

Client Failover Best Practices for
Highly Available Oracle
Databases: Oracle Database 11g
Release 2

Oracle Maximum Availability Architecture White Paper

February 2011

Maximum

Availability

Architecture

Oracle Best Practices For High Availability

2

1 http://www.oracle.com/goto/maa

3

Unplanned failures of an Oracle Database instance fall into three general categories:

1. A server failure or other fault that causes the crash of an individual Oracle instance in an

Oracle RAC database. To maintain availability, application clients connected to the failed

instance must be quickly notified of the failure and immediately establish a new connection to

the surviving instances of the Oracle RAC database. Fast Application Notification (FAN) will

break connected clients out of TCP timeout, and Transparent Application Failover (OCI

clients) or Fast Connection Failover (JDBC clients) will automatically fail clients over to

database services running on surviving database instances. Detailed best practices for this

category of failure are described in, Automatic Workload Management with Oracle Real Application

Clusters 11g Release 22, and the Oracle Real Application Clusters Administration and Deployment Guide3.

2. A complete-site failure that results in both the application and database tiers being unavailable.

To maintain availability users must be redirected to a secondary site that hosts a redundant

application tier and a synchronized copy of the production database. MAA best practice is to

maintain a running application tier at the standby site to avoid startup time and to use Data

Guard to maintain the synchronized copy of the production database. A WAN traffic manager

is used to execute a DNS failover (either manually or automatically) to redirect users to the

application tier at standby site while a Data Guard failover transitions of the standby database

to the primary production role. See Oracle Database High Availability Best Practices4

documentation for information on automating complete site failover.

3. A partial-site failure where the primary database (a single-instance database or all nodes in an

Oracle RAC database) has become unavailable but the application tier at the primary site

remains intact. If there is a local Data Guard standby database then all that is required to

maintain availability is to redirect the application tier to the new primary database after a Data

Guard failover. The same holds true when there is a remote Data Guard standby database if

the surviving application tier can deliver acceptable performance using a remote connection

2 http://www.oracle.com/technetwork/database/clustering/overview/awm11gr2-130711.pdf

3 http://download.oracle.com/docs/cd/E11882_01/rac.112/e16795/hafeats.htm#BABECAFD

4 http://download.oracle.com/docs/cd/B19306_01/server.102/b25159/outage.htm#BABHCAIA

4

after a database failover has occurred. Similar to the Oracle RAC use case, FAN will break

connected clients out of TCP timeout, and Transparent Application Failover (OCI clients) or

Fast Connection Failover (JDBC clients) will automatically fail applications over to the new

primary database. This paper provides best practices for automatic application failover to a

new primary database for this category of outage.

Database Services are foundational to the application failover best practices described in this

paper. If you do not already have a thorough understanding of database services please review

the Oracle Database Net Services Administrator‟s Guide5 before proceeding. Similarly, you must

have an understanding of the highly available application framework that Oracle provides for

both single instance databases using Oracle Restart6, and for Oracle RAC databases. Please see

the following for details on this framework: Automatic Workload Management with Oracle Real

Application Clusters 11g Release 27 and the Oracle Real Application Clusters Administration and

Deployment Guide8.

The best practices described in this paper require that the Data Guard configuration be managed

by the Data Guard Broker9. The Data Guard Broker is responsible for sending FAN events to

client applications in order to clean up their connections to the down database and reconnect to

the new production database. In addition, Oracle Clusterware must be installed and active on the

primary and standby sites for both single instance (using Oracle Restart) and Oracle RAC

databases. The Data Guard broker will coordinate with Oracle Clusterware to properly fail over

role-based services to a new primary database after a Data Guard failover has occurred.

In order to receive and react to FAN events client applications must meet certain requirements:

JDBC applications:

 The implicit connection cache is enabled.

5 http://download.oracle.com/docs/cd/E11882_01/network.112/e10836/concepts.htm#NETAG175

6 http://download.oracle.com/docs/cd/E11882_01/server.112/e17120/restart001.htm#ADMIN13388

7 http://www.oracle.com/technetwork/database/clustering/overview/awm11gr2-130711.pdf

8 http://download.oracle.com/docs/cd/E11882_01/rac.112/e16795/hafeats.htm#RACAD7136

9 http://www.oracle.com/pls/db112/to_toc?pathname=server.112/e17023/toc.htm

5

 The application uses service names to connect to the database.

 The underlying database has Oracle Database 11g Real Application Clusters (Oracle RAC)

capability or Oracle Restart (for single instance databases).

