
A practical guide and reference

Get the best out of
Oracle Partitioning

Oracle wants to hear from you!

• There’s still lots of ideas and things to do

• Input steers the direction

Let us know about

• Interesting use cases and implementations

• Enhancement requests

• Complaints

Contact us at:

• dw-pm_us@oracle.com

• hermann.baer@oracle.com

• @sdjh2000 (twitter/X)

Before we start ..

Copyright © 2023, Oracle and/or its affiliates 3

mailto:dw-pm_us@oracle.com
mailto:dw-pm_us@oracle.com
mailto:dw-pm_us@oracle.com
mailto:Hermann.baer@oracle.com

Copyright © 2023, Oracle and/or its affiliates 4

Partitioning for Performance

Partitioning Maintenance

Difference Partitioned and Nonpartitioned Objects

Partitioning – Random Tidbits

Attribute Clustering and Zone Maps

Best Practices and How-Tos

Partitioning Overview

Partitioning Concepts

Partitioning Benefits

Partitioning Methods

Partitioning Extensions

Partitioning and External Data

Partitioning and Indexing

Oracle Partitioning

Partitioning Overview

Copyright © 2023, Oracle and/or its affiliates 5

What is Oracle Partitioning?

 Powerful functionality to logically divide objects into smaller pieces

 Key requirement for large databases needing high performance and high availability

 Driven by business requirements

Copyright © 2023, Oracle and/or its affiliates 6

Performance – lowers data access times

Availability – improves access to critical information

Costs – leverages multiple storage tiers

Easy Implementation – requires no changes to applications and queries

Mature Feature – supports a wide array of partitioning methods

Well Proven – used by thousands of Oracle customers

Why use Oracle Partitioning?

Copyright © 2023, Oracle and/or its affiliates 7

SALES

JAN

FEB

EMEA APAC

SELECT *
FROM SALES;

MOVE PARTITION
COMPRESS
READ ONLY;

The two Personalities of Partitioning

Copyright © 2023, Oracle and/or its affiliates 8

Enables large databases and indexes to be split into smaller, more manageable pieces

How does Partitioning work?

Challenges:

Large tables are difficult

to manage

Solution: Partitioning

• Divide and conquer

• Easier data management

• Improve performance

EVENTS EVENTS

JAN

FEB

EAST WEST

JAN

FEB

EVENTS

Copyright © 2023, Oracle and/or its affiliates 10

Partitioning Concepts

Copyright © 2023, Oracle and/or its affiliates 11

def Partition

“Merriam Webster Dictionary”

To divide (something) into parts

Copyright © 2023, Oracle and/or its affiliates 12

Fundamental system setup requirement

• Node owns piece of DB

• Enables parallelism

Number of partitions is equivalent to minimum
required parallelism

• Always needs HASH or random distribution

Equally sized partitions per node required for
proper load balancing

Shared Nothing Architecture

Physical Partitioning

Copyright © 2023, Oracle and/or its affiliates 13

Does not underlie any constraints

• SMP, MPP, Cluster, Grid does not matter

Purely based on the business requirement

• Availability, Manageability, Performance

Beneficial for every environment

• Provides the most comprehensive functionality

Shared Everything Architecture - Oracle

Logical Partitioning

Copyright © 2023, Oracle and/or its affiliates 14

Partitioning Benefits

Copyright © 2023, Oracle and/or its affiliates 15

Partitioning enables data management operations such as…

• Data loads, joins and pruning,

• Index creation and rebuilding,

• Optimizer statistics management,

• Backup and recovery

Only work on the data that is relevant

Increased Performance

Result: Order of magnitude gains on performance

… at partition level instead of on the entire table

Copyright © 2023, Oracle and/or its affiliates 16

Partition elimination

• Dramatically reduces amount of data
retrieved from storage

• Performs operations only on relevant
partitions

• Transparently improves query
performance and optimizes resource
utilization

Partition Pruning

Increased Performance - Example

What are the total
EVENTS for May 1-2?

EVENTS

May 5

May 4

May 3

May 2

May 1

Apr 30

Apr 29

Copyright © 2023, Oracle and/or its affiliates 17

A large join is divided into multiple
smaller joins, executed in parallel

• # of partitions to join must be a
multiple of DOP

• Both tables must be partitioned
the same way on the join column

Partition-wise joins

Increased Performance - Example

… …
MAR APR FEB JAN

JAN

CUSTOMER

hash
1

hash
2

hash
3

hash
4

hash
1

CUSTOMER FEB MAR APR

hash
1

hash
2

hash
3

hash
4

hash
1

Copyright © 2023, Oracle and/or its affiliates 18

Partitioning finds the balance between…

• Data importance

• Storage performance

• Storage reliability

• Storage form

Store data in the most appropriate manner

Decreased Costs

Result: Reduce storage costs by 2x or more

… allowing you to leverage multiple storage tiers

Copyright © 2023, Oracle and/or its affiliates 19

Mid Storage Tier

Partition for Tiered Storage

Decreased Costs - Example

Low End Storage Tier

1990 2012 2020

10%
Active

85% Less
Active

… …

High End Storage Tier

5%
Active

Copyright © 2023, Oracle and/or its affiliates 20

Partitioning reduces…

• Maintenance windows

• Impact of scheduled downtime and failures,

• Recovery times

Individual partition manageability

Increased Availability

Result: Improves access to critical information

… if critical tables and indexes are partitioned

Copyright © 2023, Oracle and/or its affiliates 21

Partition for Manageability/Availability

Increased Availability - Example

Other partitions visible and usable

Q2’2020 Q3’2020 Q4’2020 Q1’202

0

Copyright © 2023, Oracle and/or its affiliates 22

Partitioning requires NO changes to applications and queries

• Adjustments might be necessary to fully exploit the benefits of Partitioning

Transparent to applications

Easy Implementation

Copyright © 2023, Oracle and/or its affiliates 23

Used by tens of thousands of Oracle customers

Supports a wide array of partitioning methods

Over a decade of development

Mature, Well Proven Functionality

Copyright © 2023, Oracle and/or its affiliates 24

Oracle Partitioning today
Core functionality Performance Manageability

Oracle 8.0 Range partitioning

Local and global Range indexing

Static partition pruning Basic maintenance:

ADD, DROP, EXCHANGE

Oracle 8i Hash partitioning

Range-Hash partitioning

Partition-wise joins

Dynamic partition pruning

Expanded maintenance:

MERGE

Oracle 9i List partitioning Global index maintenance

Oracle 9i R2 Range-List partitioning Fast partition SPLIT

Oracle 10g Global Hash indexing Local Index maintenance

Oracle 10g R2 1M partitions per table Multi-dimensional pruning Fast DROP TABLE

Oracle 11g Virtual column based partitioning

More composite choices

Reference partitioning

Interval partitioning

Partition Advisor

Incremental stats mgmt

Oracle 11g R2 Hash-* partitioning

Expanded Reference partitioning

“AND” pruning Multi-branch execution (aka table or-expansion)

Oracle 12c R1 Interval-Reference partitioning Partition Maintenance on multiple partitions

Asynchronous global index maintenance

Online partition MOVE, Cascading TRUNCATE,

Partial indexing

Oracle 12c R2 Auto-list partitioning

Multi-column list [sub]partitioning

Online partition maintenance operations

Online table conversion to partitioned table

Reduced cursor invalidations for DDL’s

Filtered partition maintenance operations

Read only partitions

Create table for exchange

Oracle 18c Partitioned external tables

Completion of online partition maintenance

Enhanced online table conversions

Validation of data content

Oracle 19c Hybrid partitioned tables Object storage access*

Oracle 23c Interval and auto list for hybrid

partitioned tables

Logical partition change

tracking for materialized views

ALTER TABLE MOVE for all partitions of a

table (21c)

ALTER TABLE MODIFY to nonparallel

Enhanced Partition metadata

Table and partition level read access

tracking

* Manual installation of DBMS_CLOUD on non-autonomous,

see MOS 2748362.1
Copyright © 2023, Oracle and/or its affiliates 25

Partitioning Methods

Copyright © 2023, Oracle and/or its affiliates 26

Tables

• Heap tables

• Index-organized tables

Indexes

• Global Indexes

• Local Indexes

Materialized Views

Hash Clusters

What can be partitioned?

Global Partitioned Index

Local Partitioned Index

Global Non-Partitioned Index

Copyright © 2023, Oracle and/or its affiliates 27

Partitioning extensions

• Interval

• Reference

• Interval Reference

• Virtual Column Based

• Auto

Single-level partitioning

• Range

• List

• Hash

Composite-level partitioning

- [Range | List | Hash | Interval] –
[Range | List | Hash]

Partitioning Methods

Copyright © 2023, Oracle and/or its affiliates 28

Copyright © 2023, Oracle and/or its affiliates 29

Introduced in Oracle 8.0

Range Partitioning

Data is organized in ranges

• Lower boundary derived by upper boundary of preceding partition

• Split and merge as necessary

• No gaps

Ideal for chronological data

Range Partitioning

… JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

Copyright © 2023, Oracle and/or its affiliates 30

Copyright © 2023, Oracle and/or its affiliates 31

Introduced in Oracle 9i (9.0)

List Partitioning

Data is organized in lists of values

• One or more unordered distinct values per list

• Functionality of DEFAULT partition (Catch-it-all for all unspecified values)

• Check contents of DEFAULT partition – create new partitions as per need

Ideal for segmentation of distinct values, e.g. region

 List Partitioning

… GYRO CAMERA THERMO DEFAULT
BARATRO

N

Copyright © 2023, Oracle and/or its affiliates 32

Copyright © 2023, Oracle and/or its affiliates 33

Introduced in Oracle 8i (8.1)

Hash Partitioning

Data is placed based on hash value of partition key

• Number of hash buckets equals number of partitions

Ideal for equal data distribution

• Number of partitions should be a power of 2 for equal data distribution

Hash Partitioning

Key value

Hash Function

Copyright © 2023, Oracle and/or its affiliates 34

Copyright © 2023, Oracle and/or its affiliates 35

Range-Hash introduced in Oracle 8i

Range-List introduced in Oracle 9i Release 2

[Interval | Range | List | Hash]-[Range | List | Hash]
introduced in Oracle 11g Release 1|2

*Hash-Hash in 11.2

Composite Partitioning

Data is organized along two dimensions

• Record placement is deterministically identified by dimensions

- Example RANGE-LIST

Composite Partitioning

…

JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

… WEST

EAST

Copyright © 2023, Oracle and/or its affiliates 36

Concept

Composite Partitioning

… JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

CREATE TABLE EVENTS ..PARTITION BY RANGE (time_id)

Copyright © 2023, Oracle and/or its affiliates 37

Concept

Composite Partitioning

CREATE TABLE EVENTS ..PARTITION BY RANGE (time_id)

 SUPARTITION BY LIST (region)

…
JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

… WEST

EAST

… … … … …

…
JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

Copyright © 2023, Oracle and/or its affiliates 38

Concept

Composite Partitioning

CREATE TABLE EVENTS ..PARTITION BY RANGE (time_id)

 SUPARTITION BY LIST (region)

…
JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

… WEST

EAST

… … … … …

…
JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

Physical segments

Copyright © 2023, Oracle and/or its affiliates 39

Concept

Composite Partitioning

CREATE TABLE EVENTS ..PARTITION BY RANGE (time_id)

 SUPARTITION BY LIST (region)

…
JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

… WEST

EAST

… … … … …

…
JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

WEST data for
AUG 2021

Copyright © 2023, Oracle and/or its affiliates 40

Partition pruning is independent of composite order

• Pruning along one or both dimensions

• Same pruning for RANGE-LIST and LIST_RANGE

Concept

Composite Partitioning

…
JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

… WEST

EAST

… … … … …

…
JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

WHERE region = ‘WEST’ and
time_id = ‘Aug 2021’

Copyright © 2023, Oracle and/or its affiliates 41

Partition pruning is independent of composite order

• Pruning along one or both dimensions

• Same pruning for RANGE-LIST and LIST_RANGE

Concept

Composite Partitioning

…
JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

… WEST

EAST

… … … … …

…
JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

WHERE region = ‘WEST’

Copyright © 2023, Oracle and/or its affiliates 42

Partition pruning is independent of composite order

• Pruning along one or both dimensions

• Same pruning for RANGE-LIST and LIST_RANGE

Concept

Composite Partitioning

…
JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

… WEST

EAST

… … … … …

…
JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

WHERE time_id = ‘Aug 2021’

Copyright © 2023, Oracle and/or its affiliates 43

Without subpartition template, only one subpartition will be created

• Range: MAXVALUE

• List: DEFAULT

• Hash: one hash bucket

Add Partition

Composite Interval Partitioning

JAN 2020 FEB 2020 JAN 2022 FEB 2022 MAR 2022

Copyright © 2023, Oracle and/or its affiliates 44

Subpartition template defines shape of future subpartitions

• Can be added and/or modified at any point in time

• No impact on existing [sub]partitions

Controls physical attributes for subpartitions as well

• Just like the default settings for a partitioned table does for partitions

Difference Interval and Range Partitioning

• Naming template only for Range

• System-generated names for Interval

Subpartition template

Composite Interval Partitioning

Copyright © 2023, Oracle and/or its affiliates 45

ADD PARTITION always on top-level dimension

• Identical for all newly added subpartitions

- RANGE-LIST: new time_id range

- LIST-RANGE: new list of region values

Add Partition

Composite Partitioning

JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

…

…

… WEST

EAST

… … … … …

MAR 2022

…

JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022 MAR 2022

Copyright © 2023, Oracle and/or its affiliates 46

ADD SUBPARTITION only for one partition

• Asymmetric, only possible on subpartition level

• Impact on partition-wise joins

Add Subpartition

Composite Partitioning

WEST

EAST
…

JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

…
… … … … …

…

SOUTH

JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

Copyright © 2023, Oracle and/or its affiliates 47

ADD SUBPARTITION for all partitions

• N operations necessary (for each existing partition)

• Adjust subpartition template for future partitions

Add Subpartition

Composite Partitioning

WEST

EAST

SOUTH

…
JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

…

…

…

JUL 2021 AUG 2021 SEP 2021 JAN 2022 FEB 2022

Copyright © 2023, Oracle and/or its affiliates 48

Number of subpartitions varies for individual
partitions

• Most common for LIST subpartition strategies

Asymmetric subpartitions

Composite Partitioning

TYP3

TYP1

TYP7

JAN 2022 FEB 2022

CREATE TABLE EVENTS..

PARTITION BY RANGE (time_id)

SUPARTITION BY LIST (model)

… …
…

JAN 2022 FEB 2022

DEFAULT

Copyright © 2023, Oracle and/or its affiliates 49

Number of subpartitions varies for individual
partitions

• Most common for LIST subpartition strategies

Zero impact on partition pruning capabilities

Asymmetric subpartitions

Composite Partitioning

TYP2

TYP1

TYP7

JAN 2022 FEB 2022

SELECT .. FROM events

WHERE model = ‘TYP7’;

JAN 2022 FEB 2022

DEFAULT

…
… …

Copyright © 2023, Oracle and/or its affiliates 50

Asymmetric subpartitions

Composite Partitioning

TYP2

TYP1

TYP7

JAN 2022

DEFAULT

SELECT .. FROM events

WHERE model = ‘TYP7’;

…
…

FEB 2022

…
…

MAR 2022

…
…

APR 2022

…
…

JAN 2022 FEB 2022 MAR 2022 APR 2022

Copyright © 2023, Oracle and/or its affiliates 51

Always use appropriate composite strategy

Top-level dimension mainly chosen for Manageability

• E.g. add and drop time ranges

Sub-level dimension chosen for performance or manageability

• E.g. load_id, customer_id

Asymmetry has advantages but should be thought through

- E.g. different time granularity for different regions

- Remember the impact of asymmetric composite partitioning

Composite Partitioning

Copyright © 2023, Oracle and/or its affiliates 52

Partitioning and Indexing

Copyright © 2023, Oracle and/or its affiliates 57

GLOBAL index points to rows in any partition

• Index can be partitioned or not

LOCAL index is partitioned same as table

• Index partitioning key can be different from index key

Indexing of Partitioned Tables

Global Partitioned Index

Local Partitioned Index

Global Non-Partitioned Index

Copyright © 2023, Oracle and/or its affiliates 58

Partial indexes span only some
partitions

Applicable to local and global
indexes

Complementary to full indexing

Full support of online index
maintenance

Indexing of Partitioned Tables

Global Non-Partitioned Index

Table

Partition

Table

Partition

Table

Partition

Global Partitioned Index

Local Partitioned Index

Partial Global Index

Partial Local Partitioned Index

Partial Global Partitioned Index

Full Indexing

Indexing on

Partial Indexes

Indexing off

No Indexing

Copyright © 2023, Oracle and/or its affiliates 59

Partitioned index access without any partition
pruning

Partitioned index access with single partition
pruning

Data Access – Local Index and Global Partitioned Index

Copyright © 2023, Oracle and/or its affiliates 60

Number of index probes identical to number of accessed partitions

• No partition pruning leads to a probe into all index partitions

Not optimally suited for OLTP environments

• No guarantee to always have partition pruning

• Exception: global hash partitioned indexes for DML contention alleviation

- Most commonly small number of partitions

Pruning on global partitioned indexes based on the index prefix

• Index prefix identical to leading keys of index

Data Access – Local Index and Global Partitioned Index

Copyright © 2023, Oracle and/or its affiliates 61

Index is partitioned along same boundaries as
table (data) partition

• B-tree or bitmap

Pros

• Easy to manage

• Parallel index scans

Cons

• Less efficient for retrieving small amounts of
data (without partition pruning in place)

Local Index

Copyright © 2023, Oracle and/or its affiliates 62

One index b-tree structure that spans all partitions

Pros

• Efficient access to any individual record

Cons

• Partition maintenance always involves index
maintenance

Global Non-Partitioned Index

Copyright © 2023, Oracle and/or its affiliates 63

Index is partitioned independently of data

• Each index structure may reference any and
all partitions.

Pros

• Availability and manageability

Cons

• Partition maintenance always involves index
maintenance

Global Partitioned Index

Copyright © 2023, Oracle and/or its affiliates 64

Online index maintenance available for both global and local indexes

• Global index maintenance since Oracle 9i, local index maintenance since Oracle 10g

Fast index maintenance for both local and global indexes for DROP and TRUNCATE

• Asynchronous global index maintenance added in Oracle 12c Release 1

Index maintenance necessary for both local and global indexes for all other partition maintenance
operations

Index Maintenance and Partition Maintenance

Copyright © 2023, Oracle and/or its affiliates 65

Online index maintenance available for both global and local indexes

• Global index maintenance since Oracle 9i, local index maintenance since Oracle 10g

Fast index maintenance for both local and global indexes for DROP and TRUNCATE

• Asynchronous global index maintenance added in Oracle 12c Release 1

Index maintenance necessary for both local and global indexes for all other partition maintenance
operations

Decision for partition maintenance with index maintenance should be always performance versus
availability

• Rebuild of index always faster when more than 5%-10% of data are touched

Consider partial indexing for both old and new data

• Not all data has to be indexed to begin with

Index Maintenance and Partition Maintenance

Copyright © 2023, Oracle and/or its affiliates 66

Copyright © 2023, Oracle and/or its affiliates 67

Indexing for unique constraints
and primary keys

Unique constraints are enforced with unique indexes

• Primary key constraint adds NOT NULL to column

• Table can have only one primary key (“unique identifier”)

Partitioned tables offer two types of indexes

• Local indexes

• Global index, both partitioned and non-partitioned

Which one to pick?

