

Business / Technical Brief

JSON-based
Application Development
with Oracle Database
(and MongoDB compatibility)

Releases 19c and 21c, On-Premise and Cloud,
Autonomous JSON Database and
Oracle Database API for MongoDB

February 2022, Version 1.1
Copyright © 2022, Oracle and/or its affiliates
Public

1 Business / Technical Brief / JSON-based
Application Development
with Oracle Database
(and MongoDB compatibility) / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

Table of contents

Purpose 3

Schema-flexible Application Development 3

Limitations of NoSQL Document Stores 3

Using Oracle Database as a Document Store 4

Storing and Managing JSON Documents in Oracle Database 4

Autonomous JSON Database 5

Oracle Database API for MongoDB for Autonomous Databases 5

Simple Oracle Document Access API (SODA) 5

Analytics and Reporting on JSON Content Stored in Oracle Database 7

JSON Dataguide 10

JSON Generation 10

Conclusion: Why Use Oracle Database as a Document Store? 11

2 Business / Technical Brief / JSON-based
Application Development
with Oracle Database
(and MongoDB compatibility) / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

Purpose

This document provides an overview of features and enhancements included in
Oracle Database releases 19c and 21c and related Oracle technologies. It is
intended to help you understand why modern application development often uses
JSON as data persistency format, and why the JSON capabilities in Oracle Database
are perfectly suited to solve the requirements of today's developers looking for a
document store to persist, query and process application data.

Schema-flexible Application Development

Modern application development takes place in a fluid environment. Users expect
applications to adapt to rapidly changing business requirements and for updates to
be delivered on the fly. All of this means that developers need a flexible data
persistency mechanism with minimal downtime, or DBA involvement, when the
application evolves. The relational model lacks this flexibility: tables have a static
'shape' and application changes require modifying them (for example to add new
column) which typically involves a database administrator (DBA). Also, existing
data may need to be modified to fit the new schema. Even more important: the
relational approach requires an upfront schema design: Objects of the application
(for example 'customer order') are normalized to the tables and columns that store
the objects' values. One application object often gets normalized to multiple tables.
This means that simple put or get operations now require inserts and selects
involving all participating tables with the right join conditions. The developer has
to understand this mapping and express it using SQL.

This approach- although proven to work for decades - is often considered too rigid,
formal and slow for modern application development. Also, as application and
database changes often have to be synchronized, so there is a higher chance of
downtime and increased operational cost.

Document stores (also called document databases) work differently and do not
require an upfront schema definition. Instead, application data is modelled as
documents, typically in JSON format. Each document is self-describing (consists of
named key/value pairs) and hence no external schema is needed to understand the
values. Also, different documents can have different key/value pairs making it easy
to evolve an application by adding new key/value pairs on the fly without having
to modify existing data/documents. The use of documents for data persistency
therefore delivers the flexible storage mechanism that developers ask for.

An additional requirement to handle JSON arises from the ubiquity of JSON-based
APIs: REST services operate with JSON input and outputs. Mapping these JSON
values to tables could cause the application to break if the third-party API changes
and no longer matches the table. Instead, JSON data is better stored "as is" in a
database that supports queries over JSON data

Limitations of NoSQL Document Stores

Developers often gravitate toward NoSQL products because they are perceived as
easier to use than relational databases. A typical NoSQL document store organizes
JSON documents inside collections. Because the data model is simple, consisting
solely of collections and documents, the functionality provided by these systems is
also simple, and particularly limited when it comes to reporting or analytical use

3 Business / Technical Brief / JSON-based
Application Development
with Oracle Database
(and MongoDB compatibility) / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

cases. If such requirements arise, developers often deploy a second (relational)
database and store the data twice; typically requiring an ETL process (Extract,
Transform, Load) to convert the data to the relational format. Also, NoSQL
document stores typically do not support complex transactions and referential
integrity constraints, so that data consistency now becomes the developer's
problem. Required 'work arounds' increase system complexity, reduce security,
allow inconsistencies and creates new problems like a point -in-time recovery
across different databases. Because of this added complexity the total cost of
ownership tends to be high and no longer delivers on the promise of simple NoSQL
products.