 Oracle Notification Service (ONS) is configured and available on the node where JDBC is

running.

 The Java Virtual Machine (JVM) in which your JDBC instance is running must have

oracle.ons.oraclehome set to point to your ORACLE_HOME.

 For more information see the Oracle Database JDBC Developer‟s Guide.10

OCI applications:

 An Oracle RAC environment with Oracle Clusterware set up and enabled or a single node

(non-Oracle RAC) database with Oracle Restart..

 The application must have been linked with the threads library.

 The OCI environment must be created in OCI_EVENTS and OCI_THREADED mode.

 For more information see the Oracle Call Interface Programmer‟s Guide.11

ODP .Net:

 Namespace: Oracle.DataAccess.Client, Assembly: Oracle.DataAccess.dll

 Microsoft .NET Framework Version 2.0 or later.

 For more information see the Oracle Database Administrator‟s Guide.12

10 http://download.oracle.com/docs/cd/E11882_01/java.112/e16548/fstconfo.htm#CIHJBFFC

11 http://download.oracle.com/docs/cd/E11882_01/appdev.112/e10646/oci09adv.htm#sthref1523

12http://download.oracle.com/docs/cd/E11882_01/server.112/e17120/restart002.htm#ADMIN13196

6

At a high level, automating client failover in a Data Guard configuration includes relocating

database services to the new primary database as part of a Data Guard failover, notifying clients

that a failure has occurred in order to break them out of TCP timeout, and redirecting clients to

the new primary database.

The sections below describe how to create role based database services for both OCI and JDBC

applications. Subsequent sections provide detailed configuration steps for enabling OCI and

JDBC, OLE DB and ODP .Net application clients to receive FAN notifications and reconnect

to a new primary database. If your application client does not support FAN, then please refer to

the section of this paper titled Automatic Failover for Applications that do not Support FAN.

Beginning with Data Guard 11g Release 2 you can automatically control the startup of database

services on primary and standby databases by assigning a database role [-l {[PRIMARY] |

[PHYSICAL_STANDBY] | [LOGICAL_STANDBY] |[SNAPSHOT_STANDBY]}] to each

service.13 A database service will automatically start upon database startup if the management

policy of the service is AUTOMATIC and if one of the roles assigned to that service matches the

current role of the database.

Services must be configured with the Server Control (SRVCTL) utility identically on all databases

in a Data Guard configuration. In the following examples, a service named oltpworkload is

configured to be active when the database Austin is in the primary role (-l PRIMARY). The

same service is also configured on the standby database Houston so that is started whenever

Houston functions in the primary role.

Similarly, a second service named reports is configured to be started when Austin or

Houston are functioning in the standby database role (-l PHYSICAL_STANDBY). The reports

service provides real-time reporting using Active Data Guard (the standby database is open read-

only at the same time it is applying redo received from the primary database).

13 http://download.oracle.com/docs/cd/E11882_01/rac.112/e16795/hafeats.htm#RACAD7126

7

The following example shows how to create database services for OCI clients with HA

notifications and server side TAF enabled. The example refers to an Oracle RAC primary and

standby database. The same procedures are followed for single-instance databases using Oracle

Restart.

1. On the primary and standby hosts create the service (oltpworkload) that the application will

use to connect to the database. The service should be created such that it is associated with and

runs on the database when it is in the ‘PRIMARY’ database role:

Primary cluster:

srvctl add service -d Austin -s oltpworkload -r ssa1,ssa2,ssa3,ssa4 -l

PRIMARY -q TRUE -e SESSION -m BASIC -w 10 -z 150

Standby cluster:

srvctl add service -d Houston -s oltpworkload -r ssb1,ssb2,ssb3,ssb4 -

l PRIMARY -q TRUE -e SESSION -m BASIC -w 10 -z 150

2. If the standby is also going to support read-only reporting applications, then create a service

specific for this workload (reports) that will start when the database is in PHYSICAL_STANDBY

role.

