

Oracle Advanced

Compression Proof-of-

Concept Guidelines, Insights

and Best Practices

July, 2024, Version 23ai

Copyright ©2024, Oracle and/or its affiliates

Public

2 Oracle Advanced Compression POC Guidelines Tech Brief/ Version 23ai

 Copyright ©2024, Oracle and/or its affiliates / Public

Purpose statement

This document provides an overview of features and enhancements included in release 23ai. It is intended solely to

help you assess the business benefits of upgrading to 23ai and planning for the implementation and upgrade of the

product features described.

Disclaimer

This document in any form, software, or printed matter, contains proprietary information that is the exclusive

property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your

Oracle software license and service agreement, which has been executed and with which you agree to comply. This

document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone

outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it

be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the

implementation and upgrade of the product features described. It is not a commitment to deliver any material, code,

or functionality, and should not be relied upon in making purchasing decisions. The development, release, timing,

and pricing of any features or functionality described in this document remains at the sole discretion of Oracle. Due to

the nature of the product architecture, it may not be possible to safely include all features described in this document

without risking significant destabilization of the code.

3 Oracle Advanced Compression POC Guidelines Tech Brief/ Version 23ai

 Copyright ©2024, Oracle and/or its affiliates / Public

Table of contents

Introduction 4

Advanced Row Compression 4

Enabling Advanced Row Compression 5

When Advanced Row Compression Occurs 6

Direct-Path Versus Conventional-Path Bulk Loads 7

Advanced Index Compression 8

RMAN Backup Compression 9

Advanced LOB Compression (for SecureFiles LOB segments) 9

Considerations Before Testing Starts 10

About Compression Overhead 11

Improving Compression Ratios 11

What Does a Typical Proof-of-Concept Look Like? 12

Free Compression Advisor 13

Appendix A 13

4 Oracle Advanced Compression POC Guidelines Tech Brief/ Version 23ai

 Copyright ©2024, Oracle and/or its affiliates / Public

About This Document

This document is not a step-by-step guide to performing a compression proof-of-concept. Instead, this

document provides compression guidelines/best practices learned from users testing, as well as other

insights to you help plan your compression proof-of-concept, as well as help you understand the results of

your proof-of-concept.

Introduction

The massive growth in data volumes experienced by enterprises introduces significant challenges.

Companies must quickly adapt to the changing business landscape without influencing the bottom

line. IT managers need to efficiently manage their existing infrastructure to control costs yet

continue to deliver application query performance.

Oracle Advanced Compression, and Oracle Database, together provide a robust set of

compression, performance and data storage optimization capabilities that enable IT managers to

succeed in this complex environment.

Whether it is a cloud or on-premise Oracle database deployment, Oracle Advanced Compression

can deliver robust compression across different environments with no changes in applications.

Benefits from Oracle Advanced Compression include smaller database storage footprint, time and

storage savings in backups and improved query performance.

FEATURES TYPICALLY EVALUATED

• Advanced Row Compression

Enables table data to be compressed during all types of data manipulation operations

• Advanced Index Compression

Reduces the size of all supported unique and non-unique indexes

• RMAN Backup Compression

Compresses backup data when using Oracle Recovery Manager (RMAN)

• Advanced LOB Compression

Compresses SecureFiles LOBs

Advanced Row Compression

Advanced Row Compression maintains compression during all types of data manipulation

operations, including conventional DML such as INSERT and UPDATE. In addition, Advanced Row

Compression minimizes the overhead of write operations on compressed data, making it suitable

for transactional / OLTP environments as well as data warehouses, extending the benefits of

compression to all application workloads.

Advanced Row Compression uses a unique compression algorithm specifically designed to work

with OLTP/DW applications. The algorithm works by eliminating duplicate values within a

database block, even across multiple columns. Compressed blocks contain a structure called a

symbol table that maintains compression metadata. When a block is compressed, duplicate values

are eliminated by first adding a single copy of the duplicate value to the symbol table. Each

duplicate value is then replaced by a short reference to the appropriate entry in the symbol table.