Using Oracle Database as a JSON Document Store

Oracle Database provides the same application-development experience as a
special-purpose NoSQL document store: It can store, manage, and index JSON
documents and it provides NoSQL-like document-store APIs similar to those of
common NoSQL-products. It even supports an API that is compatible to MongoDB
- one of the most popular document stores. Additionally (and unlike NoSQL
products), Oracle Database provides sophisticated SQL querying, reporting,
analytics and machine learning over JSON documents. This lets you integrate JSON
and relational data, joining them in the same query. And because JSON features are
integrated into Oracle Database, all of its enterprise features for availability,
security, scalability, performance, and manageability are fully supported for JSON
data.

Storing and Managing JSON Documents in Oracle Database

Oracle Database Release 21c adds a new SQL datatype 'JSON' that uses a binary
format optimized for fast queries and piecewise updates. Earlier releases like 19c
allow to store JSON documents using VARCHAR2, CLOB, or BLOB columns. An
"IS JSON" SQL check constraint ensures that the column contains only valid JSON
documents, allowing the database to understand that the column is being used as a
container for JSON documents.

Oracle’s JSON capabilities are focused on providing full support for schema-flexible
development and document-based storage. Consequently, although Oracle
Database knows that a given column contains JSON documents; those documents
are stored, indexed and queried without the database having any knowledge of
their internal structure (the key/value pairs). Developers are free to change the
structure of JSON documents as necessary.

Oracle Database provides full JSON support for all of its advanced features,
including disaster recovery, replication, compression, and encryption.
Additionally, products that support Oracle Database, such as Oracle Golden Gate
and Oracle Data Integrator, (as well as third party tools) seamlessly support JSON
documents stored in the database.

"Independent
benchmarking of
JSON databases based
on the Yahoo! Cloud
System benchmark
revealed that Oracle is
by far the leader in the
space, outperforming
all competitors […]"

Accenture technical report:
Increase agility and cut
development time with JSON and
Oracle, 2021
https://accntu.re/3Iezy00

4 Business / Technical Brief / JSON-based
Application Development
with Oracle Database
(and MongoDB compatibility) / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

https://accntu.re/3Iezy00
http:VARCHAR2,CLOB,orBLOBcolumns.An

Autonomous JSON Database

Oracle Database has supported JSON since release 12.1.0.2 and many JSON features
have been added since. A managed database cloud service called 'Autonomous
JSON Database' (AJD) provides the functionalities outlined in this technical report,
at a price point that is significantly lower than the other members of the
Autonomous Database family. AJD, on top of supporting document store APIs is
fully capable of running arbitrary SQL and storing non-JSON data in relational
tables. As AJD caters towards JSON developer there is a 20GB limit on non-JSON
data; if more is needed then an upgrade to the Autonomous Transaction Processing
(ATP) service can be done with a single mouse click. AJD is therefore not a
separate development environment requiring different skills or APIs.

As part of the Autonomous Database platform, AJD users fully benefit from the
self-driving, self-securing and self-repairing capabilities of the Autonomous
Database. Database uptime is maximized and auto-scaling (up to three times
configured CPU limits) provides maximum performance at minimum cost.

More information on the Autonomous JSON Database service can be found here:
https://www.oracle.com/autonomous-database/autonomous-json-database/

Oracle Database API for MongoDB for Autonomous Databases

All Oracle Autonomous Database - including the Autonomous JSON database - are
MongoDB compatible: tools, drivers and applications written for MongoDB can
connect to an Oracle Autonomous Database using a native API for MongoDB
which translates MongoDB database operations transparently into equivalent
SQL/JSON operations that are then executed on the Oracle Database. MongoDB
applications communicate through the MongoDB API if it they were still
connected to a MongoDB server. Developers can continue to use their MongoDB
skills and tools whilst now being able to also run SQL statements over the JSON
data in the MongoDB collections. This enables real-time SQL analytics and
machine learning over JSON data. It is also possible to generate JSON from
relational data and expose the result as a MongoDB-compatible collection such that
query results or relational data can easily be made accessible to MongoDB
applications.

