
   

   

  

  

    

    

Spatial and Graph Summit @ 

Enhancing Statistical Discovery with Oracle RDF 

on Oracle Cloud 

Shoki Nishimura, National Statistics Center of Japan 

Yusuke Takeyoshi, Senior Principal Consultant, Oracle Japan 

Analytics and Data Summit 2020 



    

 

  

   

   

  

  

 

  

  

   

Agenda 
✓ Background 

• Introduction of e-Stat System 

• Why We Developed LOD 

• How We Configured e-Stat LOD 

• Integrating GeoSpatial RDF Data in e-Stat LOD 

• Sample Application (Demo) 

✓ Technical Details of e-Stat LOD 

• LOD System Architecture 

• Size and Scale of e-Stat LOD 

• SPARQL Performance Concerns 

• Database Design to Improve Performance 

Analytics and Data Summit 2020 



    

  

   

   

     

  

  

 

  

  

   

Agenda 
✓Background 

• Introduction of e-Stat System 

• Why We Developed LOD 

• How We Configured e-Stat LOD 

• Integrating GeoSpatial RDF Data in e-Stat LOD 

• Sample Application (Demo) 

✓ Technical Details of e-Stat LOD 

• LOD System Architecture 

• Size and Scale of e-Stat LOD 

• SPARQL Performance Concerns 

• Database Design to Improve Performance 

Analytics and Data Summit 2020 



    

 
   

            

        

     

 
 

 

 

 

Introduction of e-Stat System 
- Portal Site for Official Statistics of Japan 

➢ In 2008, e-Stat started to publish statistical data of government agencies (Format: Excel) 

➢ In 2014, API service started (Format: XML, JSON, CSV) 

➢ In 2016, LOD (Linked Open Data) service started (Format: RDF) 

File download 

2008 

Excel 
610 statistics 

1.4 million tables 

2014 

XML 230 statistics 

150 thousand datasets 
API 

LOD 

2016 

9 statistics 
87 datasets 

2.1 billion triples 

e-Stat (https://www.e-stat.go.jp/) 

JSON 

CSV 

Analytics and Data Summit 2020 



    

  

      
  

      
          

    

 

  

      
  
   

Analytics and Data Summit 2020

What is RDF and LOD? 
RDF (Resource Description Framework) LOD (Linked Open Data) 

• RDF is a standard model for data interchange • LOD is structured open data interlinked 
on the web. with other data. 

• RDF uses URIs to name the relationship as well • LOD builds on RDF technologies. 
as the two ends of the link (this is usually 
referred to as a Triple). 

Structure of Triple 

Subject Object Predicate 

Structure of RDF Graph 



    

 

 

 

 

   

   

 

  

 

 

Analytics and Data Summit 2020 

Why We Developed LOD 

From “Link to File" To “Link to Data" 

Assign URI to each data 
(http://data.e-stat.go.jp/lod/…/obs00001) 

Link to File 

Assign URI to file 

(http://www.e-stat.go.jp/ 

xls0001.xls) 

Assign URI to page 

(http://www.e-stat.go.jp/ 

pages.html) 

Clarify semantics and 

origins for data 

Link to Data 

Assign URI to each data 
(http://data.e-stat.go.jp/lod/…/C11201) 



    

 

 

             

      

Why We Developed LOD 
Metadata for statistical data in Japan is not standardized, which makes it hard to process data. 

Analytics and Data Summit 2020 

Age 

Age(10years) 

Statistical 
DB 

Municipality 

Age(5years) 

Age-2010 

Prefecture 

Municipality-A 

Conventional statistical metadata 

Age-2010 

Age 

Age 

Region 

Region2010 Prefecture 

Municipality Municipality-A 

Age(5years) Age(15years) 

Age(10years) 

Standardized RDF metadata 

Define standardized metadata as RDF to make it machine-readable 



    

  

     

 

How We Configured e-Stat LOD 

Example: The population of 44-year-old men in Kawaguchi City in 2010 

Original 
Excel format 

Converted 
RDF format 
(R2RML) 

Analytics and Data Summit 2020 



    

           
           

 

 

 

 

  

 
  

 

  
 

  Integrating GeoSpatial RDF Data in e-Stat LOD 
Major statistics such as Population Census are integrated with more fine-grained location data, 
such as 250m x 250m square grids, which are defined as Polygons. 

sdmx-dimension: geo: geo: 

Target 
Location Info 

refArea hasGeometry asWKT 

worldGridCode 

Value of 
Population 

Population in 
target area 

String of 
World Grid 

Code 

Cell_id GRID_code 

population 

Polygon 

✓ Statistical data can be obtained with GeoSPARQL. 