• Do I even have a choice?

Unique Constraints/Primary Keys

Copyright © 2023, Oracle and/or its affiliates 68

GLOBAL index points to rows in all partitions

• Index can be partitioned or not

• Partition maintenance affects entire index

LOCAL index points to rows in one partition

• Index is partitioned same as table

• Index partitioning key can be different from
index key

• Index partitions can be maintained separately

Index Partitioning

Global Partitioned Index

Local Partitioned Index

Global Non-Partitioned Index

Copyright © 2023, Oracle and/or its affiliates 69

Local indexes are equi-partitioned with the table

• Follow autonomy concept of a table partition

- “I only care about myself”

Requirement for local indexes to enforce uniqueness

• Partition key column(s) to be a subset of the unique key

Applicability of Local Indexes

Unique Constraints/Primary Keys

Copyright © 2023, Oracle and/or its affiliates 70

Local indexes are equi-partitioned with the table

• Follow autonomy concept of a table partition

- “I only care about myself”

Requirement for local indexes to enforce uniqueness

• Partition key column(s) must be a subset of the unique key

Applicability of Local Indexes

Unique Constraints/Primary Keys, cont.

PARTITION BY (col1), PK(col1) PARTITION BY (col1), PK(col2)

Copyright © 2023, Oracle and/or its affiliates 71

Global indexes do not have any relation to the partitions of a table

• By definition, a global index contains data from all partitions

• True for both partitioned and non-partitioned global indexes

Global index can always be used to enforce uniqueness

Applicability of Global Indexes

Unique Constraints/Primary Keys, cont.

PARTITION BY (col1), PK(col1) PARTITION BY (col1), PK(col2)

Copyright © 2023, Oracle and/or its affiliates 72

Copyright © 2023, Oracle and/or its affiliates 73

Introduced in Oracle 12c Release 1 (12.1)

Partial Indexing

Local indexes

Non-partitioned or partitioned global indexes

Usable or unusable index segments

• Non-persistent status of index, no relation to table

Indexing prior to Oracle Database 12c

Enhanced Indexing with Oracle Partitioning

Copyright © 2023, Oracle and/or its affiliates 74

Local indexes

Non-partitioned or partitioned global indexes

Usable or unusable index segments

• Non-persistent status of index, no relation to table

Partial local and global indexes

• Partial indexing introduces table and [sub]partition level metadata

• Leverages usable/unusable state for local partitioned indexes

• Policy for partial indexing can be overwritten

Indexing with Oracle Database 12c

Enhanced Indexing with Oracle Partitioning

Copyright © 2023, Oracle and/or its affiliates 75

Partial indexes span only some
partitions

Applicable to local and global
indexes

Complementary to full indexing

Full support of online index
maintenance

Partial Local and Global Indexes

Enhanced Indexing of Partitioned Tables

Global Non-Partitioned Index

Table

Partition

Table

Partition

Table

Partition

Global Partitioned Index

Local Partitioned Index

Partial Global Index

Partial Local Partitioned Index

Partial Global Partitioned Index

Full Indexing

Indexing on

Partial Indexes

Indexing off

No Indexing

Copyright © 2023, Oracle and/or its affiliates 76

After Before

Partial Local and Global Indexes

Enhanced Indexing with Oracle Partitioning

Copyright © 2023, Oracle and/or its affiliates 77

Partial global index excluding partition 4

Partial Local and Global Indexes

Enhanced Indexing with Oracle Partitioning

Copyright © 2023, Oracle and/or its affiliates 78

Unusable versus Partial Indexes

Copyright © 2023, Oracle and/or its affiliates 79

Unusable index partitions are commonly used in environments with fast load requirements

• “Save” the time for index maintenance at data insertion

• Unusable index segments do not consume any space (11.2)

Unusable indexes are ignored by the optimizer

Partitioned indexes can be used by the optimizer even if some partitions are unusable

• Prior to 11.2, static pruning and only access of usable index partitions mandatory

• With 11.2, intelligent rewrite of queries using UNION ALL

Unusable Indexes

SKIP_UNUSABLE_INDEXES = [TRUE | FALSE]

Copyright © 2023, Oracle and/or its affiliates 80

Intelligent UNION ALL expansion in the presence of partially unusable indexes

• Transparent internal rewrite

• Usable index partitions will be used

• Full partition access for unusable index partitions

Multiple SQL branches are generated and executed

Table-OR-Expansion

Copyright © 2023, Oracle and/or its affiliates 81

Sample Plan - Multiple SQL branches are generated and executed

Table-OR-Expansion

Copyright © 2023, Oracle and/or its affiliates 82

Copyright © 2023, Oracle and/or its affiliates 83

Partitioning Extensions

Copyright © 2023, Oracle and/or its affiliates 84

Introduced in Oracle 11g Release 1 (11.1)

Interval Partitioning

Extension to Range Partitioning

Full automation for equi-sized range partitions

Partitions are created as metadata information only

• Start Partition is made persistent

Segments are allocated as soon as new data arrives

• No need to create new partitions

• Local indexes are created and maintained as well

Interval Partitioning

No need for any partition management

Copyright © 2023, Oracle and/or its affiliates 85

Partitions are created automatically as data arrives

• Extension to RANGE partitioning

Interval Partitioning

JAN 2020 FEB 2020 MAR 2020 JAN 2020 FEB 2020 JAN 2020

Copyright © 2023, Oracle and/or its affiliates 86

As easy as One, Two, Three…

Interval Partitioning

First
partition

is created

CREATE TABLE EVENTS (order_date DATE, ...)

PARTITON BY RANGE (order_date)

INTERVAL(NUMTOYMINTERVAL(1,'month')

(PARTITION p_first VALUES LESS THAN (‘01-FEB-2020');

JAN 2020

Copyright © 2023, Oracle and/or its affiliates 87

As easy as One, Two, Three…

Interval Partitioning

JAN 2020

Other partitions only exist in table
metadata

Copyright © 2023, Oracle and/or its affiliates 88

As easy as One, Two, Three…

Interval Partitioning

New partition is
automatically instantiated

INSERT INTO EVENTS (order_date DATE, ...)

VALUES (’15-MAR-2020',...);

JAN 2020 MAR 2020

Copyright © 2023, Oracle and/or its affiliates 89

As easy as One, Two, Three…

Interval Partitioning

Whenever data for
a new partition arrives

INSERT INTO EVENTS (order_date DATE, ...)

VALUES (’04-FEB-2022',...);

JAN 2020 MAR 2020 FEB 2022

Copyright © 2023, Oracle and/or its affiliates 90

Range partitioned tables can be extended into interval partitioned tables

• Simple metadata command

• Investment protection

Interval Partitioning

. . . Q1 2020 Q3 2020 Q2 2020 Q4 2020 . . . JAN 2020 FEB 2020

new monthly
interval partitions old range partition table

ALTER TABLE EVENTS

SET INTERVAL(NUMTOYMINTERVAL(1,'month');

Copyright © 2023, Oracle and/or its affiliates 91

Interval partitioned table has classical range and automated interval section

• Automated new partition management plus full partition maintenance capabilities: “Best of both
worlds”

Interval Partitioning

. . . 2020 Q2 2021 Q1 2021 Q3 2021 . . .

automated interval partition section classical range partition section

Q4 2021 Q2 2020

Copyright © 2023, Oracle and/or its affiliates 92

Interval Partitioning

. . . Q4 2021 Q2 2020 2020 Q2 2021 Q1 2021 Q3 2021 . . .

1. Merge and move old partitions for ILM

automated interval partition section classical range partition section

Copyright © 2023, Oracle and/or its affiliates 93

1. Merge and move old partitions for ILM

2. Insert new data

1. Automatic partition instantiation

Interval Partitioning

. . . 2020 Q2 2021 Q1 2021 Q3 2021 . . .

automated interval partition section classical range partition section

Q4 2021

Values (‘13-JAN-2022’)

Q1 2022

Copyright © 2023, Oracle and/or its affiliates 94

“Standard” Partitioning with deferred
segment creation

• Only explicitly defined partitions are existent

- New partitions added via DDL

• No segments are allocated for partitions
without data

- New record insertion triggers segment
creation when data matches pre-defined
partitions

• Ideal for sparsely populated pre-defined tables

Interval Partitioning

• Maximum number of one million partitions are
pre-defined

- Explicitly defined plus interval-based
partitions

• No segments are allocated for partitions
without data

- New record insertion triggers segment
creation

• Ideal for “ever-growing” tables

Deferred Segment Creation vs Interval Partitioning

Copyright © 2023, Oracle and/or its affiliates 95

Introduced in Oracle Database 12.2

Auto-List Partitioning

Copyright © 2023, Oracle and/or its affiliates 96

Copyright © 2023, Oracle and/or its affiliates 97

Partitions are created automatically as data arrives

• Extension to LIST partitioning

• Every distinct partition key value will be stored in separate partition

Auto-List Partitioning

SENSOR 1 SENSOR 7 SENSOR 3 SENSOR 1 SENSOR 7 SENSOR 1

Copyright © 2023, Oracle and/or its affiliates 98

Automatically creates new list partitions that contain one value per partition

• Only available as top-level partitioning strategy in 12.2.0.1

No notion of default partition

System generated partition names for auto-created partitions

• Use FOR VALUES clause for deterministic [sub]partition identification

Can evolve list partitioning into auto-list partitioning

• Only requirement is having no DEFAULT partition

• Protection of your investment into a schema

Details of Auto-List strategy

Syntax example

Auto-List Partitioned Table

CREATE TABLE EVENTS(sensor_type VARCHAR2(50),

 channel VARCHAR2(50), …)

PARTITION BY LIST (sensor_type) AUTOMATIC

(partition p1 values (‘GYRO’));

Copyright © 2023, Oracle and/or its affiliates 99

Different use case scenarios

List with DEFAULT partitioning

• Targeted towards multiple large distinct list values plus “not classified”

Auto-list partitioning

• Expects ‘critical mass of records’ per partition key value

• Could be used as pre-cursor state for using List + DEFAULT

Auto-List is not equivalent to List + DEFAULT

Copyright © 2023, Oracle and/or its affiliates 100

Different use case scenarios

List with DEFAULT partitioning

• Targeted towards multiple large distinct list values plus “not classified”

Auto-list partitioning

• Expects ‘critical mass of records’ per value

• Could be used as pre-cursor state for using List + DEFAULT

.. Plus they are functionally conflicting and cannot be used together

• Either you get a new partition for a new partition key value

• .. Or “dump” it in the catch-it-all bucket

Auto-List is not equivalent to List + DEFAULT

Copyright © 2023, Oracle and/or its affiliates 101

Copyright © 2023, Oracle and/or its affiliates 102

Introduced in Oracle 11g Release 1 (11.1)

Virtual Column Based Partitioning

Copyright © 2023, Oracle and/or its affiliates 103

REGION requires no storage

Partition by ORDER_DATE, REGION

Virtual Column Based Partitioning

EVENTS

EVENT_ID EVENT_DATE SENSOR_ID ... REGION AS (SUBSTR(EVENT_ID,6,2))

---------- ----------- ----------- --- --------------------------------

9834-GY-14 12-JAN-2020 65920 GY

8300-TH-97 14-FEB-2020 39654 TH

3886-TH-02 16-JAN-2020 4529 GY

2566-GY-94 19-JAN-2020 15327 TH

3699-GY-63 02-FEB-2020 18733 TH

JAN 2020 FEB 2020

EAST

WEST

Base table with all attributes ...

Example

Virtual Columns

CREATE TABLE accounts

(acc_no number(10) not null,

 acc_name varchar2(50) not null, …

12500

12507

12666

12875

Adams

Blake

King

Smith

Copyright © 2023, Oracle and/or its affiliates 104

Base table with all attributes ...

• ... is extended with the virtual (derived) column

Example

Virtual Columns

CREATE TABLE accounts

(acc_no number(10) not null,

 acc_name varchar2(50) not null, ...

 acc_branch number(2) generated always as

 (to_number(substr(to_char(acc_no),1,2)))

12500

12507

12666

12875

Adams

Blake

King

Smith

12

12
12
12

Copyright © 2023, Oracle and/or its affiliates 105

Base table with all attributes ...

• ... is extended with the virtual (derived) column

• ... and the virtual column is used as partitioning key

Example

Virtual Columns

CREATE TABLE accounts

(acc_no number(10) not null,

 acc_name varchar2(50) not null, ...

 acc_branch number(2) generated always as

 (to_number(substr(to_char(acc_no),1,2)))

partition by list (acc_branch) …

12500

12507

12666

12875

Adams

Blake

King

Smith

12

12

12

12

32320

32407

32758

32980

Jones

Clark

Hurd

Kelly

32

32

32

32

…

Copyright © 2023, Oracle and/or its affiliates 106

Conceptual model considers virtual columns as visible and used attributes

Partition pruning currently only works with predicates on the virtual column (partition key) itself

• No transitive predicates

Enhancement planned for future release (not imminent)

Partition Pruning

Virtual Columns

Copyright © 2023, Oracle and/or its affiliates 107

Copyright © 2023, Oracle and/or its affiliates 108

Introduced in Oracle 11g Release 1 (11.1)

Reference Partitioning

Inherit partitioning strategy

Reference Partitioning

EVENTS

CHANNELS

RUNS SENSORS

EVENT
DETAILS

Partition
EVENTS
by Date

ORDER
S

CHANNELS

RUNS SENSORS

EVENT
DETAILS

ORDER
S

CHANNELS

RUNS SENSORS

EVENT
DETAILS

ORDER
S

CHANNELS

RUNS SENSORS

EVENT
DETAILS

ORDER
S

CHANNELS

RUNS SENSORS

EVENT
DETAILS

JA
N

FE
B

MAR
AP
R

Copyright © 2023, Oracle and/or its affiliates 109

Solution

Oracle Database 11g introduces Reference
Partitioning

• Child table inherits the partitioning strategy of
parent table through PK-FK

• Intuitive modelling

Enhanced Performance and Manageability

Business Problem

Related tables benefit from same partitioning
strategy

• Sample 3NF order entry data model

Redundant storage of same information solves
problem

• Data and maintenance overhead

Reference Partitioning

Copyright © 2023, Oracle and/or its affiliates 110

Primary Key – Foreign Key without Reference Partitioning

RUNS

…

EVENTS

…

RANGE(run_date)

Primary key run_id

RANGE(run_date)

Foreign key run_id

• Redundant storage

• Redundant maintenance

SEP
2021

OCT
2021

NOV
2021

FEB
2022

FEB
2022

NOV
2021

OCT
2021

SEP
2021

Copyright © 2023, Oracle and/or its affiliates 111

Primary Key – Foreign Key with Reference Partitioning

RUNS

…

EVENTS

…

RANGE(run_date)

Primary key run_id

RANGE(run_date)

Foreign key run_id

• Partitioning key inherited

 through PK-FK relationship

SEP
2021

OCT
2021

NOV
2021

FEB
2022

FEB
2022

NOV
2021

OCT
2021

SEP
2021

Copyright © 2023, Oracle and/or its affiliates 112

Traditional relational model

• Primary key inherits down to all levels of children and becomes part of an (elongated) primary key
definition

Object oriented-like model

• Several levels of primary-foreign key relationship

• Primary key on each level is primary key + “object ID”

Reference Partitioning well suited to address both modeling techniques

Use Cases

Reference Partitioning

Copyright © 2023, Oracle and/or its affiliates 113

“Object-like” model Relational Model

Reference Partitioning

Parent
PK: (parent key)

Child
FK: (foreign key)

PK: (parent key, child key)

Grandchild
FK: (parent key, child key)

PK: (parent key, child key, grandchild
key)

Parent
PK: (parent key)

Child
FK: (foreign key)

PK: (parent key, child key)

Grandchild
FK: (parent key, child key)

FK: (parent key)
PK: (parent key, grandchild key)

Copyright © 2023, Oracle and/or its affiliates 114

Example

Reference Partitioning

create table project (project_id number not null,

 project_number varchar2(30),

 project_name varchar2(30), …

 constraint proj_pk primary key (project_id))

partition by list (project_id)

(partition p1 values (1),

 partition p2 values (2),

 partition pd values (DEFAULT));

create table project_customer (project_cust_id number not null,

 project_id number not null,

 cust_name varchar2(30),

 constraint pk_proj_cust primary key

 (project_id, project_cust_id),

 constraint proj_cust_proj_fk foreign key

 (project_id) references project(project_id))

partition by reference (proj_cust_proj_fk);

Copyright © 2023, Oracle and/or its affiliates 115

Example, cont.

