FFFFFFFF820E9362, PS=0000000B
SQL>

Example 10–4 Example 2: Correct query showing square root results

SQL> select SQRT (max (salary_amount) - min (salary_amount))
cont> from salary_history
cont> where employee_id < ’00170’
cont> group by employee_id;

1.594396437527380E+002
6.772739475278819E+001
5.752390807307862E+001
5.009990019950140E+001
1.925486951396971E+002
9.897979591815695E+001

6 rows selected
SQL>

10.1.51 New MOD Numeric Function
The MOD function returns the remainder of the first value expression divided by
the second value expression.

If either value expression is NULL, then the result will be NULL. The result
of the function is either a DOUBLE PRECISION or BIGINT value. For ANSI
and ISO SQL Dialects, the result type of the function is derived from the source
argument types. Any floating point argument (REAL, DOUBLE PRECISION
or FLOAT) will be reflected as a DOUBLE PRECISION result. Otherwise, a
BIGINT result will be returned.

If the dialect is ORACLE LEVEL1, ORACLE LEVEL2, or ORACLE LEVEL3,
then Oracle semantics allow MOD to return the value of the first argument if
the second evaluates to zero. Otherwise, ANSI and ISO SQL Standard behavior
results in a divide by zero exception being raised.

10–72 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

Note

Applications which call a user defined function with the same name will
continue to do so if the name is delimited (for example "MOD") or is part
of an SQL Precompiler or SQL Module Language application compiled by
a prior Rdb version. In other cases, Interactive and Dynamic SQL and
applications compiled using Oracle Rdb Release 7.3.1 or later will use the
new built-in function.

Syntax
-+-> MOD (value_expr , value_expr) -+-->

Examples
The following examples show the result of using MOD. This function uses MOD
in the calculation of the days in a month.

Example 10–5 Example 1: Using the MOD function

SQL> drop module MOD_SAMPLE if exists;
SQL> create module MOD_SAMPLE
cont>
cont> function DAYS_IN_MONTH (in :dt date)
cont> returns integer
cont> comment ’Compute days in the month of the given date’
cont> ;
cont> begin
cont> declare :yr constant integer = extract (year from :dt);
cont> declare :mo constant integer = extract (month from :dt);
cont> return case :mo
cont> -- 30 days has September, April, June, and November
cont> when in (4,6,9,11) then 30
cont> when 2 then
cont> -- February has 28 unless it is a leap year
cont> case MOD(:yr, 400)
cont> -- leap year if divisible by 400
cont> when 0 then 29
cont> else
cont> case MOD(:yr, 100)
cont> -- not a leap year if divisible by 100
cont> when 0 then 28
cont> else
cont> case MOD(:yr, 4)
cont> -- leap year if divisible by 4
cont> when 0 then 29
cont> else 28
cont> end
cont> end
cont> end
cont> -- all the rest of 31 days
cont> else 31
cont> end;
cont> end;
cont>
cont> end module;

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–73

10.1.52 New Data Types BINARY and BINARY VARYING
This release of Oracle Rdb adds two new data types BINARY and BINARY
VARYING that allow definition of binary strings. These data types are specified
by the ANSI and ISO SQL Language standard. These types would be suitable for
storing small images, encrypted passwords, and so on.

Binary strings have the following characteristics:

• The SPACE octet for binary strings is X’00’ (the zero valued octet). Therefore,
when copying a BINARY string to a longer string it will be filled with X’00’
and when comparing binary strings, the shorter string will be zero filled.

• The name VARBINARY is a synonym for BINARY VARYING.

• CONCAT (| |), LIKE, MATCHING, OVERLAY, SUBSTRING, and TRIM
operate on these types. The result data type of these operations will be a
BINARY VARYING string.

The clause USING { CHARACTERS | OCTETS } available for SUBSTRING
and OVERLAY functions may not be used with BINARY or BINARY
VARYING strings.

• POSITION, CHAR_LENGTH, and OCTET_LENGTH operate on binary string
types. The CHAR_LENGTH function is equivalent to OCTET_LENGTH for
these data types.

• CONTAINING, LIKE, MATCHING and STARTING WITH operate on binary
string types but all input strings must be binary strings.

• Binary string literals can be specified using the X’hex-string’ literal notation.

Note

In prior releases of Oracle Rdb, such literals inherited the LITERAL
CHARACTER SET but this has changed to allow binary string
assignment to UNSPECIFIED.

• When declaring host language variables in C or C++, the predefined $SQL_
VARBINARY should be used. This pseudo type creates a typedef in C that
allows the length of the string to be passed to SQL, as frequently C zero
terminated strings are inadequate to describe binary data that may need to
embed X’00’ values.

The declared variable can reference the length (.len) and data (.data) as
shown in the code sample below.

$SQL_VARBINARY(65000) sql_mem;
.
.
.
sql_mem.len = MAX_STRING;
memcpy(sql_mem.data,src_mem,sql_mem.len);

The resulting host variable will be type compatible with BINARY and
BINARY VARYING columns and variables.

• Programmers can also use the CHARACTER SET BINARY clause to provide
compatible host variables.

10–74 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

$SQL_VARCHAR(65000) CHARACTER SET BINARY sql_mem;
.
.
.
sql_mem.len = MAX_STRING;
memcpy(sql_mem.data,src_mem,sql_mem.len);

• Dynamic SQL applications will see the SQLTYPE field have the type SQLDA_
BINARY (913) for BINARY expressions or SQLDA_VARBINARY (909)
for BINARY VARYING expressions. The symbolic names are defined in
SYS$SHARE:SQL_LITERALS.H.

