

Kubernetes on Oracle Cloud Infrastructure

Overview and Manual Deployment Guide

O R A C L E W H I T E P A P E R | F E B R U A R Y 2 0 1 8

2 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

Disclaimer

The following is intended to outline our general product direction. It is intended for information

purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any

material, code, or functionality, and should not be relied upon in making purchasing decisions. The

development, release, and timing of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

3 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

Table of Contents

Target Audience 4

Introduction 4

Overview of Kubernetes 4

Container Images 5

Application Deployment 5

Container Orchestration Features 6

Cluster Architecture for Kubernetes Manual Deployment on Oracle Cloud Infrastructure 7

etcd 8

Kubernetes Masters 8

Kubernetes Workers 9

Kubernetes Manual Deployment Guide for Oracle Cloud Infrastructure 9

Step 1: Create Oracle Cloud Infrastructure Resources 9

Step 2: Set Up a Certificate Authority and Create TLS Certificates 13

Step 3: Bootstrap an HA etcd Cluster 19

Step 4: Set Up RBAC 21

Step 5: Bootstrap an HA Kubernetes Control Plane 22

Step 6: Add a Worker 27

Step 7: Configure kubectl for Remote Access 34

Step 8: Deploy Kube-DNS 35

Step 9: Smoke Test 35

Appendix A: Security Rules 37

4 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

Target Audience

This document is intended for customers who are interested in learning how Kubernetes works by

deploying it on Oracle Cloud Infrastructure or who have considerable experience with Kubernetes

and want a baseline deployment process in order to create their own highly configured clusters.

This document assumes that the user is working from a computer running a macOS operating

system and has an understanding of UNIX commands and file systems.

Users of this document should also be familiar with the fundamentals of the Oracle Cloud

Infrastructure. For information, go to https://docs.us-phoenix-1.oraclecloud.com/. If this is the first

time that you have used the platform, we recommend specifically the tutorial at https://docs.us-

phoenix-1.oraclecloud.com/Content/GSG/Reference/overviewworkflow.htm.

Introduction

Kubernetes is the most popular container orchestration tool available today. Although the

Kubernetes open-source project is still young and experiencing tremendous growth, when it is

deployed properly Kubernetes can be a reliable tool for running container workloads in production.

This document presents a starting point for deploying a secure, highly available Kubernetes cluster

on Oracle Cloud Infrastructure. The cluster created from the instructions in this document might be

sufficient for your needs. However, if you want to configure your cluster beyond what is presented

here, you’ll need supplementary materials and white papers to address the various customization

options and updates to Kubernetes.

Kubernetes is an incredibly fast-moving project, with frequent new releases and bug fixes.

Accordingly, this document addresses deploying Kubernetes version 1.6 (the stable build at the

time of writing). Future documents will address the process to upgrade the cluster made in this

document.

Overview of Kubernetes

This section provides a brief introduction to Kubernetes. If you are already familiar with

Kubernetes, you can skip this section.

Kubernetes is the most popular container orchestration tool available and is maintained by one of

the fastest-growing open-source communities. The Kubernetes project originated within Google, a

long-time user of massive numbers of containers. To manage these containers well, they needed

to develop a system for container orchestration. Kubernetes combines the lessons that Google

https://docs.us-phoenix-1.oraclecloud.com/
https://docs.us-phoenix-1.oraclecloud.com/Content/GSG/Reference/overviewworkflow.htm
https://docs.us-phoenix-1.oraclecloud.com/Content/GSG/Reference/overviewworkflow.htm

5 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

learned from years of container usage into a single tool with an array of features that make

container orchestration simple and adaptable to the wide variety of use cases in the technology

industry. Since it became open source in July 2015, the capabilities of Kubernetes have continued

to grow. Issues and new feature requests are tracked on the public GitHub project with new major

versions released approximately every two months.

Containers are designed to solve problems with traditional application deployment, such as

missing dependencies when installing an application, or trouble deploying applications on specific

OS versions. Container orchestrators aim to solve problems with scaling these applications.

Container Images

The application, with all of its dependencies, is kept in a container image. When run by a container

engine, such as Docker, the container image runs as a container. The process of creating this

container image for an application is known as containerization. Containerization is beneficial in

cases where the application would interact poorly with other applications if deployed on the same

machine. The container provides a level of isolation that, although not fully multi-tenant, can

prevent applications from causing problems with other applications running on the same physical

host. For example, containers simplify Java application deployment by bundling the application’s

dependencies (like the specific Java Runtime Environment version) with the application in the

container. Additionally, if the application runs on Linux, the container also abstracts the flavor and

version of the Linux OS. All dependencies required to run the application residing in the OS can

also be bundled in the container. As a result, a containerized application runs the same on Oracle

Linux as it would on Ubuntu.

Application Deployment

After the application and its dependencies are bundled in a container image, the next step is to

distribute that application to all the groups that need it. Assume that many teams need to use this

application and that the scale of the teams’ usage might change over time. In a traditional data

center, scaling this application would likely require an analysis to estimate the resources needed to

run this application across the company for the next quarter or perhaps the entire next fiscal year.

The IT organization that manages these physical resources would need to order new equipment to

satisfy the needs of the business. In the cloud, new resources on which to run the application can

be acquired on-demand and in a greater variety of sizes (that is, a virtual machine with fewer cores

rather than a whole physical machine); however, the organization still needs to manage application

deployments to those resources and manage those deployments to respond to the needs of the

business over time. Container orchestration simplifies the solution to this problem: the

containerization of the application makes the application easy to deploy in a variety of

https://github.com/kubernetes/kubernetes

6 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

environments, and the container orchestrator provides a way to manage and scale that application

as needed.

Container Orchestration Features

Kubernetes provides several features to accomplish the task of orchestrating containerized

applications.

Declarative Management

Kubernetes is designed to be managed in a declarative manner rather than an imperative manner.

An example of imperative management is installing a program via the apt-get install

command, which imperatively installs the application in a certain location. When an update to the

program is needed, you imperatively tell apt-get to update the application.