Primary cluster:

srvctl add service -d Austin -s reports -r ssa1,ssa2,ssa3,ssa4 -l

PHYSICAL_STANDBY -q TRUE -e SESSION -m BASIC -w 10 -z 150

Standby cluster:

srvctl add service -d Houston -s reports -r ssb1,ssb2,ssb3,ssb4 -l

PHYSICAL_STANDBY -q TRUE -e SESSION -m BASIC -w 10 -z 150

In addition to creating the database service “reports” on both clusters, the following SQL

statement must also be run on the primary database so that the service definition is transmitted

via the redo stream and applied to the physical standby database:

SQL run at the Primary database:

EXECUTE DBMS_SERVICE.CREATE_SERVICE('reports', 'reports', NULL,

NULL,TRUE, 'BASIC', 'SESSION', 150, 10, NULL);

The above examples illustrate how to create role based services with server side Transparent

Application Failover (TAF) enabled. Any OCI client that connects to a service that has the TAF

attributes set implicitly inherits those attributes. There is no need to configure TAF at the client

side in the tnsnames.ora file. The following table explains the TAF attributes being used:

8

-e {NONE

|SESSION |

SELECT}

-m {NONE |

BASIC}

-w integer

-z integer

-q {TRUE |

FALSE}

Do not enable HA notifications or TAF on services for JDBC database services that are FAN

enabled. The following example illustrates creating the same services as above for JDBC

applications:

1. Primary database service performing read/write workload:

Primary cluster:

srvctl add service -d Austin -s oltpworkload -r ssa1,ssa2,ssa3,ssa4 -l

PRIMARY -q FALSE -e NONE -m NONE -w 0 -z 0

9

Standby cluster - JDBC:

srvctl add service -d Houston -s oltpworkload -r ssb1,ssb2,ssb3,ssb4 -

l PRIMARY -q FALSE -e NONE -m BASIC -w 0 -z 0

2. Read-Only database services for an Active Data Guard standby database:

Primary cluster – JDBC r/o service:

srvctl add service -d Austin -s reports -r ssa1,ssa2,ssa3,ssa4 -l

PHYSICAL_STANDBY -q FALSE -e NONE -m BASIC -w 0 -z 0

Standby cluster – JDBC r/o service:

srvctl add service -d Houston -s reports -r ssb1,ssb2,ssb3,ssb4 -l

PHYSICAL_STANDBY -q FALSE -e NONE -m BASIC -w 0 -z 0

Note that the service attributes for HA notifications or TAF described in the previous examples

have been NOT been enabled for JDBC clients, this is because doing so would interfere with

ONS processing for JDBC clients.

In addition to creating services on both clusters the following SQL statement must be run on the

primary database so that service definitions are also applied to the standby database:

EXECUTE DBMS_SERVICE.CREATE_SERVICE(

 service_name => 'reports'

 network_name => 'reports'

 goal => 'NULL'

 dtp => 'NULL'

 aq_ha_notifications => 'FALSE'

 failover_method => 'NONE'

 failover_type => 'NONE'

 failover_retries => 0

 failover_delay => 0

 clb_goal => 'NULL');

The examples above describe service definitions that are unique for either OCI or JDBC clients.

Each type of client uses a different HA notification framework (OCI clients use Oracle AQ and

JDBC clients use ONS). This means that different service definitions (one for OCI and one for

JDBC) will need to be created to enable both OCI and JDBC clients to connect to the same

10

database service. Building on the example of the service oltpworkload from above, service

definitions would be as follows to enable access by both OCI and JDBC clients:

Primary cluster:

srvctl add service -d Austin -s oltpworkload_oci -r

ssa1,ssa2,ssa3,ssa4 -l PRIMARY -q TRUE -e SESSION -m BASIC -w 10 -z

150

srvctl add service -d Austin -s oltpworkload_jdbc -r

ssa1,ssa2,ssa3,ssa4 -l PRIMARY -q FALSE -e NONE -m NONE -w 0 -z 0

Standby cluster:

srvctl add service -d Houston -s oltpworkload_oci -r

ssb1,ssb2,ssb3,ssb4 -l PRIMARY -q TRUE -e SESSION -m BASIC -w 10 -z

150

srvctl add service -d Houston -s oltpworkload_jdbc -r

ssb1,ssb2,ssb3,ssb4 -l PRIMARY -q FALSE -e NONE -m BASIC -w 0 -z 0

The following sections describe how to configure OCI and JDBC client applications to enable

FAN support. This allows application clients to receive notification that a failure has occurred,

break them out of TCP timeout, and reconnect to database services running on the new primary

database.

If your application client does not support FAN, then please refer to the section of this paper

titled Automatic Failover for Applications that do not Support FAN.

1. Enable FAN for OCI clients by initializing the environment with the OCI_EVENTS

parameter, as in the following example:

OCIEnvCreate(...OCI_EVENTS...)