Example of GeoSPARQL FILTER expression 

Query population info 
WITHIN a search polygon FILTER ( 

ogcf:sfWithin( 
?wkt , 
"POLYGON(…)"^^geo:wktLiteral 

) 
) 

Analytics and Data Summit 2020 



    

Sample Application 

https://data.e-stat.go.jp/lodw/en/ 

Analytics and Data Summit 2020 

https://data.e-stat.go.jp/lodw/


Sample Application 

    

  

  

   

   

       

  

     

   

   

   

   

 

  

 

Analytics and Data Summit 2020 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX geo: <http://www.opengis.net/ont/geosparql#> 

PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/> 

PREFIX dcterms: <http://purl.org/dc/terms/> 

SELECT DISTINCT ?area ?areaName ?areaType ?areaId ?areaWKT 

WHERE { 

?area geo:hasGeometry / geo:asWKT ?areaWKT ; 

a ?areaType ; 

dcterms:identifier ?areaId ; 

rdfs:label ?areaName . 

FILTER (ogcf:sfContains(?areaWKT, 'Point(139.78247469054514 

35.734430056624056)'^^geo:wktLiteral)) 

} LIMIT 10 

Region name 

Polygon 

Click 

GeoSPARQL 



    

   

Sample Application 

Analytics and Data Summit 2020 

select dataset 

select measure and dimension 



    

 

  

   

   

  

  

 

     

  

    

Agenda 
✓ Background 

• Introduction of e-Stat System 

• Why We Developed LOD 

• How We Configured e-Stat LOD 

• Integrating GeoSpatial RDF Data in e-Stat LOD 

• Sample Application (Demo) 

✓ Technical Details of e-Stat LOD 

• LOD System Architecture 

• Size and Scale of e-Stat LOD 

• SPARQL Performance Concerns 

• Database Design to Improve Performance 

Analytics and Data Summit 2020 



    

 
   

    

 

  
 

 

  

 

 

 

   
   

    

Analytics and Data Summit 2020 

LOD System Architecture 

On-Premise (Exadata) Oracle Gen2 Cloud 
• Production env. for e-Stat “LOD” system 
• Publishes RDF data generated 

on the on-premise Exadata 

e-Stat Databases 

Transform 
tables to RDF 

(R2RML) 

Oracle Database Database Cloud 
Extreme Performance 
(BareMetal instance) 

Transfer RDF files 

Compute Cloud 

LOD 
User 

Fuseki SPARQL Endpoint 

Management Cloud 

Service 
monitoring 

• Production env. for basic e-Stat systems 
• Publishes statistical data in relational tables 
• Generates RDF data from relational tables 

e-Stat 
User 



    

  

    

 

 

  

 

   

 

      

   

SPARQL Performance Concerns 
✓ In 2018, triples increased to 1,300 million (including GeoSpatial data). 

- At that time, the e-Stat LOD was running on on-premise Exadata 12cR2. 

1,300M of triples 
500M of triples 300M of triples 

2017 - 2018 - 2019 2015 -

✓ SPARQL performance became no longer acceptable… 

- Tested 138 different SPARQL queries (including several GeoSPARQL) 

Exadata 12cR2 

Avg. SPARQL response time 65.74 secs 

Number of queries running over 10 sec. 108 

Number of queries running over 300 sec. 13 

We needed a drastic measures to improve SPARQL performance! 

Analytics and Data Summit 2020 



    

  

  

   

  
   

     

     

Database Design to Improve Performance 

The following tuning drastically improved query performance. 

1. Using Database In-Memory features 

2. Partitioning RDF table by triple “predicate” 

3. Optimizing Optimizer Statistics 
based on actual SPARQLs 

Tuning 1, 2 are only available from Oracle 18c. 

Analytics and Data Summit 2020 



    

  

   

  

  
 

      

 

  

 

       

      
      

     

Database Design to Improve SPARQL Performance 

1. Using Database In-Memory Features 
DB In-Memory (DBIM) improved SPARQL performance by 10 to 60 times. 

✓ Enabling DBIM for RDF is very simple. 

exec SEM_APIS.ENABLE_INMEMORY(TRUE); 

✓ To reduce the amount of data accessed: 
- The populated data is automatically compressed in memory 
- In-Memory Indexes automatically prunes the data accessed 

Analytics and Data Summit 2020 

TABLE: 
RDF_LINK$ 

value, 
type, 

ID to value 
mapping 

In-Memory 
Area 

(380GB) 

SGA(600GB) 

subject, 
predicate, 
object IDs 

Automatically 
populate 
after DB 
startup 

TABLE: 
RDF_VALUE$ 

SELECT ?s ?o 

WHERE { 

?s rdfs:label ?o 

} LIMIT 10 

SPARQL 



    

  

     

      
  

 
  

Database Design to Improve SPARQL Performance 

2. Partitioning RDF Table by Triple “predicate” 
In many cases, graph patterns in SPARQL queries 
specify “predicate” URI and query “object” values. 

predicate 

subject 
(variable) 

(URI specified) object 
(variable, literal, URI) 

Analytics and Data Summit 2020 



    

  

     

   

   

 
   

   

       
          

 

 
  

 

  
 

Database Design to Improve SPARQL Performance 

2. Partitioning RDF Table by Triple “predicate” 
To reduce the amount of data accessed, 
we partitioned the RDF_LINK$ table using hash values of the RDF predicate IDs. 