Reference Partitioning

create table proj_cust_address (project_cust_addr_id number not null,

 project_cust_id number not null,

 project_id number not null,

 cust_address varchar2(30),

 constraint pk_proj_cust_addr primary key

 (project_id, project_cust_addr_id),

 constraint proj_c_addr_proj_cust_fk foreign key

 (project_id, project_cust_id)

 references project_customer

 (project_id, project_cust_id))

partition by reference (proj_c_addr_proj_cust_fk);

Copyright © 2023, Oracle and/or its affiliates 116

Some metadata

Reference Partitioning

SQL> SELECT table_name, partitioning_type, ref_ptn_constraint_name

 FROM user_part_tables

 WHERE table_name IN ('PROJECT','PROJECT_CUSTOMER','PROJ_CUST_ADDRESS');

TABLE_NAME PARTITION REF_PTN_CONSTRAINT_NAME

----------------------- --------- ------------------------------

PROJECT LIST

PROJECT_CUSTOMER REFERENCE PROJ_CUST_PROJ_FK

PROJ_CUST_ADDRESS REFERENCE PROJ_C_ADDR_PROJ_FK

Table information

 SQL> SELECT table_name, partition_name, high_value

 FROM user_tab_partitions

 WHERE table_name in ('PROJECT','PROJECT_CUSTOMER’)

 ORDER BY table_name, partition_position;

TABLE_NAME PARTITION_NAME HIGH_VALUE

----------------------- ------------------- ---------------------------

PROJECT P1 1

PROJECT P2 2

PROJECT PD DEFAULT

PROJECT_CUSTOMER P1

PROJECT_CUSTOMER P2

PROJECT_CUSTOMER PD

Partition information

Copyright © 2023, Oracle and/or its affiliates 117

Partition Maintenance

Reference Partitioning

PROJEC
T

1 D 2

1 D 2

1 D 2

PROJECT_CUSTOME
R

PROJECT_CUST_ADDRES
S

ALTER TABLE project

SPLIT PARTITION pd VALUES (4,5)

INTO

(PARTITION pd, PARTITION p45);

Copyright © 2023, Oracle and/or its affiliates 118

PROJECT partition PD will be split

• “Default” and (4,5)

PROJECT_CUSTOMER will split its dependent
partition

• Co-location with equivalent parent record of
PROJECT

• Parent record in (4,5) means child record in
(4.5)

PROJECT_CUST_ADDRESS will split its
dependent partition

• Co-location with equivalent parent record of
PROJECT_CUSTOMER

One-level lookup required for both placements

Partition Maintenance

Reference Partitioning

PROJEC
T

1 4,5 2

1 4,5 2

1 4,5 2

PROJECT_CUST_ADDRES
S

D

D

D

PROJECT_CUSTOMER

ALTER TABLE project

SPLIT PARTITION pd VALUES (4,5) INTO

(PARTITION pd, PARTITION p45);

Copyright © 2023, Oracle and/or its affiliates 119

PROJECT partition PD will be dropped

• PK-FK is guaranteed not to be violated

PROJECT_CUSTOMER will drop its dependent
partition

PROJECT_CUST_ADDRESS will drop its
dependent partition

Unlike “normal” partitioned tables, PK-FK
relationship stays enabled

• You cannot arbitrarily drop or truncate a
partition with the PK of a PK-FK relationship

Same is true for TRUNCATE

• Bottom-up operation

Partition Maintenance

Reference Partitioning

PROJEC
T

1 D 2

1 D 2

1 D 2

PROJECT_CUSTOME
R

PROJECT_CUST_ADDRES
S

ALTER TABLE project_cust_address

DROP PARTITION pd;

Copyright © 2023, Oracle and/or its affiliates 120

Copyright © 2023, Oracle and/or its affiliates 121

Introduced in Oracle 12c Release 1 (12.1)

Interval Reference Partitioning

New partitions are automatically created when new data arrives

All child tables will be automatically maintained

Combination of two successful partitioning strategies for better business modeling

Interval-Reference Partitioning

JAN 2020 FEB 2020 JAN 2020

CHANNELS

RUNS SENSORS

EVENT
DETAILS

JA
N

CHANNELS

RUNS SENSORS

EVENT
DETAILS

JA
N

CHANNELS

RUNS SENSORS

EVENT
DETAILS

FE
B

INSERT INTO events
VALUES (’14-FEB-2020’, ...);

Copyright © 2023, Oracle and/or its affiliates 122

Interval-Reference Partitioning

Copyright © 2023, Oracle and/or its affiliates 123

New partitions only created when data arrives

• No automatic partition instantiation for complete reference tree

• Optimized for sparsely populated reference partitioned tables

Partition names inherited from already existent partitions

• Name inheritance from direct relative

• Parent partition p100 will result in child partition p100

• Parent partition p100 and child partition c100 will result in grandchild partition c100

Interval-Reference Partitioning

Copyright © 2023, Oracle and/or its affiliates 124

Introduced in Oracle Database 12.2

Multi-Column List Partitioning

Copyright © 2023, Oracle and/or its affiliates 125

Data is organized in lists of multiple values (multiple columns)

• Individual partitions can contain sets of multiple values

• Functionality of DEFAULT partition (catch-it-all for unspecified values)

Ideal for segmentation of distinct value tuples,
e.g. (sensor_type, channel, …)

Multi-Column List Partitioning

… (GYRO,
CH1)

(GYRO,
CH2)

((THERMO, CH8),
(THERMO, CH14)) DEFAULT

(CAMERA,
CH4)

Copyright © 2023, Oracle and/or its affiliates 126

Allow specification of more than one column as partitioning key

• Up to 16 partition key columns

• Each set of partitioning keys must be unique

Notation of one DEFAULT partition

Functional support

• Supported as both partition and sub-partition strategy

• Support for heap tables

• Support for external tables

• Supported with Reference Partitioning and Auto-List

Details of Multi-Column List strategy

Copyright © 2023, Oracle and/or its affiliates 127

Syntax example

Multi-Column List partitioned table

CREATE TABLE EVENTS(sensor_type VARCHAR2(50),

 channel VARCHAR2(50), …)

PARTITION BY LIST (sensor_type, channel)

(partition p1 values (‘GYRO’,’CH1’),

 partition p2 values (‘GYRO’,’CH2’),

 partition p3 values (‘CAMERA’,’CH4’),

…

 partition p44 values ((‘THERMO’,’CH8’),

 (‘THERMO’,’CH14’)),

 partition p45 values (DEFAULT)

);

Copyright © 2023, Oracle and/or its affiliates 128

Where do we store (GYRO, CH14) ????

What if there was a DEFAULT per column?

Multi-Column List Partitioning

… (GYRO,
CH1)

(CAMERA,
CH2)

(GYRO,
DEFAULT)

(DEFAULT,
CH14)

Copyright © 2023, Oracle and/or its affiliates 129

Where do we store (GYRO, CH12) ????

• In the one-and-only DEFAULT partition

What if there was a DEFAULT per column?

Multi-Column List Partitioning

… (GYRO,
CH1)

(CAMERA,
CH2) (DEFAULT)

Copyright © 2023, Oracle and/or its affiliates 130

List – List partitioning

• Almost equivalent

• Only two columns as key (two levels)

• Conceptual symmetrical

Multi-column list partitioning prior to 12.2

…

JUL 2021 AUG 2021 SEP 2021 JAN 2020 FEB 2020

… MICRO

GYRO

Copyright © 2023, Oracle and/or its affiliates 131

List – List partitioning

• Almost equivalent

• Only two columns as key (two levels)

• Conceptual symmetrical

Multi-column range partitioning

• NOT equivalent

• Hierarchical evaluation of predicates only in
case of disambiguity

Multi-column list partitioning prior to 12.2

…

JUL 2021 AUG 2021 SEP 2021 JAN 2020 FEB 2020

… MICRO

GYRO

YEAR
Value less

than
boundary

?

YEAR
Value

equal to
boundary

?

Evaluate
partition

Go to next
partition

insert

MONTH
Value less

than
boundary

?

no

yes

yes

no

n
o

y
e
s

Copyright © 2023, Oracle and/or its affiliates 132

Copyright © 2023, Oracle and/or its affiliates 133

Partitioning and External Data

All data outside the database

• Files in file system

• Partitioned Hive & HDFS tables

Exposes the power of Oracle partitioning to
external data

• Partition pruning

• Partition maintenance

Enables order-of-magnitudes faster query
performance and enhanced data maintenance

Partitioned External Tables

… 2016,04,01 2016,04,02 2016,04,03

HIVE Partition HIVE Partition HIVE Partition

Copyright © 2023, Oracle and/or its affiliates 134

Initial creation

Partitioned External Tables

CREATE TABLE orders (order_id number,

 order_date DATE, …)

ORGANIZATION EXTERNAL

(TYPE oracle_loader DEFAULT DIRECTORY data_dir

 ACCESS PARAMETERS (..)

) REJECT LIMIT unlimited

PARTITION BY RANGE(order_date)

(partition q1_2015 values less than (‘2014-10-01’)

 DEFAULT DIRECTORY old_data_dir LOCATION (‘q1_2015.csv’),

 partition q2_2015 values less than (‘2015-01-01’)

 LOCATION (‘q2_2015.csv’),

 partition q3_2015 values less than (‘2015-04-01’)

 LOCATION (‘q3_2015.csv’),

 partition q4_2015 values less than (‘2015-07-01’)

);

Copyright © 2023, Oracle and/or its affiliates 135

Initial creation

Partitioned External Tables

CREATE TABLE orders (order_id number,

 order_date DATE, …)

ORGANIZATION EXTERNAL

(TYPE oracle_loader DEFAULT DIRECTORY data_dir

 ACCESS PARAMETERS (..)

) REJECT LIMIT unlimited

PARTITION BY RANGE(order_date)

(partition q1_2015 values less than (‘2014-10-01’)

 DEFAULT DIRECTORY old_data_dir LOCATION (‘q1_2015.csv’),

 partition q2_2015 values less than (‘2015-01-01’)

 LOCATION (‘q2_2015.csv’),

 partition q3_2015 values less than (‘2015-04-01’)

 LOCATION (‘q3_2015.csv’),

 partition q4_2015 values less than (‘2015-07-01’)

);

Copyright © 2023, Oracle and/or its affiliates 136

Initial creation

Partitioned External Tables

CREATE TABLE orders (order_id number,

 order_date DATE, …)

ORGANIZATION EXTERNAL

(TYPE oracle_loader DEFAULT DIRECTORY data_dir

 ACCESS PARAMETERS (..)

) REJECT LIMIT unlimited

PARTITION BY RANGE(order_date)

(partition q1_2015 values less than (‘2014-10-01’)

 DEFAULT DIRECTORY old_data_dir LOCATION (‘q1_2015.csv’),

 partition q2_2015 values less than (‘2015-01-01’)

 LOCATION (‘q2_2015.csv’),

 partition q3_2015 values less than (‘2015-04-01’)

 LOCATION (‘q3_2015.csv’),

 partition q4_2015 values less than (‘2015-07-01’)

);

Copyright © 2023, Oracle and/or its affiliates 137

Single table contains both internal (RDBMS) and
external partitions

• Full functional support, such as partial
indexing, partial read only, constraints,
materialized views, etc.

Optimized hybrid processing

• Full leverage of both RDBMS and external
processing capabilities

Partition maintenance for information lifecycle
management

• Currently limited support

• Enhancements in progress

Hybrid Partitioned Tables

… 2016,04,01 2016,04,02 2016,04, 03

HIVE Partition HIVE Partition

DB Partition

Copyright © 2023, Oracle and/or its affiliates 138

Initial creation

Hybrid Partitioned Tables

CREATE TABLE orders (order_id number,

 order_date DATE, …)

EXTERNAL PARTITION ATTRIBUTES

(TYPE oracle_loader DEFAULT DIRECTORY data_dir

 ACCESS PARAMETERS (..) REJECT LIMIT unlimited

)

PARTITION BY RANGE(order_date)

(partition q1_2015 values less than (‘2014-10-01’)

 EXTERNAL LOCATION (‘order_q1_2015.csv’),

 partition q2_2015 values less than (‘2015-01-01’),

 partition q3_2015 values less than (‘2015-04-01’),

 partition q4_2015 values less than (‘2015-07-01’)

);

Copyright © 2023, Oracle and/or its affiliates 139

Initial creation

Hybrid Partitioned Tables

CREATE TABLE orders (order_id number,

 order_date DATE, …)

EXTERNAL PARTITION ATTRIBUTES

(TYPE oracle_loader DEFAULT DIRECTORY data_dir

 ACCESS PARAMETERS (..) REJECT LIMIT unlimited

)

PARTITION BY RANGE(order_date)

(partition q1_2015 values less than (‘2014-10-01’)

 EXTERNAL LOCATION (‘order_q1_2015.csv’),

 partition q2_2015 values less than (‘2015-01-01’),

 partition q3_2015 values less than (‘2015-04-01’),

 partition q4_2015 values less than (‘2015-07-01’)

);

Copyright © 2023, Oracle and/or its affiliates 140

Initial creation

Hybrid Partitioned Tables

CREATE TABLE orders (order_id number,

 order_date DATE, …)

EXTERNAL PARTITION ATTRIBUTES

(TYPE oracle_loader DEFAULT DIRECTORY data_dir

 ACCESS PARAMETERS (..) REJECT LIMIT unlimited

)

PARTITION BY RANGE(order_date)

(partition q1_2015 values less than (‘2014-10-01’)

 EXTERNAL LOCATION (‘order_q1_2015.csv’),

 partition q2_2015 values less than (‘2015-01-01’),

 partition q3_2015 values less than (‘2015-04-01’),

 partition q4_2015 values less than (‘2015-07-01’)

);

Copyright © 2023, Oracle and/or its affiliates 141

Evolving to Hybrid Partitioned Tables

ALTER TABLE orders

ADD EXTERNAL PARTITION ATTRIBUTES

(TYPE oracle_loader

 DEFAULT DIRECTORY data_dir

 ACCESS PARAMETERS

 (records delimited by newline

 badfile 'cdxt_%a_%p.bad’

 logfile 'cdxt_%a_%p.log’

 fields terminated by ',’

 missing field values are null

)

 REJECT LIMIT unlimited

);

Copyright © 2023, Oracle and/or its affiliates 142

Copyright © 2023, Oracle and/or its affiliates

Initial support of lifecycle management between external and internal storage through EXCHANGE

• No MOVE or other advanced functionality (SPLIT, MERGE)

• Data movement done by customer/application

Currently no support for lifecycle management between external and internal storage

• Functionality will be included in Oracle Database 19c, Release 19.7

- Exchange internal partition with external table (bug 28876926)

- Exchange external partition with internal table (bug 30172925)

Lifecycle Management Support

Hybrid Partitioned Tables

143

Data in any object store can be accessed

• Oracle Object Store, AWS S3 or Azure

Explicit authentication or pre-authenticated URIs

(Admittedly not a specific Partitioning feature, but
cool nevertheless)

Access Data in Object Stores

Any Object
Storage

Copyright © 2023, Oracle and/or its affiliates 144

File System Access versus Object Storage

CREATE TABLE orders (order_id number,

 order_date DATE, …)

ORGANIZATION EXTERNAL

(TYPE oracle_loader DEFAULT DIRECTORY data_dir

 ACCESS PARAMETERS (

)

) REJECT LIMIT unlimited

PARTITION BY RANGE(order_date)

(partition q1_2015 values less than (‘2014-10-01’)

 LOCATION (‘q1_2015.csv’),

 partition q2_2015 values less than (‘2015-01-01’)

 LOCATION (‘q2_2015.csv’),

 partition q3_2015 values less than (‘2015-04-01’)

 LOCATION (‘q3_2015.csv’),

 partition q4_2015 values less than (‘2015-07-01’)

);

Copyright © 2023, Oracle and/or its affiliates 145

File System Access versus Object Storage

CREATE TABLE orders (order_id number,

 order_date DATE, …)

ORGANIZATION EXTERNAL

(TYPE oracle_loader DEFAULT DIRECTORY data_dir

 ACCESS PARAMETERS (

 CREDENTIAL ‘OSS_ACCESS')

) REJECT LIMIT unlimited

PARTITION BY RANGE(order_date)

(partition q1_2015 values less than (‘2014-10-01’)

 LOCATION (‘https://swiftobjectstorage.us-ashburn-1 ...’),

 partition q2_2015 values less than (‘2015-01-01’)

 LOCATION (‘...’),

 partition q3_2015 values less than (‘2015-04-01’)

 LOCATION (‘...’),

 partition q4_2015 values less than (‘2015-07-01’)

);

Copyright © 2023, Oracle and/or its affiliates 146

Copyright © 2023, Oracle and/or its affiliates

Internal partitioning enforces proper data placement

• Even here there is one exception

External partitioning relies on proper data in the files mapping to partitions

Data Placement Validation

147

Copyright © 2023, Oracle and/or its affiliates

Internal partitioning enforces proper data placement

• Even here there is one exception

External partitioning relies on proper data in the files mapping to partitions

New function added with partitioned external tables to validate data placement

• ORA_PARTITION_VALIDATION(rowid)

• Returns 1 for correct data placement, 0 otherwise

Data Placement Validation

148

Copyright © 2023, Oracle and/or its affiliates

Data Placement Validation

SQL> SELECT hpto.*,

 ORA_PARTITION_VALIDATION(rowid) AS correct_partition

 FROM hpto;

 DEPTNO DNAME LOC CORRECT_PARTITION

---------- --------------------- --------------------------- -----------------

 12 dept_12 xp1_15 1

 16 dept_16 dept_loc_16 1

 17 dept_17 dept_loc_17 1

 29 dept_29 xp2_30 1

 31 dept_31 dept_loc_31 1

 32 dept_32 dept_loc_32 1

 9999 dept_50 xp_wrong 0

149

Partitioning for Performance

Copyright © 2023, Oracle and/or its affiliates 150

Partitioning is transparently leveraged to improve performance

Partition pruning

• Using partitioning metadata to access only partitions of interest

Partition-wise joins

• Join equi-partitioned tables with minimal resource consumption

• Process co-location capabilities for RAC environments

Partition-Exchange loading

• “Load” new data through metadata operation

Partitioning for Performance

Copyright © 2023, Oracle and/or its affiliates 151

Partition elimination

• Dramatically reduces amount of data retrieved
from storage

• Performs operations only on relevant partitions

• Transparently improves query performance and
optimizes resource utilization

Partition Pruning

Partitioning for Performance

EVENTS

May 5

May 4

May 3

May 2

May 1

Apr 30

Apr 29

Apr 28

Apr 27

What are the total
EVENTS for May 1-2?

Copyright © 2023, Oracle and/or its affiliates 152

Works for simple and complex SQL statements

Transparent to any application

Two flavors of pruning

• Static pruning at compile time

• Dynamic pruning at runtime

Complementary to Exadata Storage Server

• Partitioning prunes logically through partition elimination

• Exadata prunes physically through storage indexes

- Further data reduction through filtering and projection

Partition Pruning

Copyright © 2023, Oracle and/or its affiliates 153

2TB of User Data 100 TB of User Data 10 TB of User Data

With Partition Pruning With 10x Compression

Example

Performance Features Multiply the Benefits

2 TB of User Data 100 GB of User Data

With Storage Indexes

and Zone Maps

1TB on disk, 1TB in-

memory
No Indexes

Sub second Scan 30 GB of User Data

With Smart Scan

Copyright © 2023, Oracle and/or its affiliates 154

Relevant Partitions are known at compile time

• Look for actual values in PSTART/PSTOP columns in the plan

Optimizer has most accurate information for the SQL statement

Static Partition Pruning

SELECT avg(luminosity) FROM EVENTS

WHERE times_id

BETWEEN ‘01-MAR-2021’ and ‘31-MAY-2021’;

2021-
MAR

2021-FEB 2021-JAN 2021-APR 2021-MAY 2021-JUN

Copyright © 2023, Oracle and/or its affiliates 155

Sample Plan

Static Pruning

SELECT avg(luminosity)
FROM atlas.EVENTS s, altas.times t
WHERE s.time_id = t.time_id
AND s.time_id between TO_DATE(‘01-JAN-2021’, ‘DD-MON-YYYY’)
 and TO_DATE(‘01-JAN-2020’, ‘DD-MON-YYYY’)

Plan hash value: 2025449199

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

0	SELECT STATEMENT				3 (100)			
1	SORT AGGREGATE		1	12				
2	PARTITION RANGE ITERATOR		313	3756	3 (0)	00:00:01	9	13
* 3	TABLE ACCESS FULL	EVENTS	313	3756	3 (0)	00:00:01	9	13

Predicate Information (identified by operation id):

 3 – filter(“S”.”TIME_ID”<=TO_DATE(‘ 2020-01-01 00:00:00’, ‘syyyy-mm-dd hh24:mi:ss’))

22 rows selected.

Copyright © 2023, Oracle and/or its affiliates 156

Sample Plan

Static Pruning

SELECT avg(luminosity)
FROM atlas.EVENTS s, altas.times t
WHERE s.time_id = t.time_id
AND s.time_id between TO_DATE(‘01-JAN-2021’, ‘DD-MON-YYYY’)
 and TO_DATE(‘01-JAN-2020’, ‘DD-MON-YYYY’)

Plan hash value: 2025449199

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

0	SELECT STATEMENT				3 (100)			
1	SORT AGGREGATE		1	12				
2	PARTITION RANGE ITERATOR		313	3756	3 (0)	00:00:01	9	13
* 3	TABLE ACCESS FULL	EVENTS	313	3756	3 (0)	00:00:01	9	13

Predicate Information (identified by operation id):

 3 – filter(“S”.”TIME_ID”<=TO_DATE(‘ 2020-01-01 00:00:00’, ‘syyyy-mm-dd hh24:mi:ss’))

22 rows selected.

