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EXECUTIVE OVERVIEW 

Master Data Management (MDM), and more specifically, (Enterprise) Master Patient or Person 

Index (MPI or EMPI) represents the technology and framework that helps resolve cross-referencing 

problems and establish single views of person IDs in healthcare or in any complex enterprise data 

that needs to be „cleansed‟ from possible duplicates of the same entities. The underlying core 

technologies that MPI relies on are highly complex mathematics and algorithms from a wide range 

of disciplines including computer sciences, statistics, operational research, and probability. 

This white paper highlights the technologies that process and resolve the inconsistencies within the 

data using data quality tools such as data profiling and cleansing, data normalization and 

standardization, phonetization, and finally data matching, also known as identity resolution. It will 

describe how these components work and how they are logically related to each other, and cover 

best practices around these processes which have been productized in the industry-leading Oracle 

Healthcare Master Person Index (OHMPI). 

DISCLAIMER  

The following is intended to outline our general product direction. It is intended for 

information purposes only and may not be incorporated into any contract. It is not a 

commitment to deliver any material, code, or functionality, and should not be relied upon in 

making purchasing decisions. The development, release, and timing of any features or 

functionality described for Oracle’s products remains at the sole discretion of Oracle. 
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INTRODUCTION 

As we head into the digital information age, more and more companies and 

institutions are required to deal with large and constantly increasing amounts 

of very heterogeneous and diverse type of „raw‟ data that needs to be 

intelligibly processed through distinct types of filters and sophisticated 

algorithms to reach a stage where the company can greatly benefit from its 

outcome as a „cleaner‟ and more meaningful data, without jeopardizing the 

integrity of original information. This is very much the case in the healthcare 

sector, where there is a genuine need for fast access to meaningful, accurate 

and structured patient data at various levels of healthcare services. 

Emergency care needs a tool that matches the patients incomplete and 

approximate information to legacy databases with the highest possible 

accuracy to avoid any possible medical error. A doctor in his office needs to 

access previous visits, medical treatments, and prescriptions, possibly in 

multiple systems or even in different hospitals and medical offices that his 

patient had visited prior to the present visit. The technology and framework 

supporting patient identity cross-referencing, sometimes also known as 

single patient view, is usually called Master Patient Index (MPI) – although 

we call it Master Person Index, since the same technologies are extended to 

the realm of Provider matching –, which is one representation of the more 

generic Master Data Management framework which involves a set of data 

quality tools, workflows and processes that maintains and presents a 

consistent and unified view of Master Data consisting originally of data 

fragments held in various applications and systemsi ii. 

In this paper, we will look at data quality tools and their related algorithms 

that form the core engines of an MPI. The term „data quality‟ is used in this 

context to include the multitude of tools and algorithmic engines used to 

clean up, resolve conflicts and correlate the different entities within the 

information sources. Such tools embrace functionality known as data profiling 

and cleansing, geocoding, data standardization, data normalization and 

phonetization, and most importantly data matching (also known as identity 

resolution), which represents the ultimate step in correlating the different 

entities and resolving possible duplication issues. 
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Data quality components, which represent the building blocks of MPI, can be 

grouped under four major categories: 

• Identification components, which analyze the data and establish its 

statistical signature (Data Profiling); 

• Cleansing components, which filter some of the obvious errors and 

abnormalities (Data Cleansing); 

• Standardization components, which inject some order, structure and 

normalization into the data; 

• And Data Matching components, which identify and resolve replication of 

unique entities. 

Some data quality specialists consider identity resolution (data matching) as 

a separate functionality from the other data quality elements mentioned 

above. However, we do not intend to discuss that or take a stance for or 

against that in this white paper. For the purposes at hand, it suffices to 

understand that there are four critical components to provide the single view 

of the master data. 

The steps for cleansing and resolving conflicting data start by analyzing the 

incoming information using statistical analysis tools, to evaluate the degree 

of cleanliness and to uncover the peculiarities of the information (this is 

called the profiling step). After this, the user needs to act on the obvious 

inconsistencies and issues by modifying the data (this is the cleansing step 

which is related to profiling). Then comes the important phase where we 

uncover underlying details of the data by identifying the types and the order 

of the different „microscopic‟ elements (this is the standardization step, which 

includes the more specific normalization process). This step performs a 

sophisticated parsing and „typing‟ to prepare the field for the matching step. 

