

Cloud Native
for the
Enterprise
Claudio Caldato

Compliments of

REPORT

Build, test,
and deploy
applications on
Oracle Cloud—
for free.
Get access to two free offers:
Always Free Services + 30-day Free Trial

Get started now at www.oracle.com/cloud/free

http://oracle.com/cloud/free/?source=:ad:ba:::RC_WWMK190204P00084:CloudNativeEBook&pcode=WWMK190204P00084&SC=ADV

Boston Farnham Sebastopol TokyoBeijing

Cloud Native for the
Enterprise

Claudio Caldato

Beijing Boston Farnham Sebastopol Tokyo

Cloud Native for the Enterprise
by Claudio Caldato

Copyright © 2020 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Kathleen Carr Proofreader: JM Olejarz
Development Editor: Sarah Grey Interior Designer: David Futato
Production Editor: Katherine Tozer Cover Designer: Karen Montgomery
Copyeditor: Octal Publishing, LLC Illustrator: Rebecca Demarest

February 2020: First Edition

Revision History for the First Edition
2020-01-28: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Cloud Native for
the Enterprise, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the author, and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

This work is part of a collaboration between O’Reilly and Oracle. See our statement
of editorial independence.

978-1-492-08314-6

[LSI]

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence
mailto:corporate@oreilly.com

Table of Contents

Adopting DevOps and Cloud Native Culture. 1
Planning 2
Crawl, Walk, Run 6
Hybrid Scenarios 23
Future Opportunities 25

iii

Adopting DevOps and
Cloud Native Culture

Developers are excited by the prospect of using cloud native tech‐
nologies to build the next generation of hyperscale applications and
services. You can find a great definition of cloud native in this New
Stack article:

Cloud-native is a term used to describe container-based environ‐
ments. Cloud-native technologies are used to develop applications
built with services packaged in containers, deployed as microservi‐
ces and managed on elastic infrastructure through agile DevOps
processes and continuous delivery workflows.

As cloud native technologies and services evolve, the original defini‐
tion can now be extended to include a range of technologies not
strictly related to container, such as serverless and streaming (Azure
cloud native, Oracle cloud native, and Amazon Web Services cloud
native). Cloud native technologies address specific problems related
to designing, building, and managing services that meet the require‐
ments of modern cloud services: scalability, manageability, and reli‐
ability. The Cloud Native Computing Foundation (CNCF), a
consortium with members from the open source community, start‐
ups, enterprises, and major public cloud providers, notes that

cloud native technologies empower organizations to build and run
scalable applications in modern, dynamic environments such as
public, private, and hybrid clouds. Containers, service meshes,
microservices, immutable infrastructure, and declarative APIs
exemplify this approach.
These techniques enable loosely coupled systems that are resilient,
manageable, and observable. Combined with robust automation,

1

https://oreil.ly/2VwOa
https://oreil.ly/2VwOa
https://oreil.ly/SNWGR
https://oreil.ly/SNWGR
https://oreil.ly/k_eK6
https://oreil.ly/bKZ4-
https://oreil.ly/bKZ4-
https://www.cncf.io

they allow engineers to make high-impact changes frequently and
predictably with minimal toil.

CNCF was established to build sustainable ecosystems and foster
community around a constellation of high-quality projects that
enable enterprises to build more scalable, resilient, and portable
applications. These include more than 100 different technologies,
and the pace of innovation is quite fast. Projects such as Kubernetes
and Istio have release schedules based on three-month cycles.

Several factors introduce complexity in adopting these technologies.
Along with the wide range of technologies that need to be mastered,
there is the problem of determining which projects will graduate
from sandbox and incubation phases to become mature and widely
adopted. In addition, enterprises need to move or redesign their
services and applications while they keep the business running.
Finally, using microservices, containers, functions, Infrastructure as
Code (IaC), streaming, and other cloud native technologies requires
a cultural shift among developers and operators. Things that were
working in the past no longer work; this creates some anxiety
among developers who mastered the previous models.

This report is a guide for enterprise IT managers and application
development teams who are considering adopting cloud native tech‐
nologies and want to embrace DevOps culture. It is designed to help
you navigate the transition to cloud native technologies and con‐
sider the challenges and opportunities of this transition. It also
includes some hybrid scenarios in which existing on-premises IT
infrastructure is used along with public cloud providers. This report
takes an approach that is incremental and not exhaustive; if your
enterprise is considering a cloud transition, though, it provides a
helpful starting point.

Planning
These general guidelines will help you transition to cloud native:

Become familiar with open source technologies
Most of the cloud native technologies are open source, so
understand how open source works and what its legal implica‐
tions are. The Linux Foundation guide covers various aspects of
open source, such as running an open source program office
and managing an open source project.

2 | Adopting DevOps and Cloud Native Culture

https://landscape.cncf.io
https://oreil.ly/3E_n6

Evaluate the maturity of the technologies
Companies have different levels of tolerance for the inherent
instability that new technologies bring. In general, cloud native
projects that have graduated are stable and reliable for demand‐
ing production environments, but others might be in earlier
stages of development. These incubation projects can evolve
quickly and introduce significant architectural changes between
releases. If a few enterprises already use the technology or if a
public cloud provider supports it, that is a good indicator of
maturity.

Determine the availability of support and consulting
Most enterprises need to hire external vendors for consulting or
support. The availability of such vendors correlates with the
maturity of the technology. Consulting companies usually invest
in a new technology when they see a market for it—after the
technology is established and adopted not only by early adopt‐
ers, but also by more risk-averse enterprises.