Through this innovative design, compressed data is self-contained within the database block, as

the metadata used to translate compressed data into its original state is stored in the block header.

When compared with competing compression algorithms that maintain a global database symbol

5 Oracle Advanced Compression POC Guidelines Tech Brief/ Version 23ai

 Copyright ©2024, Oracle and/or its affiliates / Public

table, Oracle’s approach offers significant benefits by not introducing additional I/O (needed with a

global symbol table) when accessing compressed data.

The compression ratio achieved in each environment depends on the data being compressed,

specifically the cardinality of the data. In general, organizations can expect to reduce their storage

space consumption by a factor of 2x to 4x by using Advanced Row Compression and/or Advanced

Index Compression. That is, the amount of space consumed by uncompressed data/indexes will be

two to four times larger than that of the compressed data.

But the benefits of Advanced Row Compression go beyond just on-disk storage savings. A key

query performance advantage is Oracle’s ability to read compressed blocks (data and indexes)

directly, in memory, without uncompressing the blocks. This can help improve query performance

due to the reduction in I/O, and the reduction in system calls related to the I/O operations. Further,

the buffer cache becomes more efficient by storing more data without having to add memory.

Enabling Advanced Row Compression

For new tables and partitions, enabling Advanced Row Compression is easy: simply CREATE the

table or partition and specify “ROW STORE COMPRESS ADVANCED”. See the example below:

CREATE TABLE emp (emp_id NUMBER, first_name VARCHAR2(128), last_name

VARCHAR2(128)) ROW STORE COMPRESS ADVANCED;

There are numerous ways to enable Advanced Row Compression for existing tables. While a

complete discussion of each method is beyond the scope of this document, this document does

provide an overview of the methods typically used.

ALTER TABLE … ROW STORE COMPRESS ADVANCED

This approach will enable Advanced Row Compression for all future DML -- however, the existing

data in the table will remain uncompressed.

Online Redefinition (DBMS_REDEFINITION)

This approach will enable Advanced Row Compression for future DML and will compress existing

data. Using DBMS_REDEFINITION keeps the table online for both read/write activity during the

migration. Run DBMS_REDEFINITION in parallel for best performance.

Online redefinition will clone the indexes to the interim table during the operation. All the cloned

indexes are incrementally maintained during the sync (refresh) operation so there is no

interruption in the use of the indexes during, or after, the online redefinition.

The only exception is when online redefinition is used for redefining a partition -- any global

indexes are invalidated, and need rebuilt after the online redefinition.

ALTER TABLE … MOVE ROW STORE COMPRESS ADVANCED

This approach will enable Advanced Row Compression for future DML and will compress existing

data. While the table is being moved, it is online for read activity but has an exclusive (X) lock – so

all DML will be blocked until the move command completes. Run ALTER TABLE…MOVE in parallel

for best performance.

ALTER TABLE… MOVE will invalidate any indexes on the partition or table; those indexes will need

rebuilt after the ALTER TABLE… MOVE. For partition moves, the use of ALTER TABLE… MOVE

PARTITION with the UPDATE INDEXES clause will maintain indexes (it places an exclusive (X) lock

6 Oracle Advanced Compression POC Guidelines Tech Brief/ Version 23ai

 Copyright ©2024, Oracle and/or its affiliates / Public

so all DML will be blocked until the move command completes) – not available for non-partitioned

tables.

The ALTER TABLE... MOVE statement allows you to relocate data of a non-partitioned table, or of a

partition of a partitioned table, into a new segment, and optionally into a different tablespace.

ALTER TABLE…MOVE ROW STORE COMPRESS ADVANCED compresses the data by creating new

extents for the compressed data in the tablespace being moved to -- it is important to note that

the positioning of the new segment can be anywhere within the data file, not necessarily at the tail

of the file or head of the file. When the original segment is released, depending on the location of

the extents, it may or may not be possible to shrink the data file.