#define SQLDA_VARBINARY 909
#define SQLDA_BINARY 913

10.1.53 PERSONA SUPPORT is Enabled For All New Databases
In prior releases of Oracle Rdb, the CREATE DATABASE statement would not
enable PERSONA SUPPORT by default. This meant that impersonation was
done only using the OpenVMS UIC for the user. On the other hand, PERSONA
SUPPORT uses the OpenVMS impersonation system services to impersonate the
user including granted rights identifiers.

This release of Oracle Rdb changes the CREATE DATABASE statement to enable
the PERSONA SUPPORT by default. This is shown below in this simple example.

SQL> create database
cont> filename TESTING_DB;
SQL>
SQL> show database rdb$dbhandle;
Default alias:

Oracle Rdb database in file TESTING_DB
.
.
.

Shared Memory: Process
Large Memory: Disabled
Security Checking is External (Persona support Enabled)
System Index Compression is ENABLED
System Index:

Type is sorted ranked
Prefix cardinality collection is enabled

Logminer support is disabled
Galaxy support is disabled
Prestarted transactions are enabled
Dictionary Not Required
ACL based protections

Storage Areas in database with filename TESTING_DB
RDB$SYSTEM Default and list storage area

Journals in database with filename TESTING_DB
No Journals found
Cache Objects in database with filename TESTING_DB
No Caches found
SQL>

Generally when PERSONA SUPPORT is enabled, Rdb provides much better
impersonation semantics for remote database access and for services such as
SQL/Services and OCI Services for Rdb. However, this new default can be
disabled using the PERSONA SUPPORT IS DISABLED clause for the ALTER
DATABASE or CREATE DATABASE statement.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–75

SQL> alter database filename TESTING_DB
cont> security checking is external (persona support is disabled);
SQL> attach ’filename TESTING_DB’;
SQL> show database rdb$dbhandle
Default alias:

Oracle Rdb database in file TESTING_DB
Multischema mode is disabled

.

.

.
Shared Memory: Process
Large Memory: Disabled
Security Checking is External
System Index Compression is ENABLED
System Index:

Type is sorted ranked
Prefix cardinality collection is enabled

Logminer support is disabled
Galaxy support is disabled
Prestarted transactions are enabled
Dictionary Not Required
ACL based protections

Storage Areas in database with filename TESTING_DB
RDB$SYSTEM Default and list storage area

Journals in database with filename TESTING_DB
No Journals found
Cache Objects in database with filename TESTING_DB
No Caches found
SQL>

10.1.54 New Dialects Support in SQL
This release of Oracle Rdb supports the following new dialects in SQL.

* ORACLE LEVEL3

This includes all the behavior described for ORACLE LEVEL2 plus the
following changes:

• The same dialect rules as SQL2011 are in effect

• The DATE data type is assumed to mean ANSI style DATE which does
not include time fields

• The CURRENT_TIMESTAMP builtin function returns a TIMESTAMP(2)
type

* SQL2011

This includes all the behavior described for SQL99 plus the following
changes:

• PRIMARY KEY or UNIQUE constraints must be evaluated at the
same time or sooner than the referencing FOREIGN KEY constraints.
That is, a FOREIGN KEY constraint defined as NOT DEFERRABLE
may not reference a PRIMARY KEY or UNIQUE constraint defined as
DEFERRABLE.

10–76 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

10.1.55 New WITH Clause Provides Subquery Factoring
This release of Oracle Rdb introduces the WITH clause as part of the SELECT
expression. This feature, known as subquery factoring, allows the SQL
programmer to simplify complex queries by creating named subqueries that
can be used (possibly multiple times) in the associated SELECT expression.

The following example shows the declaration of two subquery factors, EMP and
DPT, that are used in the select expression.

SQL> with emp as (select *
cont> from employees inner join
cont> job_history using (employee_id)
cont> where job_end is null),
cont> dpt as (select * from departments)
cont> select e.last_name, d.department_name, m.last_name as MANAGER
cont> from emp e
cont> left outer join dpt d using (department_code)
cont> inner join emp m on (d.manager_id = m.employee_id)
cont> order by d.manager_id
cont> fetch first row only
cont> ;
E.LAST_NAME D.DEPARTMENT_NAME MANAGER
Siciliano Board Manufacturing North Toliver
1 row selected
SQL>

Syntax

select-expr =

select-clause
with-clause

(select-expr)
TABLE table-ref

select-merge-clause

order-by-clause offset-clause limit-to-clause

with-clause =

WITH subquery-name
(<name-of-column>)

,

AS (select-expr)
,

Usage Notes

• The WITH clause can appear in any place that accepts a SELECT expression.
For instance, when declaring a cursor, in an INSERT ... SELECT Statement,
as part of Single SELECT Statement, as part of a nested subquery, a
compound statement FOR loop, and so on.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–77

• You may reuse the subquery name in separate queries, or in more deeply
nested subqueries. You may not repeat the name in the same WITH clause.
See the following example.

SQL> with
cont> dept as (select * from departments where department_code <> ’PRES’),
cont> dept as (select * from jobs)
cont> select count(*), (select department_name
cont> from dept
cont> where jh.department_code = department_code)
cont> from job_history jh, dept d
cont> where jh.department_code = d.department_code
cont> group by jh.department_code
cont> ;
%SQL-F-DUPVAR, Variable DEPT is already defined
SQL>

• If you declare a subquery factor name but do not use it, an informational
message will be issued by SQL. However, the query will still be executed.