Identify cloud providers
A good strategy should include a plan to determine which cloud
provider is going to be used for the migration to the cloud. Even
though most public cloud providers are members of the CNCF
or adopters of cloud native technologies, a gap analysis is neces‐
sary to determine the best provider. Choosing a specific set of
technologies can determine which cloud providers are the best
candidates.

Assess your people
Consider the existing skill sets available across the company.
This assessment will help determine how long the transforma‐
tion is going to take and what type of support the team might
need, including any skill gaps that need to be addressed, in
order to be successful.

Find your champions
Champions don’t necessarily need to be existing leads or man‐
agers; they need to be people who see the change as an opportu‐
nity so that they can motivate and support the other members
of the team. Your champions might be employees who are eager
to try new technologies and tools or who have already spent
time learning cloud native technologies. In some cases,

Planning | 3

champions can be new members of the team who are hired with
specific industry expertise.

Identify the appropriate scope for the organization’s capabilities
Cloud native technologies are designed for cloud/"hyperscale”
scenarios, so they allow developers to more easily design and
implement high-reliability and scalable services that were a
major undertaking only a few years ago.

Cloud native and DevOps culture also offers a lot of opportunities.
It has a big community of developers and wide support in the indus‐
try, and has been adopted by a range of users, from more risk-
tolerant startups to more conservative enterprise customers. There
are more than 2,200 contributors for Kubernetes; 1,800 for Docker
Engine; 1,300 for Terraform; and 500 for Apache Kafka.

Enterprises should see increased productivity and, with the proper
design, increased portability of their services or applications across
different cloud providers.

Most developers see cloud native as an opportunity and are eager to
be part of a big community of developers who are already using
these technologies. For some enterprises, adoption means having
the opportunity to contribute to the design.

For enterprise IT professionals, adopting CNCF projects can be
challenging; they are based on new technologies, and the learning
curve can be quite steep. However, it is possible to create a multistep
adoption plan in which, at each stage, only a few technologies are
adopted. By focusing on a small subset of technologies at a time, you
can build your organization’s internal expertise incrementally. This
approach also creates a well-integrated stack that is optimized for
the specific scenarios and use cases that your enterprise wants to
address.

The CNCF Trail Map
Using the CNCF Trail Map, enterprises can adopt cloud native tech‐
nologies incrementally. As expected, progression along the “trail”
requires adoption of more complex software to deliver microservi‐
ces, serverless, event-based streams, and other types of cloud native
apps.

Let’s look briefly at the five phases of adopting cloud native applica‐
tions before we dive into each one in detail.

4 | Adopting DevOps and Cloud Native Culture

https://oreil.ly/OqlYK

Phase 1: Containerization and CI/CD
The first phase comprises two parts: packaging an existing service in
a container (or several), and setting up a simple Continuous Integra‐
tion/Continuous Delivery (CI/CD) pipeline that takes the code,
builds it, and packages it into the container.

Phase 2: Orchestration and observability
After a service is packaged in a container, it needs a system that can
keep it running and allow it to scale if the workload increases. This
is where orchestrators and monitoring come into play. The orches‐
trator manages the service, and there is infrastructure in place to
monitor how it behaves at runtime.

Phase 3: Service proxy and service mesh
The next step is to introduce better control over how the different
services interact with one another. Service discovery and proxy are
the functionality needed to find other services in the network; for
instance, in a Kubernetes cluster they provide Domain Name Sys‐
tem–like functionality that can be used to map a service name to a
specific IP address. Service mesh is an additional layer of functional‐
ity that offers more sophisticated control over the connection across
services.

Phase 4: Distributed databases and storage
When the service grows, attention shifts to designing the storage
infrastructure to handle the increased workload with resiliency and
with the appropriate disaster recovery policies. Two key components
here are stateful services and distributed databases:

Stateful services
These are services that need to maintain a state between
requests and that rely on some sort of storage infrastructure. A
simple example of a stateful service is a shopping cart that needs
to store the list of items a user selects. Databases such as MySQL
and Postgres can be used to provide the storage support that
microservices or functions (in the case of a serverless applica‐
tion) need.

Distributed databases
These are storage services that cloud providers offer. They are
fully managed and support multidatacenter configuration,

Planning | 5

enabling data sharing across services running in different geo‐
graphic regions. Examples of distributed databases are Azure
Cosmos DB, Amazon Aurora, and Oracle Autonomous
Database.

Phase 5: Messaging, serverless, and streaming
The last step introduces different design principles. Services are not
built using a traditional approach based on, for instance, APIs, but
they take advantage of a messaging infrastructure. Interaction across
services is based on exchanging messages, making the paradigm
completely asynchronous. This is where messaging technologies,
serverless, and, more generally, streaming come into play.

Now that we’ve seen what the phases are, let’s walk through how to
implement each phase and what you’ll need to consider as you do.

Crawl, Walk, Run
As described in the previous section, a good strategy is to adopt
CNCF technologies with a pace that allows teams in the organiza‐
tion to develop the skills they need to manage them. Let’s look at
each of these phases in detail.

Implementing Phase 1: Containerization and CI/CD
Consider starting with a real project to modernize an existing ser‐
vice or application by packaging the code in a Docker container. The
goal is to become familiar with the process of building a container
and running it. Developers can become familiar with the Docker
workflow and use client tools and manage the deployment with a
container registry. (Container registry is very similar to Maven in
the Java world; it offers the ability to publish assets, in this case con‐
tainers, so that they can be easily distributed.)