2. Link the OCI client applications with thread library libthread or libpthread.

3. Your application will need the ability to check if an event has occurred by using code similar to

that used in the following example:

void evtcallback_fn(ha_ctx, eventhp)

...

printf("HA Event received.\n");

 if (OCIHandleAlloc((dvoid *)envhp, (dvoid **)&errhp, (ub4)

OCI_HTYPE_ERROR,

11

 (size_t) 0, (dvoid **) 0))

 return;

 if (retcode = OCIAttrGet(eventhp, OCT_HTYPE_EVENT, (dvoid

*)&srvhp, (ub4 *)0,

 OCI_ATTR_HA_SRVFIRST, errhp))

 checkerr (errhp, (sword)retcode;

 else {

 printf("found first server handle.\n");

 /*get associated instance name */

 if (retcode = OCIAttrGet(srvhp, OCI_HTYPE_SERVER, (dvoid

*)&instname,

 (ub4 *)&sizep, OCI_ATTR_INSTNAME,

errhp))

 checkerr (errhp, (sword)retcode);

 else

 printf("instance name is %s.\n", instname);

4. Clients and applications can register a callback that is invoked whenever a high availability

event occurs, as shown in the following example:

/*Registering HA callback function */

 if (checkerr(errhp, OCIAttrSet(envhp, (ub4) OCI_HTYPE_ENV,

 (dvoid *)evtcallback_fn, (ub4) 0,

 (ub4)OCI_ATTR_EVTCBK, errhp)))

 {

 printf("Failed to set register EVENT callback.\n");

 return EX_FAILURE;

 }

 if (checkerr(errhp, OCIAttrSet(envhp, (ub4) OCI_HTYPE_ENV,

 (dvoid *)evtctx, (ub4) 0,

 (ub4)OCI_ATTR_EVTCTX, errhp)))

 {

 printf("Failed to set register EVENT callback context.\n");

 return EX_FAILURE;

 }

return EX_SUCCESS;

After registering an event callback and context, OCI will call the registered function once for

each high availability event.

5. Configure an Oracle Net alias that the OCI application will use to connect to the database.

The Oracle Net alias should specify both the primary and standby SCAN hostnames. For best

performance while creating new connections the Oracle Net alias should have

LOAD_BALANCE=OFF for the DESCRIPTION_LIST so that DESCRIPTIONs are tried in an

ordered list, top to bottom. With this configuration the second DESCRIPTION is only attempted

if all connection attempts to the first DESCRIPTION have failed.

SALES=

 (DESCRIPTION_LIST=

12

 (LOAD_BALANCE=off)

 (FAILOVER=on)

 (DESCRIPTION=

(CONNECT_TIMEOUT=5)(TRANSPORT_CONNECT_TIMEOUT=3)(RETRY_COUNT=3)

 (ADDRESS_LIST=

 (LOAD_BALANCE=on)

 (ADDRESS=(PROTOCOL=TCP)(HOST=Austin-scan)(PORT=1521)))

 (CONNECT_DATA=(SERVICE_NAME=oltpworkload)))

 (DESCRIPTION=

(CONNECT_TIMEOUT=5)(TRANSPORT_CONNECT_TIMEOUT=3)(RETRY_COUNT=3)

 (ADDRESS_LIST=

 (LOAD_BALANCE=on)

 (ADDRESS=(PROTOCOL=TCP)(HOST= Houston-scan)(PORT=1521)))

 (CONNECT_DATA=(SERVICE_NAME=oltpworkload))))

When a new connection is made using the above Oracle Net alias the following logic is used:

a) Oracle Net contacts DNS and resolves Austin-scan to a total of 3 IP addresses.

b) Oracle Net randomly picks one of the 3 IP address and attempts to make a connection. If the

connection attempt to the IP address does not respond in 3 seconds

(TRANSPORT_CONNECT_TIMEOUT) the next IP address is attempted. All 3 IP addresses will be

tried a total of four times (initial attempt plus RETRY_COUNT in the above example).

c) If the connection to primary site is unsuccessful, it then contacts DNS and resolves Houston-

scan to 3 addresses.

d) The same sequence is performed for the standby Houston-scan as it was for the Austin-scan.

Note that the above is true only for Oracle Database 11g Release 2 clients. For additional

information on SCAN consult the Oracle Real Application Clusters 11g Release 2 Overview of

SCAN technical whitepaper14.

Additional information on the Oracle Net parameters used in the above alias:

14 http://www.oracle.com/technetwork/database/clustering/overview/scan-129069.pdf

13

 LOAD_BALANCE is ON by default for DESCRIPTION_LIST only. This parameter by default is

OFF for an address list within a DESCRIPTION. Setting this ON for a SCAN-based address

implies that new connections will be randomly assigned to one of the 3 SCAN-based IP

addresses resolved by DNS.