SQL> with
cont> dept as (select * from departments)
cont> select count(*), (select department_name
cont> from departments
cont> where jh.department_code = department_code)
cont> from job_history jh, departments d
cont> where jh.department_code = d.department_code
cont> group by jh.department_code
cont> ;
%SQL-I-VARNOTUSED, Variable "DEPT" was declared but never used

15 Corporate Administration
.
.
.

12 Western U.S. Sales
26 rows selected
SQL>

• In prior versions of Oracle Rdb, it was permitted to follow the BEGIN
keyword in a top level compound statement or stored routine with a WITH
HOLD clause to specify that the procedure treated all FOR loops as HOLD
cursors. Unfortunately this syntax conflicts with the WITH clause specified
by the ANSI and ISO SQL Database Language Standard. Therefore, to
accommodate this change, Oracle Rdb has removed the WITH HOLD syntax
as a standalone clause after the BEGIN keyword. The alternate syntax,
available since Oracle Rdb V7.1, is to use the PRAGMA clause which allows
the WITH HOLD clause to be specified.

The following example shows the old syntax which now produces a syntax
error message.

SQL>
SQL> begin
cont> with hold preserve none
with hold preserve none

^
%SQL-W-LOOK_FOR_STT, Syntax error, looking for:
%SQL-W-LOOK_FOR_CON, (, AS,
%SQL-F-LOOK_FOR_FIN, found PRESERVE instead

10–78 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

It should be replaced with the following syntax which provides the same
behavior.

SQL> begin
cont> pragma (with hold preserve none)
cont> trace ’a’;
cont> end;

Examples
The following example shows the old syntax and the new syntax for the WITH
clause. The old syntax causes a syntax error now.

Example 10–6 Example 1: Using the old syntax vs the new syntax for the
WITH clause

SQL>
SQL> begin
cont> with hold preserve none
with hold preserve none

^
%SQL-W-LOOK_FOR_STT, Syntax error, looking for:
%SQL-W-LOOK_FOR_CON, (, AS,
%SQL-F-LOOK_FOR_FIN, found PRESERVE instead

SQL> begin
cont> pragma (with hold preserve none)
cont> trace ’a’;
cont> end;

This example shows the use of nested subquery factoring. The nested subqueries
can in turn be factored.

Example 10–7 Example 2: Using Complex Query with INSERT ... SELECT
Statement

SQL> declare local temporary table module.EMPS
cont> like EMPLOYEES (job_count int, sal_count int);
SQL>
SQL> insert into module.EMPS
cont> with emp_info as
cont> (select e.*,
cont> (with job_dept as
cont> (select jh.department_code, jh.employee_id
cont> from job_history jh
cont> where jh.employee_id = e.employee_id)
cont> select count(department_code) from job_dept),
cont> (with sal_amt as
cont> (select sh.salary_amount, sh.employee_id
cont> from salary_history sh
cont> where sh.employee_id = e.employee_id)
cont> select count(salary_amount) from sal_amt)
cont> from employees e)
cont> select * from emp_info
cont> ;
100 rows inserted
SQL>

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–79

This query finds any other employee who started a new job on a significant date
for other employees.

Example 10–8 Example 3: Using subquery factoring within a UNION operator

SQL> select e.last_name, jh.job_start
cont> from employees e, job_history jh
cont> where e.employee_id = jh.employee_id
cont> and jh.job_start in
cont> (with
cont> actual_jobs as
cont> (select *
cont> from job_history j
cont> where j.job_end is null)
cont> select job_start from actual_jobs
cont> where employee_id <> jh.employee_id
cont> union all
cont> with
cont> actual_salary as
cont> (select *
cont> from salary_history s
cont> where s.salary_end is null)
cont> select salary_start from actual_salary
cont> where employee_id <> jh.employee_id)
cont> ;
E.LAST_NAME JH.JOB_START
Kilpatrick 16-Aug-1980
Nash 17-Nov-1980
Danzig 2-Feb-1982
Gehr 9-Sep-1981
Clinton 28-May-1980
Siciliano 9-Sep-1981
Villari 16-Apr-1981
Jackson 3-Jan-1983
Gramby 28-May-1980
Flynn 2-Feb-1982
Flynn 1-Feb-1981
Keisling 3-Jan-1983
Klein 28-Dec-1980
Silver 7-Aug-1982
Belliveau 16-Apr-1981
Crain 28-Dec-1980
MacDonald 17-Nov-1980
17 rows selected
SQL>

10.1.56 DECLARE LOCAL TEMPORARY VIEW Statement
The DECLARE LOCAL TEMPORARY VIEW statement explicitly declares a local
temporary view.

The metadata for a declared local temporary view is not stored in the database
and cannot be shared by other modules.

This statement allows an application to define view definitions that are temporary
and do not require CREATE privilege on the database.

10–80 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

Environment
You can use the DECLARE LOCAL TEMPORARY VIEW statement:

• In interactive SQL

• In dynamic SQL as a statement to be dynamically executed

• In a stored module as part of the module header

Format

DECLARE LOCAL TEMPORARY VIEW MODULE . <view-name>
alias-name .

(<column-name>)

sql-and-dtr-clause

,

AS select-expr
check-option-clause

Usage Notes

• By using a declared view, queries using those views can be simplified.

