

Spatial and Graph Summit @ ANALYTICS AND DATA SUMMIT 2020

All Analytics. All Data. No Nonsense.

February 25-27, 2020

Enhancing Statistical Discovery with Oracle RDF on Oracle Cloud

Shoki Nishimura, National Statistics Center of Japan Yusuke Takeyoshi, Senior Principal Consultant, Oracle Japan

Agenda

- ✓ Background
 - Introduction of e-Stat System
 - Why We Developed LOD
 - How We Configured e-Stat LOD
 - Integrating GeoSpatial RDF Data in e-Stat LOD
 - Sample Application (Demo)
- ✓ Technical Details of e-Stat LOD
 - LOD System Architecture
 - Size and Scale of e-Stat LOD
 - SPARQL Performance Concerns
 - Database Design to Improve Performance

Agenda

✓ Background

- Introduction of e-Stat System
- Why We Developed LOD
- How We Configured e-Stat LOD
- Integrating GeoSpatial RDF Data in e-Stat LOD
- Sample Application (Demo)

✓ Technical Details of e-Stat LOD

- LOD System Architecture
- Size and Scale of e-Stat LOD
- SPARQL Performance Concerns
- Database Design to Improve Performance

Introduction of e-Stat System

- Portal Site for Official Statistics of Japan

- > In 2008, e-Stat started to publish statistical data of government agencies (Format: Excel)
- In 2014, API service started (Format: XML, JSON, CSV)
- In 2016, LOD (Linked Open Data) service started (Format: RDF)

What is RDF and LOD?

RDF (Resource Description Framework)

- RDF is a standard model for data interchange on the web.
- RDF uses URIs to name the relationship as well LOD builds on RDF technologies. as the two ends of the link (this is usually referred to as a **Triple**).

Structure of Triple

Object Subject Predicate

Structure of RDF Graph

LOD (Linked Open Data)

- LOD is structured open data interlinked with other data.

Why We Developed LOD

From "Link to File" To "Link to Data"

			1
	еят 🦕 поченте 💐 яниеника 🛞 🛄	サイト検索・ 夕集	2 ログイン
-	117-24年7) 2里な田田から年下 > 田田田田一里 > 田田田一里 > 田田田一里 > 田田田一里	1. C	
5 #21#	-5		
	ANCAS TO CO CO CO	(4)/8/07/200	84-448+21+
F.M.224 DOM	(調査) 人口等基本集計 (男女・午前・乾洗粉体、世界の構成、住所の状態など) > 全国地東		
			. 21
		20	11910726038
0.88	教行者		
8人口・昭世	Vit.		
	人口、人口塗滅、高級及び人口塗業一会国水、金属内部水、金属数部水、新進谷県水、水田川、部制 水、市町村市・田市町村		
	第2日人口及び世界の種類(22の)田世界数-2回米、2回市部市、2回市部本、都道的商本、市部 米、部長米、市民村市・日本代村		
R. +##+1	EARS		
b-1	本部(各書)、男女別人に、可能可能会、平均年齢及び可能や位置(被換及び日本人)-全国地、全国石田 米、全国都研水、都道相集、20大部市		
1-2	BECAR, RENALL BRENG, PROBACTOROCOR(MERICAL)-QUE, QUESE 8. QUESS, EDRES, DEX, EDE, DEX. DER.		
6-1	年朝(各國)、出生の月(4回分)、用北部人口(朝政及び日本人)一金国市、金国市県、金国市県		
1-2	年齢(各歳)、出生の月(4回分)、現支別AO(絶象及び日本み)-全国市、全国市田、全国市田、都道府 県、20人間市	127	

		基本集計 第11 成業, 従業上の	1-1歳 送位・編用形	8 (68.84%)	ついては従業者	10.40 SIR.9	4.4%		
	5 88	HR							
装置上の地装、紙					自営業主 - 家族従業者 自営業主				
8		- H							
		HR	総数	H0.	NIRL	**	-R #NR1	188	*2
Ŕ		1	2	3	4	8	8	7	
1. 3	(1)	6339	669	514	127	387	377	10	
5.R. #R	00	173	127	80	12	68	68		
AR	00	168	127	79	12	63	68		
林夏	60	5	0	٥	0				
8.54R	(2)	6195	532	435	115	219	309	10	
88	- 60	16		1	1	- 6			
接足(水産養殖業を除く)	(7)	12	2	5	1	- 4	4		
水应要唱宴	60	4	2	2	D	1	1		
私業、張石業、初利保政業	60	2		0		0			
1472/18	0.05	481		87	20		43		

Link to Data

Sex	Total (S	Sex)	Male					
Age Standard area code	 44 years [Person]	45 years [Person]		44 years [Person]	45 years [Person]			
Saitama-city	 16,130	19,245		8,293	9,938			
Kawaguchi-city	 6,582	8,022		3,526	4,289			
· · •	 · · •							

Assign URI to each data (http://data.e-stat.go.jp/lod/.../obs00001)

Assign URI to each data (http://data.e-stat.go.jp/lod/.../C11201)

Why We Developed LOD

Metadata for statistical data in Japan is not standardized, which makes it hard to process data.