ALTER TABLE … MOVE TABLE/PARTITION/SUBPARTITION … ONLINE

This approach will enable Advanced Row Compression for future DML and will compress existing

data. ALTER TABLE ... MOVE TABLE, PARTITION or SUBPARTITION … ONLINE allows DML

operations to continue to run uninterrupted on the table, partition or subpartition being moved.

Indexes are maintained during the move operation, so a manual index rebuild is not required.

Important Documentation Note

Please see the current Oracle Database documentation for additional details, usage examples and

restrictions regarding the operations discussed above.

When Advanced Row Compression Occurs

Advanced Row Compression uses a unique compression algorithm specifically designed to work

with OLTP and Data Warehouse applications. The algorithm works by eliminating duplicate values

within a database block, even across multiple columns. Compressed blocks contain a structure

called a symbol table that maintains compression metadata.

When a block is compressed, duplicate values are eliminated by first adding a single copy of the

duplicate value to the symbol table. Each duplicate value is then replaced by a short reference to

the appropriate entry in the symbol table.

While the compression benefits and compression techniques used are similar, within the database

different compression types can be invoked when using Advanced Row Compression. Below are

some examples of the different compression types, understanding when these different

compression types are used will help when analyzing proof-of-concept results.

Insert Direct Load Compression

Performed when data is inserted using the direct-path load mechanisms, such as insert with an

append hint or using SQL*Loader. In this case, the data is inserted above the segment high water

mark (a virtual last used block marker for a segment) and can be written out to data blocks very

efficiently. The compression engine has a large volume of rows to work with and can buffer,

compress, and write out compressed rows to the data block(s). As a result, the space savings are

immediate.

Rows are never written in an uncompressed format for Insert Direct Load compression.

Recursive Compression

Invoked on conventional DML operations such as single row or array inserts and updates. This

compression type writes out the rows in uncompressed format, and when the data block reaches

an internal block fullness threshold compression is invoked. Under such a scenario, Oracle can

7 Oracle Advanced Compression POC Guidelines Tech Brief/ Version 23ai

 Copyright ©2024, Oracle and/or its affiliates / Public

compress the data block in a recursive transaction, which is committed immediately after

compression.

The space saved due to compression is immediately released and can be used by any additional

transactions. Compression is triggered by the user DML operation (user transaction), but actual

compression of data happens in a recursive transaction, the fate of compression is therefore not

tied to the fate of the user’s transaction.

Direct-Path Versus Conventional-Path Bulk Loads

Performing bulk-load operations and choosing either direct-path or conventional-path methods

can have a significant influence regarding load performance.

Users performing bulk-load insert operations may see slower insert performance, particularly if

they are inserting many rows using a conventional-path load.

The reason why conventional-path loads may be slower, for many rows, is that as the new rows are

inserted into existing compressed blocks the inserts are performed uncompressed, then as

additional inserts are performed on the same block, and the block begins to fill up, the internal

threshold will be met, and the block will be compressed (see the recursive compression discussion

above for more details).

If additional space is freed up after the compression then inserts will again be performed on the

block, thus leading to compression again, possibly multiple more times for the same block, during

the same conventional-path load operation.

This means that when using conventional-path inserts it is possible that the same block will be

compressed multiple times during the same operation – consuming CPU resources and time. If the

workload is dominated by conventional-path inserts, then it is likely there will be more I/O: when a

block is recompressed repeatedly as part of the Advanced Row Compression algorithm (compared

to direct-path loads).

Direct-path load operations are preferred when operating on larger numbers of rows since, unlike

conventional-path loads, direct-path loads are done above the high-water mark, so blocks are

filled and compressed only once, and then written to disk. This streamlines the bulk inserts and

avoids the multiple compressions of the same block, which is possible when performing bulk

inserts using conventional path loads.

AWR and Direct-Path/Conventional-Path Bulk Loads

If during proof-of-concept testing, you are unsure if bulk loads are using direct-path or

conventional-path load methods you can utilize these suggested steps (with AWR) to determine

the amount of compression occurring during the SQL operation.