Declarative management is managing based on desired state. Deployments are a Kubernetes

component designed to hold the state of an application. Defined in JSON or YAML, the

Deployment contains information about the container image, such as its version, the number of

containers that should exist within the Kubernetes cluster, and a variety of other properties that

Kubernetes needs in order to deploy the application properly. You simply state the number of

application instances that you want to have, and Kubernetes creates and maintains the necessary

number of containers across your resources. If a container fails for any reason (for example, the

virtual machine on which the container is running goes offline), Kubernetes automatically stands

up a new one on a healthy node to maintain the state declared in the Deployment. Kubernetes

constantly checks the actual state against the desired state and ensures that the two states match.

The declarative model provides a benefit over the imperative model, in which the system must

always be told what to do. In the declarative model, Kubernetes does the work for you, as long as

the definitions for the desired system state exists.

7 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

Rolling Upgrades and Rollbacks

Another benefit of deploying applications via Kubernetes Deployments is its built-in rolling upgrade

and rollback functionality. For example, when a YAML file that defines the state of a Deployment is

updated with a new version of the container image, Kubernetes recognizes this change and begins

to shut down existing instances of the older version while creating new instances with the updated

version. While Kubernetes performs this rolling upgrade, it continues to direct requests to running

container instances, which normally results in zero downtime. Likewise, if there is an issue with the

upgrade, Kubernetes performs a rollback as needed.

Load Balancer

To manage connections to the applications deployed as containers within Kubernetes, the

Kubernetes Service component provides a software-defined load balancer within the Kubernetes

cluster. For example, a deployment of three instances of the Java application might be accessed

by means of a single point in the Kubernetes Service. As a result, if an instance becomes

unavailable or if a rolling upgrade is performed, the application can still be accessed without

interruption.

These basic components of Kubernetes make it an excellent way to orchestrate large numbers of

containerized applications across a pool of resources. As you consider how best to use container

orchestration to meet your needs, learn more about Kubernetes by reading their documentation at

https://kubernetes.io/docs.

Cluster Architecture for Kubernetes Manual Deployment on
Oracle Cloud Infrastructure

This section describes the components that make up a functioning Kubernetes cluster and

explains how those components are deployed across the compute resources that make up the

cluster. The architecture described in this section will be deployed in the “Kubernetes Manual

Deployment Guide for Oracle Cloud Infrastructure” (the next section).

A Kubernetes cluster consists of three main components: etcd, Kubernetes masters (or

controllers), and Kubernetes workers (or nodes). This guide explains how to create a highly

available (HA) Kubernetes cluster with the following architecture:

 Three etcd nodes (across three availability domains in one region)

 Three Kubernetes masters (or controllers) (across three availability domains in one

region)

 Three Kubernetes workers (or nodes) (across three availability domains in one region)

https://kubernetes.io/docs

8 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

The steps in this guide produce an infrastructure similar to the one shown in the following diagram.

The etcd cluster is configured to run on a separate set of compute resources from the Kubernetes

cluster.

The following sections explain the components in greater detail.

etcd

etcd is a key-value store created by CoreOS. Kubernetes’ state information is stored in the etcd

cluster. This should not be confused with running an etcd cluster via Kubernetes; rather, this etcd

cluster is helping to run Kubernetes itself.

In this guide, the etcd cluster is configured to run on a separate set of compute resources from the

Kubernetes cluster. Running etcd on separate compute resources provides greater isolation

between etcd and the components of the Kubernetes cluster.

Kubernetes Masters

The Kubernetes masters (or controllers) are machines (virtual or physical) that run the API server,

controller manager, and scheduler components of the Kubernetes cluster.

9 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

Kubernetes Workers

The Kubernetes workers (or nodes) are machines (virtual or physical) that run the kubelet

component of the Kubernetes cluster. The workers are the resources on which Kubernetes

schedules containers (or pods).

Kubernetes Manual Deployment Guide for Oracle Cloud
Infrastructure

This guide explains how to deploy and configure all the components and features required to run

Kubernetes on Oracle Cloud Infrastructure. This guide assumes that you are starting with a “clean

slate” environment; during the course of this guide, you will create all the resources that you need

in Oracle Cloud Infrastructure.

This guide walks through the following tasks:

1. Create Oracle Cloud Infrastructure resources.

2. Generate certificates for Kubernetes components.

3. Bootstrap an HA etcd cluster.

4. Generate token and configuration files to authenticate components.

5. Bootstrap the HA Kubernetes masters (Kubernetes control plane).

6. Add a worker.

7. Configure remote access.

8. Deploy Kube-DNS.

9. Smoke test.

Step 1: Create Oracle Cloud Infrastructure Resources

This guide does not explain how to create the Oracle Cloud Infrastructure resources that you need

to create the Kubernetes cluster. This section lists the required resources, but you must create

them on your own by using the Oracle Cloud Infrastructure Console, CLI, API, SDKs, or the

Terraform provider. For instructions, see the Oracle Cloud Infrastructure documentation.

Networking

To create the Kubernetes cluster in this guide, you need the following Networking components.

For more information about creating Networking components, see the Networking section of the

Oracle Cloud Infrastructure documentation.

https://docs.us-phoenix-1.oraclecloud.com/Content/home.htm
https://docs.us-phoenix-1.oraclecloud.com/Content/Network/Concepts/overview.htm

10 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

VCN

You need a single virtual cloud network (VCN) with the following values:

VCN Name CIDR Description

k8sOCI.oraclevcn.com 10.0.0.0/16 VCN used to host network resources for the

Kubernetes cluster

Subnets

You need a VCN and at least one subnet per availability domain (three subnets total). In a

production configuration, we recommend creating an etcd, master, and worker subnet per

availability domain, which would result in nine subnets. For a test or learning deployment intended

to be removed later, creating three subnets (one per availability domain) is sufficient. The following

values describe the recommended configuration for a cluster in a region with three availability

domains.