When the data is well-defined and “typed”, corresponding fields‟ values are 

compared together to compute an overall weight that will measure the 

degree of closeness of comparable entities, which is the final matching (or 

identity resolution) step. 
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DATA LOADING, AGGREGATION AND FORMATTING 

This step is not traditionally part of the data quality procedure per se but is a very useful and necessary step when it 

comes to loading various complex data from different physical systems, and with diverse source formats and categories. 

Data Integration or so-called ETL (Extraction, Transformation, and Loading) tools can help perform these complex 

aggregations and formatting functions by hiding most of the complexity related to connectivity details to heterogeneous 

and diversified data sources. They ensure, for example, that when extracting two different source tables with different 

formats, these are merged into a target table with one unified format. Visually-rich modeling environments to perform 

required mappings and transformations between the different data makes such tools even more appealing. Care must be 

taken though, when dealing with transformation using ETL in the context of an MDM / MPI project. Users should be very 

cautious about not overlapping transformation tasks in ETL with similar ones in the cleansing step. By default, ETL does 

not change the content unless it is an obvious filtering requirement. 

DATA PROFILING / CLEANSING 

After extracting and loading data from multiple data sources to a consolidated staging tables or files, users can start 

inspecting and understanding the raw information contained in those table(s) using a data profiling engine. The incoming 

data is in batch-mode (as opposed to real-time flow) to complete the profiling process. Such components are expected to 

delineate the statistical signature of the examined data and detect various types of anomalies. Among the most key 

features a user should look for in the profiling phase are: 

• Frequency counts of the different values within each strategic field in the data. For example, in a first name field column, 

we could have five thousand “John” out of a list of a hundred thousand first name values, which represents five percent 

of the total count. Such information could be further processed to account for locally-based statistics. We might find it 

suspicious to have a relatively high frequency count for “John” in a city where the existing local statistics points to an 

average number close to 0.5 percent. 

• The frequency counts of empty values or „illegal‟ set of characters within any probed fields. 

• Formatting issues within different fields (for example, a date of birth with a wrong format or with out-of-range dates). 

• Generic values (for example, “baby of” value is very frequent for new babies' first names). 

• Degree of cleanliness of the entire record within the data (assuming we have multiple property fields). For example, a 

record of ten fields having two „empty/illegal‟ values is 'cleaner' than one with six „empty/illegal‟ values. 

The notion of a frequency count for a specific value within a field can be further extended to a more general concept of 

patterns-based frequency where instead of searching for, let say, „999999999‟ values, a user can rely on regular 

expressions like all values that start with three nines „999*‟. All the features highlighted above can be formalized by using 

some flexible rules formulated through configurable files (rule-based profiling engine). 

Finally, the profiling engine outputs detailed reports about the statistical properties, and ideally an easy-to-read 

aggregated report about the major singularities found within the data. The profiling engine defines a set of rules that help 

separate the records into two distinct groups. The „good‟ file holds the records flagged as being above a certain 

cleanliness threshold and the „bad‟ file which encompasses all the records that were rejected by the set of rules and need 

to undergo cleansing processing, which represents the second logical phase after profiling the data. 

The cleansing step, associated with enforcing the rules formulated in the first profiling phase, corrects as much 

inconsistencies as possible from the data records, before updating the „good‟ and „bad‟ files with the corrections. The aim 

here is to minimize the issues related to format, illegal characters, empty fields, etc. This two-phase process can be 

iterated as many times as needed until we reach an acceptable level of clean data where the „bad‟ file size becomes 

relatively minor compared to the „good‟ one. 
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It is noteworthy to pinpoint that the effectiveness of the profiling phase will noticeably increase in the iterative process if 

the raw data is normalized / standardized (in the cleansing phase) before going throughout the next profiling procedure. 

Here we are referring to the normalization / standardization processes that come later in the data quality sequence. This 

will correct the frequency counts of the different values. Names like “Beth”, “Bessie”, “Betsy”, “Bette” and “Bettie”, in the 

US locale for example, will normalize to “Elizabeth” increasing the frequency count. 