The Oracle Database API for MongoDB also supports MongoDB tools like
Compass, mongo shell and mongoimport/mongorestore, therefore simplifying
migrations to Oracle.

As of today (Feb 2022) the Oracle Database API for MongoDB is initially only
available on shared Autonomous Databases. Details can be found here:
http://docs.oracle.com/en/database/oracle/mongodb-api/mgapi

Simple Oracle Document Access API (SODA)

As the 'Oracle Database API for MongoDB' is currently limited to shared
Autonomous Databases, Oracle provides another document-store API that is
available universally: in the cloud (all Oracle cloud databases) as well as on-
premise: The Simple Oracle Document Access (SODA) API. This API was designed
from the ground up to support schema-flexible application development and is
very similar to common No-Sql document store APIs like MongoDB's.

"Autonomous JSON is
the product that
MongoDB hopes to
have in the next
decade:
With Full ACID, full
parallel analytics, fast
updates, open
standards-based
JSON, full indexing,
and support for
everything from
blockchain to spatial
to graph, Oracle is
helping MongoDB
developers leap into
the future."

Mark Staimer
Wikibon

5 Business / Technical Brief / JSON-based
Application Development
with Oracle Database
(and MongoDB compatibility) / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

http://docs.oracle.com/en/database/oracle/mongodb-api/mgapi
http:machinelearningoverJSONdata.It
https://www.oracle.com/autonomous-database/autonomous-json-database

Using SODA, developers can work with JSON documents and collection without
having to learn SQL. Instead, database operations on collections and documents
can be called directly from a simple API - which is available for REST as well as
the popular programming languages Java, Python, JavaScript (Node.js), C, and
PL/SQL. SODA for REST is part of Oracle Rest Data Services (ORDS) and can be
invoked from any language that is capable of making REST/HTTP calls. Java,
Python, Node.js and C drivers are open source.

The conceptual model of SODA is very similar to MongoDB: application objects
are stored as JSON documents in collections. Documents are identified with a key.
Collections are identified with a name. Heterogenous collections allow storing
non-JSON objects, for example images. Multiple collections reside in a database
which a client program connects to.

Documents can be accessed using SODA commands, typically for simple CRUD
operations (create, read + find, update, delete) but also using SQL: reporting,
analytics or machine learning can easily be done one the same JSON data.

We illustrate the SODA API with examples for REST and Java. The SODA
documentation with links to the drivers and tutorials can be found here:
https://www.oracle.com/database/technologies/appdev/json.html

SODA Examples

The following Java code creates a collection 'orders' and inserts a JSON document.
It then retrieves the unique key (id) that SODA assigned to the document. SODA
can also accept user-generated keys.

OracleRDBMSClient client = new OracleRDBMSClient();
OracleDatabase db = client.getDatabase(conn);
OracleCollection orders = db.admin().createCollection("orders");
OracleDocument doc = orders.insertAndGet(db.createDocument('{…}'));
String id = doc.getKey();

As one can see the database, collections and documents map to Java classes which
have functions exposing their functionalities.

In SODA for REST, HTTP verbs such as PUT, POST, GET, and DELETE map to
SODA operations over documents. The URL contains the document's key or the
collection's name, together with the database host name and authorization
credentials. SODA for REST is an Oracle REST Data Service and relies on ORDS
for authentication and authorization. The examples omit this for space reasons.
The two operations, create collection and insert a document require a REST call
each. The second call yields a HTTP response with the assigned key (id):

"We use Autonomous
Database, JSON and
REST for modern fleet
management solutions.
JSON simplifies
application changes,
customization and is
naturally supported by
mobile devices.