Use the following values:

Subnet Name CIDR
Availability

Domain
Description

publicETCDSubnetAD1.sub 10.0.20.0/24 AD1 Subnet used for etcd host in AD1

publicETCDSubnetAD2.sub 10.0.21.0/24 AD2 Subnet used for etcd host in AD2

publicETCDSubnetAD3.sub 10.0.22.0/24 AD3 Subnet used for etcd host in AD3

publicK8SMasterSubnetAD1.sub 10.0.30.0/24 AD1 Subnet used for Kubernetes

masters in AD1

publicK8SMasterSubnetAD2.sub 10.0.31.0/24 AD2 Subnet used for Kubernetes

masters in AD2

publicK8SMasterSubnetAD3.sub 10.0.32.0/24 AD3 Subnet used for Kubernetes

masters in AD3

publicK8SWorkerSubnetAD1.sub 10.0.40.0/24 AD1 Subnet used to host Kubernetes

workers in AD1

publicK8SWorkerSubnetAD2.sub 10.0.41.0/24 AD2 Subnet used to host Kubernetes

workers in AD2

publicK8SWorkerSubnetAD3.sub 10.0.42.0/24 AD3 Subnet used to host Kubernetes

workers in AD3

11 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

Security Lists

A production configuration should include the following security lists:

 etcd_security_list

 k8sMaster_security_list

 k8sWorker_security_list

For a list of the recommended security rules for each security list, see “Appendix A: Security

Rules.”

Internet Gateway and Route Table

Your configuration should include one internet gateway and one route table rule that allows your

Kubernetes cluster to access the internet through the internet gateway.

The route table rule should have a destination CIDR block of 0.0.0.0/0 and target type of

internet gateway. The target should be the internet gateway that you intend to use with your

Kubernetes cluster.

Load Balancer

The recommended cluster configuration requires two load balancers. Create a private load

balancer for your etcd nodes and a public load balancer for your Kubernetes masters. Populate

the following table with your load balancer’s information to refer to throughout the guide.

In the guide, the public IP address of your Kubernetes master load balancer is referred to as

loadbalancer_public_ip.

Use the following values:

Load Balancer

Name

Load

Balancer

Type

Subnet1 Subnet2 Public IP Private IP

Compute

Resource

Back Ends

lb-etcd Private Not applicable Etcd1,

Etcd2,

Etcd3

lb-k8smaster Public KubeM1,

KubeM2,

KubeM3

12 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

Compute

Populate the following table to better track your Oracle Cloud Infrastructure resources for use with

this guide. You can use any Compute instance shape for your compute resources. If you are

exploring this technology via this guide, we recommend choosing small VM shapes such as

VM.Standard1.1 and VM.Standard1.2.

For more information about creating Compute instances, see the Compute section of the Oracle

Cloud Infrastructure documentation.

Compute

Instance

Name

Compute

Instance Shape

Availability

Domain
Subnet

Private IP

Address

Public IP

Address

Role in

Kubernetes

Cluster

Etcd1 AD1 etcd node

Etcd2 AD2 etcd node

Etcd3 AD3 etcd node

KubeM1 AD1 Kubernetes

master

KubeM2 AD2 Kubernetes

master

KubeM3 AD3 Kubernetes

master

KubeW1 AD1 Kubernetes

worker

KubeW2 AD2 Kubernetes

worker

KubeW3 AD3 Kubernetes

worker

In the guide, the values in the preceding table are referred to by the following names:

Compute Instance Name Private IP Address Public IP Address

Etcd1 etcd1_private_ip etcd1_public_ip

Etcd2 etcd2_private_ip etcd2_public_ip

Etcd3 etcd3_private_ip etcd3_public_ip

KubeM1 kubem1_private_ip kubem2_public_ip

KubeM2 kubem2_private_ip kubem2_public_ip

https://docs.us-phoenix-1.oraclecloud.com/Content/Compute/Concepts/computeoverview.htm

13 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

Compute Instance Name Private IP Address Public IP Address

KubeM3 kubem3_private_ip kubem3_public_ip

KubeW1 kubew1_private_ip kubew1_public_ip

KubeW2 kubew2_private_ip kubew2_public_ip

KubeW3 kubew3_private_ip kubew3_public_ip

Step 2: Set Up a Certificate Authority and Create TLS Certificates

This step has three parts: install CFSSL, create certificates, and copy the certificate files to the

host.

Install CFSSL

To generate certificates for use throughout the Kubernetes cluster, use the TLS certificate

generating tool from CloudFlare, CFSSL. Run the commands in this section on your local

computer (running macOS).

1. Download the cfssl package by using curl:

curl -O https://pkg.cfssl.org/R1.2/cfssl_darwin-amd64

2. Modify the permissions on the directory to make cfssl executable:

chmod +x cfssl_darwin-amd64

3. Move cfssl to your /usr/local/bin to add it to your path:

sudo mv cfssl_darwin-amd64 /usr/local/bin/cfssl

4. Download the cfssljson binary by using curl:

curl -O https://pkg.cfssl.org/R1.2/cfssljson_darwin-amd64

5. Modify the permissions on the directory to make cfssjson executable:

chmod +x cfssljson_darwin-amd64

6. Move cfssljson into your path:

sudo mv cfssljson_darwin-amd64 /usr/local/bin/cfssljson

14 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

Create Certificates

This section guides you through setting up the certificates that you need for your cluster. Run the

commands in this section on your local computer (running macOS).