Most developers will find Docker (and related technologies) an
improvement over existing methodologies. Modernization via pack‐
aging in containers also offers a relatively simple deployment model:
after a server is configured with the ability to run Docker containers,
deploying services and creating live endpoints is easy. An additional
advantage of this approach is it shows developers how these tech‐
nologies offer a better overall developer experience. The Docker

6 | Adopting DevOps and Cloud Native Culture

https://oreil.ly/Si7Qn
https://oreil.ly/Si7Qn
https://aws.amazon.com/rds/aurora/
https://oreil.ly/dYWEr
https://oreil.ly/dYWEr
https://docs.docker.com

website has excellent documentation and walkthroughs on how to
get started.

Getting started with CI/CD
After developers have gained some experience with the container
workflow, the next step is to look into DevOps and CI/CD to
improve the process of building, testing, and deploying applications
and services.

The idea of CI/CD—Continuous Integration/Continuous Delivery
—comes from some of the “born-in-the-cloud” companies that
adopted a fairly extreme approach (compared with what was typical
at that time) of continuously improving their online services by hav‐
ing a fully automated process for building, testing, and deploying
new code. In the context of most enterprise environments, there is
no need to have this extreme approach, but the CI/CD workflow can
benefit the organization even if the goal is not to be able to deploy a
new version of a service every few hours.

CI/CD is based on the idea of processing changes in small chunks.
With CI/CD, debugging and fault isolation are a lot simpler and
quicker as the changes are typically smaller, and different versions
have a limited number of code changes that could have caused the
problem. It is also easier to test each version by having a smaller fea‐
ture surface to test. CI/CD enforces best practices by, for instance,
requiring developers to include unit tests with their code so that
they can be used during the automated process to detect potential
regressions in the future. With the containers, a fully automated
build-and-test workflow ensures consistency and completeness in
the assets produced—these assets will run in any environment.
“Dependencies hell” is a problem of the past!

There are many CI/CD solutions suitable for enterprises, from Soft‐
ware as a Service (SaaS) solutions such as CircleCI and CodeShip, to
solutions that can be deployed in-house, such as Jenkins, TeamCity,
and Bamboo. Public cloud providers also offer CI/CD solutions
(Oracle Visual Builder Studio, Azure DevOps, AWS CodePipeline).
A cloud provider’s solutions are better integrated with its infrastruc‐
ture, so they can be a good option after you’ve selected a provider.
In-house solutions could be the easiest to adopt because they are
likely to be similar to the solutions already in use.

Crawl, Walk, Run | 7

https://docs.docker.com
https://oreil.ly/_iR25
https://oreil.ly/cYu88
https://oreil.ly/R1Uog

SaaS solutions fit well into the open source workflow model in
which a group of developers work on the same project with different
development tools. SaaS solutions also support multiple deployment
targets and can be used to deploy a service on multiple providers.

The CI/CD workfow

The CI/CD workflow is not significantly different from a standard
build system used, for instance, for Java applications, so the adop‐
tion of a “cloud native” CI/CD workflow should not be a major
undertaking for developer teams that already rely on automation for
building and testing.

A typical CI/CD workflow has five steps (see Figure 1):

1. Developers check the code into a repository. Most developers
who use cloud native rely on Git, but you can use other source
code management systems.

2. Each code check-in triggers the build process. Integration
between the source code management system and the build sys‐
tem allows you to track check-ins and coordinate the build pro‐
cess. For Java applications, for instance, you can use Maven or
Gradle.

3. After the build process is completed and assets are generated
and tested, the code is packaged into one or more containers
using Docker tools. The creation of containers is based on a def‐
inition file that specifies what should be included in the contain‐
ers, which network ports should be accessible, and so on (you
can find details on the container definition file here).

4. After the container files are generated, they need to be made
accessible so that they can be downloaded when needed. The
process is similar to publishing Java artifacts in Maven. The
container registry can be a public location (e.g., Docker market‐
place) or it can be a service provided by a cloud provider (e.g.,
Oracle Cloud Infrastructure Registry, Azure Container
Registry).

5. The container(s) is deployed when the service is launched or
updated; for instance, in an orchestrator such as Kubernetes
(more on orchestrators and Kubernetes in the next section).

8 | Adopting DevOps and Cloud Native Culture

https://docs.docker.com/engine/reference/builder
https://oreil.ly/DLCCi
https://oreil.ly/lkH53
https://oreil.ly/lkH53

Figure 1. Microservices DevOps fow using native development

In the context of cloud native services, changes are usually small
and, with an architecture based on multiple smaller services (instead
of bigger monolith services), the workflow handles multiple inde‐
pendent services that need to be deployed and configured after
they’re built.

Microservices
The ability to update services quickly and frequently in the cloud
drove the need to build services in a different way; smaller and inde‐
pendent components can be updated and scaled independently.
Microservices are an architectural design that addresses these
requirements. In adopting cloud native, consider how services are
designed and how to establish good practices that development
teams can follow. Service design has a big impact on how the service
will be able to take advantage of what cloud native offers.

Microservice architectures are based on the idea of decomposing
complex operations into a set of independent units (services) that
collaborate to provide the required functionality. Communication
between services becomes more relevant as a single transaction/
request is processed by various services connected through the
network (see Figure 2). If a synchronous communication model is
used, network latency should be taken into account when designing
the system. A good guide on microservices is available at
Microservices.io.

Crawl, Walk, Run | 9

https://microservices.io

Figure 2. Microservice architecture (adapted from Oracle)

In the microservices architecture, an application is composed of a
set of services that need to be deployed and managed as a unit. This
is the role of orchestrators, which we discuss in the next section.

Implementing Phase 2: Orchestration and Observability
Deploying microservices-based applications, which can be com‐
posed of multiple containers that need to be connected and require
the configuration of external endpoints, can become a complex pro‐
cess. After you deploy the application, you need to monitor it to
ensure that it is always running. Moreover, different components of
the applications might need to be scaled up or down in order to
respond to changes in the workload.