Define standardized metadata as **RDF** to make it machine-readable

How We Configured e-Stat LOD

Example: The population of 44-year-old men in Kawaguchi City in 2010

e.g. Population of 2010 Population census

Converted RDF format (R2RML)

Original

Excel format

Integrating GeoSpatial RDF Data in e-Stat LOD

Sample Application

https://data.e-stat.go.jp/lodw/en/

Target area: prefectures, municipalities, small areas, and grid squares (3rd, 4th and 5th) Statistical data: Population census, Economic Census, Internal migration in Japan, etc. (It depends on the area)

Easy LOD search

(in Japanese)

Sample Application

Sample Application

/iew observati	on val	ue						
• Search re	sult							
Se	ex	¢	Time period	\$	Area		¢	Population(Unit of person) +
All (Sex)		2015	5th grid :	2053394	6822	21	2178
Ma	ale		2015	5th grid :	2053394	6822	21	1046
Fen	nale		2015	5th grid :	2053394	6822	21	1132

SPARQL

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX qb: <http://purl.org/linked-data/cube#>
PREFIX qb: <http://purl.org/linked-data/cube#>
PREFIX cd-dimension: <http://data.e-stat.go.jp/lod/ontology/crossDomain/dimension/>
PREFIX sdmx-dimension: <http://data.e-stat.go.jp/lod/ontology/dimension#>
PREFIX stat-attribute: <http://data.e-stat.go.jp/lod/ontology/attribute/>
PREFIX sac: <http://data.e-stat.go.jp/lod/sac/>
PREFIX sdterms: <http://purl.org/dc/terms/>

SELECT DISTINCT ?selectedMeasure1 ?selectedMeasureUnit1 ?selectedMultUnit1

Download

Agenda

- ✓ Background
 - Introduction of e-Stat System
 - Why We Developed LOD
 - How We Configured e-Stat LOD
 - Integrating GeoSpatial RDF Data in e-Stat LOD
 - Sample Application (Demo)

✓ Technical Details of e-Stat LOD

- LOD System Architecture
- Size and Scale of e-Stat LOD
- SPARQL Performance Concerns
- Database Design to Improve Performance

LOD System Architecture

SPARQL Performance Concerns

✓ In 2018, triples increased to 1,300 million (including GeoSpatial data).

- At that time, the e-Stat LOD was running on on-premise Exadata 12cR2.

✓ SPARQL performance became no longer acceptable...

- Tested 138 different SPARQL queries (including several GeoSPARQL)

	Exadata 12cR2
Avg. SPARQL response time	65.74 secs
Number of queries running over 10 sec.	108
Number of queries running over 300 sec.	13

► We needed a drastic measures to improve SPARQL performance!

Analytics and Data Summit 2020

Database Design to Improve Performance

The following tuning drastically improved query performance.

- 1. Using Database In-Memory features
- 2. Partitioning RDF table by triple "predicate"
- 3. Optimizing Optimizer Statistics based on actual SPARQLs

Tuning 1, 2 are only available from Oracle 18c.

Database Design to Improve SPARQL Performance

1. Using Database In-Memory Features

DB In-Memory (DBIM) improved SPARQL performance by 10 to 60 times.

- Enabling DBIM for RDF is very simple.
 exec SEM_APIS.ENABLE_INMEMORY(TRUE);
- To reduce the amount of data accessed:
 - The populated data is automatically compressed in memory
 - In-Memory Indexes automatically prunes the data accessed

SELECT ?s ?o		Automatically	TABLE:	TABLE:
WHERE {	SGA(000GB)	after DB	RDF_LINK\$	RDF_VALUE\$
?s rdfs:label ?o	In-Memory	startup	subject	value
} LIMIT 10	Area (380GB)		predicate,	type,
				mapping

Database Design to Improve SPARQL Performance **2. Partitioning RDF Table by Triple "predicate**"

In many cases, graph patterns in SPARQL queries specify "predicate" URI and query "object" values.

Database Design to Improve SPARQL Performance **2. Partitioning RDF Table by Triple "predicate"**

To reduce the amount of data accessed, we partitioned the RDF_LINK\$ table using hash values of the RDF predicate IDs.

Database Design to Improve SPARQL Performance **3. Optimizing Optimizer Statistics**

In Oracle Database, RDF triples are stored in relational tables (RDF_LINK\$, RDF_VALUE\$, ...), so SPARQLs are translated and executed as semantically the same SQLs.

Optimizer Statistics are very important to generate optimal execution plans.