1. Create a configuration file that describes your certificate authority (CA). This file will be

used as the authority for all keys related to the cluster.

cat > ca-config.json <<EOF

{

 "signing": {

 "default": {

 "expiry": "8760h"

 },

 "profiles": {

 "kubernetes": {

 "usages": ["signing", "key encipherment", "server auth", "client

auth"],

 "expiry": "8760h"

 }

 }

 }

}

EOF

2. Create a CA certificate signing request.

cat > ca-csr.json <<EOF

{

 "CN": "Kubernetes",

 "key": {

 "algo": "rsa",

 "size": 2048

 },

 "names": [

 {

 "C": "US",

 "L": "Portland",

 "O": "Kubernetes",

 "OU": "CA",

 "ST": "Oregon"

 }

]

}

EOF

3. Generate a CA certificate and private key:

cfssl gencert -initca ca-csr.json | cfssljson -bare ca

The following files are created:

 ca-key.pem

 ca.pem

15 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

4. Create a client and server TLS certificate signing request for each Kubernetes worker

node. Replace $(instance) with a name for the individual Kubernetes worker you are

working with (for example, kubeW1, kubeW2, kubeW3).

for instance in worker-0 worker-1 worker-2; do

cat > ${instance}-csr.json <<EOF

{

 "CN": "system:node:${instance}",

 "key": {

 "algo": "rsa",

 "size": 2048

 },

 "names": [

 {

 "C": "US",

 "L": "Portland",

 "O": "system:nodes",

 "OU": "Kubernetes The Hard Way",

 "ST": "Oregon"

 }

]

}

EOF

5. Generate a certificate and private key for each Kubernetes worker node. Run the

following command once for each worker. Replace $(instance) with a name for the

individual Kubernetes worker you are working with (for example, kubeW1, kubeW2,

kubeW3). Replace $(EXTERNAL_IP) and ${INTERNAL_IP) with the public (external) and

private (internal) IP addresses of the worker you are working with.

cfssl gencert \

 -ca=ca.pem \

 -ca-key=ca-key.pem \

 -config=ca-config.json \

 -hostname=${instance},${EXTERNAL_IP},${INTERNAL_IP} \

 -profile=kubernetes \

 ${instance}-csr.json | cfssljson -bare ${instance}

done

The following files are created:

 kubeW1-key.pem

 kubeW1.pem

 kubeW2-key.pem

 kubeW2.pem

 kubeW3-key.pem

 kubeW3.pem

16 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

6. Create the Admin Role Based Access Control (RBAC) certificate signing request. The

Admin client certificate is used when you connect to the API server (master) via the

admin role. This allows certain privileges under Kubernetes' native RBAC.

cat > admin-csr.json <<EOF

{

 "CN": "admin",

 "hosts": [],

 "key": {

 "algo": "rsa",

 "size": 2048

 },

 "names": [

 {

 "C": "US",

 "L": "Portland",

 "O": "system:masters",

 "OU": "Cluster",

 "ST": "Oregon"

 }

]

}

EOF

7. Generate the Admin client certificate and private key:

cfssl gencert \

 -ca=ca.pem \

 -ca-key=ca-key.pem \

 -config=ca-config.json \

 -profile=kubernetes \

 admin-csr.json | cfssljson -bare admin

The following files are created:

 admin-key.pem

 admin.pem

8. Create the kube-proxy client certificate signing request. This set of certificates is used by

kube-proxy to connect to the Kubernetes master.

cat > kube-proxy-csr.json <<EOF

{

 "CN": "system:kube-proxy",

 "hosts": [],

 "key": {

 "algo": "rsa",

 "size": 2048

 },

 "names": [

 {

 "C": "US",

 "L": "Portland",

 "O": "system:node-proxier",

 "OU": "Cluster",

17 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

 "ST": "Oregon"

 }

]

}

EOF

9. Generate the kube-proxy client certificate and private key:

cfssl gencert \

 -ca=ca.pem \

 -ca-key=ca-key.pem \

 -config=ca-config.json \

 -profile=kubernetes \

 kube-proxy-csr.json | cfssljson -bare kube-proxy

The following files are created:

 kube-proxy-key.pem

 kube-proxy.pem

10. Create the Kubernetes server certificate. Replace kubeMn_private_ip with your

master's private IP addresses and loadbalancer_public_ip with your load balancer IP

address.

cat > kubernetes-csr.json <<EOF

{

 "CN": "kubernetes",

 "hosts": [

 "10.32.0.1",

 “kubeM1_private_ip",

 “kubeM2_private_ip”,

 “kubeM3_private_ip”,

 "loadbalancer_public_ip",

 "127.0.0.1",

 "kubernetes.default"

],

 "key": {

 "algo": "rsa",

 "size": 2048

 },

 "names": [

 {

 "C": "US",

 "L": "Portland",

 "O": "Kubernetes",

 "OU": "Cluster",

 "ST": "Oregon"

 }

]

}

EOF

18 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

11. Generate the Kubernetes server certificate and private key:

cfssl gencert \

 -ca=ca.pem \

 -ca-key=ca-key.pem \

 -config=ca-config.json \

 -profile=kubernetes \

kubernetes-csr.json | cfssljson -bare kubernetes

The following files are created::

 kubernetes-key.pem

 kubernetes.pem

12. Create etcd certificates as follows:

A. Download the following project and follow the instructions to create certificates for

each etcd node. Be sure to enter the private IP addresses for your etcd nodes in the

req-csr.pem file under config.

https://github.com/coreos/etcd/tree/v3.2.1/hack/tls-setup

B. Copy your etcd certificates from the cert directory into their own directory called

etcd-certs. You will need this path later, so put the directory somewhere easy to

remember (for example, ~/etcd-certs)

C. Use the rename command to rename your certificate authority files for etcd to reflect

that they are for etcd:

brew install rename

rename 's/ca/etcd-ca/' *

Copy CA Files to Hosts

1. Use a script similar to the following one to copy the necessary certificate files to the

hosts. Replace node_public_IP with public IP addresses for workers, masters, and etcd

nodes.