STANDARDIZATION 

Standardization can be defined as the process of creating structure in unstructured or semi-structured data, while 

normalization, which is a special case of the more general standardization process, is an enhancement of an already 

structured data. Both functionalities help optimize the matching results, and can be enlisted as pre-match procedures. The 

key operations here are parsing the incoming record into basic fields, identifying the types of each atomic element, 

normalizing their values and finally defining the best order in which the elements should be reorganized. This comes down 

to finding the right patterns from the locale-specific associated dictionary file for each type. 

For example, the following free-form address: “716 N RICHARD ARRINGTON JUNIOR BOULEVARD BIRMINGHAM”, 

within a „US‟ locale, can be standardized into: 

• Street number: 716 

• Directional prefix: North 

• Street name: RICHARD ARRINGTON JR 

• Street type: Blvd 

• City: BIRMINGHAM 

The names on the left represent generic and basic address types that would apply for different locales. For example, in 

the specific case of address-type standardization, the different steps consist of: 

• Parsing. Breaking down the string into different components and defining fundamental types like numeric, alpha-

numeric, special characters. 

• Identifying address-types. Looking up the different type and locale-specific data dictionaries to identify street types, 

street directions, business buildings, etc. 

• Normalizing the fields. Replacing the different fields' values with their standard forms. 

• Finding the right Pattern: In general, there is more than one pattern for the same set of inputs of data types. For 

example, in the street address example above, we have the following input-output configuration in the pattern dictionary 

table: 

– Input: NU AU AU A2 TY DR AU 

– Output: HN NA NA NA ST SD EI T* 85 

Here, the two-character tokens define diverse input and output types („NU‟ stands for numeric and „AU‟ for alpha string 

as inputs, while „HN‟ accounts for house number and „NA‟ for street name as outputs), and the ordered set of tokens 

define the input representation of the address and the possible output solution. A locale weight (in our example: 85) that 

defines the relative importance of the pattern in case it is included in a larger pattern. The higher weight will overcome the 

lower ones. This process is non-linear in nature and will select the best possible pattern for a given street address. It 

needs some expert knowledge to set the list of patterns. 
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NORMALIZATION 

Normalization is an enhancement process of an already structured and typed data object, meaning that the „structure‟ 

already exists and the fields‟ types are known parameters, but they need to be set to some pre-configured standard 

values. Let say, for example, we have a person name, in a US locale, like: (First name, Last name, Generational suffix, 

Title) = {Rick, Phinque, Junior, Pres.}, then, the normalization of this person attributes will consist of transforming the 

previous values to {RICHARD, FINK, JR, PRESIDENT}, assuming that we use configurable locale-specific dictionary files 

that classify “Richard” as the standard first name for “Rick” and “Fink” as the standard last name for “Phinque”, and so on 

and so forth. We will mention later how such functionality is at the heart of the OHMPI's framework ii iii. 

PHONETIZATION 

The technique of phonetization is meant to capture words that have different spelling but have the same pronunciation in 

a given language and assemble them together. The most important application of phonetic encoders is fuzzy data 

retrieval. It can be regarded as the first attempt to retrieve data in a way that is more flexible than traditional techniques. 

Such a technique is a good candidate for identifying blocks of relevant data as we will see later in the matching process. 

The most commonly used phonetic algorithms are Soundex and NYSIIS. 

Soundex is a simple yet efficient encoder that outputs a four-character length alphanumeric. It is composed of a short list 

of static rules that work best for English names, but there are some other language-specific equivalents to the English 

version (for example, the French Soundex in OHMPIiv). 

NYSIIS, which stands for New York State Identification and Intelligence System is a more advanced encoder composed of 

a longer list of static rules. It works best for English names. For example, names like “Martha”, “Marta”, “Mirta”, and “Mrta” 

return a „M630‟ code with Soundex and a „MRT‟ code with NYSIIS, in their original versions. Other phonetic encoders 

were developed like the RefinedSoundex, a more sophisticated version of the Soundex algorithm meant to be used as a 

spell-checking device. It has more discriminatory power than Soundex. Also, in the same group of phonetic encoders, we 

have Metaphone and DoubleMetaphone available in OHMPI too. Table 1 gives the differences between these algorithms. 