• The view definition can specify QUERY HEADER and EDIT STRING, which
are only used by Interactive SQL. If the temporary view is declared in a view,
then these attributes of the column are ignored.

• The view definition can specify QUERY NAME and DEFAULT VALUE FOR
DTR but these attributes of the column are ignored.

• A declared local temporary view acts like a created view. Refer to the
CREATE VIEW Statement for further details.

Examples
The following example declares a view which is subsequently used in a SELECT
statement. The QUERY HEADER and EDIT STRING are applied by the
SELECT statement.

This example shows various operations on a local temporary view, including the
definition of a CHECK OPTION constraint that prevents rows being inserted into
the view that cannot also be retrieved by that view.

10.1.57 Enhancements for Buffered Read Support in SQL EXPORT DATABASE
Command

This release of Oracle Rdb includes a new ROW COUNT clause as part of the
EXPORT DATABASE Statement. EXPORT DATABASE now uses the buffered
interface to reduce client/server exchanges while reading data rows from the
source tables. In prior versions, each row was read one at a time. The default for
ROW COUNT is 500 rows.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–81

Example 10–9 Example 1: Simplifying a query using a declared local view

SQL> declare local temporary view module.employee_summary
cont> (eid
cont> edit string ’XXBXXX’
cont> comment is ’Employee id’
cont> ,num_jobs
cont> query name ’NUMBER_JOBS’
cont> ,started
cont> query header ’When’/’Started’
cont> ,current_start
cont> default value for dtr ’1-Jan-1900 00:00:00.00’)
cont> as select employee_id, count(*),
cont> min (job_start), max (job_start)
cont> from job_history
cont> group by employee_id;
SQL>
SQL> select * from module.employee_summary where eid <= ’00164’;

When
EID NUM_JOBS Started CURRENT_START
00 164 2 5-JUL-1980 21-SEP-1981
1 row selected
SQL>

The database administrator can tune this value using the ROW COUNT clause
demonstrated in the following example.

SQL> export database
cont> filename MF_PERSONNEL
cont> into SAVED_MFP
cont> row count 1000
cont> ;
SQL>

10.1.58 New BITMAPPED SCAN Clauses Added to OPTIMIZE Clause
This release of Oracle Rdb allows the programmer to specify the clause
OPTIMIZE FOR BITMAPPED SCAN as part of a query. This clause requests
that the query optimizer attempt to use BITMAPPED SCAN if there exists
multiple supporting indices in the query. The Rdb query optimizer may ignore
this request if only one index is used or if no SORTED RANKED indices would be
used to solve the query.

The following example shows the effect of using this new clause.

10–82 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

Example 10–10 Example 2: Operations on an updatable local view

SQL> declare local temporary view module.emp_name
cont> (employee_id, last_name, first_name, middle_initial)
cont> as select employee_id, last_name, first_name, middle_initial
cont> from employees
cont> where middle_initial is not null
cont> with check option constraint OUT_OF_RANGE
cont> ;
SQL>
SQL> select * from module.emp_name;
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
00164 Toliver Alvin A
00165 Smith Terry D
.
.
.

00435 MacDonald Johanna P
00471 Herbener James Q
64 rows selected
SQL>
SQL> insert into module.emp_name values (’00001’, ’Grey’, ’Zane’, NULL);
%RDB-E-INTEG_FAIL, violation of constraint OUT_OF_RANGE caused operation to fail
-RDB-F-ON_DB, on database RDB$DEFAULT_CONNECTION
SQL>
SQL> insert into module.emp_name values (’00001’, ’Grey’, ’Zane’, ’A’);
1 row inserted
SQL>
SQL> update module.emp_name
cont> set middle_initial = ’a’
cont> where middle_initial = ’A’;
5 rows updated
SQL>
SQL> select * from module.emp_name where middle_initial = ’a’;
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
00001 Grey Zane a
00164 Toliver Alvin a
00189 Lengyel Peter a
00229 Robinson Tom a
00416 Ames Louie a
5 rows selected
SQL>
SQL> rollback;

SQL> set flags ’strategy,detail(2)’;
SQL>
SQL> select count(*)
cont> from car
cont> where make = ’holden’
cont> and cyear = 1979
cont> and colour = ’blue’
cont> and (ctype = ’sedan’ or ctype = ’wagon’)
cont> optimize for bitmapped scan
cont> ;
Tables:
0 = CAR

Aggregate: 0:COUNT (*) Q2
Leaf#01 BgrOnly 0:CAR Card=6047 Bitmapped scan
Bool: (0.MAKE = ’holden’) AND (0.CYEAR = 1979)

AND (0.COLOUR = ’blue’)
AND ((0.CTYPE = ’sedan’) OR (0.CTYPE = ’wagon’))

BgrNdx1 IYEAR [1:1] Fan=97
Keys: 0.CYEAR = 1979

BgrNdx2 ICOLOUR [1:1] Fan=79
Keys: 0.COLOUR = ’blue’

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–83

BgrNdx3 IMAKE [1:1] Fan=79
Keys: 0.MAKE = ’holden’

BgrNdx4 ITYPE [(1:1)2] Fan=79
Keys: r0: 0.CTYPE = ’wagon’

r1: 0.CTYPE = ’sedan’

1
1 row selected
SQL>

In previous releases, the programmer would need to define the logical
name RDMS$ENABLE_BITMAPPED_SCAN as 1, RDMS$SET_FLAGS as
"BITMAPPED_SCAN", or use the SET FLAGS ’BITMAPPED_SCAN’ statement
in the application.