Copyright © 2023, Oracle and/or its affiliates 157

Advanced Pruning mechanism for complex queries

Relevant partitions determined at runtime

• Look for the word ‘KEY’ in PSTART/PSTOP columns in the Plan

Dynamic Partition Pruning

SELECT avg(luminosity)
FROM EVENTS s, times t
WHERE t.time_id = s.time_id
AND t.calendar_month_desc IN

 (‘MAR-2021’, ‘APR-2021’, ‘MAY-2021’);

Time

2021-JAN

2021-FEB

2021-
MAR

2021-APR

2021-MAY

2021-JUN

Copyright © 2023, Oracle and/or its affiliates 158

Sample explain plan output

Sample Plan – Nested Loop

Dynamic Partition Pruning

SELECT avg(luminosity)
FROM atlas.EVENTS s, altas.times t
WHERE s.time_id = t.time_id
AND t.calendar_month_desc in (‘MAR-2021’, ‘APR-2021’, ‘MAY-2021’)

Plan hash value: 1350851517

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

0	SELECT STATEMENT				13 (100)			
1	SORT AGGREGATE		1	28				
2	NESTED LOOP		2	56	13 (0)	00:00:01		
* 3	TABLE ACCESS FULL	TIMES	2	32	13 (8)	00:00:01		
4	PARTITION RANGE ITERATOR		2	24	0 (0)		KEY	KEY
* 5	TABLE ACCESS FULL	EVENTS	2	24	0 (0)		KEY	KEY

Predicate Information (identified by operation id):

 3 – filter((“T”.”CALENDAR_MONTH_DESC”=‘MAR-2021’ OR “T”.”CALENDAR_MONTH_DESC”=‘APR-2021’
 OR “T”.”CALENDAR_MONTH_DESC”=‘MAY-2021’))
 5 – filter(“T”.”TIME_ID”=“S”.”TIME_ID”)

26 rows selected.

Copyright © 2023, Oracle and/or its affiliates 159

Sample explain plan output

Sample Plan – Nested Loop

Dynamic Partition Pruning

SELECT avg(luminosity)
FROM atlas.EVENTS s, altas.times t
WHERE s.time_id = t.time_id
AND t.calendar_month_desc in (‘MAR-2021’, ‘APR-2021’, ‘MAY-2021’)

Plan hash value: 1350851517

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

0	SELECT STATEMENT				13 (100)			
1	SORT AGGREGATE		1	28				
2	NESTED LOOP		2	56	13 (0)	00:00:01		
* 3	TABLE ACCESS FULL	TIMES	2	32	13 (8)	00:00:01		
4	PARTITION RANGE ITERATOR		2	24	0 (0)		KEY	KEY
* 5	TABLE ACCESS FULL	EVENTS	2	24	0 (0)		KEY	KEY

Predicate Information (identified by operation id):

 3 – filter((“T”.”CALENDAR_MONTH_DESC”=‘MAR-2021’ OR “T”.”CALENDAR_MONTH_DESC”=‘APR-2021’
 OR “T”.”CALENDAR_MONTH_DESC”=‘MAY-2021’))
 5 – filter(“T”.”TIME_ID”=“S”.”TIME_ID”)

26 rows selected.

Copyright © 2023, Oracle and/or its affiliates 160

Sample Plan - Subquery pruning

Dynamic Partition Pruning

SELECT avg(luminosity)
FROM atlas.EVENTS s, altas.times t
WHERE s.time_id = t.time_id
AND t.calendar_month_desc in (‘MAR-2021’, ‘APR-2021’, ‘MAY-2021’)

Plan hash value: 2475767165

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

0	SELECT STATEMENT				2000K(100)			
1	SORT AGGREGATE		1	28				
* 2	HASH JOIN		24M	646M	2000K(100)	06:40:01		
* 3	TABLE ACCESS FULL	TIMES	2	32	43 (8)	00:00:01		
4	PARTITION RANGE SUBQUERY		10G	111G	1166K(100)	03:53:21	KEY(SQ)	KEY(SQ)
5	TABLE ACCESS FULL	EVENTS	10G	111G	1166K(100)	03:53:21	KEY(SQ)	KEY(SQ)

Predicate Information (identified by operation id):

 2 – access(“S”.”TIME_ID”=“T”.”TIME_ID”)
 3 – filter((“T”.”CALENDAR_MONTH_DESC”=‘MAR-2021’ OR “T”.”CALENDAR_MONTH_DESC”=‘APR-2021’
 OR “T”.”CALENDAR_MONTH_DESC”=‘MAY-2021’))

26 rows selected.

Copyright © 2023, Oracle and/or its affiliates 161

Sample Plan - Bloom filter pruning

Dynamic Partition Pruning

SELECT avg(luminosity)
FROM atlas.EVENTS s, altas.times t
WHERE s.time_id = t.time_id
AND t.calendar_month_desc in (‘MAR-2021’, ‘APR-2021’, ‘MAY-2021’)

Plan hash value: 365741303

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT				19 (100)			
1	SORT AGGREGATE		1	28				
* 2	HASH JOIN		2	56	19 (100)	00:00:01		
3	PART JOIN FILTER CREATE	:BF0000	2	32	13 (8)	00:00:01		
* 4	TABLE ACCESS FULL	TIMES	2	32	13 (8)	00:00:01		
5	PARTITION RANGE JOIN-FILTER		960	11520	5 (0)	00:00:01	:BF0000	:BF0000
6	TABLE ACCESS FULL	EVENTS	960	11520	5 (0)	00:00:01	:BF0000	:BF0000
--

Predicate Information (identified by operation id):

 2 – access(“S”.”TIME_ID”=“T”.”TIME_ID”)
 4 – filter((“T”.”CALENDAR_MONTH_DESC”=‘MAR-2021’ OR “T”.”CALENDAR_MONTH_DESC”=‘APR-2021’
 OR “T”.”CALENDAR_MONTH_DESC”=‘MAY-2021’))

27 rows selected.

Copyright © 2023, Oracle and/or its affiliates 162

All predicates on partition key will used for pruning

• Dynamic and static predicates will now be used combined

Example:

• Star transformation with pruning predicate on both the FACT table and a dimension

“AND” Pruning

FROM events s, times t …
WHERE s.time_id = t.time_id ..
AND t.fiscal_year in (2021,2020)
AND s.time_id
 between TO_DATE('01-JAN-2021','DD-MON-YYYY’)
 and TO_DATE('01-JAN-2022','DD-MON-YYYY’)

Dynamic pruning

Static pruning

Copyright © 2023, Oracle and/or its affiliates 163

Sample Plan

“AND” Pruning

Plan hash value: 552669211

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		1	24	17 (12)	00:00:01		
1	SORT AGGREGATE		1	24				
* 2	HASH JOIN		204	4896	17 (12)	00:00:01		
3	PART JOIN FILTER CREATE	:BF0000	185	2220	13 (8)	00:00:01		
* 4	TABLE ACCESS FULL	TIMES	185	2220	13 (8)	00:00:01		
5	PARTITION RANGE AND		313	3756	3 (0)	00:00:01	KEY(AP)	KEY(AP)
* 6	TABLE ACCESS FULL	EVENTS	313	3756	3 (0)	00:00:01	KEY(AP)	KEY(AP)
--

Predicate Information (identified by operation id):

 2 – access(“S”.”TIME_ID”=“T”.”TIME_ID”)
 4 – filter(“T”.”TIME_ID”<=TO_DATE(‘ 2020-01-01 00:00:00’, ‘syyyy-mm-dd hh24:mi:ss’) AND
 (“T”.”FISCAL_YEAR”=2021 OR “T”.”FISCAL_YEAR”=2020) AND “T”.”TIME_ID”>=TO_DATE(‘ 2021-01-01

 00:00:00’, ‘syyyy-mm-dd hh24:mi:ss’))
 6 – filter(“S”.”TIME_ID”<=TO_DATE(‘ 2020-01-01 00:00:00’, ‘syyyy-mm-dd hh24:mi:ss’))

22 rows selected.

Copyright © 2023, Oracle and/or its affiliates 164

Don’t use functions on partition key filter predicates

Ensuring Partition Pruning

SELECT avg(luminosity)
FROM atlas.EVENTS s, altas.times t
WHERE s.time_id = t.time_id
AND TO_CHAR(s.time_id, ‘YYYYMMDD’) between ‘20210101’ and ‘20220101’

Plan hash value: 672559287

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

0	SELECT STATEMENT				6 (100)			
1	SORT AGGREGATE		1	12				
2	PARTITION RANGE ALL		2	24	6 (17)	00:00:01	1	16
* 3	TABLE ACCESS FULL	EVENTS	2	24	6 (17)	00:00:01	1	16

Predicate Information (identified by operation id):

 3 – filter((TO_CHAR(INTERNAL_FUNCTION(“S”.”TIME_ID”),’YYYYMMDD’)>=‘20210101’ AND
 TO_CHAR(INTERNAL_FUNCTION(“S”.”TIME_ID”),‘YYYYMMDD’)<=‘20220101’))

23 rows selected.

Copyright © 2023, Oracle and/or its affiliates 165

Don’t use functions on partition key filter predicates

Ensuring Partition Pruning

SELECT avg(luminosity)
FROM atlas.EVENTS s, altas.times t
WHERE s.time_id = t.time_id
AND TO_CHAR(s.time_id, ‘YYYYMMDD’) between ‘20210101’ and ‘20220101’

Plan hash value: 672559287

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

0	SELECT STATEMENT				6 (100)			
1	SORT AGGREGATE		1	12				
2	PARTITION RANGE ALL		2	24	6 (17)	00:00:01	1	16
* 3	TABLE ACCESS FULL	EVENTS	2	24	6 (17)	00:00:01	1	16

Predicate Information (identified by operation id):

 3 – filter((TO_CHAR(INTERNAL_FUNCTION(“S”.”TIME_ID”),’YYYYMMDD’)>=‘20210101’ AND
 TO_CHAR(INTERNAL_FUNCTION(“S”.”TIME_ID”),‘YYYYMMDD’)<=‘20200101’))

23 rows selected.

SELECT avg(luminosity)
FROM atlas.EVENTS s, altas.times t
WHERE s.time_id = t.time_id
AND s.time_id between TO_DATE(‘20210101’,’YYYYMMDD’) and TO_DATE(‘20220101’,’YYYYMMDD’)

Plan hash value: 2025449199

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

0	SELECT STATEMENT				3 (100)			
1	SORT AGGREGATE		1	12				
2	PARTITION RANGE ITERATOR		313	3756	3 (0)	00:00:01	9	13
* 3	TABLE ACCESS FULL	EVENTS	313	3756	3 (0)	00:00:01	9	13

Predicate Information (identified by operation id):

 3 – filter(“S”.”TIME_ID”<=TO_DATE(‘ 2020-01-01 00:00:00’, ‘syyyy-mm-dd hh24:mi:ss’))

22 rows selected.

Copyright © 2023, Oracle and/or its affiliates 166

Large join is divided into multiple
smaller joins, executed in parallel

• # of partitions to join must be a
multiple of DOP

• Both tables must be partitioned
the same way on the join
column

Partition pruning and PWJ’s “at work”

Partition-wise Joins

… …
MAR APR FEB JAN

… …
JAN FEB MAR APR

Jan, Hash
1

Jan, Hash
2

JAN JAN

Copyright © 2023, Oracle and/or its affiliates 167

Partition pruning and PWJ’s “at work”

Partition-wise Joins

… …
MAR APR FEB JAN

JAN

CUSTOMER

hash 1

hash 2

hash
3

hash 4

hash1

CUSTOMER FEB MAR APR

hash 1

hash 2

hash 3

hash 4

hash 1

Large join is divided into multiple
smaller joins, executed in parallel

• # of partitions to join must be a
multiple of DOP

• Both tables must be partitioned
the same way on the join
column

Copyright © 2023, Oracle and/or its affiliates 168

Remove and add data as metadata only operations

• Exchange the metadata of partitions

Exchange standalone table w/ arbitrary single partition

• Data load: standalone table contains new data to being loaded

• Data purge: partition containing data is exchanged with empty table

Drop partition alternative for purge

• Data is gone forever

Partition Purging and Loading

May 18th 2021

May 19th 2021

May 20th 2021

May 21st 2021

May 22nd 2021

May 23rd 2021

May 24th 2021

EVENTS
Table

“EMPTY”

Copyright © 2023, Oracle and/or its affiliates 169

Partitioning Maintenance

Copyright © 2023, Oracle and/or its affiliates 170

While performance seems to be the most visible one, don't forget about the rest, e.g.

• Partitioning must address all business-relevant areas of Performance, Manageability, and Availability

Partition autonomy is crucial

• Fundamental requirement for any partition maintenance operations

• Acknowledge partitions as metadata in the data dictionary

Fundamental Concepts for Success

Partition Maintenance

Copyright © 2023, Oracle and/or its affiliates 171

Provide full partition autonomy

• Use local indexes whenever possible

• Enable partition all table-level operations for partitions, e.g. TRUNCATE, MOVE, COMPRESS

Make partitions visible and usable for database administration

• Partition naming for ease of use

Maintenance operations must be partition-aware

• Also true for indexes

Maintenance operations must not interfere with online usage of a partitioned table

Fundamental Concepts for Success

Partition Maintenance

Copyright © 2023, Oracle and/or its affiliates 172

Fast population of data

• EXCHANGE

• Per-partition direct path load

Fast removal of data

• DROP, TRUNCATE, EXCHANGE

Fast reorganization of data

• MOVE, SPLIT, MERGE

Addressable with Partition Maintenance Operations

Aspects of Data Management

Copyright © 2023, Oracle and/or its affiliates 173

All partitions remain available all the time

No DML lock for ONLINE operations

DML lock on impacted partitions in
OFFLINE mode

Partition Maintenance

Table Partition Maintenance
Operations

ALTER TABLE ADD PARTITION(S)
ALTER TABLE DROP PARTITION(S)
ALTER TABLE EXCHANGE PARTITION
ALTER TABLE MODIFY PARTITION

[PARALLEL][ONLINE]
ALTER TABLE MOVE PARTITION [PARALLEL][ONLINE]
ALTER TABLE RENAME PARTITION
ALTER TABLE SPLIT PARTITION [PARALLEL][ONLINE]
ALTER TABLE MERGE PARTITION(S) [PARALLEL]

[ONLINE]
ALTER TABLE COALESCE PARTITION [PARALLEL]
ALTER TABLE ANALYZE PARTITION
ALTER TABLE TRUNCATE PARTITION(S)
Export/Import [by partition]
Transportable tablespace [by partition]

Index Maintenance
Operations

ALTER INDEX MODIFY PARTITION
ALTER INDEX DROP PARTITION(S)
ALTER INDEX REBUILD PARTITION
ALTER INDEX RENAME PARTITION
ALTER INDEX RENAME
ALTER INDEX SPLIT PARTITION
ALTER INDEX ANALYZE PARTITION

Copyright © 2023, Oracle and/or its affiliates 174

Copyright © 2023, Oracle and/or its affiliates 175

Introduced in Oracle 12c Release 1 (12.1)

Partition Maintenance on Multiple
Partitions

Partition Maintenance on multiple
partitions in a single operation

Full parallelism

Transparent maintenance of local and
global indexes

Operate on multiple partitions

Enhanced Partition Maintenance Operations

… JAN 2021 FEB 2021
MAR
2021

APR
2021

DEC
2021

… Q 1 2021
APR
2021

DEC
2021

ALTER TABLE events
MERGE PARTITIONS Jan2021, Feb2021, Mar2021
INTO PARTITION Q1_2021 COMPRESS FOR ARCHIVE HIGH;

Copyright © 2023, Oracle and/or its affiliates 176

Specify multiple partitions in order

Specify a range of partitions

Operate on multiple partitions

Enhanced Partition Maintenance Operations

SQL > alter table pt merge partitions part05, part15, part25
 into partition p30;

Table altered.

SQL > alter table pt merge partitions part10 to part30
 into partition part30;

Table altered.

SQL > alter table pt split partition p30 into
2 (partition p10 values less than (10),
3 partition p20 values less than (20),
4 partition p30);

Table altered.

Works for all PMOPS

Supports optimizations like fast split

Copyright © 2023, Oracle and/or its affiliates 177

Introduced in Oracle Database 12.2

Filtered Partition Maintenance
Operations

Copyright © 2023, Oracle and/or its affiliates 178

Can add a filter predicate to select only specific data

Combines data maintenance with partition maintenance

Move Partition Example

Filtered Partition Maintenance Operations

EVENTS

 EVENTS

Q3_2020

tablespace: active

tablespace: archive

Q3_2020

Copyright © 2023, Oracle and/or its affiliates 179

Can specify a single table filter predicate to MOVE, SPLIT and MERGE operations

• Specification must be consistent across all partition maintenance

• Specification needs to clearly specify the data of interest

Specification will be added to the recursively generated CTAS command for the creation of the various
new partition or sub-partitions segments

Filter predicates work for both offline and new online PMOP’s

Details of Filtered Partition Maintenance Operations

Copyright © 2023, Oracle and/or its affiliates 180

Move Partition Syntax Example

Filtered Partition Maintenance Operations

ALTER TABLE orders MOVE PARTITION q3_2020

TABLESPACE archive

INCLUDING ROWS WHERE order_state = ‘open’;

Copyright © 2023, Oracle and/or its affiliates 181

Move Partition Syntax Example

Filtered Partition Maintenance Operations

ALTER TABLE orders MOVE PARTITION q3_2020

TABLESPACE archive online

INCLUDING ROWS WHERE order_state = ‘open’;

.. and what happens with online?