Orchestrators
Orchestrators are designed to provide a runtime environment in
which you can deploy, manage, scale, and monitor container-based
applications. They can help with managing cloud native services
created with the microservices architecture.

There are various orchestrator solutions provided by public cloud
providers (including Oracle Container Engine for Kubernetes, Ama‐
zon Elastic Container Service , and Azure Service Fabric), but the
one that has been rapidly adopted is Kubernetes. Kubernetes is also
a CNCF project.

10 | Adopting DevOps and Cloud Native Culture

https://oreil.ly/oa2bI
https://oreil.ly/ppUFO
https://aws.amazon.com/ecs
https://aws.amazon.com/ecs
https://oreil.ly/REGGn

Kubernetes
On the Kubernetes website, Kubernetes is described as “a portable,
extensible, open-source platform for managing containerized work‐
loads and services, that facilitates both declarative configuration and
automation.”

Following are the main features of Kubernetes:

Native support for containers
Kubernetes manages the deployment and execution of contain‐
ers. Containers can be grouped together in “pods,” which are
simple execution units that are managed as a single unit, con‐
nected without extra configuration (see Figure 3). The master
node in the cluster is responsible for managing the nodes in the
clusters where pods are deployed. Along with scheduling pods,
it determines which node should host pods when they are
deployed. The master node includes an API server and exposes
the APIs that are used by the kubctl command line or other
tools. Etcd is a key-value store used by various subsystems in
the cluster.

Figure 3. Kubernetes architecture

Self-healing
Kubernetes monitors the execution of pods and ensures that
they are always running. A Kubernetes configuration can be
used to specify, for example, the number of instances of a spe‐
cific service that should always be running. If one or more
instances fail, Kubernetes will handle the process of restarting
them to ensure that the system returns to its desirable state as

Crawl, Walk, Run | 11

https://oreil.ly/3nM5o

soon as possible. Kubernetes has a built-in mechanism to moni‐
tor the health of services as well.

Autoscaling
Adding or removing instances of a service can happen automat‐
ically according to simple rules (e.g., when the CPU utilization
of a service goes over a certain threshold, new instances of the
service are created). Services can also be scaled down, but scal‐
ing down stateless services can be done more easily. For stateful
services, the process of scaling down needs to be handled in the
service itself to ensure that state is not lost.

Domain Name System management
Kubernetes enables different services to connect to one another
using only their names. The association between the name of a
service and a specific network address is managed by Kuber‐
netes. Kubernetes also manages ingress: a public endpoint that
allows external services or client applications to connect to serv‐
ices managed in the Kubernetes cluster.

Load balancing
Kubernetes creates a load balancer when a service is defined.
When multiple instances of the service are required, new pods
are created, and the load balancer takes care of distributing
requests across all instances.

Rolling updates or rollback
When a new version of a service needs to be deployed—for
instance, because there is a new version of a container—Kuber‐
netes stops and restarts each instance of the service in such a
way that there is no interruption of service. The process contin‐
ues until all instances of the running pods are updated. Kuber‐
netes also supports rolling back a service to its previous version.

Resource monitoring and logging
Kubernetes can monitor resources via health endpoints (used
for self-healing). It also supports the collection of log files and
other runtime metrics that you can use to monitor the health of
the entire system.

Running existing applications
After an application is packaged in a container, it can be easily
managed by the orchestrator to ensure its availability. Though it

12 | Adopting DevOps and Cloud Native Culture

requires more effort, stateful services such as databases can also
be containerized as highly available services.

Kubernetes offers some additional advantages. First, it is a
portable open source project that is supported by all major
cloud providers and that can run on-premises. Second, automa‐
tion servers such as Jenkins and Oracle Visual Builder Studio
have plug-ins to build pipelines integrated with containers.
Third, Kubernetes offers namespaces as a way to partition and
isolate services (even though it is not a security feature). For
instance, using namespaces, a Kubernetes cluster can host two
separate environments, such as dev and test. Fourth, Kubernetes
supports containers, so pretty much all languages and frame‐
works can be used; hence, it is not necessary to commit to a spe‐
cific stack (language, framework, deployment methodology).
Fifth, Kubernetes has a comprehensive set of APIs that can be
used to manage the cluster, control deployments, and even
invoke Kubernetes functionalities within a running service.
Finally, Docker now supports Kubernetes, so a developer can
have a Kubernetes cluster running in their development
machine.

For the adoption of Kubernetes, enterprises have three options:

Self-managed deployment
Kubernetes is an open source project, so you can install it on
any infrastructure: cloud or on-premises. However, the reliabil‐
ity of the services running on the cluster depends on Kuber‐
netes being “healthy,” so solving production issues, such as a
cluster running out of resources, requires a deeper understand‐
ing of the platform.

Public cloud services
Oracle, Azure, Google, and other vendors offer managed
Kubernetes solutions. Because the health of the cluster is guar‐
anteed by the cloud provider, customers can focus on managing
the size of the cluster by setting some scalability rules to deter‐
mine how the cluster should add or remove resources. DevOps
cost is lower and a deep understanding of how Kubernetes
works is not required.

Tird-party curated solutions
Kubernetes’ solutions for on-premises scenarios are similar to
the cloud provider solutions because some aspects of

Crawl, Walk, Run | 13

https://oreil.ly/C-Xvf
https://oreil.ly/0AG1V
https://oreil.ly/n9xH3
https://oreil.ly/ml_q7
https://oreil.ly/OicP3

Kubernetes management are automated to provide an experi‐
ence that is similar to what Cloud Providers offer with their
managed Kubernetes solutions.