10.1.59 New Support for Allocations Specified Using Quantified Numeric
Literal

This release of Oracle Rdb allows the database administrator to use allocation
sizes using a quantified numeric literal. This shorthand notation allows the
programmer to use numeric values that end in a multiplier represented by one of
the following letters.

• K, meaning kilobytes

• M, meaning megabytes

• G, meaning gigabytes

• T, meaning terabytes

• P, meaning petabytes

The numeric value will be scaled according to the multiplier.

• If multiplier is K, then 1,024.

• If the multiplier is M, then 1,048,576.

• If the multiplier is G, then 1,073,741,824.

• If the multiplier is T, then 1,099,511,627,776.

• If the multiplier is P, then 1,125,899,906,842,624.

Note

Not all values specified by this notation are supported by the current
release of Oracle Rdb.

These quantified numeric literals can be used with the following clauses and
statements:

• ALLOCATION and SNAPSHOT ALLOCATION clause

As part of the CREATE DATABASE Statement or IMPORT DATAABSE
Statement. These clauses provide the allocation for the default storage area
RDB$SYSTEM, as well as the default allocations if none are specified for
specific storage areas.

• ALLOCATION and SNAPSHOT ALLOCATION clause

As part of the CREATE STORAGE AREA clause, ADD STORAGE AREA
clause, or ALTER STORAGE AREA clause. These clauses specify explicit
sizes for new or altered storage area files.

10–84 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

• ALLOCATION clause

As part of the CREATE, ADD or ALTER JOURNAL clause. These clauses
specify explicit allocation of the new journal file.

• ALLOCATION clause

As part of the CREATE, ADD or ALTER CACHE clause. These clauses
specify explicit allocation of the caching backing file.

• MEMORY ALLOCATION clause

As part of the GLOBAL BUFFERS clause. This value specifies the amount of
virtual memory to allocate for the global buffers.

10.1.60 New SQL Functions Added
This release of Oracle Rdb adds new functions to the SYS$LIBRARY:SQL_
FUNCTIONS73.SQL script. To replace the existing library of functions, first
use SQL_FUNCTIONS_DROP73.SQL script and then reapply using SQL_
FUNCTIONS73.SQL.

Description

• BITANDNOT (numeric-expression, numeric-expression)

This function is used to clear bits in the first expression that are set in the
second expression. First a bitwise NOT (BITNOT) is performed on the second
numeric value expression and then a bitwise AND (BITAND) is performed of
the first numeric value expression with the result.

If either of the passed expressions results in NULL then the result of
BITANDNOT will be NULL. Note that BITANDNOT is equivalent to BITAND
(exp1, BITNOT (ex2)) but is more efficient.

• BITNOT (numeric-expression)

Returns the bitwise NOT of the passed numeric value expression. If the
passed expression results in NULL, then the result of BITNOT will be NULL.

• BITOR (numeric-expression, numeric-expression)

Returns the bitwise OR of the passed numeric value expressions. If either
of the passed expressions results in NULL, then the result of BITOR will be
NULL.

• BITXOR (numeric-expression, numeric-expression)

Returns the bitwise XOR of the passed numeric value expressions. If either
of the passed expressions results in NULL, then the result of BITXOR will be
NULL.

10.1.61 Optimized NOT NULL Constraint Execution
This release of Oracle Rdb introduces a new mechanism to verify NOT NULL
constraints which are executed immediately at statement end (that is NOT
DEFERRABLE). This new mechanism is more efficient (uses less code and virtual
memory) than mechanisms used in prior releases. The cost of the constraint
check in these cases is a fixed cost with a very small incremental cost for each
extra NOT NULL constraint. The NOT NULL requirement of PRIMARY KEY
constraints are also checked in the same way.

In prior releases of Oracle Rdb, each NOT NULL constraint would require its
own internal query and each would be evaluated serially against the row just
inserted or updated.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–85

The following example shows an INSERT into a simple table with STRATEGY
flags enabled. As can be observed, the absence of the strategy display indicates
that no optimized query was used to validate these constraints.

SQL> set flags ’strategy,detail(2),internal,request_name’;
SQL>
SQL> insert into SAMPLE
cont> default values;
%RDB-E-INTEG_FAIL, violation of constraint SAMPLE_PK caused operation to fail
-RDB-F-ON_DB, on database RDB$DEFAULT_CONNECTION
SQL>
SQL> insert into SAMPLE (iden)
cont> values (0);
%RDB-E-INTEG_FAIL, violation of constraint SAMPLE_DAT_NOT_NULL caused operation
to fail
-RDB-F-ON_DB, on database RDB$DEFAULT_CONNECTION
SQL>
SQL> insert into SAMPLE
cont> values (1, ’A’);
~Sn: Constraint "SAMPLE_PK" evaluated (verb)
Tables:
0 = SAMPLE
1 = SAMPLE

Cross block of 2 entries Q1
Cross block entry 1
Conjunct: 0.DBKEY = <var0>
Firstn: 1
Get Retrieval by DBK of relation 0:SAMPLE

Cross block entry 2
Conjunct: <agg0> <> 1
Aggregate-F2: 0:COUNT-SINGLE (<subselect>) Q2
Index only retrieval of relation 1:SAMPLE
Index name SAMPLE_NDX [1:1]
Keys: 0.IDEN = 1.IDEN

1 row inserted
SQL>

Note that any DEFERRABLE constraints will be executed as in prior versions.