 In certain situations, round-robin address assignment by DNS may not be possible - see the

Oracle Database 11.2.0.2 Readme. The best practice to ensure connect-time client load

balancing across the 3 SCAN IP addresses is to explicitly specify LOAD_BALANCE=on. Note

that this behavior is independent of server-side load balancing which will occur subsequently,

after the initial SCAN listener receives the connection request.

 The default value for the FAILOVER parameter is ON for an address list within a DESCRIPTION.

This impacts the 3 SCAN IP addresses the same way as if those 3 IP addresses were listed

explicitly in the connect descriptor. This means that if the initial connection requests to the

first randomly-assigned SCAN IP address fails, the connection will failover to another SCAN

IP address, and will continue to do so, till it iterates the complete address list. Note that this

parameter is relevant only to new connections. Failover of existing connections is handled by

TAF, which is controlled by the separate FAILOVER_MODE parameter.

 The CONNECT_TIMEOUT parameter is the time to connect to the database instance providing

the requested service, and includes the time to establish a TCP connection to the listener. The

TCP duration is controlled by TRANSPORT_CONNECT_TIMEOUT, which has a default value of

60 seconds. If both timeouts are specified, it is recommended that CONNECT_TIMEOUT be set

to a value slightly greater than TRANSPORT_CONNECT_TIMEOUT. The timeout interval is

applicable for each ADDRESS in an ADDRESS_LIST, and each IP address to which a host name

is mapped. Set the CONNECT_TIMEOUT parameter to the maximum amount of time (in

seconds) to wait for a response from an address before skipping to the next address. A setting

of three seconds is recommended and is acceptable in most cases. Do not set this parameter

to fewer than three seconds.

The equivalent global parameter in sqlnet.ora is SQLNET.OUTBOUND_CONNECT_TIMEOUT. If

the same timeout value is sufficient for all connect strings, it would be simpler to set the global

parameter. Otherwise, a separate setting can be done for each connect string.

The equivalent global parameter for TRANSPORT_CONNECT_TIMEOUT is

TCP.CONNECT_TIMEOUT. Both these parameters are applicable only when the protocol is

TCP.

 The RETRY_COUNT parameter specifies the number of times an address list is traversed before

the new connection attempt is terminated. The default value is 0. With respect to SCAN, with

FAILOVER = on, setting this RETRY_COUNT parameter to a value of 2 (for example), means

the 3 SCAN IP addresses are traversed thrice (i.e. 3*3=9 connect attempts), before the

connection is terminated:

14

o When the connection request initially comes in, the first randomly assigned IP

address tries to service that request, followed by the two remaining IP

addresses (this behavior is controlled by the FAILOVER parameter);

o The retries then kick in and the list of 3 IP addresses is tried two more times.

RETRY_COUNT is only supported at DESCRIPTION level in connect string, but

not at global (i.e. sqlnet.ora) level.

1. Configure JDBC clients to use a connect descriptor that includes an address list that in turn

includes the SCAN address for each site and connects to an existing service. Do not configure

TAF with Fast Connection Failover for JDBC thick clients as TAF processing will interfere with

FAN ONS processing.

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource")

;

 pds.setUser("system");

 pds.setPassword("oracle");

 String dbURL =

 "jdbc:oracle:thin:@" +

 "(DESCRIPTION_LIST=" +

 “(LOAD_BALANCE=off)” +

 "(FAILOVER=on)" +

 "(DESCRIPTION=" +

 "(ADDRESS_LIST=" +

 "(LOAD_BALANCE=on)" +

 "(ADDRESS=(PROTOCOL=TCP)(HOST=Austin-scan)(PORT=1521)))" +

 "(CONNECT_DATA=(SERVICE_NAME=oltpworkload)))" +

 "(DESCRIPTION=" +

 "(ADDRESS_LIST=" +

 "(LOAD_BALANCE=on)" +

 "(ADDRESS=(PROTOCOL=TCP)(HOST= Houston-scan)(PORT=1521)))" +

 "(CONNECT_DATA=(SERVICE_NAME=oltpworkload))))";

 System.out.println("Url=" + dbURL);

 pds.setURL(dbURL);

2. The JDBC client must set the oracle.net.ns.SQLnetDef.TCP_CONNTIMEOUT_STR

property. This property enables the JDBC client to quickly traverse an ADDRESS_LIST in the

15

event of a failure. For example, if the client attempts to connect to a host that is unavailable, the

connection attempt will be bounded to the time specified by the

SQLnetDef.TCP_CONNTIMEOUT_STR property after which the client attempts to connect to the

next host in the ADDRESS_LIST. The behavior continues for each host in the ADDRESS_LIST

until a connection is made. Setting the property to a value of 3 seconds will suffice in most

environments. It is important to note that the SQLnetDef.TCP_CONNTIMEOUT_STR property

should be set on the data source and not on the implicit connection cache.