Managing the cloud environment: Infrastructure as Code
One of the advantages of using a cloud environment is its ephemer‐
ality: resources can be created, used, and then deleted in a very sim‐
ple way. Without fixed assets, one way to optimize costs is to allocate
resources when they are needed. Development teams can create, for
instance, a set of virtual machines (VMs), deploy some code on
them, run some tests, and then delete the virtual machines. This
ability to create and delete resources quickly is a big advantage of
using public clouds. But it requires a repeatable process for creating
complex environments, such as dev, test, and production areas, in a
sustainable way. Infrastructure as Code (IaC) is the answer to this
set of requirements.

IaC is an evolution of the old shell scripts and automation tools that
were used to manage machine configuration. It is a set of tools that
can help developers define the configuration of a complex solution
(VM configuration, security settings, network configuration, load
balancers, storage infrastructure, and so on) via a set of scripts that,
after they’re interpreted and executed, can create, configure, and
connect all of its components.

IaC solutions are feature-rich, with a learning curve that is relatively
steep. However, IaC is a critical component in the cloud native tool
set and developers will quickly appreciate the role it plays in the
DevOps workflow.

In addition to the creation and management of compute, storage,
networking, and application, IaC can use cloud management APIs
to create accounts, users, and other cloud assets and to manage the
entire deployment process with the ability to serialize/parallelize
operations.

IaC can also optimize the deployment process by determining con‐
figuration changes and apply only required changes to an existing
deployment. Most IaC solutions also support modularization and
parametrization: scripts can be used on their own or combined to
create complex configurations. Like any source code file, IaC config‐
uration files can be managed using a source code management sys‐
tem to track versions and changes.

14 | Adopting DevOps and Cloud Native Culture

IaC technologies include Terraform, Ansible, Chef, and Puppet.
These IaC solutions support all major cloud providers. Some cloud
providers have developed their own solutions, which are specifically
designed to take advantage of their cloud infrastructure, such as
AWS CloudFormation and Azure Resource Manager. Other provid‐
ers, such as Oracle Resource Manager, use existing IaC solutions
that are already well established (Terraform and Ansible). The end
goal of embracing the DevOps culture is to put an initially small but
growing set of services in production. Then the bar is higher, and
the Ops side of DevOps needs to ensure that the service is perform‐
ing as expected and respects the service-level agreement. To have a
resilient system, a production environment needs to be able to react
quickly to changes in workload. If the number of requests grows
over time (e.g., peak versus off-peak time), the system needs to be
able to increase the available resources so that the system can still
respect the service-level agreement in terms of responsiveness, avail‐
ability, and user experience.

Observability
To ensure that incidents can be quickly investigated and fixed, devel‐
opers need access to data such as log files, but they also need to col‐
lect data on how services are called. Because cloud native solutions
are based on microservices, and small(er) components interact to
provide the desired capability, developers need access to data about
service calls: data that crosses the boundaries of a single service. For
cloud native solutions, observability can be divided into two main
components:

Intra-service runtime data
This is collected via log files or through add-on services. Flu‐
entd is an open source technology that can be used for logging.
It provides various data sources that can be used to collect dif‐
ferent types of runtime data, such as plug-ins for Java applica‐
tions or MySQL. Fluentd can also send data outputs to public
cloud logging services such as Oracle Cloud Infrastructure Log‐
ging, data warehouses such as Oracle Autonomous Data Ware‐
house, and publisher/subscriber queue systems such as AMQP.

Distributed tracing
In a microservice scenario, the ability to monitor and trouble‐
shoot transactions across services is important. Jaeger is a dis‐
tributed tracing tool that is integrated with the CNCF stack.

Crawl, Walk, Run | 15

https://www.terraform.io
https://www.ansible.com
https://www.chef.io
https://puppet.com
https://oreil.ly/aL2Zo
https://oreil.ly/nCnDe
https://oreil.ly/vokWJ
https://oreil.ly/lq0ef
https://www.fluentd.org/
https://www.fluentd.org/
https://oreil.ly/A72-X
https://oreil.ly/A72-X
https://oreil.ly/Au8eS
https://oreil.ly/TcbBP
https://oreil.ly/TcbBP
https://www.jaegertracing.io

Jaeger and similar distributed tracing technologies offer the
ability to do the following:

Monitor distributed transactions
Track calls across services and “follow” the transaction/
request as it is processed across services.

Optimize performance and latency
Measure time spent in processing a request within a service
and the latency introduced by remotely calling other
services.

Analyze root causes
Follow how a request/transaction moves across services.
This can be used to identify the root cause of an issue that
might manifest on another service.

Analyze service dependencies
By collecting real-time data on service calls, distributed
tracing can be used to build a dependency map that
includes multiple levels; for example, Service A calls Service
B, which then can call Services C and D.

Prometheus is an open source monitoring and alerting solution
used to monitor services by recording events in a time series. Events
can be visualized and analyzed with a power query language; with
the same query language, users can define alerts that are managed
by a built-in Alert Manager. Jaeger is also integrated with Prome‐
theus to provide a powerful metrics/visualization and alerting plat‐
form. Oracle Cloud supports Prometheus through the Grafana
plug-in.

Scalability
The ability to react to changes in workload is an important aspect of
making the service resilient. Requests to the service can vary over
time, so the service needs to be able to react to spikes and still guar‐
antee a predefined quality level. To handle increased workload, a
service can either scale up or scale out (see Figure 4).