10.1.62 New RMU/LOAD Option CHARACTER_ENCODING_XML
When using RMU/UNLOAD/RECORD_DEFINITION/FORMAT=XML, the XML
header record will, by default, use the character encoding "ISO-8859-1", as seen
in the folllowing example.

<?xml version="1.0" encoding="ISO-8859-1"?>

This encoding (ISO-8859-1) is Latin 1 and covers encoding of many European
character sets. However, this encoding is not adequate if you use other character
encoding for Asian languages or languages not covered by this ISO Standard.

This release of Oracle Rdb adds a new option, CHARACTER_ENCODING_XML,
that allows the command procedure to specify an alternate character encoding.
For example, if the data being unloaded is using the UTF8 character set, use this
new option as shown in this example.

$ rmu/unload-
/record=(nofile,format=xml,trim,character_encoding_xml="utf-8")-
sql$database -
employees -
employees

%RMU-I-DATRECUNL, 100 data records unloaded 8-SEP-2013 22:21:49.54.
$

10–86 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

10.1.63 New MEMORY ALLOCATION Clause for the GLOBAL BUFFERS
Definition

This release of Oracle Rdb allows the database administrator to define the size
of the GLOBAL BUFFER pool using direct memory sizing as an alternate to
specifying the NUMBER of pages.

• MEMORY ALLOCATION IS <mem-octets>

The value of mem-octets is an unsigned numeric literal or a quantified
numeric literal. This clause is not compatible with the NUMBER IS clause.
Use just one of the keywords to define the size of the global buffers.

The following example shows the use of MEMORY ALLOCATION when creating
global buffers.

create database
filename TEST_DB

allocation 110k pages
snapshot allocation 1k pages
global buffers are disabled (memory allocation 1m)

create storage area AREA1
allocation 100k pages
snapshot allocation 2k pages

;

Syntax

global-buffer-params=

GLOBAL BUFFERS ARE ENABLED
DISABLED

(LARGE MEMORY IS ENABLED)
DISABLED

MEMORY ALLOCATION IS <mem-octets>
NUMBER IS <number-glo-buffers>
PAGE TRANSFER VIA DISK

MEMORY
USER LIMIT IS <max-glo-buffers>

,

10.1.64 New REPLACE Statement
Bug 8929218

This release of Oracle Rdb introduces a new REPLACE statement. When a
table includes a PRIMARY KEY definition, the REPLACE statement uses the
key information to remove the existing matching row prior to inserting the
replacement data.

The following example shows an example of the REPLACE ststement. Triggers
are defined with only TRACE statements to show the order of execution during
REPLACE.

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–87

SQL> set dialect ’sql2011’;
SQL> set flags ’test_system’;
SQL>
SQL> create table SAMPLE
cont> (ident integer primary key
cont> ,description char(40)
cont>);
SQL>
SQL> create trigger AI_SAMPLE
cont> after insert on SAMPLE
cont> (trace ’after an insert’)
cont> for each row;
SQL>
SQL> create trigger BI_SAMPLE
cont> before insert on SAMPLE
cont> (trace ’before an insert’)
cont> for each row;
SQL>
SQL> create trigger AD_SAMPLE
cont> after delete on SAMPLE
cont> (trace ’after a delete’)
cont> for each row;
SQL>
SQL> create trigger BD_SAMPLE
cont> before delete on SAMPLE
cont> (trace ’before a delete’)
cont> for each row;
SQL>
SQL> set flags ’trace’;
SQL>
SQL> -- first row
SQL> insert into SAMPLE
cont> values (100, ’First description’);
~Xt: before an insert
~Xt: after an insert
1 row inserted
SQL>
SQL> -- should fail (duplicate)
SQL> insert into SAMPLE
cont> values (100, ’Second description’);
~Xt: before an insert
~Xt: after an insert
%RDB-E-INTEG_FAIL, violation of constraint SAMPLE_PRIMARY_IDENT caused
operation to fail
-RDB-F-ON_DB, on database RDB$DEFAULT_CONNECTION
SQL>
SQL> replace into SAMPLE
cont> values (100, ’Replace first description’);
~Xt: before a delete
~Xt: after a delete
~Xt: before an insert
~Xt: after an insert
1 row replaced
SQL>
SQL> select * from SAMPLE order by ident;

IDENT DESCRIPTION
100 Replace first description

1 row selected
SQL>
SQL> commit;
SQL>

10–88 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

Usage Notes

• If no PRIMARY KEY exists for the table, or it is disabled, the REPLACE
statement acts exactly like an INSERT statement.

• REPLACE is a valid statement for a TRIGGER action.

• In addition to the BEFORE and AFTER INSERT triggers, REPLACE will
cause BEFORE and AFTER DELETE triggers to execute.

• REPLACE is a valid compound-use statement and can be used in a stored
procedure.

• It is possible that the implicit DELETE action taken by REPLACE will cause
constraint execution. These constraints may prevent the DELETE actions
(due to a table dependency) and therefore cause the REPLACE to fail.

10.1.65 Query Optimization Improvements for IN Clause
Bugs 12548885 and 14471918

The EXISTS and IN predicates can often be used interchangeably in queries to
check for the existence of values in another result set. If possible, the EXISTS
query should be the first preference because its structure allows for the best
query optimization. However, the semantics of these predicates are not identical
when NULL values are present in one or both tables, especially when used with
the NOT operator. Care should be taken to ensure correct query behavior in such
cases.