Copyright © 2023, Oracle and/or its affiliates 182

DML Behavior for online operations

Filtered Partition Maintenance Operation

Filter condition is NOT applied to ongoing concurrent DML

INCLUDING ROWS WHERE order_state = ‘open’

Copyright © 2023, Oracle and/or its affiliates 183

DML Behavior for online operations

Filtered Partition Maintenance Operation

Inserts will always go through

Filter condition is NOT applied to ongoing concurrent DML

INSERT VALUES(order_state =‘closed’)

INCLUDING ROWS WHERE order_state = ‘open’

Copyright © 2023, Oracle and/or its affiliates 184

DML Behavior for online operations

Filtered Partition Maintenance Operation

Inserts will always go through

Deletes on included data will always go through

Deletes on deleted data are void

Filter condition is NOT applied to ongoing concurrent DML

INSERT VALUES(order_state =‘closed’)

DELETE WHERE order_state = ‘open’

DELETE WHERE order_state = ‘closed’

INCLUDING ROWS WHERE order_state = ‘open’

Copyright © 2023, Oracle and/or its affiliates 185

DML Behavior for online operations

Filtered Partition Maintenance Operation

Inserts will always go through

Deletes on included data will always go through

Deletes on deleted data are void

Updates on included data always goes through

Updates on excluded data are void

Filter condition is NOT applied to ongoing concurrent DML

INSERT VALUES(order_state =‘closed’)

DELETE WHERE order_state = ‘open’

DELETE WHERE order_state = ‘closed’

UPDATE set order_status = ‘closed’

WHERE order_state = ‘open’

UPDATE set order_status = ‘open’

WHERE order_state = ‘closed’

INCLUDING ROWS WHERE order_state = ‘open’

Copyright © 2023, Oracle and/or its affiliates 186

Copyright © 2023, Oracle and/or its affiliates 187

Introduced in Oracle 12c Release 1 (12.1)

Online Move Partition

Online Partition Move

Enhanced Partition Maintenance Operations

JAN 2021

Transparent MOVE PARTITION ONLINE operation

Concurrent DML and Query

Index maintenance for local and global indexes

… SEP 2021
OCT
2021

NOV 2021
DEC
2021

Copyright © 2023, Oracle and/or its affiliates 188

Transparent MOVE PARTITION ONLINE operation

Concurrent DML and Query

Index maintenance for local and global indexes

Online Partition Move

Enhanced Partition Maintenance Operations

…

JAN 2021

SEP 2021
OCT
2021

NOV 2021
DEC
2021

Copyright © 2023, Oracle and/or its affiliates 189

Minimize concurrent DML operations if possible

• Require additional disk space and resources for journaling

• Journal will be applied recursively after initial bulk move

• The larger the journal, the longer the runtime

Concurrent DML has impact on compression efficiency

• Best compression ratio with initial bulk move

Online Partition Move – Best Practices

Enhanced Partition Maintenance Operations

Copyright © 2023, Oracle and/or its affiliates 190

Copyright © 2023, Oracle and/or its affiliates 191

Introduced in Oracle 12c Release 1 (12.1)

Asynchronous Global Index
Maintenance

Copyright © 2023, Oracle and/or its affiliates 192

Usable global indexes after DROP and TRUNCATE PARTITION
without the need of index maintenance

• Affected partitions are known internally and filtered out at data access time

DROP and TRUNCATE become fast, metadata-only operations

• Significant speedup and reduced initial resource consumption

Delayed Global index maintenance

• Deferred maintenance through ALTER INDEX REBUILD|COALESCE

• Automatic cleanup using a scheduled job

Asynchronous global index maintenance

Asynchronous global index maintenance

After Before

Copyright © 2023, Oracle and/or its affiliates 193

Copyright © 2023, Oracle and/or its affiliates 194

Initial implementation of maintenance package

• Always use INDEX COALESCE CLEANUP

• Rely on parallelism of index

Enhancements added to latest release

• Choice of INDEX COALESCE CLEANUP or “classical” index cleanup

• Choice of parallelism for maintenance operation

Classical cleanup recommended for more frequent index cleanup

• Seems to be the more common customer use case, thus the new default

Functionality available for 12.1 through bug 24515918

Asynchronous Global Index Maintenance

Introduced in Oracle Database 12.2/18.1 (partition-to-
partition)

Online Table Conversion to
Partitioned Table

Copyright © 2023, Oracle and/or its affiliates 195

Completely non-blocking (online) DDL

Online Table Conversion

EVENTS EVENTS

GYRO CAMERA

THERMO DEFAULT

Copyright © 2023, Oracle and/or its affiliates 196

Syntax Example

Online Table Conversion

CREATE TABLE EVENTS (sensor_grp VARCHAR2 (50),

 channel VARCHAR2 (50), …);

ALTER TABLE EVENTS MODIFY

PARTITION BY LIST (sensor_grp)

 (partition p1 values (‘GYRO_GRP’),

 partition p2 values (‘CAMERA_GRP’),

 partition p3 values (‘THERMO_GRP’),

 partition p4 values (DEFAULT))

UPDATE INDEXES ONLINE;

Copyright © 2023, Oracle and/or its affiliates 197

Indexes are converted and kept online throughout the conversion process

Full flexibility for indexes, following today’s rules

Default indexing rules to provide minimal to no access change behavior

• Global partitioned indexes will retain the original partitioning shape.

• Non-prefixed indexes will become global non-partitioned indexes.

• Prefixed indexes will be converted to local partitioned indexes.

• Bitmap indexes will become local partitioned indexes

Indexing

Online Table Conversion

Copyright © 2023, Oracle and/or its affiliates 198

Not everybody thinks big and starts small …

• … so tables can start off small as non-partitioned ones

• … and they grow and grow

• … and they are used in a different way than expected

• … and their maintenance becomes a problem

• … and performance can get impacted

How to convert such tables without downtime?

Now I have partitioning …

• … but I chose the “wrong” type/granularity (for whatever reason)

Online table conversion of partitioned tables

Copyright © 2023, Oracle and/or its affiliates 199

Completely non-blocking (online) DDL for table and indexes

Online table conversion of partitioned tables

EVENTS

GYRO CAMERA

THERMO DEFAULT

EVENTS

2020 Jan

2020 Feb

MICRO DEFAULT THERMO GYRO

Copyright © 2023, Oracle and/or its affiliates 200

Indexes are converted and kept online throughout the conversion

Default indexing rules to provide minimal to no access change behavior

• Almost identical than rules for conversion of non-partitioned table

• Differences:

- Local indexes stay local if any of the partition keys of the two dimensions is included

- Global prefixed partitioned indexes will be converted to local partitioned indexes

Full flexibility for indexes, following today’s rules

• Override whatever you want to see being changed

Online table conversion of partitioned tables

Copyright © 2023, Oracle and/or its affiliates 201

Online table conversion of partitioned tables

CREATE TABLE EVENTS (run_id NUMBER,

 sensor_type VARCHAR2 (50), …)

PARTITION BY LIST (…)

ALTER TABLE EVENTS MODIFY

PARTITION BY RANGE (run_id)

SUBPARTITION BY LIST (sensor_type)…

UPDATE INDEXES

 (i1_run_id GLOBAL,

 i2_sensor LOCAL,

 i3 GLOBAL PARTITION BY RANGE (…)

 (PARTITION p0100 VALUES LESS THAN (100000),

 PARTITION p1500 VALUES LESS THAN (1500000),

 PARTITION pmax VALUES LESS THAN (MAXVALUE)))

ONLINE;

Copyright © 2023, Oracle and/or its affiliates 202

Introduced in Oracle Database 12.2

Create Table for Exchange

Copyright © 2023, Oracle and/or its affiliates 203

Simple DDL command

Ensures both the semantic and internal table shape are identical so partition exchange command will
always succeed

Operates like a special CREATE TABLE AS SELECT operation

Always creates an empty table

Create Table for Exchange

Copyright © 2023, Oracle and/or its affiliates 204

Syntax Example

Create Table for Exchange

CREATE TABLE events_cp TABLESPACE ts_boson

FOR EXCHANGE WITH events;

Copyright © 2023, Oracle and/or its affiliates 205

Copyright © 2023, Oracle and/or its affiliates 206

Introduced in Oracle 12c Release 1 (12.1)

Cascading Truncate and Exchange
for Reference Partitioning

Cascading TRUNCATE and EXCHANGE for improved business continuity

Single atomic transaction preserves data integrity

Simplified and less error prone code development

Cascading TRUNCATE and EXCHANGE PARTITION

Advanced Partitioning Maintenance

ALTER TABLE events
TRUNCATE PARTITION Jan2020
CASCADE;

CHANNELS

RUNS SENSORS

EVENT
DETAILS

JA
N

CHANNELS

RUNS SENSORS

EVENT
DETAILS

FE
B

CHANNELS

RUNS SENSORS

EVENT
DETAILS

MAR

JA
N

FE
B

MAR

Copyright © 2023, Oracle and/or its affiliates 207

Proper bottom-up processing required

Seven individual truncate operations

Cascading TRUNCATE PARTITION

Parent

Child 1 Child 2

Grandchild 1 Grandchild 2 Grandchild 3

Great
Grandchild

1

Parent

Child 1 Child 2

Grandchild 1 Grandchild 2 Grandchild 3

Great
Grandchild

1

1 7

5 6

1 2 4

3

One truncate operation

Copyright © 2023, Oracle and/or its affiliates 208

Cascading TRUNCATE PARTITION

Copyright © 2023, Oracle and/or its affiliates 209

Cascading TRUNCATE PARTITION

Copyright © 2023, Oracle and/or its affiliates 210

CASCADE applies for whole reference tree

• Single atomic transaction, all or nothing

• Bushy, deep, does not matter

• Can be specified on any level of a reference-partitioned table

• ON DELETE CASCADE for all foreign keys required

Cascading TRUNCATE available for non-partitioned tables as well

• Dependency tree for non-partitioned tables can be interrupted with disabled foreign key constraints

Reference-partitioned hierarchy must match for target and table to-be-exchanged

For bushy trees with multiple children on the same level, each child on a given level must reference to a
different key in the parent table

• Required to unambiguously pair tables in the hierarchy tree

Cascading TRUNCATE PARTITION

Copyright © 2023, Oracle and/or its affiliates 211

Exchange (clear) out of target bottom-up

Exchange (populate) into target top-down

Cascading EXCHANGE PARTITION

Parent

Child 1 Child 2

Grand
child 1

Grand
child 2

Grand
child 3

Great
Grandchild

1

Parent

Child

Grand
child

1

2

3

4

5

6

Copyright © 2023, Oracle and/or its affiliates 212

Exchange complete hierarchy tree

One exchange operation

Exchange (clear) out of target bottom-up

Exchange (populate) into target top-down

Cascading EXCHANGE PARTITION

Parent

Child 1 Child 2

Grand
child 1

Grand
child 2

Grand
child 3

Great
Grandchild

1

Parent

Child

Grand
child

1

2

3

4

5

6

Parent

Child 1 Child 2

Grand
child 1

Grand
child 2

Grand
child 3

Great
Grandchild

1

Parent

Child

Grand
child

1

Copyright © 2023, Oracle and/or its affiliates 213

Cascading EXCHANGE PARTITION

Copyright © 2023, Oracle and/or its affiliates 214

Cascading EXCHANGE PARTITION

Copyright © 2023, Oracle and/or its affiliates 215

Cascading EXCHANGE PARTITION

Copyright © 2023, Oracle and/or its affiliates 216

Cascading EXCHANGE PARTITION

Copyright © 2023, Oracle and/or its affiliates 217

Cascading EXCHANGE PARTITION

Copyright © 2023, Oracle and/or its affiliates 218

Copyright © 2023, Oracle and/or its affiliates 219

Partitioning – Random Tidbits

Copyright © 2023, Oracle and/or its affiliates 220

Difference Between Range and
Interval

Full automation for equi-sized range partitions

Partitions are created as metadata information only

• Start Partition is made persistent

Segments are allocated as soon as new data arrives

• No need to create new partitions

• Local indexes are created and maintained as well

Interval Partitioning is almost a transparent extension to range partitioning

• .. But interval implementation introduces some subtle differences

Interval Partitioning

Copyright © 2023, Oracle and/or its affiliates 221

Partition naming

• Interval partitions cannot be named in
advance

- Use the PARTITION FOR (<value>) clause

• Range partitions must be named

Partition bounds

• Interval partitions have lower and upper bound

- No infinite upper bound (MAXVALUES)

• Range partitions only have upper bounds

- Lower bound derived by previous partition

- Upper bound infinite (MAXVALUES)

Interval versus Range Partitioning

Copyright © 2023, Oracle and/or its affiliates 222

Partition merge

• Multiple non-existent interval partitions are silently merged

• Only two adjacent range partitions can be merged at any point in time

Number of partitions

• Interval partitioned tables have always one million partitions

- Non-existent partitions “exist” through INTERVAL clause

- No MAXVALUE clause for interval partitioning

◦ Maximum value defined through number of partitions and INTERVAL clause

• Range partitioning can have up to one million partitions

- MAXVALUE clause defines most upper partition

Interval versus Range Partitioning, cont.

Copyright © 2023, Oracle and/or its affiliates 223

Partitions only have upper bounds

• Lower bound derived through upper bound of previous partition

Partition Bounds for Range Partitioning

Interval versus Range Partitioning

OCT 2021 NOV 2021 DEC 2021 JAN 2022 FEB 2022

values less than (’01-FEB-2022’)

values less than (‘01-JAN-2022’)

Copyright © 2023, Oracle and/or its affiliates 224

Drop of previous partition moves lower boundary

• “Feb 2022” now spawns 01-JAN-2022 to 28-FEB-2022

Partition Bounds for Range Partitioning

Interval versus Range Partitioning

Drop of previous partition moves lower boundary
“Feb 2022” now spawns 01-JAN-2022 to 28-FEB-2022

OCT 2021 NOV 2021 DEC 2021 FEB 2022

values less than (’01-MAR-2022’)

values less than (‘01-JAN-2022’)

Copyright © 2023, Oracle and/or its affiliates 225

Partitions have upper and lower bounds

• Derived by INTERVAL function and last range partition

Partition Bounds for Interval Partitioning

Interval versus Range Partitioning

OCT 2021 NOV 2021 JAN 2022 FEB 2022

values less than (’01-DEC-2021’)

less than (’01-DEC-2021’ + 2 x INTERVAL (1 MONTH))

less than (’01-DEC-2021’ + 3 x INTERVAL (1 MONTH))

Copyright © 2023, Oracle and/or its affiliates 226

Drop does not impact partition boundaries

• “Feb 2022” still spawns 01-FEB-2022 to 28-FEB-2022

Partition Bounds for Interval Partitioning

Interval versus Range Partitioning

OCT 2021 NOV 2021 FEB 2022

values less than (’01-DEC-2021’)

less than (’01-DEC-2021’ + 2 x INTERVAL (1 MONTH))

less than (’01-DEC-2021’ + 3 x INTERVAL (1 MONTH))

Copyright © 2023, Oracle and/or its affiliates 227

228

Range partitions can be named

• System generated name if not specified

Interval partitions cannot be named

• Always system generated name

Use new deterministic PARTITION FOR () extension

Partition Naming

Interval versus Range Partitioning

SQL> alter table t add partition values less than(20);
Table altered.
SQL> alter table t add partition P30 values less than(30);
Table altered.

SQL> alter table t add partition values less than(20);
 *
ERROR at line 1: ORA-14760: ADD PARTITION is not permitted
on Interval partitioned objects

SQL> alter table t1 rename partition for (9) to p_10;
Table altered.

Copyright © 2023, Oracle and/or its affiliates

Merge two adjacent partitions for range partitioning

• Upper bound of higher partition is new upper bound

• Lower bound derived through upper bound of previous partition

Partition Merge – Range Partitioning

Interval versus Range Partitioning

SEP 2021 OCT 2021 JAN 2022

MERGE PARTITIONS NOV_2021, DEC_2021 INTO PARTITION NOV_DEC_2021

DEC 2021 NOV 2021

Copyright © 2023, Oracle and/or its affiliates 229

New segment for merged partition is created

• Rest of the table is unaffected

Partition Merge – Range Partitioning

Interval versus Range Partitioning

SEP 2021 OCT 2021 JAN 2022
NOV_DEC_202

1

MERGE PARTITIONS NOV_2021, DEC_2021 INTO PARTITION NOV_DEC_2021

Copyright © 2023, Oracle and/or its affiliates 230

Merge two adjacent partitions for interval partitioning

• Upper bound of higher partition is new upper bound

• Lower bound derived through lower bound of first partition

Partition Merge – Interval Partitioning

Interval versus Range Partitioning

OCT 2021 JAN 2022 NOV 2021 DEC 2021

MERGE PARTITIONS NOV_2021, DEC_2021 INTO PARTITION NOV_DEC_2021

Copyright © 2023, Oracle and/or its affiliates 231

New segment for merged partition is created

• Holes before highest non-interval partition will be silently “merged” as well

- Interval only valid beyond the highest non-interval partition

Partition Merge – Interval Partitioning

Interval Versus Range Partitioning

JAN 2022 OCT 2021 NOV_DEC_2021

MERGE PARTITIONS NOV_2021, DEC_2021 INTO PARTITION NOV_DEC_2021

Copyright © 2023, Oracle and/or its affiliates 232

Copyright © 2023, Oracle and/or its affiliates 233

Introduced in Oracle 8i (8.1)

Multi-Column Range Partitioning

Partitioning key is composed of several columns and subsequent columns define a higher granularity
than the preceding one

• E.g. (YEAR, MONTH, DAY)

• It is NOT an n-dimensional partitioning

Major watch-out is difference of how partition boundaries are evaluated

• For simple RANGE, the boundaries are less than (exclusive)

• Multi-column RANGE boundaries are less than or equal

- The nth column is investigated only when all previous (n-1) values of the multicolumn key exactly match the
(n-1) bounds of a partition

Concept

Multi-column Range Partitioning

Copyright © 2023, Oracle and/or its affiliates 234

Sample Decision Tree (YEAR, MONTH)

Multi-Column Range Partition

YEAR
Value less

than
boundary?

YEAR
Value equal

to
boundary?

Evaluate
partition

Go to next
partition

insert

MONTH
Value less

than
boundary?

no

yes

yes

no

no yes

Copyright © 2023, Oracle and/or its affiliates 235

Example

Multi-Column Range Partition

YEAR=2021
Value less

than
boundary?

YEAR=2021
Value equal

to
boundary?

Evaluate
partition

Go to next
partition

insert

MONTH=1
Value less

than
boundary?

no

yes

yes

no

no yes

(2021, 1)

yes

(YEAR,MONTH)

Boundaries

Values

(2021,1)

(2021,4)

(2021,7)

(2021,10)

(2022,1)

(MAXVALUE,0)

(2013, 12)

(2013, 12)

(2021, 1)

Copyright © 2023, Oracle and/or its affiliates 236

Example Cont’d

Multi-Column Range Partition

YEAR=2021
Value less

than
boundary?

YEAR=2021
Value equal

to
boundary?

Evaluate
partition

Go to next
partition

insert

MONTH=
Value less

than
boundary?

no

yes

yes

no

no yes

(2021, 1)

(YEAR,MONTH)

Boundaries

Values

(2021,1)

(2021,4)

(2021,7)

(2021,10)

(2022,1)

(MAXVALUE,0)

(2013, 12)

no

yes

no

(2021, 3)

(2021, 4)

Copyright © 2023, Oracle and/or its affiliates 237

Example Cont’d

Multi-Column Range Partition

YEAR=2021
Value less

than
boundary?

YEAR=2021
Value equal

to
boundary?

Evaluate
partition

Go to next
partition

insert

MONTH=4
Value less

than
boundary?

no

yes

yes

no

no yes

(YEAR,MONTH)

Boundaries

Values

(2021,1)

(2021,4)

(2021,7)

(2021,10)

(2022,1)

(MAXVALUE,0)

(2013, 12)

no

yes

(2021, 4)

(2021, 3)

yes

(2021, 3)

(2021, 4)

Copyright © 2023, Oracle and/or its affiliates 238

Example Cont’d

Multi-Column Range Partition

YEAR=2022
Value less

than
boundary?

YEAR=2021
Value equal

to
boundary?