Filename: copyCAs.sh

for host in 'kubeW1_public_IP' 'kubeW2_public_IP' 'kubeW3_public_IP'; do

 scp -i ~/.ssh/id_rsa ca.pem kube-proxy.pem kube-proxy-key.pem

ubuntu@${host}:~/

done

for host in 'kubeM1_public_IP’ 'kubeM2_public_IP’ 'kubeM3_public_IP’ ; do

 scp -i ~/.ssh/id_rsa ca.pem ca-key.pem kubernetes-key.pem kubernetes.pem

ubuntu@${host}:~/

done

for host in 'etcd1_public_IP' 'etcd2_public_IP’ 'etcd3_public_IP’; do

 scp -i ~/.ssh/id_rsa ca.pem ca-key.pem ubuntu@${host}:~/

https://github.com/coreos/etcd/tree/v3.2.1/hack/tls-setup

19 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

done

2. Copy individual worker certificates to the corresponding workers. Each worker needs to

have all the etcd certificates, the kubeconfig files, the ca.pem file, and its own certificates.

After the files have been copied to the workers, each worker should contain files similar to the

following ones:

bootstrap.kubeconfig etcd1.csr etcd1.pem etcd2-key.pem etcd3.csr etcd3.pem etcd-ca-key.pem

kube-proxy-key.pem kube-proxy.pem kubew2-csr.json kubew2.kubeconfig proxy1.csr proxy1.pem

ca.pem etcd1-key.pem etcd2.csr etcd2.pem etcd3-key.pem etcd-ca.csr etcd-ca.pem

kube-proxy.kubeconfig kubew2.csr kubew2-key.pem kubew2.pem proxy1-key.pem

To organize these files, create a directory called etcd-certs in which to keep the etcd certificates.

You can create this directory and move the appropriate files to it by using the following commands:

mkdir etcd-certs

mv *.* etcd-certs/

Step 3: Bootstrap an HA etcd Cluster

This step has three parts: install Docker, create an etcd directory, and provision the etcd cluster.

Run the commands in this section on the etcd nodes unless otherwise instructed.

Install Docker on All Nodes

This guide uses the Docker installation script provided at get.docker.com. You can use another

method to install Docker if you prefer.

1. Use curl to download the script:

curl -fsSL get.docker.com -o get-docker.sh

2. To run the script to install Docker, run the following command:

sh get-docker.sh

Create an etcd directory

Run the following command to create a directory for etcd to use to store its data:

sudo mkdir /var/lib/etcd

20 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

NOTE: If you have an issue while making your etcd cluster and need to redeploy your etcd servers, you must

delete this directory or etcd will try to start with the old configuration. Delete it by using the following

command: sudo rm -rf /var/lib/etcd

Provision the etcd Cluster

1. Set the following variables on each etcd node. The NAME_n and HOST_n variables provide

the information required for the CLUSTER variable. For the HOST_n variables, replace

etcdn_private_ip with your etcd node's private IP addresses.

NAME_1=etcd1

NAME_2=etcd2

NAME_3=etcd3

HOST_1= etcd1_private_ip

HOST_2= etcd2_private_ip

HOST_3= etcd3_private_ip

CLUSTER=${NAME_1}=https://${HOST_1}:2380,${NAME_2}=https://${HOST_2}:2380,

${NAME_3}=https://${HOST_3}:2380

DATA_DIR=/var/lib/etcd

ETCD_VERSION=latest

CLUSTER_STATE=new

THIS_IP=$(curl http://169.254.169.254/opc/v1/vnics/0/privateIp)

THIS_NAME=$(hostname)

2. Drop iptables.

Kubernetes and etcd make modifications to the iptables during setup. This step drops

iptables completely to allow etcd to set them up as needed.

NOTE: This step does pose some security risk. Ensure that your security rules for your networking

resources are sufficiently locked down before performing this step.

sudo iptables -F

3. Start the etcd containers by running the following code as-is on each node:

sudo docker run -d -p 2379:2379 -p 2380:2380 --volume=${DATA_DIR}:/etcd-

data --volume=/home/ubuntu/etcd-certs:/etc/etcd --net=host --name etcd

quay.io/coreos/etcd:${ETCD_VERSION} /usr/local/bin/etcd --name

${THIS_NAME} --cert-file=/etc/etcd/${THIS_NAME}.pem --key-

file=/etc/etcd/${THIS_NAME}-key.pem --peer-cert-

file=/etc/etcd/${THIS_NAME}.pem --peer-key-file=/etc/etcd/${THIS_NAME}-

key.pem --trusted-ca-file=/etc/etcd/etcd-ca.pem --peer-trusted-ca-

file=/etc/etcd/etcd-ca.pem --peer-client-cert-auth --client-cert-auth -

-initial-advertise-peer-urls https://${THIS_IP}:2380 --listen-peer-

urls --listen-client-urls --advertise-client-urls --initial-cluster-

token etcd-cluster-0 --initial-cluster ${CLUSTER} --initial-cluster-state

new --data-dir=/etcd-data

21 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

NOTE: If you get the following error, some or all of the variables that you set in step 1 of this

procedure are missing. Ensure that all of your variables have been set correctly.

"docker: invalid reference format"

4. Verify the cluster's successful deployment by running the following command on any etcd

node:

sudo docker exec etcd etcdctl --ca-file=/etc/etcd/etcd-ca.pem --cert-

file=/etc/etcd/${THIS_NAME}.pem --key-file=/etc/etcd/${THIS_NAME}-key.pem

cluster-health

5. If the validation step does not work, clear your etcd files and try again:

sudo docker stop etcd

sudo docker rm etcd

sudo rm -rf ${DATA_DIR}

Step 4: Set Up RBAC

Run the commands in this section on your local computer running macOS.