Dr. Jürgen Stausberg, CEO
Satlog GmbH
www.satlog.de/en/home/

curl -X PUT http://<authUrlToOrds>/soda/latest/orders

curl -X POST -H "Content-type: application/json"
--upload-file document.json http://<urlToORDS>/soda/latest/orders

{
"items": [

{
"id": "A450557094D04957B36346F630CDDF9A",
"etag":"C13578001CBBC84022DCF5F7209DBF0E6DFFCC626E3B0400C3",
"lastModified": "2021-02-09T01:03:48.291462",
"created": "2021-02-09T01:03:48.291462"

}
],
"hasMore": false, "count": 1

}

6 Business / Technical Brief / JSON-based
Application Development
with Oracle Database
(and MongoDB compatibility) / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

www.satlog.de/en/home
https://www.oracle.com/database/technologies/appdev/json.html

------------------------------- -------- ----------------------------

The examples above show how a document-store differs from a traditional SQL
database: new documents are added to a collection as JSON objects. There are no
restrictions imposed by the database on the keys contained in those documents.
And the API calls are simpler for developers who may be accustomed to object-
oriented programming environments.
Note: a difference between SODA for REST and the other language drivers (for
example Java) is that REST is stateless and therefore all REST operations are
immediately committed, whereas the language drivers rely on database
connections which support transactions (multiple operations can be made atomic).

Now, let's use SODA to retrieve documents. SODA obviously supports fetching a
document by its key, but a more interesting way of querying data is to find all
documents that satisfy a search condition - expressed as a JSON document itself -
we call this Query By Example (QBE). Here is a very basic QBE that selects all
documents which have field "region" whose value is "north" and a second field
"quantity" whose value is 10 or greater:

{"region":"north", "quantity":{"$gte":10}}
(It is possible to paginate through large results using skip and limit.)

The following Java snippet performs a QBE search, limits the result to the first 100
document and prints all document keys. The variable 'qbe' holds above QBE.

OracleCollection coll = database.openCollection("orders");
OracleCursor results = coll.find().filter(qbe).limit(100).getCursor();
while (results.hasNext())
{

OracleDocument doc = results.next();
System.out.println(doc.getKey());

}

The REST parameter action=query indicates that a POST contains a QBE request.

curl -X POST -H "Content-type: application/json" --data
'{"region":"north", "quantity":{"$gte":10}}'
http://<urlToORDS>/ords/SCOTT/soda/latest/orders?action=query

Analytics and Reporting on JSON Content Stored in Oracle Database

As shown Oracle Database provides all of the advantages of a NoSQL document
store for application development. A major advantage of using Oracle Database is
that it also provides the full power of SQL to be applied to the same JSON
documents. This can be done because JSON collections are backed by regular tables
which are automatically created. They contain a JSON column to store the
document and additional columns for the unique key (ID) and metadata such as
the creation date. The orders collection is backed by a table:
SQL> describe "orders"

NAME NULL? TYPE

ID NOT NULL VARCHAR2(255)
CREATED_ON NOT NULL TIMESTAMP(6)
LAST_MODIFIED NOT NULL TIMESTAMP(6)
VERSION NOT NULL VARCHAR2(255)
JSON_DOCUMENT JSON

"Native JSON support is
significant because it
used to be the case that
one had to choose
between more efficient
JSON management in a
pure-play DBMS, or the
ability to integrate JSON
data with other data,
such as relational
data…now, that choice is
no longer necessary,
because Oracle Database
features both JSON
efficiency and integrated
data management."