Scaling up is the process of increasing the resources available to the
service (such as memory) so that it can handle a bigger workload.
The problem with this approach is that it typically requires restart‐
ing the process; hence, it cannot be done without downtime. The

16 | Adopting DevOps and Cloud Native Culture

https://prometheus.io
https://oreil.ly/DCqQI

other downside is the constraints placed by the underlying system,
such as the memory of the VM or bare-metal server.

Scaling out is the model used with cloud native solutions. A service
can increase the workload it can handle by adding more instances of
the service with a load balancer that distributes the traffic across all
available instances. The load balancer can use different policies to
distribute traffic, including round robin and weighted response
time. Scaling out can be done manually by increasing the number of
instances running—for instance, by using APIs and the Kubernetes
management console—but it is not a sustainable model. However, in
most cases it is not possible to foresee peak traffic.

Autoscaling is the process of automatically increasing the number of
instances of a service based on the change in workload (as illustrated
in Figure 5). Kubernetes offers the ability to set autoscaling policies
based on metrics such as CPU or memory usage as well as custom
metrics such as transactions per second. You can find more infor‐
mation about Kubernetes autoscaling on the Kubernetes documen‐
tation website.

Figure 4. Scaling up versus scaling out

Crawl, Walk, Run | 17

https://oreil.ly/4ZQY_
https://oreil.ly/4ZQY_

Figure 5. Kubernetes autoscaling

Implementing Phase 3: Service Proxy and Service Mesh
The more you buy into the cloud native design approach, the more
moving parts you need to deal with. You’ll want to decompose your
architecture into independent and manageable components using
microservices or functions to make updates and scalability more
efficient. This creates the need to manage communication between
services. Phase 3 focuses on the service mesh.

Service proxy and discovery
The ability to associate running code with a specific endpoint and
make that endpoint discoverable, so it can be used by other services,
is known as service proxy and discovery. It is functionality built into
Kubernetes (for example, CoreDNS is the default cluster Domain
Name System service installed in Kubernetes), so developers can
become familiar with it as soon as they begin deploying their serv‐
ices on a Kubernetes cluster. But service proxy and discovery are not
sufficient for scenarios in which, for instance, traffic needs to be
managed dynamically or policies need to be defined to route traffic
through services. This aspect is managed by service mesh solutions.

Service mesh
Service mesh introduces an additional level of control over commu‐
nication across services. It is based on a small agent that is deployed
within the pods and that takes control of all incoming and outgoing
traffic. A control plane is also installed, through which it is possible
to define policies and monitor traffic across services using a “side‐
car,” which is a container that is added to the microservice’s pod.

18 | Adopting DevOps and Cloud Native Culture

At a high level, the service mesh enables you to control how traffic is
managed. For instance, if you have two versions of the same service,
you can redirect traffic between them: 50% on one version, 50% on
the other. You can route all the traffic from one version to the other,
route traffic from specific clients to one version only, and so on. Ser‐
vice mesh provides the ability to create circuit breakers to prevent
your service from stalling while it is waiting for an upstream service
to respond. By allowing the service to fail faster, you can avoid a cas‐
cade of wait/retry cycles across potentially multiple services in your
application.

With ingress/egress, service mesh also allows you to control incom‐
ing and outgoing traffic to the system. Along with policies defined
by firewalls and other cloud infrastructure components, you can use
ingress/egress to control subsystems of the architecture. For exam‐
ple, if the system is composed of subsystems managed by different
teams, each team can define an ingress/egress to control access to
the services it manages.

Tracing and logging is another feature that service mesh offers.
Communication across services is logged, and tracing information
can be used to analyze connection patterns across services. This
feature complements the monitoring services that cloud providers
offer to, for instance, monitor network traffic.

Istio is one of the most-used service mesh technologies. Linkerd and
Envoy are other examples of service mesh that are currently incubat‐
ing and graduated projects, respectively, in CNCF.

Implementing Phase 4: Distributed Databases and
Storage
With three-tier applications (see Figure 6), access to data was gran‐
ted directly to a database via a connection string that contained the
information required to establish a connection with the database. In
general, it required a limited number of connections to the database.
In the cloud world, there is a new generation of storage systems
designed to be distributed across multiple machines or even differ‐
ent regions and datacenters. These distributed databases are
designed to handle a high number of connections and provide rela‐
tively low-latency access to data in such a way that they can be used
directly from any service that might need to access their data. Exam‐
ples of the new generation of distributed databases include Amazon

Crawl, Walk, Run | 19

https://istio.io
https://linkerd.io
https://www.envoyproxy.io
https://oreil.ly/saFF2

Aurora, Oracle Autonomous Database, Oracle Database Cloud Ser‐
vice, Azure Cosmos DB, and traditional open source applications
such as Postgres and Cassandra offered as managed services.

Figure 6. Tree-tier versus microservice architecture

In the microservices world, a common practice is to abstract the
data access with a service that exposes a set of APIs instead. Access
to the database is isolated within the service. One of the benefits of
this solution is that you can change the database schema without
affecting other services. This is a good practice when using modern
distributed storage services because it offers a more robust solution.

Cloud native applications that are distributed by design need an
additional layer of storage to improve overall performance. There
are two cases for which caching can improve performance:

Hot versus cold data
You can use in-memory databases such as Redis to provide low-
latency access to hot data. Hot data is the data being used by the
application that needs to be readily accessible. Examples include
session states and other temporary data that needs to be avail‐
able between requests. Cold data is data for which access can be
less immediate but that needs to be stored permanently on a
database such as Oracle Database or MySQL.