With this release of Oracle Rdb, the optimizer will attempt to transform the IN
predicate to an EXISTS predicate when the source columns are known to be not
nullable. Such a transformation will return the same results and additionally
present a better query for optimization.

The following example shows that the strategy selected for NOT IN when the
optimization is not (or cannot be) applied.

SQL> select s.badge_number
cont> from STAFF s
cont> where s.badge_number NOT IN (select kb.badge_number from KNOWN_BADGES kb)
cont> ;
Tables:
0 = STAFF
1 = KNOWN_BADGES

Cross block of 2 entries Q1
Cross block entry 1
Index only retrieval of relation 0:STAFF
Index name STAFF_I [0:0]

Cross block entry 2
Conjunct: <agg0> = 0
Aggregate-F1: 0:COUNT-ANY (<subselect>) Q2
Conjunct: MISSING (0.BADGE_NUMBER) OR MISSING (1.BADGE_NUMBER) OR (

0.BADGE_NUMBER = 1.BADGE_NUMBER)
Index only retrieval of relation 1:KNOWN_BADGES
Index name KNOWN_BADGES_I [0:0]

BADGE_NUMBER
4

1 row selected
SQL>

Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 10–89

When the target columns (for example BADGE_NUMBER) in each table have a
NOT DEFERRABLE constraint of the type PRIMARY KEY or NOT NULL, then
the following strategy is used. The resulting strategy will likely result in faster
query execution.

SQL> select s.badge_number
cont> from STAFF s
cont> where s.badge_number NOT IN (select kb.badge_number from KNOWN_BADGES kb)
cont> ;
Tables:
0 = STAFF
1 = KNOWN_BADGES

Conjunct: <agg0> = 0
Match (Agg Outer Join) Q1
Outer loop
Match_Key:0.BADGE_NUMBER
Index only retrieval of relation 0:STAFF
Index name STAFF_I [0:0]

Inner loop (zig-zag)
Match_Key:1.BADGE_NUMBER
Index_Key:BADGE_NUMBER
Aggregate-F1: 0:COUNT-ANY (<subselect>) Q2
Index only retrieval of relation 1:KNOWN_BADGES
Index name KNOWN_BADGES_I [0:0]

BADGE_NUMBER
4

1 row selected
SQL>

This transformation is enabled by default but can be disabled using SET FLAGS
’NOREWRITE(IN_CLAUSE)’ and re-enabled using SET FLAGS ’REWRITE(IN_
CLAUSE)’.

This new feature was introduced in Oracle Rdb Release 7.3.1.0.

10–90 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

11
Optimizer Enhancements Appendix

11.1 Optimizer Enhancements
11.1.1 Changes and Improvements to the Rdb Optimizer and Query Compiler

These changes were made available in Oracle Rdb Release 7.3.1.0.

This release of Oracle Rdb introduces several new capabilities within the query
compiler and the query optimizer. These changes fall generally under the title
query rewrite, and allow the query compiler to present a simplified query for
optimization and execution.

• CAST function elimination

In most cases, CAST actions must be executed at runtime to convert from the
source data type to that specified by the CAST function. However, in some
cases, the Rdb query compiler can eliminate or replace the CAST function
with a literal value during query compile. This saves CPU time as the action
is performed just once rather than once per row processed.

This replacement includes the following:

When CAST of DATE (ANSI), DATE (VMS) or TIMESTAMP data types is
performed to a compatible type of DATE or TIMESTAMP, then in many
cases the CAST operator is not required.

CAST of string literals to DATE (ANSI), DATE (VMS), TIME,
TIMESTAMP and INTERVAL can be processed at compile time. For
example, CAST(’2013-1-1’ AS DATE ANSI) is implicitly converted to a
DATE literal DATE’2013-1-1’.

CAST of small integer values is now done by the compiler. For example,
CAST(1 AS SMALLINT) can be performed at compile time.

CAST of fixed length (CHAR) literal strings to varying length strings
(VARCHAR) is now processed by the compiler if the character set is the
same and the target VARCHAR is long enough to hold the source string,
as seen in the following example:

CAST(’TABLE’ AS VARCHAR(31))

• Constant Folding

Simple arithmetic expressions involving integer or floating point literals are
evaluated by the query compiler. The overall effect is smaller executable
code and some reduced CPU time for queries. FLOAT, REAL, and DOUBLE
PRECISION values are combined to produce DOUBLE PRECISION results.
Integer literals (with no fractional component) are combined to produce
BIGINT results.

Optimizer Enhancements Appendix 11–1

The side effect is that some expressions may now return DOUBLE
PRECISION or BIGINT results where in prior versions they produced smaller
precision results. This should not affect applications which fetch values into
different data types as Oracle Rdb will perform an implicit conversion.

This optimization includes the following:

* Addition (+)

* Subtraction (-)

* Multiplication (*)

* Division (/)

Note that division is not performed at compile time if the divisor is a
literal zero (0). Operations which are coded to explicitly divide by zero
are probably expected to produce an error at runtime. Although using the
SQL SIGNAL statement is now preferred, this technique has been used to
terminate procedures when an incorrect input is encountered.

• Algebraic Rules

Additive identity (zero) can be added to an expression without changing
the value. The query compiler will eliminate the literal zero (0) from the
expression.

Multiply by zero will result in zero if the other operand is a not nullable
expression. In this case, the expression will be replaced by zero.