Carl W Olofson
IDC
bit.ly/nativeJSON_IDC

7 Business / Technical Brief / JSON-based
Application Development
with Oracle Database
(and MongoDB compatibility) / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

http://<urlToORDS>/ords/SCOTT/soda/latest/orders?action=query

Oracle Database supports a wide range of SQL operators to work with JSON:

IS JSON Tests if an expression contains JSON
JSON_Value Extracts a scalar SQL value
JSON_Query Extracts a JSON fragment
JSON_Exists Tests if one or more conditions is met
JSON_TextContains Full text search on JSON fields
JSON_Table Projects JSON to relational model
JSON_Object[Agg] Generates a JSON object
JSON_Array[Agg] Generates a JSON array
JSON_Transform Modify JSON, e.g. as part of update
JSON_Mergepatch Merges two JSON objects
JSON_Dataguide Samples JSON to build schema

Many operators rely on path expressions to navigate inside the JSON data and
optionally perform filters using path predicates. Detailed description of operators
and path expression can be found in the JSON Developer Guide:
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/

For the following examples we assume that this collection/table contains purchase
order documents:

{
"PONumber": 1600,
"Reference": " ABULL-20140421",
"Requestor": "Alexis Bull",
"User": "ABULL",
"CostCenter": "A50",
"Instructions": {

"name": "Alexis Bull",
"Address": {

"street": "200 Sporting Green",
"city": "South San Francisco",
"state": "CA",
"zipCode": 99236,
"country": "United States of America"

},
"Phone": [

{
"type": "Office",
"number": "823-555-9969"

}
]

},
"Special Instructions": "Counter to Counter",
"LineItems": […]

}

The easiest way to use SQL to query JSON data is the simple dot notation which
allows to navigate the JSON structure and select values.

select j.PO_DOCUMENT.Reference,
j.PO_DOCUMENT.Requestor,
j.PO_DOCUMENT.CostCenter,
j.PO_DOCUMENT.Instructions.Address.city

from J_PURCHASEORDER j
where j.PO_DOCUMENT.PONumber = 1600;

REFERENCE REQUESTOR COSTCENTER SHIPPINGINSTRUCTIONS
ABULL-20140421 Alexis Bull A50 South San Francisco

"We heavily use JSON
whenever faced with
unpredictable data from
external APIs or custom
user extensions. We
decided to use Oracle
Database as a document
store that also supports
SQL analytics over
JSON and Blockchain."

Peter Merkert, CTO
Retraced
www.retraced.co

8 Business / Technical Brief / JSON-based
Application Development
with Oracle Database
(and MongoDB compatibility) / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

http:www.retraced.co
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn

--

JSON_TABLE is a table function commonly used to project JSON to the relational
model, in order to access it as if it was a table. This has many benefits:

• The relational model is highly suitable for analytical queries, in particular
for warehousing-style queries were dimensions and facts are stored in
separate collections. With materialized views it is even possible to
'precompute' these joins.

• Tools that operate on the relational model can be used to work with
JSON, for example report builders, dashboards and machine learning can
be applied directly over JSON data.

• SQL language and tuning skills can be applied by data analysts, there is no
need to manually map JSON data to tables or rite custom code.

JSON_TABLE uses a set of JSON path expressions to project content from a JSON
document as relational columns in a virtual table. You use a JSON_TABLE
expression in the FROM clause of a SQL query, in the same way you would use a
relational table. The following example projects a set of columns from a collection
of JSON documents. Each JSON path expression returns a single scalar value from a
document, so one row of the virtual table is generated for each document.
select jt.*
from J_PURCHASEORDER p,
JSON_TABLE(p.PO_DOCUMENT ,'$'columns

PO_NUMBER NUMBER(10) path '$.PONumber',
REFERENCE VARCHAR2(30 CHAR) path '$.Reference',
REQUESTOR VARCHAR2(32 CHAR) path '$.Requestor',
USERID VARCHAR2(10 CHAR) path '$.User',
COSTCENTER VARCHAR2(16 CHAR) path '$.CostCenter',
TELEPHONE VARCHAR2(16 CHAR) path '$.Instructions.Phone[0].number'

) jt
where PO_NUMBER > 1599 and PO_NUMBER < 1602;

PO_NUMBER REFERENCE REQUESTOR USERID COSTCENTER TELEPHONE

1600 ABULL-20140421 Alexis Bull ABULL A50 909-555-7307
1601 ABULL-20140423 Alexis Bull ABULL A50 909-555-9119

2 rows selected.