Database Design to Improve SPARQL Performance **3. Optimizing Optimizer Statistics**

For the optimizer to make a good execution plan against complex SPARQL queries, we gathered **column group statistics**, which enables optimizer to consider a correlationship between different columns. Which column group statistics are useful was determined using **SPARQLs actually executed so far in the e-Stat LOD**.

STEP1: Tell the database to monitor column group usage for the specified seconds.

exec DBMS_STATS.SEED_COL_USAGE(NULL, NULL, 600);

STEP2: Execute as many SPARQLs as possible, which are executed so far, within the specified time

STEP3: Mark the useful column groups detected during the monitoring

SELECT DBMS_STATS.CREATE_EXTENDED_STATS('MDSYS', 'RDF_LINK\$') FROM DUAL;

STEP4: Gather statistics by a pre-built procedure SEM_PERF.GATHER_STATS. The marked column group statistics are automatically gathered.

exec SEM_PERF.GATHER_STATS(...);

Database Design to Improve SPARQL Performance How Much SPARQL Performance Improved?

Analytics and Data Summit 2020

Summary / Key Takeaways

✓ Publication of the 1st statistical LOD in Japan

- 9 major statistics are published as LOD with Oracle Cloud
- RDF triples are generated by use of R2RML from relational tables
- GeoSpatial triples are integrated and published as LOD
- Performance improvement for SPARQL queries
 - We achieved 50 times faster performance applying the following changes:
 - Migrating the entire LOD platform to Oracle Gen2 Cloud
 - Utilizing DBIM features
 - Partitioning a RDF table by triple predicate
 - Gathering column group statistics

Questions & Answers

ANALYTICS AND DATA SUMMIT 2020

All Analytics. All Data. No Nonsense. February 25-27, 2020

How We Configured e-Stat LOD

Data in e-Stat LOD is defined using RDF Data Cube Vocabulary (W3C)

- The RDF Data Cube Vocabulary provides a way to publish multi-dimensional statistics in such a way that it can be linked to related data sets and concept, (<u>https://www.w3.org/TR/vocab-data-cube/</u>).
- Each observation, or data in each cell, is described by dimensions, measures, and attributes.

Dimen	nsion	e.g. Population of 2010 Population census										
			Total	(Sex)			Ma	Female				
			44 years	45 years			44 years	45 years				
			[Unit Of Person]	[Unit Of Person]			[Unit Of Person]	[Unit Of Person]			Attribute	
											Observation	
Saitam	a-city		16,130	19,245			8,293	9,938				
Kawag	uchi-city		6,582	8,022			3,526	4,289				

How We Configured e-Stat LOD

RDF data was generated from statistics tables in our database with R2RML (R2RML = RDB to RDF Mapping Language).

Integrating GeoSpatial RDF Data in e-Stat LOD

Size and Scale of e-Stat LOD (as of today)

Database Design to Improve SPARQL Performance

1. Using Database In-Memory Features

DB In-Memory Settings for e-Stat LOD

- 380GB In-Memory Area (SGA = 600GB)
- Set the RDF semantic network indexes to INVISIBLE for the optimizer

Two semantic network indexes are created on RDF_LINK\$ table by default.

- Index 1: Predicate Object Subject •
- Index 2: Predicate Subject Object •
- Minimize the area for METADATA to maximize the In-Memory area size for DATA \checkmark
 - Set " inmemory 64k percent"=1 to reduce the metadata area to 1%

Analytics and Data Summit 2020

Database Design to Improve SPARQL Performance **1. Using Database In-Memory Features**

Example: Tested SPARQL Query

Queries population census data in Kyoto City

```
select ?year ?population
where {
    ?s estat-measure:population ?population;
    sdmx-dimension:refArea / rdfs:label 'Kyoto-shi'@en ;
    cd-dimension:timePeriod ?year ;
    cd-dimension:sex cd-code:sex-all ;
    cd-dimension:nationality cd-code:nationality-japan ;
    g00200521-dimension-2010:area g00200521-code-2010:area-all ;
    cd-dimension:age cd-code:age-all .
}
```

÷

population

"2015"^^xsd:gYear

year

"2010"^^xsd:gYear

"1408039"^^xsd:decimal

"1412924"^^xsd:decimal

Database Design to Improve SPARQL Performance 2. Partitioning RDF Table by Triple "predicate"

Partitioning Settings for e-Stat LOD

Hash-Partitioning RDF_LINK\$ can be done when creating a semantic network.

```
BEGIN
SEM_APIS.CREATE_SEM_NETWORK(
'< tablespace name for semantic network >',
options=>' MODEL_PARTITIONING=BY_HASH_P MODEL_PARTITIONS=64 '
);
END;
/
```

- \checkmark The number of partitions = 64
 - Partitioning by Hash should be done by a power of 2 (2, 4, 8, 16, 32, 64, 128, ...) to equally distribute the number of triples in each partition.
 - In e-Stat LOD, the distinct number of predicates is 144.