Multiplicative identity (one) can be multiplied by an expression without
changing the value. The query compiler will eliminate the literal one (1) from
the expression.

The side effect is that some expressions may now return slightly different
data types because the literal is no longer considered as part of the data type
computation.

• Simple Predicate Elimination

When predicates include comparison of simple expressions, then the query
compiler will attempt to eliminate them from the query predicate. For
example, WHERE (’A’ = ’A’) will be replaced by TRUE, WHERE (2 <> 2) will
be replaced with FALSE, and so on.

• Not Nullable Aware

The query compiler is now aware of which columns have a NOT NULL NOT
DEFERRABLE constraint enabled. Additionally, this attribute is also implied
from any PRIMARY KEY NOT DEFERRABLE constraints.

Using this knowledge, the query compiler can reduce (prune) the query
expression. This list defines the ways in which this can occur:

* When IS NULL is applied to a not nullable column or expression, then
this predicate is replaced with FALSE.

* When IS NOT NULL is applied to a not nullable column or expression,
then this predicate is replaced with TRUE.

The side effect is that constraints for a table are now loaded for SELECT
statements.

This optimization can be disabled using the SET FLAGS statement, or the
RDMS$SET_FLAGS logical name with the value NOREWRITE(IS_NULL).
The default is REWRITE(IS_NULL).

11–2 Optimizer Enhancements Appendix

• Replace comparisons with NULL

Queries that erroneously compare value expressions with NULL will now be
replaced with a simplified UNKNOWN value. For example, a query that uses
WHERE EMPLOYEE_ID = NULL will never find matching rows, because the
results of the comparison (equals, not equals, greater than, less than, and so
on) are always UNKNOWN.

This optimization can be disabled using the SET FLAGS statement, or the
RDMS$SET_FLAGS logical name with the value NOREWRITE(UNKNOWN).
The default is REWRITE(UNKNOWN).

• Predicate Pruning

The AND, OR and NOT operators can be simplified if the logical expressions
have been reduced to TRUE, FALSE or UNKNOWN expressions. Depending
on the operation, the Rdb query compiler might be able to eliminate the
Boolean operator and part of the expression.

This optimization can be disabled using the SET FLAGS statement, or the
RDMS$SET_FLAGS logical name with the value NOREWRITE(BOOLEANS).
The default is REWRITE(BOOLEANS).

• CASE Expression Pruning

The prior transformation will also be applied to the Boolean WHEN
expressions of a conditional expression (CASE, DECODE, NULLIF,
COALESCE, NVL, NVL2, SIGN, ABS, and so on).

In some cases, the resulting conditional expression might resolve to an
equivalent conditional expression with fewer branches (some WHEN ...
THEN clauses being eliminated) or a simple expression with no conditional
expression (all WHEN ... THEN clauses are eliminated).

• IN Operator Simplification

The IN operator using a subquery looks similar to the EXISTS boolean
expression but it differs in its handling of NULL values. If the query compiler
knows that neither source field nor the value set contains NULL, then the
EXISTS expression can replace the IN operator. The EXISTS expression
generates a better query solution in almost all cases.

This optimization can be disabled using the SET FLAGS statement, or the
RDMS$SET_FLAGS logical name with the value NOREWRITE(IN_CLAUSE).
The default is REWRITE(IN_CLAUSE).

In most cases, the results of these optimizations will be transparent to
the application. However, database administrators that use SET FLAGS
’STRATEGY,DETAIL’ will notice new notations in the displayed strategy.

The following examples show the types of likely results.

In this example, the logical expression (1 = 2) is replaced with FALSE, the logical
expression (1 = 1) is replaced with TRUE and the predicate is reduced to just the
IS NULL (aka MISSING) check.

Optimizer Enhancements Appendix 11–3

SQL> select last_name
cont> from employees
cont> where ((1 = 1) and employee_id is null)
cont> or
cont> ((1 = 2) and employee_id = ’00164’);
Tables:
0 = EMPLOYEES

Conjunct: MISSING (0.EMPLOYEE_ID)
Get Retrieval sequentially of relation 0:EMPLOYEES
0 rows selected

If there existed a NOT NULL NOT DEFERRABLE constraint on the
EMPLOYEE_ID column, the expression can be further reduced because the
NOT NULL constraint means the IS NULL test is always FALSE.

SQL> alter table EMPLOYEES
cont> alter column EMPLOYEE_ID
cont> constraint NN_EMPLOYEE_ID
cont> NOT NULL
cont> NOT DEFERRABLE
cont> ;
SQL>
SQL> select last_name
cont> from employees
cont> where ((1 = 1) and employee_id is null)
cont> or
cont> ((1 = 2) and employee_id = ’00164’);
Tables:
0 = EMPLOYEES

Conjunct: FALSE
Get Retrieval sequentially of relation 0:EMPLOYEES
0 rows selected
SQL>

REWRITE Flag
The SET FLAGS statement and the RDMS$SET_FLAGS logical name can be
used to enable or disable some of these rewrite actions. This flag primarily exists
for Oracle to test the behavior of the query rewrite changes. It can be used by
programmers to revert to pre-V7.3 behavior.

REWRITE enables each rewrite setting and NOREWRITE disables them.
Additionally, keywords can be added to REWRITE and NOREWRITE to disable
selective rewrite actions.

The following new keywords are added for this release of Oracle Rdb.

• BOOLEANS

• IN_CLAUSE

• IS_NULL

• UNKNOWN

11–4 Optimizer Enhancements Appendix