TABLE: 
RDF_LINK$ EXAMPLE: 

(partitioned by predicate ID hash) Each partition stores triples 
with the following predicates SELECT ?s ?o 

WHERE { 

?s rdfs:label ?o 

} LIMIT 10 

SPARQL 

Access only 
a partition containing 
“rdfs:label”�predicate�

Partition2: 
predicate hash val = Y 

Partition1: 
predicate hash val = X 

Partition3: 
predicate hash val = Z 

- rdfs:subClassOf 
- estat-measure:population 

- rdfs:label 
- cd-dimension:age 

- rdf:type 

Analytics and Data Summit 2020 



    

  

   
       

     
    

      

 
 

  

  

   

 
  

 
  

  

    

 

     

Database Design to Improve SPARQL Performance 

3. Optimizing Optimizer Statistics 
In Oracle Database, RDF triples are stored in relational tables (RDF_LINK$, 
RDF_VALUE$, …), so SPARQLs are translated and executed 
as semantically the same SQLs. 

Optimizer Statistics are very important to generate optimal execution plans. 

Examples of Optimizer Statistics 
Optimizer makes RDF_LINK$ 

subject, 
predicate, 
object IDs 

optimal execution plans Number of rows 

value, 
type, 

ID to value 
mapping 

considering statistics 

Avg. row length 

RDF_VALUE$ Distinct num of 
values 

in each column 

Full Table Scan or Index Scan ? 

JOIN order 

JOIN method (LOOP or HASH ?) 

e.t.c. e.t.c. 

Analytics and Data Summit 2020 



    

  

   
       

    
   

        
    

         

       

      

 

    
    

Database Design to Improve SPARQL Performance 

3. Optimizing Optimizer Statistics 
For the optimizer to make a good execution plan against complex SPARQL queries, 
we gathered column group statistics, which enables optimizer 
to consider a correlationship between different columns. 
Which column group statistics are useful was determined 
using SPARQLs actually executed so far in the e-Stat LOD. 

STEP1: Tell the database to monitor column group usage for the specified seconds. 

exec DBMS_STATS.SEED_COL_USAGE(NULL, NULL, 600); 

STEP2: Execute as many SPARQLs as possible, which are executed so far, within the specified time 

STEP3: Mark the useful column groups detected during the monitoring 

SELECT DBMS_STATS.CREATE_EXTENDED_STATS('MDSYS', 'RDF_LINK$') FROM DUAL; 

STEP4: Gather statistics by a pre-built procedure SEM_PERF.GATHER_STATS. 

Analytics and Data Summit 2020 

The marked column group statistics are automatically gathered. 

exec SEM_PERF.GATHER_STATS(…); 



    

  

   

  
  

  
 

 

  

 

 

  
 

   
 

 

   

Database Design to Improve SPARQL Performance 

How Much SPARQL Performance Improved? 

Tested 138 different SPARQL queries 
against 1.3 billion triples 

(including several GeoSPARQL) 

On-prem Exadata 
Oracle 12cR2 

(former platform) 

Oracle Gen2 Cloud 
Oracle 18c 

with tunings 

Avg. SPARQL response time 65.74 sec. 1.27 sec. 

Analytics and Data Summit 2020 

The performance 
remained constant, 

even after triples 
increased 

to 2.1 billion! 

2017 -

500M of triples 300M of triples 

2015 -

1,300M of triples 

2018 -

2,100M of triples 

2019 -

Avg. SPARQL response time 

Former platform Current platform 



    

  

   
      

       
      

  
        

   
    

    

Summary / Key Takeaways 

✓ Publication of the 1st statistical LOD in Japan 
- 9 major statistics are published as LOD with Oracle Cloud 
- RDF triples are generated by use of R2RML from relational tables 
- GeoSpatial triples are integrated and published as LOD 

✓ Performance improvement for SPARQL queries 
- We achieved 50 times faster performance applying the following changes: 

- Migrating the entire LOD platform to Oracle Gen2 Cloud 
- Utilizing DBIM features 
- Partitioning a RDF table by triple predicate 
- Gathering column group statistics 

Analytics and Data Summit 2020 



    

Answers 
Questions & 

Analytics and Data Summit 2020 



    Analytics and Data Summit 2020 



    

  

       

           

              

            

How We Configured e-Stat LOD 

Data in e-Stat LOD is defined using RDF Data Cube Vocabulary (W3C) 

• The RDF Data Cube Vocabulary provides a way to publish multi-dimensional statistics 

in such a way that it can be linked to related data sets and concept, 

(https://www.w3.org/TR/vocab-data-cube/). 