Table 1: Comparison of Phonetic Encoders 

NAME SOUNDEX SOUNDEXFR REFINEDSOUNDEX NYSIIS METAPHONE 

Martha 
Mrta 

M630 
M630 

MRT 
MRT 

M80960 
M8960 

MART 
MRT 

MRO 
MRT 

David 
Dave 

D130 
D100 

DV 
DV 

D60206 
D6020 

DAVAD 
DAV 

TFT 
TF 

Suhanto 
Santo 

S530 
S530 

SNT 
SNT 

S30860 
S30860 

SANT 
SANT 

SHNT 
SNT 

DATA-TYPE VALIDATION: THE POSTAL ADDRESS EXAMPLE 

A complementary and sometimes surrogate technique to standardization is data-type validation. We can illustrate it best 

with a postal address type, where the validation algorithm compares the incoming address with a set of accurate, and 

regularly updated, legacy addresses from a postal service like USPS (United States Postal Service). 

Such technique needs to narrow the selection by city/county to make the web-based services reasonably fast and 

functional, and to retrieve a smaller list of addresses, preferably only one. In general, the following logic is carried out to 

validate the address. 
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Check for reverse directional type (meaning from “main st n” to “n main st”), missing directional type (from “main st” to “n 

main st”), incorrect directional type (“s main st” to “main st”), incorrect street type (“main ave” to “main st”), and incorrect 

spelling (“from maine st” to “main st”). 

The advantage of standardization over validation is that the former structures the data into typed and independent atomic-

level elements that can be used independently and effortlessly in matching. On the other hand, data validation has the 

benefit of correcting the data with official, up-to-date, information. Both techniques can work in tandem, though, which 

gives the best value. 

MATCHING AND DEDUPLICATION 

Data matching, also called deduplication or record linkage, addresses the problem of identifying and resolving issues with 

those records that belong to distinct data sources, or to the same source, which are multiple representations of the same 

entity but for complex reasons, are difficult to correlate and link together. A match engine measures a degree of similarity 

between any two comparable records, and outputs a matching weight that is computed by comparing all the underlying 

characteristics of each record. In the case of a person object for example, those characteristics might be first name, last 

name, date of birth, social security number, and so on. 

One of the most important components of the matching calculation is the comparison functionsv vi vii which evaluate the 

closeness of the related elements of the records. When the compared records hold only one field, matching can look 

easy, since it comes down to comparing two field’s values without accounting for anything else. Let’s say we have first 

names: “Anderson” vs. “Andresun”. Finding the right comparison function will resolve the problem. But, in real-life things 

are more complicated, and we might have multiple fields in each record, those fields might be correlated, and we need to 

understand the statistical properties of the data. In these terms, matching is a multidisciplinary field involving computer 

science (which provides the comparison algorithms), operational research (through the optimization algorithms that help 

choose the best solutionviii ix), statistics (which analyzes the large set of data using statistical techniques) and usually 

probabilities (which are at the heart of the most recognized method). 

MATCHING METHODOLOGIES 

One of the most accepted methodology for matching was developed by Fellegi & Sunterx xi who established a formal 

mathematical framework for record matching that is known today as the standard model because of its overwhelming 

adoption. It calculates two types of conditional probabilities for each of the fields involved in matching, relying on an 

optimization approach of the different parameters, and then measuring a locale match weight as a function of the 

logarithm of the ratio of those two probabilities. 

Finally, it calculates a composite weight by summing up all the individual fields' weights, using the approximation that the 

different records' fields are mutually statistically independent. In recent times, we saw the introduction of new promising 

approaches that rely on artificial intelligence methodologies like machine learning techniques that might resolve some of 

the issues with the old methods, but the foundation of the Fellegi & Sunter methodology still holds strong ground and can 

be used with the newer methodologies. 