Determining Conventional-Path Load Compressions

AWR has an “Instance Activity Stats” section that will list the statistics associated with the total

number of positive compressions (HSC OLTP positive compression) and the total number of

negative compressions (HSC OLTP negative compression). Adding these two statistics will give you

the total number of attempted compressions (re-compressions or otherwise).

• HSC OLTP positive compression + HSC OLTP negative compression = Total number of

attempted compressions and re-compressions (conventional-path load)

8 Oracle Advanced Compression POC Guidelines Tech Brief/ Version 23ai

 Copyright ©2024, Oracle and/or its affiliates / Public

Determining Direct-Path Load Compressions

When performing bulk loads using direct-path methods such as “insert append” the data is

organized into data blocks and compressed in memory, this means that the bulk load data is

compressed only once.

The data blocks are filled to the point specified by the tables PCTFREE setting -- the default setting

for PCTFREE in Oracle Database is 10% (PCTFREE allows space to be reserved on the data blocks

for possible growth during SQL UPDATE operations).

For block compressions above the High-Water Mark (HWM), such as in Create Table as Select

(CTAS) or insert append cases, there is a statistic called HSC IDL Compressed Blocks.

• HSC IDL Compressed Blocks = Block compressions above the HWM (direct-path load

such as in CTAS or insert append)

If you only see values for HSC OLTP positive Compression and HSC OLTP negative compression

statistics and no/few values for the HSC IDL Compressed Blocks statistic, then all the compression

occurring is from conventional path operations (in particular, see how many compressions are

occurring per second).

If possible and feasible, you should consider modifying bulk inserts so that direct-path loading is

performed instead of conventional-path loads for the same operation(s). In doing so, you should

see a larger value for the HSC IDL Compressed Blocks statistic. If there is no statistic labeled HSC

IDL Compressed Blocks this means that there was no block compression above the HWM.

Advanced Index Compression

Advanced Index Compression, a feature of Advanced Compression, helps automate index

compression so that a DBA is no longer required to specify the number of prefix columns to

consider for compression (as is required with Index Key Compression).

Advanced Index Compression is an enabling technology for multiple compression levels – LOW

and HIGH. Average compression ratios can range from 2x to 5x depending on which compression

level is implemented. With substantial storage savings from Advanced Index Compression, IT

managers can often reduce the need to purchase new storage.

Enabling Advanced Index Compression:

Advanced Index Compression can be enabled by specifying the COMPRESS ADVANCED sub-

clause of the CREATE/ALTER INDEX clause. New indexes can be automatically created as

compressed, or existing indexes can be rebuilt compressed.

CREATE INDEX idxname ON tabname(col1, col2, col3) COMPRESS ADVANCED

LOW/HIGH;

Note that there is no need to provide the number of columns in the prefix entries with Advanced

Index Compression as this will be computed automatically for every leaf block.

Advanced Index Compression works well on all supported indexes, including the ones that were

not good candidates for prefix key compression. Creating an index using Advanced Index

Compression reduces the size of all unique and non-unique indexes (or at least does not increase

the size due to negative compression) and at the same time improves the compression ratio

significantly while still providing efficient access to the indexes.

9 Oracle Advanced Compression POC Guidelines Tech Brief/ Version 23ai

 Copyright ©2024, Oracle and/or its affiliates / Public

Advanced Index Compression has following limitations:

• Advanced Index Compression is not supported on Bitmap Indexes

• Functional Indexes are not supported with Advanced Index

Compression

With Advanced Index Compression you can simply enable compression for your B-Tree indexes

and Oracle will automatically compress every index leaf block when beneficial, automatically taking

care of computing the optimal prefix column length for every block. This makes index compression

truly local at a block level, where both the compression prefix table, as well as the decision on how

to compress the leaf block, is made locally for every block with the aim to achieve the most optimal

compression ratio for the entire index segment.