Evaluate
partition

Go to next
partition

insert

MONTH=4
Value less

than
boundary?

no

yes

yes

no

no yes

(YEAR,MONTH)

Boundaries

Values

(2021,1)

(2021,4)

(2021,7)

(2021,10)

(2022,1)

(MAXVALUE,0)

(2013, 12)

yes

(2022, 1)

(2021.5, 33)

(2021, 3)

(2021.5, 33)

(2022, 1)

Copyright © 2023, Oracle and/or its affiliates 239

Powerful partitioning mechanism to add a third (or more) dimensions

• Smaller data partitions

Pruning works also for trailing column predicates without filtering the leading column(s)

Boundaries are not enforced by the partition definition

• Ranges are consecutive

Logical ADD partition can mean SPLIT partition in the middle of the table

Things to bear in mind

Multi-Column Range Partitioning

Copyright © 2023, Oracle and/or its affiliates 240

Multi-column range used to introduce a third (non-numerical) dimension

A slightly different real-world scenario

Multi-Column Range Partition

CREATE TABLE events (event_id number, site_id CHAR(2),start_date date)

PARTITION BY RANGE (site_id, start_date)

SUBPARTITION BY HASH (event_id) SUBPARTITIONS 16

(PARTITION l1_2020 VALUES LESS THAN (‘L1',to_date('01-JAN-2021','dd-mon-yyyy')),

 PARTITION l1_2021 VALUES LESS THAN (‘L1',to_date('01-JAN-2022','dd-mon-yyyy')),

 PARTITION l2_2020 VALUES LESS THAN (‘L2',to_date('01-JAN-2021','dd-mon-yyyy')),

 PARTITION l3_2020 VALUES LESS THAN (‘L3',to_date('01-JAN-2021','dd-mon-yyyy')),

 PARTITION x3_2021 VALUES LESS THAN (‘X1',to_date('01-JAN-2022','dd-mon-yyyy')),

 PARTITION x4_2020 VALUES LESS THAN (‘X4',to_date('01-JAN-2021','dd-mon-yyyy'))

);

Character SITE_ID has to be defined in an ordered fashion

Copyright © 2023, Oracle and/or its affiliates 241

Multi-column range used to introduce a third (non-numerical) dimension

A slightly different real-world scenario

Multi-Column Range Partition

CREATE TABLE events (event_id number, site_id CHAR(2),start_date date)

PARTITION BY RANGE (site_id, start_date)

SUBPARTITION BY HASH (event_id) SUBPARTITIONS 16

(PARTITION l1_2020 VALUES LESS THAN (‘L1',to_date('01-JAN-2021','dd-mon-yyyy')),

 PARTITION l1_2021 VALUES LESS THAN (‘L1',to_date('01-JAN-2022','dd-mon-yyyy')),

 PARTITION l2_2020 VALUES LESS THAN (‘L2',to_date('01-JAN-2021','dd-mon-yyyy')),

 PARTITION l2_2021 VALUES LESS THAN (‘L2',to_date('01-JAN-2022','dd-mon-yyyy')),

 PARTITION x1_2020 VALUES LESS THAN (‘X1',to_date('01-JAN-2021','dd-mon-yyyy')),

 PARTITION x1_2021 VALUES LESS THAN (‘X1',to_date('01-JAN-2022','dd-mon-yyyy'))

);

Non-defined SITE_ID will follow the LESS THAN probe and
always end in the lowest partition of a defined SITE_ID

Copyright © 2023, Oracle and/or its affiliates 242

Multi-column range used to introduce a third (non-numerical) dimension

A slightly different real-world scenario

Multi-Column Range Partition

CREATE TABLE events(prod_id number, site_id CHAR(2),start_date date)

PARTITION BY RANGE (site_id, start_date)

SUBPARTITION BY HASH (prod_id) SUBPARTITIONS 16

(PARTITION l1_2020 VALUES LESS THAN (‘L1',to_date('01-JAN-2014','dd-mon-yyyy')),

 PARTITION l1_2021 VALUES LESS THAN (‘L1',to_date('01-JAN-2020','dd-mon-yyyy')),

 PARTITION l2_2020 VALUES LESS THAN (‘L2',to_date('01-JAN-2014','dd-mon-yyyy')),

 PARTITION x1_2021 VALUES LESS THAN (‘X1',to_date('01-JAN-2020','dd-mon-yyyy')),

 PARTITION x4_2020 VALUES LESS THAN (‘X4',to_date('01-JAN-2014','dd-mon-yyyy')),

 PARTITION x4_2021 VALUES LESS THAN (‘X4',to_date('01-JAN-2020','dd-mon-yyyy'))

);

Future dates will always go in the lowest partition of the next
higher SITE_ID or being rejected

?

Copyright © 2023, Oracle and/or its affiliates 243

Multi-column range used to introduce a third (non-numerical) dimension

A slightly different real-world scenario

Multi-Column Range Partition

create table events(prod_id number, site_id CHAR(2),start_date date)

partition by range (site_id, start_date)

subpartition by hash (prod_id) subpartitions 16

(partition below_L1 values less than (‘L1',to_date('01-JAN-1492','dd-mon-yyyy')),

partition l1_2013 values less than (‘L1',to_date('01-JAN-2014','dd-mon-yyyy')),

partition l1_2021 values less than (‘L1',to_date('01-JAN-2020','dd-mon-yyyy')),

partition l1_max values less than (‘L1',MAXVALUE),

partition below_x1 values less than (‘X1',to_date('01-JAN-1492','dd-mon-yyyy')),

 …

partition x4_max values less than (‘X4',MAXVALUE),

partition pmax values less than (MAXVALUE,MAXVALUE));

Introduce a dummy ‘BELOW_...’ partition
to catch “lower” nondefined SITE_ID

Copyright © 2023, Oracle and/or its affiliates 244

Multi-column range used to introduce a third (non-numerical) dimension

A slightly different real-world scenario

Multi-Column Range Partition

create table events(prod_id number, site_id CHAR(2),start_date date)

partition by range (site_id, start_date)

subpartition by hash (prod_id) subpartitions 16

(partition below_l1 values less than (‘L1',to_date('01-JAN-1492','dd-mon-yyyy')),

 partition l1_2020 values less than (‘L1',to_date('01-JAN-2021','dd-mon-yyyy')),

 partition l1_2021 values less than (‘L1',to_date('01-JAN-2022','dd-mon-yyyy')),

 partition l1_max values less than (‘L1',MAXVALUE),

 partition below_x1 values less than (‘X1',to_date('01-JAN-1492','dd-mon-yyyy')),

 …

 partition x4_max values less than (‘X4',MAXVALUE),

 partition pmax values less than (MAXVALUE,MAXVALUE));

Introduce a MAXVALUE ‘X_FUTURE’ partition
to catch future dates

Copyright © 2023, Oracle and/or its affiliates 245

Multi-column range used to introduce a third (non-numerical) dimension

A slightly different real-world scenario

Multi-Column Range Partition

create table events(prod_id number, site_id CHAR(2),start_date date)

partition by range (site_id, start_date)

subpartition by hash (prod_id) subpartitions 16

(partition below_l1 values less than (‘L1',to_date('01-JAN-1492','dd-mon-yyyy')),

 partition l1_2020 values less than (‘L1',to_date('01-JAN-2021','dd-mon-yyyy')),

 partition l1_2021 values less than (‘L1',to_date('01-JAN-2022','dd-mon-yyyy')),

 partition l1_max values less than (‘L1',MAXVALUE),

 partition below_x1 values less than (‘X1',to_date('01-JAN-1492','dd-mon-yyyy')),

 …

 partition x4_max values less than (‘X4',MAXVALUE),

 partition pmax values less than (MAXVALUE,MAXVALUE));

If necessary, catch the open-ended SITE_ID (leading key column)

Copyright © 2023, Oracle and/or its affiliates 246

Copyright © 2023, Oracle and/or its affiliates 247

Differences partitioned and
nonpartitioned Objects

Copyright © 2023, Oracle and/or its affiliates 248

Physical and logical attributes

Logical attributes

• Partitioning setup

• Indexing and index maintenance

• Read only (in conjunction with tablespace separation)

Physical attributes

• Data placement

• Segment properties in general

Physical and Logical Attributes

Copyright © 2023, Oracle and/or its affiliates 249

Logical table properties

• Columns and data types

• Constraints

• Indexes, …

Physical table properties

• Table equivalent to segment

• Tablespace

• Compression, [Logging | nologging], …

• In-memory

• Properties managed and changed on segment
level

Physical and Logical Attributes

Nonpartitioned Tables

Copyright © 2023, Oracle and/or its affiliates 250

Logical table properties

• Columns and data types

• Constraints

• Partial Indexes, …

• Physical property directives

Physical [sub]partition properties

• [Sub]partition equivalent to segment

• Tablespace

• Compression, [Logging | nologging], …

• In-memory

• Properties managed and changed on segment
level

Physical and Logical Attributes

Nonpartitioned Tables

Partition Partition

Table

Copyright © 2023, Oracle and/or its affiliates 251

Table is metadata-only and directive for future partitions

• No physical segments on table level

• Physical attributes become directive for new partitions, if specified

Single-level partitioned table

• Partitions are equivalent to segments

• Physical attributes are managed and changed on partition level

Composite-level partitioned tables

• Partitions are metadata only and directive for future subpartitions

• Subpartitions are equivalent to segments

Physical and Logical Attributes

Partitioned Tables

Copyright © 2023, Oracle and/or its affiliates 252

Each partition or sub-partition is a separate object

Specify storage attributes at each individual level

• As placement policy for lower levels

• For each individual [sub]partition

If storage attributes are not specified standard
hierarchical inheritance kicks in

Data Placement with Partitioned Tables

Table

Partition

Table Space

Sub-part

Copyright © 2023, Oracle and/or its affiliates 253

Interval Partitioning” pre-creates” all partitions

• All 1 million [sub]partitions exist logically

Physical storage is (almost) determined as well

Partition placement

• Inherited from table level

• STORE IN () clause for round-robin partition placement

Subpartition placement

• Usage of subpartition template

• STORE IN clause currently is currently a no-op

Special Case Interval Partitioning

Data Placement with Partitioned Tables

Table

Tablespace

Partition P1

Partition P2

Sub-part 1

Sub-part 2

Sub-part 1

Sub-part 2

Copyright © 2023, Oracle and/or its affiliates 254

Allows predefinition of subpartitions for future partitions

Stored as metadata in the data dictionary

• Not only syntactic (macro) sugar

Subpartition template

Data Placement with Partitioned Tables

Subpartition
definition for all
future partitions

Subpartition
applied to every

partition

CREATE TABLE stripe_regional_EVENTS

 (deptno number, item_no varchar2(20),

 txn_date date, txn_amount number, state varchar2(2))

PARTITION BY RANGE (txn_date)

SUBPARTITION BY LIST (state)

SUBPARTITION TEMPLATE

 (SUBPARTITION northwest VALUES (‘OR’, ‘WA’) TABLESPACE tbs_1

 SUBPARTITION southwest VALUES (‘AZ, ‘UT’, ‘NM’) TABLESPACE tbs_2

 SUBPARTITION northeast VALUES (‘NY’, ‘VM’, ‘NJ’) TABLESPACE tbs_3

 SUBPARTITION southeast VALUES (‘FL’, ‘GA’) TABLESPACE tbs_4

 SUBPARTITION midwest VALUES (SD’, ‘WI’) TABLESPACE tbs_5

 SUBPARTITION south VALUES (‘AL’, ‘AK’) TABLESPACE tbs_6

 SUBPARTITION south VALUES (DEFAULT) TABLESPACE tbs_7

)

(PARTITION q1_2021 VALUES LESS THAN (TO_DATE(‘01-APR-2021’, ‘DD-MON-YYYY’)),

(PARTITION q2_2021 VALUES LESS THAN (TO_DATE(’01-JUL-2021’, ‘DD-MON-YYYY’)),

(PARTITION q3_2021 VALUES LESS THAN (TO_DATE(’01-OCT-2021’, ‘DD-MON-YYYY’)),

(PARTITION q4_2021 VALUES LESS THAN (TO_DATE(’01-JAN-2020’, ‘DD-MON-YYYY’)),

);

Copyright © 2023, Oracle and/or its affiliates 255

Introduced in Oracle Database 12.2

Read Only Partitions

Copyright © 2023, Oracle and/or its affiliates 256

Partitions and sub-partitions can be set to read only or read write

Any attempt to alter data in a read only partition will result in an error

Ideal for protecting data from unintentional DML by any user or trigger

Read Only Partitions

… Q1 2020 Q2 2020 Q3 2020 Q4 2020

Read only Read only Read only
Read
write

insert

DML operations blocked
DML operations

allowed

modify delete insert

Copyright © 2023, Oracle and/or its affiliates 257

Read only attribute guarantees data immutability

• “SELECT <column_list> FROM <table>” will always return the same data set after a table or
[sub]partition is set to read only

If not specified, each partition and subpartition will inherit read only property from top level parent

• Modifying lower level read only property will override higher level property

• Alter tablespace has highest priority and cannot be overwritten

Data immutability does not prevent all structural DDL for a table

• ADD and MODIFY COLUMN are allowed and do not violate data immutability of existing data

• Others like DROP/RENAME/SET UNUSED COLUMN are forbidden

• DROP [read only] PARTITION forbidden, too - - violates data immutability of the table

Details of Read Only Partitions

Copyright © 2023, Oracle and/or its affiliates 258

Read Only Partitions

CREATE TABLE events (event_id number,

 evnt_date DATE, …) read only

PARTITION BY RANGE(event_date)

(partition q1_2020 values less than (‘2020-04-01’),

 partition q2_2020 values less than (‘2020-07-01’),

 partition q3_2020 values less than (‘2020-10-01’),

 partition q4_2020 values less than (‘2021-01-01’) read write

);

Copyright © 2023, Oracle and/or its affiliates 259

TS1 TS2 TS3 TS4

Partitions and sub-partitions can be placed in read only tablespaces

Any attempt to alter data in a read only tablespace will result in an error

Read Only Tablespaces and Partitions

… Q1 2020 Q2 2020 Q3 2020 Q4 2020

Read only Read only Read only Read write

insert

DML operations blocked DML operations
allowed

modify delete insert

Copyright © 2023, Oracle and/or its affiliates 260

Partitions and sub-partitions can be set to read only or read write

Any attempt to alter data in a read only partition will result in an error

Read Only Partitions

TS1

… Q1 2020 Q2 2020 Q3 2020 Q4 2020

Read only Read only Read only Read write

insert

DML operations blocked DML operations
allowed

modify delete insert

Copyright © 2023, Oracle and/or its affiliates 261

Read Only Tablespaces protect physical storage from updates

• DDL operations that are not touching the storage are allowed

- E.g. ALTER TABLE SET UNUSED, DROP TABLE

• No guaranteed data immutability

Read Only Objects protect data from updates

• ‘Data immutability’

• Does not prevent changes on storage

- E.g. ALTER TABLE MOVE COMPRESS, ALTER TABLE MERGE PARTITIONS

Read Only Object vs. Read Only Tablespace

Copyright © 2023, Oracle and/or its affiliates 262

Read only attribute guarantees data immutability

• “SELECT <column_list> FROM <table>” will always return the same data set after a table or
[sub]partition is set to read only

Data immutability does not prevent all structural DDL for a table

• ADD and MODIFY COLUMN are allowed and do not violate data immutability of existing data

• Others like DROP/RENAME/SET UNUSED COLUMN are forbidden

• DROP [read only] PARTITION forbidden, too - - violates data immutability of the table

Read Only Partitions

Copyright © 2023, Oracle and/or its affiliates 263

Introduced in Oracle Database 12.2

Reduced Cursor Invalidations for
DDL’s

Copyright © 2023, Oracle and/or its affiliates 264

Reduces the number of hard parses caused by DDL’s

• If hard parses are unavoidable, workload is spread over time

• New optional clause “[DEFERRED | IMMEDIATE] INVALIDATION” for several DDL’s

• If DEFERRED, Oracle will avoid invalidating dependent cursors when possible

• If IMMEDIATE, Oracle will immediately invalidate dependent cursors

• If neither, CURSOR_INVALIDATION parameter controls default behavior

Supported DDL’s:

• Create, drop, alter index

• Alter table column operations

• Alter table segment operations

• Truncate table

Reduced Cursor Invalidations for DDL’s

Copyright © 2023, Oracle and/or its affiliates 265

Syntax Example

Reduced Cursor Invalidations for DDL’s

DROP INDEX meas_campaign DEFERRED INVALIDATION;

Copyright © 2023, Oracle and/or its affiliates 266

Statistics Management for
Partitioning

Copyright © 2023, Oracle and/or its affiliates 267

You must gather Optimizer statistics

• Using dynamic sampling is not an adequate solution

• Statistics on global and partition level recommended

- Subpartition level optional

Run all queries against empty tables to populate column usage

• This helps identify which columns automatically get histograms created on them

Optimizer statistics should be gathered after the data has been loaded but before any indexes are
created

• Oracle will automatically gather statistics for indexes as they are being created

Statistics Gathering

Copyright © 2023, Oracle and/or its affiliates 268

By default DBMS_STATS gathers the following stats for each table

• global (table level), partition level, sub-partition level

Optimizer uses global stats if query touches two or more partitions

Optimizer uses partition stats if queries do partition elimination and only one partition is necessary to
answer the query

• If queries touch two or more partitions the optimizer will use a combination of global and partition level
statistics

Optimizer uses sub-partition level statistics only if your queries do partition elimination and one sub-
partition is necessary to answer query

Statistics Gathering

Copyright © 2023, Oracle and/or its affiliates 269

Use AUTO_SAMPLE_SIZE

• The only setting that enables new efficient statistics collection

• Hash based algorithm, scanning the whole table

- Speed of sampling, accuracy of compute

Enable incremental global statistics collection

• Avoids scan of all partitions after changing single partitions

- Prior to 11.1, scan of all partitions necessary for global stats

• Managed on per table level

- Static setting

• Create synopsis for non-partitioned table to being exchanged (Oracle Database 12c)

Efficient Statistics Management

Copyright © 2023, Oracle and/or its affiliates 270

Incremental Global Statistics

1. Partition level stats are

gathered & synopsis created

2. Global stats generated by

aggregating partition synopsis

May 18th 2021

May 19th 2021

May 20th 2021

May 21st 2021

May 22nd 2021

May 23rd 2021

EVENTS
Table

S1

S2

S3

S4

S5

S6

Global
Statistic

Sysaux Tablespace

Copyright © 2023, Oracle and/or its affiliates 271

Incremental Global Statistics, Cont

May 18th 2021

May 19th 2021

May 20th 2021

May 21st 2021

May 22nd 2021

May 23rd 2021

EVENTS
Table

May 24th 2021 S7

3. A new partition is added to

the table and data is loaded

4. Gather partition statistics for

new partition

Sysaux Tablespace

Copyright © 2023, Oracle and/or its affiliates 272

Incremental Global Statistics, Cont

May 18th 2021

May 19th 2021

May 20th 2021

May 21st 2021

May 22nd 2021

May 23rd 2021

EVENTS
Table

May 24th 2021

S1

S2

S3

S4

S5

S6

Global
Statistic

Sysaux Tablespace S7

5. Retrieve synopsis for

each of the other

partitions from Sysaux

6. Global stats generated by

aggregating the original

partition synopsis with the new

one

Copyright © 2023, Oracle and/or its affiliates 273

Turn on incremental feature for the table

After load gather table statistics using GATHER_TABLE_STATS

• No need to specify parameters

The command will collect statistics for partitions and update the global statistics based on the partition
level statistics and synopsis

Possible to set incremental to true for all tables

• Only works for already existing tables

Step necessary to gather accurate statistics

EXEC DBMS_STATS.SET_TABLE_PREFS('ATLAS','EVENTS','INCREMENTAL','TRUE');

EXEC DBMS_STATS.GATHER_TABLE_STATS('ATLAS','EVENTS');

EXEC DBMS_STATS.SET_GLOBAL_PREFS('INCREMENTAL','TRUE');

Copyright © 2023, Oracle and/or its affiliates 274

Copyright © 2023, Oracle and/or its affiliates 275

Best Practices and How-To’s

Copyright © 2023, Oracle and/or its affiliates 276

Think about your partitioning
strategy

Think about

• your data

• your usage

What do you expect from Partitioning?