One important step in the matching process consists of estimating the match and potential duplicate thresholds. In simple 

terms, the distribution of weights generated by the cross-comparison of two data files can be looked at as two separate 

groups of N-dimensional weights that we can designate as the true matches and the true non-matches. But the solution is 

more complex since the lack of certainty knowledge of the true matches and non-matches generates a third group of 

hard-to-resolve weights that fit into a fuzzy area between the two groups, and that we call potential duplicates. These 

third-group weights need manual intervention to be resolved or maybe an additional re-run with different configuration 

parameters. The goal of the methodology is to minimize this fuzzy area by relying on an optimal decision rule, using 

optimization techniques, to determine the best thresholds. 
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In short, the standard model consists of cross-comparing two independent files modeled as sets of element records A(a) 

and B(b) (be aware that we assume the files to be clean. If they hold duplicates, we first need to cleanse the files, then 

start this merging procedure). Any pair of records (a, b) belong to the product space A x B of all pairs, and must be 

classified exclusively as a true match M or a true non-match U. The size of M is at most equal to N, the number of records 

per file, while U is of order N2, with: 

M = {(a, b): a=b, a є A, b є B} 

U = {(a, b): a≠b, a є A, b є B} 

We define record properties associated with elements a and b as α(a) and β(b) respectively, and we define a comparison 

vector γ = (α(a), β(b)) from the comparison space Γ. 

Each comparison vector γ (α(a), β(b)) = {γ1 (α(a), β(b)), …, γK (α(a), β(b))} is of dimension K, K being the number of 

matching fields per record. Our goal is to decide for every γ if it belongs to M (true match), to U (true non-match), or is an 

undecided case. To this purpose, we calculate, for every single field, the conditional probabilities of true matches 𝑚𝑘(𝛾
𝑘) 

and true non-matches 𝑢𝑘(𝛾
𝑘), where k is the field’s index. The composite weight is formulated as: 

𝑚(𝛾) = 𝑚1(𝛾
1).𝑚2(𝛾

2). . . 𝑚𝑘(𝛾
𝑘) 

𝑢(𝛾) = 𝑢1(𝛾
1). 𝑢2(𝛾

2). . . 𝑢𝑘(𝛾
𝑘), 

assuming that the different fields are mutually statistically independent. We can reformulate these equations by 

introducing the ratio 𝑚(𝛾) 𝑢⁄ (𝛾) and use their logarithm (order n) since it is a monotonically increasing function, which 

leads to: 

𝑤(𝛾) = 𝑤1 + 𝑤2+. . . +𝑤𝑘 where 𝑤𝑗 = log(𝑚(𝛾𝑗)) − log(𝑢(𝛾𝑗)) 

We finally obtain the composite weight 𝑊𝛾 = ∑
𝐾
𝑗−1 𝑤𝛾

𝑗
for each pair of records. To this mean, we define a random 

decision function D = {d(γ)} where: 

d(γ) = {P(A1 | γ), P(A2 | γ), P(A3 | γ)}; γ ε Γ and 

∑𝑗=3𝑗=0 𝑃(𝐴𝑖 ∣ 𝛾) = 1, 

with A1, A2 and A3 respectively the sets of true match, potential duplicates and true non-match, which will help decide for 

every given γ if it belongs to M (true match), U (true non-match) or is an undecided case. 

We define also a decision rule L: Γ(γ)  D, which is a mapping from the comparison space to the decision function, as the 

optimization parameter, along with the types of errors associated with linkage rules. The first one occurs when a true non-

match is set as a match. It has the probability: 

P (A1 | U) = ∑𝛾∈𝛤 𝑢(𝛾)𝑃(𝐴1 ∣ 𝛾) 

The second one occurs when a true match is set as a non-match. It has probability: 

P (A3 | M) =  ∑𝛾∈𝛤 𝑚(𝛾)𝑃(𝐴3 ∣ 𝛾) 

Let’s define a linkage rule as the one on the space Γ, at levels μ and λ (0< μ<1, 0< λ<1) denoted by L (μ, λ, Γ), where μ = 

P (A1 | U) and λ = P (A3 | M). Then, among all the possible linkage rule functions L’ (μ, λ, Γ), the optimal one L is defined 

by: 

P (A2 | L) ≤ P (A2 | L’) 
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That means that the optimal linkage rule is the one that maximize the probabilities of positive disposition (A1 ,A3) and 

minimize the potential duplicate region while respecting the errors constraints levels μ and λ. For a given admissible (μ, λ) 

pair of errors, we can define the integers n and n` such that: 