Note that Index-Organized Tables (IOT's) are essentially indexes, so they cannot be compressed

with Advanced Row Compression or Basic Compression. However, IOT’s can be compressed with

Advanced Index Compression LOW.

RMAN Backup Compression

Due to RMAN’s tight integration with Oracle Database, already compressed data/index blocks

remain compressed during RMAN backups and do not need to be uncompressed before recovery –

providing a reduction in storage costs and a potentially large reduction in backup and restore

times.

Regarding compressing the backup, itself, RMAN Basic compression delivers a very good

compression ratio, but can sometimes be CPU intensive and CPU availability can be a limiting

factor in the performance of backups and restores.

There are three levels of RMAN backup compression with Advanced Compression: LOW, MEDIUM,

and HIGH. The amount of storage savings increases from LOW to HIGH, while potentially

consuming more CPU resources. LOW / MEDIUM / HIGH compression is designed to deliver

varying levels of compression while typically using less CPU than RMAN Basic Compression.

The three levels can be categorized as such:

• HIGH - Best suited for backups over slower networks where the limiting factor is network

speed

• MEDIUM - Recommended for most environments. Good combination of compression

ratios and speed

• LOW -Least impact on backup throughput and suited for environments where CPU

resources are the limiting factor

If you are I/O-limited but have idle CPU, then HIGH could work best, as it uses more CPU, but saves

the most space and thus gives the biggest decrease in the number of I/Os required to write the

backup files. On the other hand, if you are CPU-limited, then LOW or MEDIUM probably makes

more sense - less CPU is used, and about 80% of the space savings will typically be realized

(compared to the Basic compression included with RMAN).

Advanced LOB Compression (for SecureFiles LOB segments)

It is usually possible to improve a table’s compression ratio by moving unstructured data to

SecureFiles (and using Advanced LOB Compression) instead of storing unstructured data in-line.

10 Oracle Advanced Compression POC Guidelines Tech Brief/ Version 23ai

 Copyright ©2024, Oracle and/or its affiliates / Public

Advanced Row Compression depends upon deduplication to reduce the size of a block. With

unstructured data stored in-line, it is unlikely that a duplicate of that unstructured data will be in

the same block, and this means that the unstructured data in the block, which can often be quite

large, will not be compressed. This can lead to lower-than-expected overall compression ratios for

the table.

Advanced LOB Compression, however, uses a different compression algorithm and can often

compress unstructured data stored in SecureFiles LOB segments that cannot be compressed when

stored in-line.

There are three levels of Advanced LOB Compression: LOW, MEDIUM, and HIGH. By default,

Advanced LOB Compression uses the MEDIUM level, which typically provides good compression

with a modest CPU overhead. Advanced LOB Compression LOW is optimized for high

performance. Advanced LOB Compression LOW maintains about 80% of the compression

achieved through MEDIUM, while utilizing less CPU. Finally, Advanced LOB Compression HIGH

achieves the highest storage savings but incurs the most CPU overhead.

Oracle Database detects if SecureFiles data is compressible and will compress using industry standard

compression algorithms. If the compression does not yield any savings or if the data is already

compressed, SecureFiles will turn off compression for such LOBs.

Considerations Before Testing Starts

As part of the proof-of-concept pre-test planning, make note and act (as needed) on the following

Oracle compression suggested best practices:

▪ Upgrade to the latest release (or apply any critical patches to the current release). See MOS

note: List of Critical Patches Required for Oracle 11g Table Compression (Doc ID

1061366.1

▪ Define Success Criteria for the proof-of-concept (data, index and backup storage reduction,

query/insert/update performance, bulk load operations performance, application

performance etc.….).

▪ If the proof-of-concept is being performed using Oracle E-Business Suite, see Oracle MOS

Note 2458161.1 for additional information.

▪ Ensure compressed columns have no “long” data types – this data type isn’t supported by

Advanced Row compression

▪ Ensure compressed tables/partitions have less than 255 columns (this limit was removed

in Oracle Database 12c and above). See Oracle MOS Note 1612095.1 for additional

information.