JSON_TABLE also supports JSON documents with nested arrays.: the NESTED
PATH iterates over the nested “LineItems” array: Values outside the nested array
are being repeated (PO_NUMBER) as they apply for the whole nested array.

select jt.*
from J_PURCHASEORDER p,

JSON_TABLE(p.PO_DOCUMENT, '$' columns(
PO_NUMBER NUMBER(10) path '$.PONumber',
REFERENCE VARCHAR2(30 CHAR) path '$.Reference',
NESTED PATH '$.LineItems[*]'columns(

ITEMNO NUMBER(16) path '$.ItemNumber',
DESCRIPTION VARCHAR2(32) path '$.Part.Description',
UPCCODE VARCHAR2(14) path '$.Part.UPCCode',
QUANTITY NUMBER(5,4) path '$.Quantity',
UNITPRICE NUMBER(5,2) path '$.Part.UnitPrice')

)
)jt
where PO_NUMBER > 1599 and PO_NUMBER < 1602;

PO_NUMBER REFERENCE ITEMNO DESCRIPTION UPCCODE QUANTITY UNITPRICE

"The ability to run all the
critical enterprise
database loads—from
analytical to trans-
actional loads—in
autonomous fashion, as
well as support for ML,
Graph, IoT, JSON and
more, sets the Oracle
Autonomous Database
apart in the market for
databases right now.
Would you rather have
nine specialized
databases, each with its
own separate security
profile and management
learning curve, or a
single database that
operates with all types of
datasets autonomously?"

Holger Mueller
Constellation
bit.ly/ADB_Constellation

9 Business / Technical Brief / JSON-based
Application Development
with Oracle Database
(and MongoDB compatibility) / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

1600 ABULL-20140421 1 One Magic Christmas 13131092 9 19.95
1600 ABULL-20140421 2 Lethal Weapon 8539162 5 19.95
1601 ABULL-20140423 1 Star Trek 34 9736600 1 19.95
1601 ABULL-20140423 2 New Blood 4339605 8 19.95
1601 ABULL-20140423 3 The Bat 1313111 3 19.95
1601 ABULL-20140423 4 Standard Deviants 6318650 7 27.95
1601 ABULL-20140423 5 Darkman 2 2519203 7 19.95

7 rows selected

With JSON_TABLE arbitrary complex JSON structures can be projected to the
relational model. A JSON_TABLE query can be exposed as a view - for any
consumer of the view the JSON data is accessed like a conventional table consisting "Autonomous JSON
of just rows and column with scalar value. This also enables the use or relational helps consolidate
tools that do not support the JSON data model. database footprint
JSON Dataguide and reduces
One common use of JSON_TABLE is to create relational views which allow users distractions that
and tools that have no understanding of JSON to work with documents. plague app dev
JSON_Dataguide can automate the view creation, by sampling all JSON documents teams…. making them
in a collection and identifying field names and data types. The following example more productive."
shows how the view 'order_view' is auto- created. The view definition contains a

Mark Peters JSON_Table expression similar to the ones above.
ESG
bit.ly/AJD_ESG declare

dg CLOB; -- this variable stores the derived JSON schema
begin

-- JSON_Dataguide samples all documents and builds a JSON schema
select JSON_Dataguide(json_document, dbms_json.FORMAT_HIERARCHICAL) into dg
from orders;

-- using this JSON schema a JSON_TABLE view can be automatically created
dbms_json.create_view('order_view', 'orders', json_document', dg);

end;
/

JSON Generation

Oracle Database is also able to generate new JSON data - from relational as well as
from JSON data. This allows, for example, the generation of a report in JSON
format.