∑𝑛−1𝑖=1 𝑢𝑖 < 𝜇 ≤ ∑𝑛𝑖=1 𝑢𝑖   and  ∑𝑁𝛤𝑖=𝑛̃ 𝑚𝑖 < 𝜆 ≤ ∑𝑁𝛤𝑖=𝑛̃+1 𝑚𝑖 

This will lead us to the optimal solution L0 (μ, λ, Γ) represented through: 

𝑑(𝛾𝑖) =

{
 

 
(1,0,0) 𝑖 ≤ 𝑛 − 1

(𝑃𝜇 , 1 − 𝑃𝜇 , 0) 𝑖 = 𝑛

(0,1,0) 𝑛 < 𝑖 < 𝑛̃ − 1

(0,0,1) 𝑖 ≥ 𝑛̃ + 1 }
 

 
, 

where 𝑃𝜇and 𝑃𝜆are the solutions of the equations: 

𝑢𝑛. 𝑃𝜇 = 𝜇 − ∑𝑛−1𝑖=1 𝑢𝑖 and𝑚𝑛̃ . 𝑃𝜆 = 𝜆 − ∑
𝑁𝛤
𝑖=𝑛̃+1 𝑚𝑖 . 

If we define two positive numbers 𝑇𝜇 =
𝑚(𝛾𝑛)

𝑢(𝛾𝑛)
and 𝑇𝜆 =

𝑚(𝛾𝑛̃)

𝑢(𝛾𝑛̃)
, then, the optimal solution becomes: 

𝑑(𝛾𝑖) = {

(1,0,0) 𝑇𝜆 ≤ 𝑚 (𝛾) 𝑢⁄ (𝛾)

(0,1,0) 𝑇𝜆 ≤ 𝑚 (𝛾) 𝑢⁄ (𝛾) < 𝑇𝜇
(0,0,1) 𝑚 (𝛾) 𝑢⁄ (𝛾) < 𝑇𝜆

} 

𝑇𝜇 > 𝑇𝜆are respectively the assumed match threshold and the potential duplicate threshold. So, from this point we need to 

calculate the m(γ) and the u(γ) and eventually the Tλ and the Tμ to fully resolve the matching problem. 

Once we collect all the weights associated with the matching process, we need to make a decision on the associated pair 

of records. To this end, we need to estimate the thresholds previously defined, as shown in figure 1. 

 

Figure 1 
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COMPARISON FUNCTIONS 

One of the most critical step in the matching process is to choose the right comparison function to associate with a given 

match field. For example, if the field is a numeric, then the comparator should handle all the peculiarities of numbers. 

Approximate String Comparators 

There exists a large library of string comparators in computer science with algorithms ranging from simple to very 

complex. The algorithms strive to account for the many human-related possible errors when typing, writing or exchanging 

the information. It ranges from accounting for different levels of transpositions between characters or set of charactersv vi vii 
xii xiii, to insertions and deletions, etc. For example, the Bigram algorithm accounts for two-character length transpositionsv. 

They are widely used in information retrieval, the Jaro algorithm accounts for more sophisticated transpositions within a 

specified length and it also includes insertions and deletions, while the Winkler-Jaro algorithm takes it a step higher and 

improves the Jaro algorithm by adding three additional enhancements (scanning/keypunch errorsv; non-linear weighting of 

the first characters relative to the last onesv; special handling of strings longer than six-characters justified by statistical 

data findingsvi). 

An extensive study of approximate string comparators in computer science found that the Jaro and Winkler-Jaro 

algorithms are the most powerful and efficient among twenty comparatorsv. In a large study, Budzinskyxiii concluded that 

the comparators due to Jaro and Winkler were the best among twenty comparators in the computer science literature. The 

basic Jaro algorithm does: 

• Compute the string lengths. 

• Find the number of common characters in the two strings. 

• Find the number of transpositions. 