▪ Although CPU overhead is typically minimal, implementing Advanced Row Compression

and Index Compression is ideal on systems with available CPU cycles, as compression will

have additional, although minor, overhead for some DML operations

▪ The best test environment for each compression capability is where you can most closely

duplicate the production environment– this will provide the most realistic (pre- and post-

compression) performance and functionality comparisons

11 Oracle Advanced Compression POC Guidelines Tech Brief/ Version 23ai

 Copyright ©2024, Oracle and/or its affiliates / Public

▪ The general recommendation is to compress all the application related tables in the

database with one exception: if the table is used as a queue. That is, if the rows are inserted

into the table, then later most or all the rows are deleted, then more rows are inserted and

then again deleted. This type of activity is not a good use case for compression due to the

overhead to constantly compress rows that are transient in nature

▪ Advanced Row Compression works well with TDE tablespace-level encryption. With

tablespace-level encryption, compression is done before encryption, so the compression

ratio is not affected by the encryption. With TDE column-level encryption, the encryption is

done before compression, which will negatively impact the compression ratio

About Compression Overhead

Before performing a proof-of-concept users sometime speculate that the overhead of

decompression could influence query performance. However, in practice, this is typically unlikely.

Advanced Row and Index Key/Advanced Index compressed blocks are never "decompressed" at

the block level, and for most queries, individual rows are not decompressed either. Most queries

can operate directly on the compressed format in the database blocks in memory and most query

predicates operate directly on compressed data formats, and only values required for the later

stages of the query are decompressed.

There is typically not an increase in overhead for queries on compressed data/indexes, and there

is usually a decrease because of the reduction in I/O to query a given amount of user data. If the

data is compressed at a 3x ratio, for example, then it takes only 1/3 the amount of I/O to read that

data from disk and into the buffer cache when using compression. While it is true that there can be

a few "extra" instruction cycles to dereference pointers inside compressed data blocks to extract

column values, this is usually more than offset by the reduction in I/O.

But to be truly sure of any potential overhead associated with compression, it is recommended to

test using your organizations data, applications and test environment that simulates how

compression will be used in production.

Improving Compression Ratios

The compression ratio of a particular table/partition is primarily related to the amount of

duplication that exists, at the block level, for that table or partition. The higher the amount of

duplication then the higher the compression ratio, and the more unique the data, then the lower

the compression ratio. If the data is unique, then it is very possible that the table/partition will not

compress well or at all.

There are some things you can try to possibly increase the compression ratio for a particular table.

As usual, you should test any changes, using your data, applications, and systems, to determine

the impact any such changes will have in your environment.

Sorting Data

It may be possible to improve a table’s compression ratio by presorting the data

when it is loaded. You will have to decide which column(s) to sort on based on

the cardinality of the data in each column: if you can sort on a column that has

a small number of distinct values, which could produce better compression

ratios.

12 Oracle Advanced Compression POC Guidelines Tech Brief/ Version 23ai

 Copyright ©2024, Oracle and/or its affiliates / Public

However, presorting will require additional preparation of the data before

loading - you will need to weigh that additional time versus any compression

ratio gain . Test with your own data to determine if data sorting will have an

impact on your compression ratio.

Larger Block Size

It is possible a larger block size will have a better compression ratio if the larger

block has more duplicate data on the block.

However, larger blocks do not always ensure higher Advanced Row

Compression ratios. Test with your own data to determine if larger block sizes

will have an impact on your compression ratio.

What Does a Typical Proof-of-Concept Look Like?

As indicated earlier, it is important to note that the best test environment for each compression

feature is where you can most closely duplicate the production environment– this will provide the

most realistic (pre- and post- compression) performance and functionality comparisons.