The following example show how data in the sample tables employees and
departments is joined and the result returned as a new JSON document.

select JSON_ObjectAgg(d.name VALUE (
select JSON_ArrayAgg(JSON_Object (e.name))
from employees e
where e.department_no = d. department_no)

from departments d;

{"ACCOUNTING":[
{"name":"CLARK"},
{"name":"KING"},
{"name": "MILLER"}

],
"RESEARCH":[

{"name": "SMITH"},
{"name": "JONES"},

...

10 Business / Technical Brief / JSON-based
Application Development
with Oracle Database
(and MongoDB compatibility) / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

Note that the SQL/JSON generation operators are simply added to an otherwise
conventional SQL query, showing again how well JSON and tables can be used
together in Oracle Database. It is possible also to insert the generated documents
into a collection to make it accessible to SODA or the MongoDB API.

Conclusion: Why Use Oracle Database as a Document Store?

This technical report has described Oracle Database features that support schema-
flexible development using JSON documents stored inside collections. Today,
many NoSQL systems support this development paradigm. Why should an
organization choose to use Oracle Database instead of a NoSQL system?

Oracle Database was built for enterprise applications. Many capabilities that are
taken for granted with a modern enterprise class relational database are simply not
provided by the typical NoSQL document store:

• Sophisticated indexing, query optimization and parallel execution

• Fully ACID compliant transactions without size/duration limits.

• Advanced security features such as data masking and key management

• Data management features such as compression and data archiving

• Robust backup capabilities with object-level point-in-time recovery

• Built-in procedural languages and server-side functions

NoSQL systems typically lack the functionality for reporting and analytical
operations. As the volume and value of the JSON documents increases, there is a
growing need to be able to perform cross-document reporting and analysis.
Developers previously had to export data from NoSQL and apply a complex ETL
(extract, transform, and load) process to make it available to a data store that
supports flexible reporting. While many NoSQL systems are now recognizing the
need for a tabular, structured format for accessing data, and some are even
introducing basic SQL-like languages, Oracle Database delivers the full power of
mature ISO-standard SQL to JSON document stores today, with its advanced SQL
analytic capabilities and scalable parallel SQL infrastructure.

Organizations using NoSQL document stores also have to face the issue that their
data can become siloed: their relational data is managed by one database and their
JSON documents are managed by another. Using a separate data store for JSON
documents means that when it becomes necessary to combine information that has
been stored as JSON with other kinds of data that the organization manages (which
typically includes relational data), special application code needs to be developed
and maintained to accomplish even rudimentary tasks.

The Oracle Converged Database delivers document-store functionality designed
for application developers, while allowing these application developers to leverage
all of the other benefits of Oracle’s mature database platform

"Oracle Autonomous
JSON Database is
between 2.3 and 3.2
times faster than
MongoDB Atlas and
between 2.0 and 4.1
times faster than AWS
DocumentDB"

David Floyer
Wikibon
https://bit.ly/AJD_Wikibon

11 Business / Technical Brief / JSON-based
Application Development
with Oracle Database
(and MongoDB compatibility) / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

https://bit.ly/AJD_Wikibon

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2022, Oracle and/or its affiliates. All rights reserved. This document is
provided for information purposes only, and the contents hereof are subject to change
without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied
warranties and conditions of merchantability or fitness for a particular purpose. We
specifically disclaim any liability with respect to this document, and no contractual
obligations are formed either directly or indirectly by this document. This document may
not be reproduced or transmitted in any form or by any means, electronic or mechanical,
for any purpose, without our prior written permission.

This device has not been authorized as required by the rules of the Federal
Communications Commission. This device is not, and may not be, offered for sale or lease,
or sold or leased, until authorization is obtained.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group. 0120

Disclaimer: If you are unsure whether your data sheet needs a disclaimer, read the revenue
recognition policy. If you have further questions about your content and the disclaimer
requirements, e-mail REVREC_US@oracle.com.

12 Business / Technical Brief / JSON-based
Application Development
with Oracle Database
(and MongoDB compatibility) / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

mailto:REVREC_US@oracle.com
http:blogs.oracle.com
http:oracle.com