The definition of common is that the agreeing character must be within half the length of the shorter string. The definition 

of transposition is that the character from one string is out of order with the corresponding common character from the 

other string. The string comparator value (rescaled for consistency with the practice in computer science) is: 

𝐽𝑎𝑟𝑜(𝑆1,𝑆2) = 1 3⁄ {
𝑁𝑐𝑜𝑚𝑚𝑜𝑛
𝐿(𝑆1)

+
𝑁𝑐𝑜𝑚𝑚𝑜𝑛
𝐿(𝑆2)

+ 1 2⁄
𝑁𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑡𝑖𝑡𝑖𝑜𝑛

𝑁𝑐𝑜𝑚𝑚𝑜𝑛
} 

Approximate Data-Type Comparators 

We can extend the concept of approximate string comparison to embrace larger sets of data type comparators. It could be 

a date comparator that handles different type of date format and calendars, including handling dates by their distances in 

time or it could be some airplane-specific parts comparator that contains the needed algorithm for that specific 

functionality. Following this concept, we can build large sets of business-specific and vertical-specific comparators that will 

be used as needed. 

The comparators presented above represent the most important components of the match engine algorithm since they 

control the outcome weight to a very high degreeiii. 

ORACLE HEALTHCARE MASTER PERSON INDEX 

Implementing MPI (and in general MDM) solutions begins with defining an appropriate object model that fits the data-set 

at hand and illustrates the intended solutions. It proceeds with extracting the relevant data from one or multiple source 

applications, possibly on a distributed environment, and mapping them into the master data repository. Such extraction 

can be performed through a web-based interface or using an ETL-type extractor, when dealing with large data-sets. 

During the loading process into the MPI repository, some or all the functionality introduced in this article (profiling, 

cleansing, standardization, normalization, phonetization and matching) are executed in the appropriate order. 
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After the incoming records are classified as new records (i.e. there are no matches) or as already present in the repository 

(i.e. true matches, assuming that we have already resolved all possible potential duplicate conflicts), we can offer data 

consumers and the data sources, with a single view of patient data. Consumers, which may represent a network of 

doctors, can access a single patient’s view through customized interfaces, while the data source can use and manage the 

deduplicated information for being synchronous with the master data repository. 

Oracle Healthcare Master Person Index (figure 2) relies on the data quality and identity resolution capabilities described 

above, including a very flexible data object model that lets the users define and fit it to their needs. It leverages NetBeans 

platform to design master person indexes. OHMPI exposes many of the MPI operations as APIs and Web Services to 

provide data services for multiple healthcare consumer applications including SOA based applications. Thus, OHMPI 

offers a standards-based, services-enabled infrastructure to create and publish single person views. 

The match engine (identity resolution component) and the standardization engine, described in this paper, are seamlessly 

integrated within the product. Master index Configuration Editor (figure 2 – design time) offers all the flexibility to visualize, 

choose and configure the different parameters from each of the engines. Figure 2, run-time section, shows an integrated 

set of components that work in harmony to ensure availability of unified, trusted single-view to all systems in the 

enterprise. A visually rich, browser-based application (Master Index Data Manager) is also available for data stewardship 

activities such as reviewing automatic merges, view of potential duplicates and executing manual merges, running activity 

reports, and conducting audit based on extensive transaction logs. 

 

Figure 2 - OHMPI Design and Run-Time Architectures 
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Thanks to these abilities, OHMPI in its current or earlier releases has been adopted by many healthcare customers from 

multiple segments ranging from providers and payers to regional and national health exchanges. 

• A very large national health system (200+ million patients) adopted OHMPI as the core engine for its Patient Cadaster 

to record, cross-index, and deduplicate patient information electronically. The resulting project and interaction with the 

implementation team, on a daily basis, helped improve and test to the extreme limit all of the product’s engines, and 

demonstrated the robustness, reliability, and scalability of the solution. 

• OHMPI was implemented by a statewide public/private collaborative of universities and health systems who shared the 

vision of using health sciences research to improve the health and economic well-being of the members in their 

systems. They established a data framework to support interoperability and research that was based on Enterprise 

Master Patient Index (EMPI), an implementation of OHMPI. The solution helped providers collaborate on care and 

quality improvement initiatives through Health Information Exchange (HIE) and attract new bio-pharmaceutical 

investments focused on improving patient care. Benefits included increased patient and employee satisfaction, ability to 

link patient records across systems into a single record and establishing integrated projects for translational research. 
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