• Query performance benefits

• Load (or purge) performance benefits

• Data management benefits

Choosing your Partitioning Strategy

Copyright © 2023, Oracle and/or its affiliates 277

How is data inserted into your system?

How is data maintained in your system?

How is data accessed in your system?

Logical shape of the data

Choosing your Partitioning Strategy

Copyright © 2023, Oracle and/or its affiliates 278

How is data inserted into your system?

• Time, location, tenant, business user, …

• Ranges, unrelated list of values, “just lots of them”, …

How is data maintained in your system?

How is data accessed in your system?

Logical shape of the data

Choosing your Partitioning Strategy

Copyright © 2023, Oracle and/or its affiliates 279

How is data inserted into your system?

• Time, location, tenant, business user, …

• Ranges, unrelated list of values, “just lots of them”, …

How is data maintained in your system?

• Moving window of active data, legal requirements, data “forever”, ...

• Don’t know yet

How is data accessed in your system?

Logical shape of the data

Choosing your Partitioning Strategy

Copyright © 2023, Oracle and/or its affiliates 280

How is data inserted into your system?

• Time, location, tenant, business user, …

• Ranges, unrelated list of values, “just lots of them”, …

How is data maintained in your system?

• Moving window of active data, legal requirements, data “forever”, ...

• Don’t know yet

How is data accessed in your system?

• Always full, with common FILTER predicates, always index access, …

• Don’t know yet

Logical shape of the data

Choosing your Partitioning Strategy

Copyright © 2023, Oracle and/or its affiliates 281

Query speedup

• Partition elimination

• Partition-wise joins

DML speedup

• Alleviation of contention points

Data maintenance

• DDL instead of DML

Performance improvements

Choosing your Partitioning Strategy

Copyright © 2023, Oracle and/or its affiliates 282

I/O savings are linear to the number of pruned partitions

• One of 10: ten times less IO

• One of 100: hundred times less IO

Runtime improvements depend on

• Relative contribution of IO versus CPU work

• Potential impact on subsequent operations

Data Access – Full Table Access

Choosing your Partitioning Strategy

Copyright © 2023, Oracle and/or its affiliates 283

GLOBAL index points to rows in any partition

• Index can be partitioned or not

LOCAL index is partitioned same as table

• Index partitioning key can be different from index key

Indexing of partitioned tables

Choosing your Partitioning Strategy

Global Partitioned Index

Local Partitioned Index

Global Non-Partitioned Index

Copyright © 2023, Oracle and/or its affiliates 284

Partitioned index access without any partition
pruning

Partitioned index access with single partition
pruning

Data Access – local index and global partitioned index

Choosing your Partitioning Strategy

Copyright © 2023, Oracle and/or its affiliates 285

Number of index probes identical to number of accessed partitions

• No partition pruning leads to a probe into all index partitions

Not optimally suited for OLTP environments

• No guarantee to always have partition pruning

• Exception: global hash partitioned indexes for DML contention alleviation

- Most commonly small number of partitions

Pruning on global partitioned indexes based on the index prefix

• Index prefix identical to leading keys of index

Data Access

Local and Global Partitioned Indexes

Copyright © 2023, Oracle and/or its affiliates 286

Can you see the difference?

Global Nonpartitioned Index

Choosing your Partitioning Strategy

Copyright © 2023, Oracle and/or its affiliates 287

Can you see the difference?

There is more or less none*

Global Nonpartitioned Index

Choosing your Partitioning Strategy

* Some differences for index size, due to large rowid

Copyright © 2023, Oracle and/or its affiliates 288

No pruning for non-partitioned indexes

• You always probe into a single index segment

Global partitioned index prefix identical to leading keys of index

• Pruning on index prefix, not partition key column(s)

Most common in OLTP environments

Data Access

Global Indexes

PARTITION BY (col1), idx(col1) PARTITION BY (col1), idx(col2)

Copyright © 2023, Oracle and/or its affiliates 289

Data Maintenance

Choosing your Partitioning Strategy

• Records get deleted

– Index maintenance

– Undo and redo

• Partition gets dropped

– Fast global index
maintenance (12c)

– Minimal undo

• Partition gets dropped

– Local index gets dropped

– Minimal undo

DELETE FROM ...
 WHERE ...

ALTER TABLE ... DROP PARTITION ...

Copyright © 2023, Oracle and/or its affiliates 290

Incremental index creation possible

• Initial unusable creation, rebuild of individual partitions

Fast index maintenance for all partition maintenance operations that only touch one partition

• Exchange, drop, truncate

Partition maintenance that touches more than one partition require index maintenance

• Merge, split creates new data segments

• New index segments are created as well

Data Maintenance

Local Indexes

Copyright © 2023, Oracle and/or its affiliates 291

Incremental index creation is hard, if not impossible

“Fast” index maintenance for drop and truncate beginning with Oracle Database 12c

• Fast actually means delayed index maintenance

Partition maintenance except drop and truncate requires index maintenance

• Conventional index maintenance equivalent to the DML operations that would represent the PMOP

Data Maintenance

Global Indexes

Copyright © 2023, Oracle and/or its affiliates 292

Copyright © 2023, Oracle and/or its affiliates 293

It depends ..

How many partitions?

Imagine a 100TB table …

• With one million partitions, each partition is 100MB in size

Imagine a 10TB table …

• With one million partitions, each partition is 10MB in size

Imagine a 1TB table …

• With one million partitions, each partition is 1MB in size

Data Volume and Number of Partitions

Copyright © 2023, Oracle and/or its affiliates 294

Imagine a 100TB table …

• With one million partitions, each partition is 100MB in size

Imagine a 10TB table …

• With one million partitions, each partition is 10MB in size

Imagine a 1TB table …

• With one million partitions, each partition is 1MB in size

How long does it take your system to read 1MB??

• Exadata full table scan rate is tens to hundreds of GB/sec …

Data Volume and Number of Partitions

Copyright © 2023, Oracle and/or its affiliates 295

More is not always better

• Every partition represents metadata in the dictionary

• Every partition increases the metadata footprint in the SGA

Find your personal balance between the number of partitions and its average size

• There is nothing wrong about single-digit GB sizes for a segment on “normal systems”

• Consider more partitions >= 5GB segment size

Data Volume and Number of Partitions

Copyright © 2023, Oracle and/or its affiliates 296

Range (Interval) still the most prevalent partitioning strategy

• Almost always some time dependency

List more and more common

• Interestingly often based on time as well

• Often as subpartitioning strategy

Hash not only used for performance (PWJ, DML contention)

• No control over data placement, but some understanding of it

• Do not forget the power of two rule

Customer Usage Patterns

Choosing your Partitioning Strategy

Copyright © 2023, Oracle and/or its affiliates 297

Interval Partitioning fastest growing new partitioning strategy

• Manageability extension to Range Partitioning

Reference Partitioning

• Leverage PK/FK constraints for your data model

Interval-Reference Partitioning (new in Oracle Database 12c)

Virtual column based Partitioning

• Derived attributes without little to no application change

Any variant of the above

Extended Partitioning Strategies

Choosing your Partitioning Strategy

Copyright © 2023, Oracle and/or its affiliates 298

Copyright © 2023, Oracle and/or its affiliates 299

Flexibility has its price

One million partitions –the more the better?

Online operations – the holy grail?

PMOPs over DML all the time?

Flexibility with Oracle Partitioning

Copyright © 2023, Oracle and/or its affiliates 300

Imagine a 100TB table …

• With one million partitions, each partition is 100MB in size

Imagine a 10TB table …

• With one million partitions, each partition is 10MB in size

Imagine a 1TB table …

• With one million partitions, each partition is 1MB in size

Data Volume and Number of Partitions

Copyright © 2023, Oracle and/or its affiliates 301

Imagine a 100TB table …

• With one million partitions, each partition is 100MB in size

Imagine a 10TB table …

• With one million partitions, each partition is 10MB in size

Imagine a 1TB table …

• With one million partitions, each partition is 1MB in size

How long does it take your system to read 1MB??

• Exadata full table scan rate is tens to hundreds of GB/sec …

Data Volume and Number of Partitions

Copyright © 2023, Oracle and/or its affiliates 302

More is not always better

• Every partition represents metadata in the dictionary

• Every partition increases the metadata footprint in the SGA

• Large number of partitions can impact performance of catalog views

Find your personal balance between the number of partitions and its average size

• There is nothing wrong about single-digit GB sizes for a segment on “normal systems”

• Consider more partitions >= 5GB segment size

One millions partitions – the more the better?

Copyright © 2023, Oracle and/or its affiliates 303

Copyright © 2023, Oracle and/or its affiliates

Partition Maintenance OPerations (PMOPs) are online

• Move: change location and storage attributes

• Merge: many partitions become one

• Split: one partition becomes many

Table conversion operation is online

• Modify nonpartitioned table to become partitioned table

• Change shape of partitioned table

All online operations support index maintenance

Online (Data Movement) Operations for Tables and Partitions

304

Copyright © 2023, Oracle and/or its affiliates 305

Online operations sustain application transparency and minimize the business impact

• Not introduced to stop thinking about application workflow and design

Cost of online operations increases with concurrency

Minimize concurrent DML operations if possible

• Require additional disk space and resources for journaling

• Journal will be applied recursively after initial bulk move

• The larger the journal, the longer the runtime

Concurrent DML has impact on compression efficiency

• Best compression ratio with initial bulk move

 Plan for the best possible time window

Online (Data Movement) Operations for Tables and Partitions

Partition maintenance operations are a fast and efficient way to load or unload data

... but it has its price:

• Recursive DML to update partition metadata

- Most commonly linear to number of involved partitions (tables and indexes), with exceptions

• Cursor invalidation

- Working hard on doing more fine-grained invalidation and incremental metadata invalidation/refresh

PMOPs over DML all the time?

Copyright © 2023, Oracle and/or its affiliates 306

Partition maintenance operations are a fast and efficient way to load or unload data

... but it has its price:

• Recursive DML to update partition metadata

- Most commonly linear to number of involved partitions (tables and indexes), with exceptions

• Cursor invalidation

- Working hard on doing more fine-grained invalidation and incremental metadata invalidation/refresh

DML is a viable alternative

• Especially for smaller data volumes

PMOPs over DML all the time?

Copyright © 2023, Oracle and/or its affiliates 307

Copyright © 2023, Oracle and/or its affiliates 308

Using partitioning to eliminate hot
spots

On RAC, high DML workload causes high cache fusion traffic

• Oracle calls this block pinging

Nonpartitioned table

Using Partitioning to eliminate Hot Spots

Node 2

INSERT .. North

INSERT .. South

INSERT .. North

INSERT .. South

Node 1

INSERT .. North

INSERT .. South

INSERT .. North

INSERT .. South

Copyright © 2023, Oracle and/or its affiliates 309

On RAC, high DML workload causes high cache fusion traffic

• Oracle calls this block pinging

HASH (or LIST) partitioned table can alleviate this situation

• Caveat: Normally needs some kind of “application partitioning” or “application RAC awareness”

HASH partitioned table

Using Partitioning to eliminate Hot Spots

Node 1

INSERT .. North

INSERT .. South

INSERT .. North

INSERT .. South

Node 2

INSERT .. North

INSERT .. South

INSERT .. North

INSERT .. South

Copyright © 2023, Oracle and/or its affiliates 310

High DML workload can create hot spots (contention) on index blocks

• E.g. artificial (right hand growing) primary key index

HASH partitioned index

Using Partitioning to eliminate Hot Spots

INSERT .. 1

INSERT .. 2

INSERT .. 3

INSERT .. 4

INSERT .. 5

INSERT .. 6

Copyright © 2023, Oracle and/or its affiliates 311

High DML workload can create hot spots (contention) on index blocks

• E.g. artificial (right hand growing) primary key index

With HASH partitioned index you get warm spots

HASH partitioned index

Using Partitioning to eliminate Hot Spots

INSERT .. 1

INSERT .. 2

INSERT .. 3

INSERT .. 4

INSERT .. 5

INSERT .. 6

INSERT .. 1

INSERT .. 3

INSERT .. 5

INSERT .. 2

INSERT .. 4

INSERT .. 6

Copyright © 2023, Oracle and/or its affiliates 312

Challenge

Retail application using object-relational mapping

Only “common” database functionality is used

Every single row needs to be updated in a single transaction

No bulk imports possible at all!

Thousands of small SQL-Statements issued

Sudden heavy peaks in user access

• e.g. Cyber Monday, Christmas trade, special offers, ..

Experienced sporadic contention

Hot Spot Elimination – Use Case

Copyright © 2023, Oracle and/or its affiliates 313

Results from PoC (SKU data load)

Reference system: 120 SKU‘s per second

Exadata Machine (single node load)

• 2,500 SKU‘s per second (20x faster)

Exadata Machine X3-2 (two node load & without partitioning)

• “only“ 1,900 SKU‘s per second (slower than single node load !!!)

Exadata Machine X3-2 (two node load & with proper partitioning)

• 4,800 SKU‘s per second (40x faster)

Proper partitioning enables linear scaling

Performance without any application code change

Hot Spot Elimination – Use Case

Copyright © 2023, Oracle and/or its affiliates 314

HASH Partitioning creates <n> entry points into the table

How to (Alternative A, Hash Partitioning on store ID)

Hot Spot Elimination – Use Case

CREATE TABLE <table_name> (

 ID NUMBER(10) NOT NULL,

 Cn ...)

PARTITION BY HASH(ID) PARTITIONS <n>

TABLESPACE <tablespace_name> STORAGE (...);

CREATE UNIQUE INDEX <index_name> ON <table_name>

(ID) LOCAL TABLESPACE <tablespace_name> STORAGE (...);

INSERT INTO <table_name> (ID, ...)

SELECT SEQ_ID.nextval, ... ;

Copyright © 2023, Oracle and/or its affiliates 315

Sequence SEQ_ID forces ID to be unique in each partition!

List Partitioning completely separates the entry points per instance

How to (Alternative B, List Partitioning on instance #)

Hot Spot Elimination – Use Case

CREATE TABLE <table_name> (

 ID NUMBER(10) NOT NULL,

 Cn ,

 INSTANCE_NUMBER NUMBER(1) DEFAULT sys_context('USERENV','INSTANCE') NOT NULL)

PARTITION BY LIST (INSTANCE_NUMBER)

(PARTITION P1 VALUES(1),

 PARTITION P2 VALUES(2),

 ...

 PARTITION Pn VALUES(n))

TABLESPACE <tablespace_name> STORAGE (...);

CREATE UNIQUE INDEX <index_name> ON <table_name>

(ID, INSTANCE_NUMBER) LOCAL TABLESPACE <tablespace_name> STORAGE (...);

INSERT INTO <table_name> (ID, ...) SELECT SEQ_ID.nextval, ... ;

Copyright © 2023, Oracle and/or its affiliates 316

Sequence SEQ_ID forces ID to be unique in each partition!

How to (Enhanced alternative B, Hash Partitioning on instance #)

Hot Spot Elimination – Use Case

CREATE TABLE <table_name> (

 ID NUMBER(10) NOT NULL,

 Cn ,

 INSTANCE_NUMBER NUMBER(1) DEFAULT sys_context('USERENV','INSTANCE') NOT NULL)

PARTITION BY LIST (INSTANCE_NUMBER)
SUBPARTITION BY HASH (ID) SUBPARTITIONS <m>

(PARTITION P1 VALUES(1),

 PARTITION P2 VALUES(2),

 ...

 PARTITION Pn VALUES(n))

TABLESPACE <tablespace_name> STORAGE (...);

CREATE UNIQUE INDEX <index_name> ON <table_name>

(ID, INSTANCE_NUMBER) LOCAL TABLESPACE <tablespace_name> STORAGE (...);

INSERT INTO <table_name> (ID, ...) SELECT SEQ_ID.nextval, ... ;

Copyright © 2023, Oracle and/or its affiliates 317

Reverse Key Indexes

Range Scans no longer available

HASH Partitioned Indexes

Alleviates hot spot for right hand growing index

Still concurrency on table blocks and block pinging for index blocks

Hash Partitioned tables w/ local indexes

Much better, however still concurrency on x-instance inserts

Composite List by Instance and Hash Subpartitioning w/ local indexes

Optimal solution, “eliminates” concurrency and brings load job to scale linearly

Scaling with heavy parallel insert operations across instances

Find the Best Technique

Copyright © 2023, Oracle and/or its affiliates 318

Copyright © 2023, Oracle and/or its affiliates 319

Enhanced “filtered partition maintenance”

Smart partial partition exchange

Remove and add data as metadata only operations

• Exchange the metadata of partition and table

Data load: standalone table contains new data to being loaded while partition
for exchange is normally empty

Data purge: partition containing data is exchanged with empty table

Drop partition alternative for purge

• Data is gone forever

Partition Exchange for Loading and Purging

May 18th 2021

May 19th 2021

May 20th 2021

May 21st 2021

May 22nd 2021

May 23rd 2021

EVENTS
Table

<TABLE>

Copyright © 2023, Oracle and/or its affiliates 320

Sounds easy but …

What to do if partition boundaries are not 100% aligned?

• “Partial Purging”

Use cases

• Phone calls that spawn day’s boundary

• Old orders that are not paid

• Old orders that are not delivered

• Some other “not-being-done-with-the-record-yet” scenario

Smart Partial Partition Exchange

Copyright © 2023, Oracle and/or its affiliates 321

Set partition to being purged to read only

• Lock partition not applicable since CTAS below does implicit commit

Partial Purging

Smart Partial Partition Exchange

ALTER TABLE ... MODIFY PARTITION ...
 READ ONLY

“REST”

May 19th 2021

May 20th 2021

May 21st 2021

May 22nd 2021

May 23rd 2021

EVENTS
Table

Copyright © 2023, Oracle and/or its affiliates 322

Set partition to being purged to read only

• Lock partition not applicable since CTAS below does implicit commit

Create table containing remaining data set

• Predicate can be complex and involve multiple tables

Partial Purging

Smart Partial Partition Exchange

ALTER TABLE ... MODIFY PARTITION ...
 READ ONLY

“REST”

May 19th 2021

May 20th 2021

May 21st 2021

May 22nd 2021

May 23rd 2021

EVENTS
Table

“REST”

CREATE TABLE ... AS SELECT WHERE ...

Copyright © 2023, Oracle and/or its affiliates 323

Set partition to being purged to read only

• Lock partition not applicable since CTAS below does implicit commit

Create table containing remaining data set

• Predicate can be complex and involve multiple tables

Create necessary indexes, if any

Partial Purging

Smart Partial Partition Exchange

ALTER TABLE ... MODIFY PARTITION ...
 READ ONLY

“REST”

May 19th 2021

May 20th 2021

May 21st 2021

May 22nd 2021

May 23rd 2021

EVENTS
Table

”REST”

CREATE TABLE ... AS SELECT WHERE ...