 Properties prop = new Properties();

 prop.put(oracle.net.ns.SQLnetDef.TCP_CONNTIMEOUT_STR, ""+5000);

// 5000ms

 pds.setConnectionProperties(prop);

3. Enable Fast Connection Failover (FCF) and configure the JDBC application to connect to all

ONS daemons for both the primary and standby clusters using the setONSConfiguration

property. The setONSConfiguration property should point to all primary and standby ONS

daemons.

pds.setONSConfiguration("nodes=hasun05:6200,hasun06:6200,hasun07:6200,

hasun08:6200");

pds.setFastConnectionFailoverEnabled(true);

4. By default the JDBC application will randomly pick three hosts from the

setONSConfiguration property and create connections to those three ONS daemons. This

default must be changed so that connections are made to all ONS daemons. This is done by

setting the following property when the JDBC application is invoked to the total number of

ONS daemons in the configuration:

 java -Doracle.ons.maxconnections=4

The following sections describe how to configure OLE DB and ODP .Net client applications to

enable FAN support and to receive HA notifications. This allows application clients to receive

notification that a failure has occurred, break them out of TCP timeout, and reconnect to

database services running on the new primary database.

If your application client does not support FAN, then please refer to the section of this paper

titled Automatic Failover for Applications that Do Not Support FAN.

16

To configure automatic client failover for OLE DB and ODP .Net clients, first perform the

same configuration steps described above for OCI Clients and then perform the steps provided

below.

1. Set the OraOLEDB connection string attribute: DBNotifications = true

This can also be set via the registry.

2. Set the OraOLEDB connection string attribute: DBNotificationPort = [unsigned

integer]

Setting the DBNotificationPort attribute allows a specific port to be assigned for use. If this

attribute is not set then the port is randomly selected.

Follow the configuration steps described in the section “Connection Optimization for Oracle

RAC and Data Guard” in the Oracle Data Provider for .NET Developers Guide15.

PeopleSoft PeopleTools version 8.50.09 and higher supports FAN. This enables PeopleSoft

applications to automatically failover database connections to a surviving instance in an Oracle

RAC cluster or to a new primary database in a Data Guard configuration should its database

connection be lost. In the event of a RAC instance failure, primary database failure, or a

shutdown/restart of the Oracle Database, PeopleSoft servers and clients continue running and

users are not required to login a second time.

The same OCI configuration steps described earlier in this paper are used for PeopleSoft

applications.

15 http://download.oracle.com/docs/cd/E11882_01/win.112/e18754/featConnecting.htm#sthref202

17

Refer to My Oracle Support Note 876292.1for important prerequisites for automatic client

failover for PeopleSoft

When properly configured, the failover process is as follows:

 When either a manual or automatic database failover is initiated, the standby database

transitions to the primary database role.

 The PeopleSoft database service appropriate to the primary role is automatically started using

Oracle Database 11.2 role-specific services, making the new primary database immediately

available to accept new connections.

 As part of the database service startup, the AQ_HA_NOTIFICATIONS parameter causes a FAN

event to be sent to all previously connected clients.

 Upon receipt of the FAN event, the clients will break their existing TCP connections to the

failed database instance and automatically failover by going to the next host in the

TNSNAMES.ORA connect alias address list until they establish a connection to the new primary

database.

The following sections describe how to configure automatic failover for applications that do not

support FAN events. This includes a number of applications from Oracle (e.g. Siebel and Oracle

E-Business Suite), and application servers that have not yet implemented FAN support. Even

though FAN events cannot be used in such cases, applications can still be configured for

efficient failover by using timeouts and application retries

For OCI applications follow the steps described in the above section titled Configuring Automatic

Failover for OCI Clients with the exception of the steps relating to enabling FAN support (steps 1

through 4). Given that your client does not support FAN, you will use TCP timeouts at either

the OS or Oracle Net level to break client connections out of a TCP hang.