Generally, the Advanced Compression features that are tested during a compression proof-of-

concept includes:

• Advanced Row Compression

• Advanced Index Compression

• RMAN Backup Compression

• Advanced LOB Compression

• Data Guard Redo Transport Compression

While Advanced Compression does include numerous other features, the above are the features

most typically included in a proof-of-concept. You may choose to include other Advanced

Compression features, or not include some of these features.

In terms of the actual proof-of-concept, customers often indicate the following:

• Before proof-of-concept testing, estimate compression ratios (storage reduction) for

structured data, indexes, and unstructured data. Compression Advisor (see below) can be

used to estimate Advanced Row Compression, Advanced Index Compression and

Advanced LOB Compression ratios.

• Use testing to identify performance improvements and any possible performance impact

from compression. Determine this by running your applications, using your data on test

platforms (similar to your production hardware), and profiling the performance before and

after compression. Ideally, the application testing includes application queries, bulk load

operations using both conventional-path and direct-path loads, single row DML (i.e.,

conventional insert, update and delete operations) and RMAN backups.

• While the general suggestion is to compress all tables, some organizations instead choose

only to compress the largest tables that account for approximately 80%+ of their data

storage requirements

• MOS note Doc ID 729551.1 is useful for information about estimating compression savings

when using Data Guard Redo Transport Compression.

13 Oracle Advanced Compression POC Guidelines Tech Brief/ Version 23ai

 Copyright ©2024, Oracle and/or its affiliates / Public

• If available, Oracle’s Real Application Testing (RAT) product can be a useful tool for a

compression Proof-of-concept

Free Compression Advisor

An easy way to get started, with Advanced Compression, is by using compression advisor. The

“DBMS_COMPRESSION” PL/SQL package (commonly called compression advisor) gathers

compression-related information within a database environment.

This includes estimating the compressibility of both uncompressed partitioned, and non-

partitioned tables, and gathering row-level compression information on previously compressed

tables/partitions. Compression advisor provides organizations with the storage reduction

information needed to make compression-related usage decisions.

The output of running compression advisor is an estimation of the compression ratio for the

specific table or partition that was the target of compression advisor. The output indicates the

“COMPRESSION RATIO” presented as a number such as 2.1. This number indicates that, for this

specific table or partition, the estimated compression ratio is 2.1x, which represents about a 50%

reduction in the footprint of the table or partition should compression be enabled.

DBMS_COMPRESSION is included with Oracle Database Enterprise Edition.

See Appendix A below, for a simple example of what a compression proof-of-concept may look like as

illustrated in a multi-step process.

Appendix A

Example of Compression proof-of-concept as a Multi-Step Process

Apply all Relevant Patches (optionally upgrade to latest release)

– Upgrade to latest release if applicable

– Apply patches

Define Success Criteria

– Database performance

– Database size

– Backup space reduction

– Backup time/restore time

– Application performance

– Data Guard (if applicable)

– Data Pump Compression (if applicable)

Compression Advisor -- DBMS_COMPRESSION

– Obtain compression ratio estimates for Data/Indexes

– Determine the overall list of tables/indexes to be compressed

Baseline Before Compression in Test Environment: Production Workload/Data

– Gather database performance data (including bulk load operations, queries, inserts/updates etc.…)

– Gather backup/restore times

14 Oracle Advanced Compression POC Guidelines Tech Brief/ Version 23ai

 Copyright ©2024, Oracle and/or its affiliates / Public

– Gather Data Guard performance data (if applicable)

– Gather database size for tables/indexes

– Gather backup size

– Gather Data Pump file size

– Gather AWR reports

Implement Compression in Test Environment

– Compress all candidate tables/indexes identified using preferred method (online/offline)

– Perform bulk load operations and compare against baseline

– Run SQL statements (query/insert/update) and compare against baseline

– Perform SQL tuning adjustments for non-performing queries (if any)

– Run production workload and verify performance

– Gather AWR Reports and compare to baseline

Prepare for Production Cutover

– Lessons Learned

– Document all the benefits and issues/resolutions encountered during Proof-of-concept

– Define cutover plan

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2024, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is

not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document.

This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