Copyright © 2023, Oracle and/or its affiliates 324

Set partition to being purged to read only

• Lock partition not applicable since CTAS below does implicit commit

Create table containing remaining data set

• Predicate can be complex and involve multiple tables

Create necessary indexes, if any

Exchange partition

Partial Purging

Smart Partial Partition Exchange

ALTER TABLE ... MODIFY PARTITION ...
 READ ONLY

“REST”

May 19th 2021

May 20th 2021

May 21st 2021

May 22nd 2021

May 23rd 2021

EVENTS
Table

ALTER TABLE ... EXCHANGE PARTITION ...

May 18th 2021

CREATE TABLE ... AS SELECT WHERE ...

Copyright © 2023, Oracle and/or its affiliates 325

Copyright © 2023, Oracle and/or its affiliates 326

Exchange in the presence of
unique and primary key
constraints

Unique constraints are enforced with unique indexes

• Primary key constraint adds NOT NULL to column

• Table can have only one primary key (“unique identifier”)

Partitioned tables offer two types of indexes

• Local indexes

• Global index, both partitioned and non-partitioned

Unique Constraints/Primary Keys

Copyright © 2023, Oracle and/or its affiliates 327

Remove and add data as metadata-only operation

• Exchange the metadata of partitions

Same logical shape for both tables is mandatory pre-requirement
for successful exchange

• Same number and data type of columns

- Note that column name does not matter

• Same constraints

• Same number and type of indexes

A.k.a Partition Loading and Purging

Partition Exchange

Exchange Table

May 18th 2021

May 19th 2021

May 20th 2021

May 21st 2021

May 22nd 2021

May 23rd 2021

EVENTS
Table

May 24th 2021
Empty or new

data

Copyright © 2023, Oracle and/or its affiliates 328

Any index on the exchange table is equivalent to
a local partitioned index

Local Indexes

Partition Exchange

May 18th 2021

May 19th 2021

May 20th 2021

May 21st 2021

May 22nd 2021

May 23rd 2021

EVENTS
Table

<TABLE>

Copyright © 2023, Oracle and/or its affiliates 329

Any index on the exchange table is equivalent to
a local partitioned index

What do I do when the PK index on the
partitioned table needs global index enforcement?

• Remember the requirement of logical
equivalence …

Local Indexes

Partition Exchange

May 18th 2021

May 19th 2021

May 20th 2021

May 21st 2021

May 22nd 2021

May 23rd 2021

EVENTS
Table

<TABLE
>

Copyright © 2023, Oracle and/or its affiliates 330

Global indexes only exist for a partitioned table

• But I need the index for the exchange table for uniqueness …

The Dilemma

Partition Exchange and PK/Unique Constraint

Copyright © 2023, Oracle and/or its affiliates 331

Global indexes only exist for a partitioned table

• But I need the index for the exchange table for uniqueness …

Not generically true

• Unique index only needed for enabled constraints

• Enforcement for new or modified data through index probe

Not Really a Dilemma

Partition Exchange and PK/Unique Constraint

Copyright © 2023, Oracle and/or its affiliates 332

Global indexes only exist for a partitioned table

• But I need the index for the exchange table for uniqueness …

Not generically true

• Unique index only needed for enabled constraints

• Enforcement for new or modified data through index probe

• Disabled constraint
prevents data insertion

Not Really a Dilemma

Partition Exchange and PK/Unique Constraint

SQL> alter table tt add(constraint x unique (col1) disable validate);

Table altered.

SQL> insert into tt values(1,2);

insert into tt values(1,2);

*

ERROR at line 1;

ORA-25128: No insert/update/delete on table with constraint (SCOTT.X)

disabled and validated

Copyright © 2023, Oracle and/or its affiliates 333

The partitioned target table

• PK or unique constraint that is enforced by global index (partitioned or non-partitioned)

The standalone table to be exchanged (“exchange table”)

• Equivalent disabled validated constraint

• No index for enforcement, no exchange problem

The solution

Partition Exchange and PK/Unique Constraint

Copyright © 2023, Oracle and/or its affiliates 334

A simple example

Partition Exchange and PK/Unique Constraint

SQL > CREATE TABLE tx_simple

 2 (

 3 TRANSACTION KEY NUMBER,

 4 INQUIRY_TIMESTAMP TIMESTAMP(6),

 5 RUN_DATE DATE

 6)

 7 PARTITION BY RANGE (RUN_DATE)

 8 (

 9 PARTITION TRANSACTION_202105 VALUES LESS THAN (TO_DATE(‘20210601’, ‘yyyymmdd’)),

 10 PARTITION TRANSACTION_202106 VALUES LESS THAN (TO_DATE(‘20210701’, ‘yyyymmdd’)),

 11 PARTITION TRANSACTION_202107 VALUES LESS THAN (TO_DATE(‘20210801’, ‘yyyymmdd’)),

 12 PARTITION TRANSACTION_202108 VALUES LESS THAN (TO_DATE(‘20210901’, ‘yyyymmdd’)),

 13 PARTITION TRANSACTION_202109 VALUES LESS THAN (TO_DATE(‘20211001’, ‘yyyymmdd’)),

 14 PARTITION TRANSACTION_202110 VALUES LESS THAN (TO_DATE(‘20211101’, ‘yyyymmdd’)),

 15 PARTITION TRANSACTION_MAX VALUES LESS THAN (MAXVALUE)

 16)

 17 /

Table created.

Copyright © 2023, Oracle and/or its affiliates 335

A simple example

Partition Exchange and PK/Unique Constraint

SQL > CREATE TABLE tx_simple

 2 (

 3 TRANSACTION KEY NUMBER,

 4 INQUIRY_TIMESTAMP TIMESTAMP(6),

 5 RUN_DATE DATE

 6)

 7 PARTITION BY RANGE (RUN_DATE)

 8 (

 9 PARTITION TRANSACTION_202105 VALUES LESS THAN (TO_DATE(‘20210601’, ‘yyyymmdd’)),

 10 PARTITION TRANSACTION_202106 VALUES LESS THAN (TO_DATE(‘20210701’, ‘yyyymmdd’)),

 11 PARTITION TRANSACTION_202107 VALUES LESS THAN (TO_DATE(‘20210801’, ‘yyyymmdd’)),

 12 PARTITION TRANSACTION_202108 VALUES LESS THAN (TO_DATE(‘20210901’, ‘yyyymmdd’)),

 13 PARTITION TRANSACTION_202109 VALUES LESS THAN (TO_DATE(‘20211001’, ‘yyyymmdd’)),

 14 PARTITION TRANSACTION_202110 VALUES LESS THAN (TO_DATE(‘20211101’, ‘yyyymmdd’)),

 15 PARTITION TRANSACTION_MAX VALUES LESS THAN (MAXVALUE)

 16)

 17 /

Table created.

SQL > INSERT into tx_simple (

 2 select object_id, LAST_DDL_TIME,

 3 add months(TO_DATE(‘20210501’, ‘yyyymmdd’), mod(OBJECT_ID,

12))

 4 from DBA_OBJECTS

 5 where object_id is not null)

 6 /

73657 rows created.

Copyright © 2023, Oracle and/or its affiliates 336

SQL > CREATE TABLE tx_simple

 2 (

 3 TRANSACTION KEY NUMBER,

 4 INQUIRY_TIMESTAMP TIMESTAMP(6),

 5 RUN_DATE DATE

 6)

 7 PARTITION BY RANGE (RUN_DATE)

 8 (

 9 PARTITION TRANSACTION_202105 VALUES LESS THAN (TO_DATE(‘20210601’, ‘yyyymmdd’)),

 10 PARTITION TRANSACTION_202106 VALUES LESS THAN (TO_DATE(‘20210701’, ‘yyyymmdd’)),

 11 PARTITION TRANSACTION_202107 VALUES LESS THAN (TO_DATE(‘20210801’, ‘yyyymmdd’)),

 12 PARTITION TRANSACTION_202108 VALUES LESS THAN (TO_DATE(‘20210901’, ‘yyyymmdd’)),

 13 PARTITION TRANSACTION_202109 VALUES LESS THAN (TO_DATE(‘20211001’, ‘yyyymmdd’)),

 14 PARTITION TRANSACTION_202110 VALUES LESS THAN (TO_DATE(‘20211101’, ‘yyyymmdd’)),

 15 PARTITION TRANSACTION_MAX VALUES LESS THAN (MAXVALUE)

 16)

 17 /

Table created.

SQL > INSERT into tx_simple (

 2 select object_id, LAST_DDL_TIME,

 3 add months(TO_DATE(‘20210501’, ‘yyyymmdd’), mod(OBJECT_ID,

12))

 4 from DBA_OBJECTS

 5 where object_id is not null)

 6 /

73657 rows created.

SQL > CREATE UNIQUE INDEX tx_simple_PK ON tx_simple (TRANSACTION_KEY) nologging

 2 GLOBAL PARTITION BY RANGE (TRANSACTION_KEY) (

 3 PARTITION P_Max VALUES LESS THAN (MAXVALUE)

 4)

 5 /

Index created.

SQL > ALTER TABLE tx_simple ADD (CONSTRAINT tx_simple_PK PRIMARY KEY (TRANSACTION_KEY)

 2 USING INDEX nologging);

Table altered.

A simple example

Partition Exchange and PK/Unique Constraint

Copyright © 2023, Oracle and/or its affiliates 337

A simple example, cont.

Partition Exchange and PK/Unique Constraint

SQL > alter table tx_simple

 2 exchange partition TRANSACTION_202107

 3 with table daily_ETL_table

 4 including indexes

 5 --excluding indexes

 6 WITHOUT VALIDATION

 7 UPDATE GLOBAL INDEXES

 8 /

Table altered.

SQL > create table DAILY_ETL_table

 2 as

 3 select * from tx_simple partition (TRANSACTION_202107);

Table created.

SQL > alter table daily_etl_table add (constraint pk_etl primary key (transaction_key) disable validate);

Table altered.

Copyright © 2023, Oracle and/or its affiliates 338

Exadata and Cloud only

Introduced in Oracle 12c Release 1 (12.1.0.2)

Attribute Clustering and Zone
Maps

Copyright © 2023, Oracle and/or its affiliates 339

Combined Benefits

Improved query performance and concurrency

• Reduced physical data access

• Significant IO reduction for highly selective
operations

Optimized space utilization

• Less need for indexes

• Improved compression ratios through data
clustering

Full application transparency

• Any application will benefit

Zone Maps with Attribute Clustering

Attribute Clustering

Orders data so that columns
values are stored together on
disk

X

Zone maps

Stores min/max of specified
columns per zone

Used to filter un-needed data
during query execution

Copyright © 2023, Oracle and/or its affiliates 340

Benefits

Significant IO pruning when used with zone maps

Reduced block IO for table lookups in index range
scans

Queries that sort and aggregate can benefit from
pre-ordered data

Enable improved compression ratios

• Ordered data is likely to compress more than
unordered data

Concepts

Orders data so that it is in close proximity based
on selected columns values: “attributes”

Attributes can be from a single table or multiple
tables

• e.g. from fact and dimension tables

Attribute Clustering

Copyright © 2023, Oracle and/or its affiliates 341

Ordered rows containing category
values BOYS, GIRLS and MEN.

Zone maps catalogue regions of rows,
or zones, that contain particular
column value ranges.

• By default, each zone is up to 1024
blocks.

For example, we only need to scan this
zone if we are searching for category
“GIRLS”. We can skip all other zones.

Ordered rows

Attribute Clustering for Zone Maps

ALTER TABLE EVENTS
ADD CLUSTERING BY
LINER ORDER (category);

ALTER TABLE EVENTS

MOVE;

Copyright © 2023, Oracle and/or its affiliates 342

Two types of attribute clustering

• LINEAR ORDER BY

- Classical ordering

• INTERLEAVED ORDER BY

- Multi-dimensional ordering

Simple attribute clustering on a single table

Join attribute clustering

• Cluster on attributes derived through join of multiple tables

- Up to four tables

- Non-duplicating join (PK or UK on joined table is required)

Basics

Attribute Clustering

Copyright © 2023, Oracle and/or its affiliates 343

LINEAR ORDER (category, country) vs INTERLEAVED ORDER (category,
country)

Example

Attribute Clustering

Copyright © 2023, Oracle and/or its affiliates 344

Clustering directive specified at table level

• ALTER TABLE ... ADD CLUSTERING ...

Directive applies to new data and data movement

Direct path operations

• INSERT APPEND, MOVE, SPLIT, MERGE

• Does not apply to conventional DML

Can be enabled and disabled on demand

• Hints and/or specific syntax

Basics

Attribute Clustering

Copyright © 2023, Oracle and/or its affiliates 345

Stores minimum and maximum of specified columns

• Information stored per zone

• [Sub]Partition-level rollup information for partitioned tables for multi-dimensional partition pruning

Analogous to a coarse index structure

• Much more compact than an index

• Zone maps filter out what you don’t need, indexes find what you do need

Significant performance benefits with complete application transparency

• IO reduction for table scans with predicates on the table itself or even a joined table using join zone
maps (a.k.a. “hierarchical zone map”)

Benefits are most significant with ordered data

• Used in combination with attribute clustering or data that is naturally ordered

Concepts and Basics

Zone Maps

Copyright © 2023, Oracle and/or its affiliates 346

Independent access structure built for a table

• Implemented using a type of materialized view

• For partitioned and non-partitioned tables

One zone map per table

• Zone map on partitioned table includes aggregate entry per [sub]partition

Used transparently

• No need to change or hint queries

Implicit or explicit creation and column selection

• Through Attribute Clustering: CREATE TABLE … CLUSTERING

• CREATE MATERIALIZED ZONEMAP … AS SELECT …

Basics

Zone Maps

Copyright © 2023, Oracle and/or its affiliates 347

Zone map benefits are most significant with ordered data

• Pruning only when predicates are specified on ordering columns

• No pruning when ordered columns are skipped

CLUSTERING BY LINEAR ORDER (category, country)

Attribute Clustering With Zone Maps

Pruning with:

SELECT ..
FROM table
WHERE category =

‘BOYS’;

SELECT ..
FROM table
WHERE category =

‘BOYS’;
AND country = ‘US’;

Copyright © 2023, Oracle and/or its affiliates 348

Zone map benefits are most significant with ordered data

• Less efficient pruning on all ordered columns

• Pruning with trailing ordered columns

CLUSTERING BY INTERLEAVED ORDER (category, country)

Attribute Clustering With Zone Maps

Pruning with:
SELECT ..
FROM table
WHERE category =

‘BOYS’;

SELECT ..
FROM table
AND country = ‘US’;

SELECT ..
FROM table
WHERE category =

‘BOYS’
AND country = ‘US’;

Copyright © 2023, Oracle and/or its affiliates 349

DML and partition operations can cause zone maps to become fully or partially stale

• Direct path insert does not make zone maps stale

Single table ‘local’ zone maps

• Update and insert marks impacted zones as stale (and any aggregated partition entry)

• No impact on zone maps for delete

Joined zone map

• DML on fact table equivalent behavior to single table zone map

• DML on dimension table makes dependent zone maps fully stale

Staleness

Zone Maps

Copyright © 2023, Oracle and/or its affiliates 350

Incremental and full refresh, as required by DML

• Zone map refresh does require a materialized view log

- Only stale zones are scanned to refresh the MV

• For joined zone map

- DML on fact table: incremental refresh

- DML on dimension table: full refresh

Zone map maintenance through

• DBMS_MVIEW.REFRESH()

• ALTER MATERIALIZED ZONEMAP <xx> REBUILD;

Refresh

Zone Maps

Copyright © 2023, Oracle and/or its affiliates 351

Example – Dimension Hierarchies

id product_id location_id amount

1 3 23 2.00

2 88 55 43.75

3 31 99 33.55

4 33 62 23.12

5 21 11 38.00

6 33 21 5.00

7 44 71 10.99

location_id State county

23 California Inyo

102 New Mexico Union

55 California Kern

1 Ohio Lake

62 California Kings

CREATE TABLE orders (...)

CLUSTERING orders

JOIN locations ON (orders.location_id = locations.location_id)

BY INTERLEAVED ORDER (locations.state, locations.county)

WITH MATERIALIZED ZONEMAP …
Note: a zone typically contains many more rows than show here.

This is for illustrative purposes only.

ORDERS LOCATIONS

Copyright © 2023, Oracle and/or its affiliates 352

Example – Dimension Hierarchies

id product_id location_id amount

1 3 23 2.00

2 88 55 43.75

3 31 99 33.55

4 33 62 23.12

5 21 11 38.00

6 33 21 5.00

7 44 71 10.99

location_id State county

23 California Inyo

102 New Mexico Union

55 California Kern

1 Ohio Lake

62 California Kings

SELECT SUM(amount)

FROM orders

JOIN locations ON (orders.location.id = locations.location.id)

WHERE state = ‘California’;
Note: a zone typically contains many more rows than show here.

This is for illustrative purposes only.

ORDERS LOCATIONS

Scan

Zone

Copyright © 2023, Oracle and/or its affiliates 353

Example – Dimension Hierarchies

id product_id location_id amount

1 3 23 2.00

2 88 55 43.75

3 31 99 33.55

4 33 62 23.12

5 21 11 38.00

6 33 21 5.00

7 44 71 10.99

location_id State county

23 California Inyo

102 New Mexico Union

55 California Kern

1 Ohio Lake

62 California Kings

SELECT SUM(amount)

FROM orders

JOIN locations ON (orders.location.id = locations.location.id)

WHERE state = ‘California’

AND county = ‘Kern’; Note: a zone typically contains many more rows than show here.

This is for illustrative purposes only.

ORDERS LOCATIONS

Scan

Zone

Copyright © 2023, Oracle and/or its affiliates 354

Zone maps can prune partitions for columns that are not included in the partition (or subpartition) key

Zone Maps and Partitioning

JAN FEB MAR APR

Partition Key:
ORDER_DATE

Zone map:
SHIP_DATE

Zone map column
SHIP_DATE
correlates with
partition key
ORDER_DATE

JAN FEB MAR

Copyright © 2023, Oracle and/or its affiliates 355

Zone maps can prune partitions for columns that are not included in the partition (or subpartition) key

Zone Maps and Partitioning

JAN FEB MAR APR

Partition Key:
ORDER_DATE

Zone map:
SHIP_DATE JAN FEB MAR

MAR and APR partitions
are pruned

JAN FEB MAR

WHERE ship_date = TO_DATE(’10-JAN-2011’)

Copyright © 2023, Oracle and/or its affiliates 356

Attribute clustering and zone maps work transparently with Exadata storage indexes

• The benefits of Exadata storage indexes continue to be fully exploited

In addition, zone maps (when used with attribute clustering)

• Enable additional and significant IO optimization

- Provide an alternative to indexes, especially on large tables

- Join and fact-dimension queries, including dimension hierarchy searches

- Particularly relevant in star and snowflake schemas

• Are able to prune entire partitions and sub-partitions

• Are effective for both direct and conventional path reads

• Include optimizations for joins and index range scans

• Part of the physical database design: explicitly created and controlled by the DBA

Zone Maps and Storage Indexes

Copyright © 2023, Oracle and/or its affiliates 357

Our mission is to help people
see data in new ways, discover insights,
unlock endless possibilities.

Copyright © 2023, Oracle and/or its affiliates 358