Data sharing in scale-out scenarios
Cloud native applications use scale out to handle increased
workload. With multiple instances, state needs to be shared, as

20 | Adopting DevOps and Cloud Native Culture

https://oreil.ly/saFF2
https://oreil.ly/6m1A8
https://oreil.ly/BWQvq
https://oreil.ly/BWQvq
https://oreil.ly/bu-23
https://oreil.ly/wRw_1
https://redis.io

requests are not guaranteed to be processed by the same
instance every time.

Implementing Phase 5: Messaging, Serverless, and
Streaming
Phase 5 represents the transition to a different paradigm for design‐
ing and implementing services. So far, we have assumed that an
application can be decomposed into multiple independent units
(services) that expose their functionality through a set of APIs; for
example, REST APIs.

Messaging
An evolution of this method of designing a distributed application is
to make the invocation completely asynchronous by using messages
instead of invoking REST APIs. In a messaging-based model, a cen‐
tralized messaging brokering system offers a publisher/subscriber
model in which services post messages that other services receive
and process. A messaging-based system has the advantage of mak‐
ing the system more resilient and potentially more scalable, but at
the same time, it introduces a higher level of complexity in how
services are implemented. All major cloud providers offer messaging
services; examples include Oracle Integration Cloud, Oracle Data
Integration, Azure messaging services, and Amazon Simple Queue
Service. Other options include deploying an open source messaging
app such as Apache Kafka or RabbitMQ via containers on an
orchestrator such as Kubernetes. This can be a more flexible solu‐
tion, but it requires additional operations costs.

Serverless
Serverless is becoming a mainstream technology in the cloud native
world. In the early days of AWS Lambda, serverless was a new way
to deploy simple operations (functions) that were invoked by a set of
events such as, a change in a database or a new element in a stream.
Now serverless is more pervasive and offers a lot more flexibility
and richness of features, which makes it a solution for a wider range
of scenarios.

There is no doubt that serverless is going to have an important role
in how services will be designed in the future; it offers some signifi‐
cant benefits with respect to existing solutions. Serverless is based

Crawl, Walk, Run | 21

https://oreil.ly/oHNVJ
https://oreil.ly/IZW5V
https://oreil.ly/IZW5V
https://oreil.ly/1sjps
https://aws.amazon.com/sqs
https://aws.amazon.com/sqs

on a pay-per-use pricing model, so, in theory, it offers a big eco‐
nomic advantage. Serverless services also offer a very simple deploy‐
ment model; there is no operations cost and the application is
autoscaled based on the workload.

Some see serverless as the silver bullet that is going to make it very
easy to design, deploy, and manage complex distributed applica‐
tions. Unfortunately, we are not there yet, but we can expect its rele‐
vance to increase in the near future.

Vendor lock-in is a potential risk to consider as most serverless solu‐
tions are based on a proprietary infrastructure that makes the code
less portable. The code of each function has some degree of porta‐
bility, but it can have so many dependencies on the infrastructure
that porting it to another provider can become quite expensive.
There are open source solutions such as OpenFaaS and Fn Project
that can reduce the impact of vendor lock-in. Oracle Functions is a
managed service that implements Fn Project. Fn Project can run
anywhere—on premises and on public clouds.

Streaming
There are scenarios for which the ability to analyze data in real time
is important, such as telemetry from Internet of Things (IoT) devi‐
ces, website clickstreams, or application log files. In all these cases,
data needs to be processed as it becomes available instead of using
traditional batch processing. All cloud providers offer services
designed to enable stream processing (such as Amazon Kinesis and
Oracle Streaming), typically with an ingestion service that can han‐
dle a high volume of continuous data that can be processed as a set
of messages or events. There are also open source solutions such as
Apache Kafka that can be used on both cloud and on-premises sce‐
narios. Cloud providers also offer integration with Kafka, an exam‐
ple is Oracle’s Streaming support for Kafka.

Whereas the ingestion part of the process is handled by high-
volume, highly scalable services from by the cloud provider, the
downstream processing needs to be designed to handle the work‐
load (in terms of number of events per second) that the ingestion
pipeline can generate. In most scenarios, the downstream services
need to be able to process the events in a timely fashion and keep up
with incoming events to avoid ingestion queues growing over time.
Designing any streaming application requires careful consideration

22 | Adopting DevOps and Cloud Native Culture

https://github.com/openfaas/faas
https://fnproject.io
https://www.oracle.com/cloud/cloud-native/functions/
https://aws.amazon.com/kinesis
https://oreil.ly/jB5DQ
https://oreil.ly/gBHLt

of expected throughput and the amount of time that can be spent in
processing each request if real-time processing is also a requirement.

To avoid the complexity of designing an ad hoc system, cloud pro‐
viders offer complementary services that can be used to create an
end-to-end streaming application. Serverless can be a good solution
for streaming applications because it provides the ability to scale
automatically as the workload increases or decreases; hence, it
reduces the complexity and can simplify the design.

We have walked through the five phases of adopting cloud native
applications. The five phases represent one way to think about the
migration to cloud native technologies, though there are clearly
more that could be considered. For enterprise customers, adopting
cloud native does not always mean a full migration to the cloud.
There are scenarios for which public cloud providers need to be
used along with existing on-premises IT Infrastructure.

Hybrid Scenarios
An enterprise might want to keep some services or applications on
its on-premises infrastructure if, for example, it might not be possi‐
ble to port a legacy application because of the technologies it uses. In
other cases, privacy or governance requirements might require on-
premises infrastructure along with the public cloud.

There are a lot of nuances, and the adoption of a hybrid model
depends on the specific requirements of each enterprise; for
instance, timing (short-term versus long-term strategy), security
requirements, and technologies used for existing services.