1. Download and install kubectl.

curl -O https://storage.googleapis.com/kubernetes-

release/release/v1.6.0/bin/darwin/amd64/kubectl

chmod +x kubectl

sudo mv kubectl /usr/local/bin

2. Create and distribute the TLS bootstrap token as follows:

A. Generate a token:

BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ')

B. Generate a token file:

cat > token.csv <<EOF

${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"

EOF

C. Distribute the token to each master. Replace controllern with the public IP address

of each Kubernetes master.

for host in controller0 controller1 controller2; do

 scp -i ~/.ssh/id_rsa token.csv ubuntu@${host}:~/

done

3. Create the bootstrap kubeconfig file:

kubectl config set-cluster kubernetes-the-hard-way \

 --certificate-authority=ca.pem \

 --embed-certs=true \

22 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

 --server=https://${LB_IP}:6443 \

 --kubeconfig=bootstrap.kubeconfig

kubectl config set-credentials kubelet-bootstrap \

 --token=${BOOTSTRAP_TOKEN} \

 --kubeconfig=bootstrap.kubeconfig

kubectl config set-context default \

 --cluster=kubernetes-the-hard-way \

 --user=kubelet-bootstrap \

 --kubeconfig=bootstrap.kubeconfig

kubectl config use-context default --kubeconfig=bootstrap.kubeconfig

4. Create the kube-proxy kubeconfig file:

kubectl config set-cluster kubernetes-the-hard-way \

 --certificate-authority=ca.pem \

 --embed-certs=true \

 --server=https://${LB_IP}:6443 \

 --kubeconfig=kube-proxy.kubeconfig

kubectl config set-credentials kube-proxy \

 --client-certificate=kube-proxy.pem \

 --client-key=kube-proxy-key.pem \

 --embed-certs=true \

 --kubeconfig=kube-proxy.kubeconfig

kubectl config set-context default \

 --cluster=kubernetes-the-hard-way \

 --user=kube-proxy \

 --kubeconfig=kube-proxy.kubeconfig

kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig

5. Distribute the client kubeconfig files. Replace kubeWn_public_ip with the public IP

address of each worker node.

for host in ‘kubeW1_public_ip’ ‘kubeW2_public_ip’ ‘kubeW3_public_ip’; do

 scp -i ~/.ssh/id_rsa bootstrap.kubeconfig kube-proxy.kubeconfig

ubuntu@${host}:~/

done

Step 5: Bootstrap an HA Kubernetes Control Plane

Provision the Kubernetes masters. Run the following commands on the masters.

1. Copy the bootstrap token into place:

sudo mkdir -p /var/lib/kubernetes/

sudo mv token.csv /var/lib/kubernetes/

23 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

2. If you did not copy the necessary certificates to the Kubernetes masters in “Step 2: Set

Up a Certificate Authority and Create TLS Certificates,” do that now. You need the

ca.pem, ca-key.pem, kubernetes-key.pem, and kubernetes.pem certificates.

To secure communication between the Kubernetes API server (on the masters) and

kubectl (used to control Kubernetes from another machine) and the kubelet (on the

workers), the TLS certificates created in Step 2 are used. Communication between the

Kubernetes API server and etcd is also secured via TLS certificates created in Step 2.

3. Copy the TLS certificates to the Kubernetes configuration directory:

sudo mv ca.pem ca-key.pem kubernetes-key.pem kubernetes.pem

/var/lib/kubernetes/

4. Download the official Kubernetes release binaries by using wget:

wget https://storage.googleapis.com/kubernetes-

release/release/v1.7.0/bin/linux/amd64/kube-apiserver

wget https://storage.googleapis.com/kubernetes-

release/release/v1.7.0/bin/linux/amd64/kube-controller-manager

wget https://storage.googleapis.com/kubernetes-

release/release/v1.7.0/bin/linux/amd64/kube-scheduler

wget https://storage.googleapis.com/kubernetes-

release/release/v1.7.0/bin/linux/amd64/kubectl

5. Install the Kubernetes binaries:

chmod +x kube-apiserver kube-controller-manager kube-scheduler kubectl

sudo mv kube-apiserver kube-controller-manager kube-scheduler kubectl

/usr/bin/

Kubernetes API Server

1. To better organize the certificates, place all etcd certificates in their own directory by

using the following commands:

sudo mkdir /var/lib/etcd

sudo cp *.* /var/lib/etcd/.

2. Capture the internal IP address of the machine:

INTERNAL_IP=$(curl http://169.254.169.254/opc/v1/vnics/0/privateIp)

3. Drop iptables.

Kubernetes and etcd make modifications to the iptables during setup. This step drops

iptables completely to allow etcd to set them up as needed.

NOTE: This step does pose some security risk. Ensure that your security rules for your networking

resources are sufficiently locked down before performing this step.

24 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

sudo iptables -F

4. Create the systemd unit file for the Kubernetes API server. This file instructs systemd on

Ubuntu to manage the Kubernetes API server as a systemd service.

cat > kube-apiserver.service <<EOF

[Unit]

Description=Kubernetes API Server

Documentation=https://github.com/GoogleCloudPlatform/kubernetes

[Service]

ExecStart=/usr/bin/kube-apiserver \\

 --admission-

control=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,

ResourceQuota \\

 --advertise-address=${INTERNAL_IP} \\

 --allow-privileged=true \\

 --apiserver-count=3 \\

 --audit-log-maxage=30 \\

 --audit-log-maxbackup=3 \\

 --audit-log-maxsize=100 \\

 --audit-log-path=/var/lib/audit.log \\

 --authorization-mode=RBAC \\

 --bind-address=${INTERNAL_IP} \\

 --client-ca-file=/var/lib/kubernetes/ca.pem \\

 --enable-swagger-ui=true \\

 --etcd-cafile=/var/lib/etcd/etcd-ca.pem \\

 --etcd-certfile=/var/lib/etcd/etcd3.pem \\

 --etcd-keyfile=/var/lib/etcd/etcd3-key.pem \\

 --etcd-servers=https://<etcd1 private ip>:2379,https://<etcd2 private

ip>:2379,https://<etcd3 private ip>:2379 \\

 --event-ttl=1h \\

 --experimental-bootstrap-token-auth \\

 --insecure-bind-address=0.0.0.0 \\

 --kubelet-certificate-authority=/var/lib/kubernetes/ca.pem \\

 --kubelet-client-certificate=/var/lib/kubernetes/kubernetes.pem \\

 --kubelet-client-key=/var/lib/kubernetes/kubernetes-key.pem \\

 --kubelet-https=true \\

 --runtime-config=rbac.authorization.k8s.io/v1alpha1 \\

 --kubelet-preferred-address-

types=InternalIP,ExternalIP,LegacyHostIP,Hostname \\

 --service-account-key-file=/var/lib/kubernetes/ca-key.pem \\

 --service-cluster-ip-range=10.32.0.0/16 \\

 --service-node-port-range=30000-32767 \\

 --tls-cert-file=/var/lib/kubernetes/kubernetes.pem \\

 --tls-private-key-file=/var/lib/kubernetes/kubernetes-key.pem \\

 --token-auth-file=/var/lib/kubernetes/token.csv \\

 --v=2

Restart=on-failure

RestartSec=5

[Install]