• Each observation, or data in each cell, is described by dimensions, measures, and attributes. 

Analytics and Data Summit 2020 

https://www.w3.org/TR/vocab-data-cube/


    

  
        

   

   

  

 
  

  
   

How We Configured e-Stat LOD 
RDF data was generated from statistics tables in our database with R2RML 

(R2RML = RDB to RDF Mapping Language). 

Statistics Tables Transform 
tables to RDF format (Relational tables) 

(R2RML) 

Example of R2RML mapping file 

R2RML defines: 
- Base table(s) / view(s) 
- Rules that map each row 

in the base table to RDF 
triples 

Analytics and Data Summit 2020 



    

    

 

 

   

  

 

  

 

    

 

  

  

   

Integrating GeoSpatial RDF Data in e-Stat LOD 

Analytics and Data Summit 2020 

Administrative Divisions 

prefectural 

divisions 

(e.g., Tokyo) 

municipal 

divisions 

(e.g., Shinjuku-ward) 

Japan 

Subdivided administrative units 

of a municipal divisions 

Small Areas 

standard area codes 

statistics-specific codes 

3rd grid square (1km) 

4th grid square (500m) 

5th grid square (250m) 

Grid Squares 

Statistics 

world grid square codes 

Polygon 
Polygon 



    

 

 

    

  

   

 

   

  

    

    

Size and Scale of e-Stat LOD (as of today) 

Analytics and Data Summit 2020 

AP Tier 

Fuseki on Jetty (x2 VM instances) 

• CPU: 8 cores 

• RAM: 120 GB 

DB Tier 

Oracle Database Extreme Performance 

• CPU: 12 cores 

• RAM: 754 GB 

• BareMetal Instance 

• Number of Triples: 2.1 billion 



    

  

   
 

     
        

            
         

         

     

         

  

 

  
  

  
 

 

 

 

     

Database Design to Improve SPARQL Performance 

1. Using Database In-Memory Features 
DB In-Memory Settings for e-Stat LOD 

✓ 380GB In-Memory Area (SGA = 600GB) 
✓ Set the RDF semantic network indexes to INVISIBLE for the optimizer 

Two semantic network indexes are created on RDF_LINK$ table by default. 

• Index 1:  Predicate - Object – Subject 

• Index 2:  Predicate - Subject - Object 

RDF_LINK$ 

✓ Minimize the area for METADATA to maximize the In-Memory area size for DATA 
- Set “_inmemory_64k_percent”=1 to reduce the metadata area to 1% 

Analytics and Data Summit 2020 

POOL       ALLOC_GB 
------------------- ----------
1MB POOL       356.8 

64KB POOL  22.9 

99% for DATA 

1% for METADATA In
-M

e
m

o
ry

A
re

a
(3

8
0

G
B

) 

1 MB Pool: 
for populated data 

64 kB Pool: 
for metadata about 

populated data 



    

  

   

  
     

 

 

 

Database Design to Improve SPARQL Performance 

1. Using Database In-Memory Features 

Example: Tested SPARQL Query 
Queries population census data in Kyoto City 

WITHOUT DB In-Memory 

7.1 sec 

12x 
WITH DB In-Memory faster 

0.58 sec 

Analytics and Data Summit 2020 



    

  

     

  

   
                 

         
         

         

   
  

Database Design to Improve SPARQL Performance 

2. Partitioning RDF Table by Triple “predicate” 
Partitioning Settings for e-Stat LOD 

✓ Hash-Partitioning RDF_LINK$ can be done when creating a semantic network. 

BEGIN 
SEM_APIS.CREATE_SEM_NETWORK( 

‘< tablespace name for semantic network >', 
options=>' MODEL_PARTITIONING=BY_HASH_P MODEL_PARTITIONS=64 ' 

); 
END; 
/ 

✓ The number of partitions = 64 
- Partitioning by Hash should be done by a power of 2 (2, 4, 8, 16, 32, 64, 128, …) 

to equally distribute the number of triples in each partition. 
- In e-Stat LOD, the distinct number of predicates is 144. 

Analytics and Data Summit 2020 