On-Premises and Cloud Native
For scenarios in which some services must run on-premises over the
long term, start by sharing the same hosting infrastructure (e.g.,
Kubernetes) so that the programming model is the same for both
on-premises and public cloud services. A service designed and pack‐
aged in such a way can, potentially, be deployed without significant
changes to both on-premises and public cloud infrastructure. With
this built-in flexibility, it is possible to move workload from or to the
public cloud based on specific criteria. In this scenario the on-
premises infrastructure needs to be modernized to adopt all of the
cloud native technologies that are required to mimic the features

Hybrid Scenarios | 23

available in the public cloud. In most cases this means running an
orchestrator such as Kubernetes with a container registry.

The storage infrastructure used by stateful services requires addi‐
tional thinking: storage services available on public cloud providers
are unlikely to be available for on-premises deployment, and the
latency involved when an on-premises service connects to a remote
storage service in the cloud is probably not acceptable. A way to
avoid the need to modify the code if the application needs to run
on-premises is to design access to storage through a set of APIs that
abstract the underlying storage infrastructure. The on-premises
storage infrastructure can be replaced with an existing solution
without changing the code on the services that need to access it.

In other cases, legacy applications or services cannot be easily por‐
ted to the cloud. In this case, the goal is to create a good interface
between the new services designed and deployed for a public cloud
environment and the legacy application running on-premises. The
legacy applications can be “exposed” via a modern interface that will
make them “look like” modern services. Kubernetes’s Service Cata‐
log can help to address this type of scenario. The major downside of
this approach is the additional latency introduced by the fact that
not all services are running on the same hosted environment.

Examples of on-premises cloud native software include Oracle
Linux Cloud Native Environment, Azure Stack, and AWS Outposts.

Multicloud Scenarios
For some customers, betting on a single cloud provider might not be
an option. If this is the case for you, a simple strategy is to partition
the services/applications and data in such a way that they can be
hosted on a single cloud provider. Another option could be to create
a uniform infrastructure on all cloud providers so that the workload
can be moved from one cloud provider to another. The best way to
ensure this is to use those vendors that use unmodified/unforked
open source software. In the case of Kubernetes, using CNCF-
conformant distributions can provide portability of your container
workloads to other clouds. In the case of IaC, using vendors that
support multiple clouds, such as Terraform, can provide flexibility
in deployment and management across clouds. It is always a good
idea to keep any dependency on the cloud infrastructure isolated.

24 | Adopting DevOps and Cloud Native Culture

https://oreil.ly/R2Uun
https://oreil.ly/R2Uun
https://oreil.ly/8rV78
https://oreil.ly/8rV78
https://oreil.ly/0R1RU
https://oreil.ly/6nilk

Data has a high level of stickiness on cloud infrastructure. If the
amount of data is significant, moving it across two different cloud
providers can be costly and time-consuming. One way to reduce
potential dependencies is to use storage technologies that work
across cloud providers, such as those based on Object Storage Ser‐
vice (OSS). The disadvantage is that you cannot benefit from fully
integrated and managed solutions provided by the cloud provider,
so managing a storage solution can be costly.

Some cloud providers offer interoperability across clouds. One
example is the Oracle-Azure partnership, which provides interoper‐
ability by interconnecting those two public cloud vendors, which
provides interoperability between these two public cloud vendors
with low-latency connectivity, unified single signon (SSO), and a
shared support model.

Future Opportunities
Cloud native and DevOps culture are transforming how applica‐
tions and services are built and managed. They provide a way to
take advantage of the cloud infrastructure to create scalable and reli‐
able services.

Whereas in the past adopting cloud native technologies was seen as
optional, now it has become a mandatory step for enterprises that
need a solid IT infrastructure in order to be competitive. Cloud is
now a mature technology, with all cloud providers offering a wide
range of very sophisticated services that were inconceivable not long
ago. Databases that can support massive scaling and different data
models or AI services are examples of the competitive advantages
that cloud technologies can provide.

Adopting DevOps is only the first step of the process; it clearly has a
cost in terms of time and resources, but the return can be signifi‐
cant. Cloud native is the stepping stone to fully utilizing the wide
range of technology that the cloud can provide. With the services
being offered by all major cloud providers increasing quickly, enter‐
prises have an opportunity to incrementally develop their services
and reduce their time to market considerably.

Future Opportunities | 25

https://oreil.ly/6hiZW

About the Author
Claudio Caldato is a technical program manager on Facebook’s
infrastructure team, working on various projects related to cloud
infrastructure optimization and reliability. Prior to Facebook, he was
a senior director of product strategy with the Oracle cloud team,
where he worked on the grand unified theory of cloud native devel‐
opment, which aimed to empower developers to build the next gen‐
eration of cloud native applications. Before joining Oracle, Claudio
worked in the Azure Hyperscale and IoT teams at Microsoft and
was one of the founding members of the team that pioneered OSS
there. He also worked on various OSS projects and some of Micro‐
soft’s key products and technologies, such as the .NET Common
Language Runtime, Office, and Visual Studio.

	Copyright
	Table of Contents
	Chapter 1. Adopting DevOps and Cloud Native Culture
	Planning
	The CNCF Trail Map

	Crawl, Walk, Run
	Implementing Phase 1: Containerization and CI/CD
	Implementing Phase 2: Orchestration and Observability
	Implementing Phase 3: Service Proxy and Service Mesh
	Implementing Phase 4: Distributed Databases and Storage
	Implementing Phase 5: Messaging, Serverless, and Streaming

	Hybrid Scenarios
	On-Premises and Cloud Native
	Multicloud Scenarios

	Future Opportunities

	About the Author