1. Configure your operating system for efficient TCP timeouts on the hosts that run the

application layer. The OS TCP timeouts should be set to the amount of time it takes for the

database layer to failover and the database services to be started. Consult your operating system

manuals for how to properly configure TCP timeout.

2. Application retries are automated by configuring server-side TAF as described in the above

section titled Configuring OCI Database Services. If the application cannot use TAF then the

application must be configured with reconnection logic in the event of an exception. For

example, when a session from the connection pool receives any exception which results in a

18

disconnect (such as an ORA-3113 error) the application should automatically attempt to

reconnect that session. The reconnection attempts should be configured such that they will

continue for the length of time that it takes to failover the database layer and bring the

application services online.

3. It is important to note that TAF can only automate retries for an existing session. To

automate retries when a new connection attempt receives on error use the RETRY_COUNT

parameter that is part of an Oracle Net DESCRIPTION_LIST. This parameter specifies the

number of times an ADDRESS list is traversed before the connection attempt is terminated.

1. Configure your operating system for efficient TCP timeouts on the hosts that run the

application layer. The OS TCP timeouts should be set to the amount of time it takes for the

database layer to failover and the database services to be started. Consult your operating system

manuals for how to properly configure TCP timeout.

2. Configure reconnection logic within the application to respond appropriately in the event of

an exception. For example, when a session from the connection pool receives an exception that

results in disconnect (such as an ORA-3113 error), the application should automatically attempt

to reconnect that session. The reconnection attempts should be configured such that they will

continue for the length of time that it takes to failover the database layer and bring the

application services online.

Oracle Active Data Guard 11g extends basic Data Guard functionality by allowing read-only

access to a physical standby database while the standby continuously applies changes received

from the primary database. Thus a physical standby database can provide disaster protection

while it also increases performance, scalability, and return on investment by offloading ad-hoc

queries, Web-based access, reporting, and backups from the primary database. This creates

additional considerations should a failover occur. For example, a decision must be made if there

is enough capacity to support both read-only work load that was running while it was in standby

role and the additional work load will inherited should a failover occur and it becomes the

primary production database.

Read-only queries and reporting applications can be directed to an Active Data Guard standby by

creating a database service description that will start a read-only service anytime a database

functions in the standby role. Because role-based services are controlled by the Data Guard

Broker and CRS (Oracle Restart in the case of single instance databases), services will also be

started/stopped appropriate for the database role whenever a Data Guard role transition occurs.

19

All applications that connect to a Data Guard configuration should connect using an Oracle Net

alias that contains SCAN names for both the primary and standby databases in a

DESCRIPTION_LIST. The Oracle Net alias used by read-write applications that connect to the

database in the primary role should list the primary SCAN name in the first DESCRIPTION while

the Oracle Net alias used by read-only applications that connect to the database in the standby

role should have the standby SCAN name listed in the first DESCRIPTION.

During steady state, the primary application will have connections to the primary database and

the read-only reporting application will have connections to the active standby database. When a

role transition occurs, reporting users connected to an active standby database will be

disconnected as part of the failover process. Once the standby is transitioned to the primary

database role, the primary database service will be started and users will automatically begin to

connect to the new primary databases using the process described earlier in this paper.

Failover of the reporting application connections and services running on the standby database is

performed manually. Following a failover, you first determine which database you wish to direct

the reporting application. Your choices are as follows:

 If the new primary database has enough capacity to support both the primary application

connections and the reporting application connections, then:

▪ Manually start the reporting database service on the primary database.

▪ Once the service is available, restart the reporting application to get connections

established.

 If the primary database does not have enough capacity to support both the primary application

and the reporting application, then start the reporting database service on other Active Data

Guard standby databases.

▪ If you do not have multiple Active Data Guard standbys in your Data Guard configuration,

then reinstate the old primary database as a new synchronized standby database. This is a

fast and simple process if Flashback Database was enabled prior to the failover and the

cause of the outage does not prevent its use for re-instating the failed primary . Once the

new standby is operational, start the read-only database service and connect your reporting

application.

There are two types of Data Guard standby databases. The first type is a physical standby

database that uses Redo Apply to maintain a block for block, exact replica of the primary

database. Physical standby databases are the most popular type of Data Guard standby for data

20

protection and availability due to the simplicity, high performance of Redo Apply. Active Data

Guard also uses Redo Apply.

The second type of standby is a logical standby database. Logical standby uses SQL Apply and

contains the same logical information as the primary database, although the physical organization

and structure of the data can be different. SQL Apply is very useful for executing database rolling

upgrades as it can support replication from a lower Oracle Database release or patchset, to a

higher Oracle Database release or patchset, beginning from Oracle Database 10.1.3 onward.

With the introduction of Transient Logical Database in Oracle Database 11g, SQL Apply can be

used to execute database rolling upgrades using a physical standby database.16

Unlike Active Data Guard, role transitions for logical standby databases (SQL Apply) do not

provide an ability to automatically disconnect attached sessions. When a failover or switchover

occurs, read-only connections that existed on the logical standby will still be connected after the

logical standby is converted into a primary. If the logical standby was being used to offload read-

only reporting from the primary database or for other purposes, you will need to decide if there

is sufficient capacity to meet service level objectives for all workloads after a failover or

switchover has occurred. If not, the read-only sessions will need to be manually disconnected

from the new primary as part of the switchover/failover process.

Up until this section, the focus of this paper has been automating client failover for unplanned

outages when a Data Guard failover has occurred. In Data Guard, the term „switchover‟ is used

to describe a planned event where a primary and standby database switch roles, usually for the

purpose of minimizing downtime while performing planned maintenance. The configuration

best practices described in this paper to address unplanned failovers also address most of what is

required for planned switchover as well, except for several additional manual steps that apply to

logical standby databases (SQL Apply).

There are no additional considerations for switchovers using Active Data Guard. The following

describes the switchover process for Data Guard 11g Release 2:

16 http://www.oracle.com/technetwork/database/features/availability/maa-wp-11g-upgrades-made-easy-131972.pdf

21

4. First the primary database is converted to a standby database. The command to do so

disconnects all sessions and brings the database to the mount state. The Data Guard Broker

shuts down any read write service.

5. Client sessions receive a ORA-3113 and begin going through their retry logic (TAF for OCI

and application code logic for JDBC)

6. The standby database is converted to a primary database and any existing sessions are

disconnected. The Data Guard Broker shuts down read-only services

7. Read-only connections receive a ORA-3113 and begin going through their retry logic (TAF for

OCI and application code logic for JDBC)

8. As the new primary and new standby are opened the respective services are started for each

role and clients performing retries now see the services available and connect.

1. First insure that the proper reconnection logic has been configured as described in previous

sections. For example, configure TAF and RETRY_COUNT for OCI applications and code

retry logic for JDBC applications

2. Stop the services used by the primary application and the read only applications enabled on the

standby database.

3. Disconnect or shutdown primary and read only application sessions

4. Once the switchover has completed restart the services used by the primary application and

the read only application

5. Sessions that were terminated will reconnect once the service becomes available as part of the

retry mechanism.

6. Restart the application in the case of an application shutdown

It‟s important to note that FAN is not needed to transition clients during a switchover operation

as long as the application performs retries. FAN is only needed to break clients out of TCP

timeout, a state that should only occur during unplanned outages.

Oracle Database 11g Release 2 greatly simplified client failover configuration and operation

compared to previous Oracle releases. All steps needed to failover services to a new primary

database, or start/stop services according to database role or notify clients to break them out of

TCP timeout have been automated.

Previous to Oracle Database 11g Release 2 the following extra considerations were required:

22

1. Configure Oracle Net alias to include all node VIP names instead of SCAN names

2. Create database triggers to start/stop database services for the correct database role.

3. Configure a wrapper script and configuration file for the cfo executable for notification of

JDBC clients.

4. Create a database trigger based on the DB_ROLE_CHANGE system event to execute the cfo

wrapper script.

See Client Failover Best Practices17 for a complete description of client failover best practices for

Oracle Database 10g Release 2 and Oracle Database 11g Release 1.

Other areas to note:

 RETRY_COUNT is only available in Oracle Database 11g Release 2. Previous releases may

need to specifically code additional retries for new connection attempts (number of times to go

through the ADDRESS_LIST).

 Outbound connect time prior to Oracle Database 11g Release 2 can only be set in the

sqlnet.ora. This means that all oracle net aliases inherit the same value. In Oracle Database 11g

Release 2 it is set at the Oracle Net alias level

Oracle Database 11g Release 2 enhancements enable the transition of applications from a failed

database to a new primary database after a Data Guard failover to be controlled by the same

automation framework that exists for moving application connections from a failed node to

surviving nodes within an Oracle RAC cluster. By combining this automation with Data Guard

Fast-Start Failover, Oracle provide end-to-end automation that can make failover to a database at

a remote site a true HA event.

17 www.oracle.com/technetwork/database/features/availability/maa-wp-10gr2-clientfailoverbestprac-129636.pdf