WantedBy=multi-user.target

EOF

25 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

5. Start the kube-apiserver service:

sudo mv kube-apiserver.service /etc/systemd/system/kube-apiserver.service

sudo systemctl daemon-reload

sudo systemctl enable kube-apiserver

sudo systemctl start kube-apiserver

sudo systemctl status kube-apiserver --no-pager

6. If your service reports an error, debug by using the following commands to ensure that it

is bound to the ports it needs:

journalctl -xe

netstat -na | more

netstat -na | grep 6443

7. Run the following command to verify that your Kubernetes API Server is running:

kubectl get componentstatuses

The output from the command should look as follows:

Kubernetes Scheduler

1. Create the systemd unit file for the Kubernetes scheduler. This file instructs systemd on

Ubuntu to manage the Kubernetes scheduler as a systemd service.

kube-scheduler.service

cat > kube-scheduler.service <<EOF

[Unit]

Description=Kubernetes Scheduler

Documentation=https://github.com/GoogleCloudPlatform/kubernetes

[Service]

ExecStart=/usr/bin/kube-scheduler \\

 --leader-elect=true \\

--master=http://${INTERNAL_IP}:8080 \\

 --v=2

Restart=on-failure

RestartSec=5

[Install]

WantedBy=multi-user.target

EOF

2. Start the kube-scheduler service:

sudo mv kube-scheduler.service /etc/systemd/system/

sudo systemctl daemon-reload

sudo systemctl enable kube-scheduler

sudo systemctl start kube-scheduler

sudo systemctl status kube-scheduler --no-pager

26 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

3. Run the following command to verify that the Kubernetes scheduler is running:

kubectl get componentstatuses

The output from the command should look as follows:

Kubernetes Controller Manager

1. Create the systemd unit file for the Kubernetes controller manager. This file instructs

systemd on Ubuntu to manage the Kubernetes controller manager as a systemd service.

cat > kube-controller-manager.service <<EOF

[Unit]

Description=Kubernetes Controller Manager

Documentation=https://github.com/GoogleCloudPlatform/kubernetes

[Service]

ExecStart=/usr/bin/kube-controller-manager \\

 --address=0.0.0.0 \\

 --allocate-node-cidrs=true \\

 --cluster-cidr=10.200.0.0/16 \\

 --cluster-name=kubernetes \\

 --cluster-signing-cert-file=/var/lib/kubernetes/ca.pem \\

 --cluster-signing-key-file=/var/lib/kubernetes/ca-key.pem \\

 --leader-elect=true \\

 --master=http://${INTERNAL_IP}:8080 \\

 --root-ca-file=/var/lib/kubernetes/ca.pem \\

 --service-account-private-key-file=/var/lib/kubernetes/ca-key.pem \\

 --service-cluster-ip-range=10.32.0.0/16 \\

 --v=2

Restart=on-failure

RestartSec=5

[Install]

WantedBy=multi-user.target

EOF

2. Start the kube-controller-manager service:

sudo mv kube-controller-manager.service /etc/systemd/system/

sudo systemctl daemon-reload

sudo systemctl enable kube-controller-manager

sudo systemctl start kube-controller-manager

sudo systemctl status kube-controller-manager --no-pager

3. Run the following command to verify that the Kubernetes controller manager is running:

kubectl get componentstatuses

27 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

The output from the command should look as follows:

Step 6: Add a Worker

This step has the following parts: generate a kubeconfig file for each worker, generate a

kubeconfig file for kube-proxy, configure the files on the workers, and install several components.

Generate a kubeconfig File for Each Worker

Be sure to use the client certificate (created in “Step 2: Set Up a Certificate Authority and Create

TLS Certificates”) that matches each worker’s node name.

Use the following script to generate a kubeconfig file for each worker node:

for instance in worker-0 worker-1 worker-2; do

 kubectl config set-cluster kubernetes-the-hard-way \

 --certificate-authority=ca.pem \

 --embed-certs=true \

 --server=https://${LB_IP}:6443 \

 --kubeconfig=${instance}.kubeconfig

 kubectl config set-credentials system:node:${instance} \

 --client-certificate=${instance}.pem \

 --client-key=${instance}-key.pem \

 --embed-certs=true \

 --kubeconfig=${instance}.kubeconfig

 kubectl config set-context default \

 --cluster=kubernetes-the-hard-way \

 --user=system:node:${instance} \

 --kubeconfig=${instance}.kubeconfig

 kubectl config use-context default --kubeconfig=${instance}.kubeconfig

done

The following files are created:

 worker-0.kubeconfig

 worker-1.kubeconfig

 worker-2.kubeconfig

28 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

Generate a kubeconfig File for Kube-Proxy

Use the following commands to generate a kubeconfig file for kube-proxy to use to connect to the

master:

kubectl config set-cluster kubernetes-the-hard-way \

 --certificate-authority=ca.pem \

 --embed-certs=true \

 --server=https://${LB_IP}:6443 \

 --kubeconfig=kube-proxy.kubeconfig

kubectl config set-credentials kube-proxy \

 --client-certificate=kube-proxy.pem \

 --client-key=kube-proxy-key.pem \

 --embed-certs=true \

 --kubeconfig=kube-proxy.kubeconfig

kubectl config set-context default \

 --cluster=kubernetes-the-hard-way \

 --user=kube-proxy \

 --kubeconfig=kube-proxy.kubeconfig

kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig

Configure the Files on the Workers

Log in to each worker and run the following file move commands:

sudo mkdir /var/lib/kubernetes/

sudo mkdir /var/lib/kubelet/

sudo mkdir /var/lib/kube-proxy/

sudo mv bootstrap.kubeconfig /var/lib/kubelet

sudo mv kube-proxy.kubeconfig /var/lib/kube-proxy

sudo mv ca.pem /var/lib/kubernetes/

sudo mv $(hostname)-key.pem $(hostname).pem /var/lib/kubelet/

sudo mv $(hostname).kubeconfig /var/lib/kubelet/kubeconfig

sudo mv ca.pem /var/lib/kubernetes/

Install Flannel

1. Install Flannel by using the following commands:

wget https://github.com/coreos/flannel/releases/download/v0.6.2/flanneld-

amd64 -O flanneld && chmod 755 flanneld

sudo mv flanneld /usr/bin/flanneld

29 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

2. Configure the flannel service by creating the following

/etc/systemd/system/flanneld.service file:

[Unit]

Description=Flanneld overlay address etcd agent

[Service]

Type=notify

EnvironmentFile=-/usr/local/bin/flanneld

ExecStart=/usr/bin/flanneld -ip-masq=true -iface 10.0.0.11 --etcd-

cafile=/home/ubuntu/etcd-ca.pem --etcd-certfile=/home/ubuntu/etcd3.pem --

etcd-keyfile=/home/ubuntu/etcd3-key.pem --etcd-

endpoints=https://10.0.0.7:2379,https://10.0.1.7:2379,https://10.0.2.6:237

9 --etcd-prefix=/kube/network

Restart=on-failure

3. Start the flannel service:

sudo systemctl daemon-reload

sudo systemctl restart flanneld

sudo systemctl enable flanneld

sudo systemctl status flanneld --no-pager

The last command checks the status of the service and should give output similar to the

following example:

ubuntu@kubew1:~$ sudo systemctl status flanneld --no-pager

 flanneld.service - Flanneld overlay address etcd agent

 Loaded: loaded (/etc/systemd/system/flanneld.service; static; vendor

preset: enabled)

 Active: active (running) since Fri 2017-09-15 17:40:06 UTC; 1s ago

 Main PID: 1904 (flanneld)

 Tasks: 10

 Memory: 10.6M

 CPU: 292ms

 CGroup: /system.slice/flanneld.service

 └─1904 /usr/bin/flanneld -ip-masq=true -iface 10.0.0.11 --etcd-

cafile=/home/ubuntu/etcd-ca.pem --etcd-certfile=/home/ubuntu/etcd3.pem --

etcd-keyfile=/home/ubuntu/etcd3-key.pem --etcd-

endpoints=https://10.0.0.7:2379,https://10.0.1...

Sep 15 17:40:06 kubew1 flanneld[1904]:

I0915 17:40:06.283241 01904 ipmasq.go:47] Adding iptables rule: ! -

s 10.200.0.0/16 -d 10.200.0.0/16 -j MASQUERADE

Sep 15 17:40:06 kubew1 flanneld[1904]:

I0915 17:40:06.285301 01904 manager.go:246] Lease acquired: 10.200.63.0/24

Sep 15 17:40:06 kubew1 systemd[1]: Started Flanneld overlay address etcd

agent.

Sep 15 17:40:06 kubew1 flanneld[1904]:

I0915 17:40:06.285666 01904 network.go:58] Watching for L3 misses

Sep 15 17:40:06 kubew1 flanneld[1904]:

I0915 17:40:06.285698 01904 network.go:66] Watching for new subnet leases

Sep 15 17:40:06 kubew1 flanneld[1904]:

I0915 17:40:06.297509 01904 network.go:153] Handling initial subnet events

Sep 15 17:40:06 kubew1 flanneld[1904]:

I0915 17:40:06.297538 01904 device.go:163] calling GetL2List()

dev.link.Index: 3

https://10.0.1.7:2379%2Chttps/10.0.2.6:2379
https://10.0.1.7:2379%2Chttps/10.0.2.6:2379
https://10.0.1.../

30 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

Sep 15 17:40:06 kubew1 flanneld[1904]:

I0915 17:40:06.297617 01904 device.go:168] calling

NeighAdd: 10.0.0.9, 86:64:67:a6:29:e5

Sep 15 17:40:06 kubew1 flanneld[1904]:

I0915 17:40:06.297682 01904 device.go:168] calling NeighAdd: 10.0.2.9,

e6:76:2b:98:c6:ab

Sep 15 17:40:06 kubew1 flanneld[1904]:

I0915 17:40:06.297728 01904 device.go:168] calling NeighAdd: 10.0.0.8,

a6:67:22:ab:2f:8b

Install the Container Networking Interface (CNI)

1. Create the following files for the CNI service:

/etc/systemd/system/cni-bridge.service

[Unit]

Requires=network.target

Before=docker.service

[Service]

Type=oneshot

ExecStart=/usr/local/bin/cni-bridge.sh

RemainAfterExit=true

/usr/local/bin/cni-bridge.sh

#!/bin/bash

set -x

/sbin/ip link add name cni0 type bridge

/sbin/ip addr add $(grep '^FLANNEL_SUBNET' /run/flannel/subnet.env | cut -

d= -f2) dev cni0

/sbin/ip link set dev cni0 up

2. Run the following block of commands to install and start the CNI service.

sudo su

mkdir -p /opt/cni/bin /etc/cni/net.d

chmod +x /usr/local/bin/cni-bridge.sh

curl -L --

retry 3 https://github.com/containernetworking/cni/releases/download/v0.5.

2/cni-amd64-v0.5.2.tgz -o /tmp/cni-plugin.tar.gz

tar zxf /tmp/cni-plugin.tar.gz -C /opt/cni/bin/

printf '{\n "name": "podnet",\n "type": "flannel",\n "delegate":

{\n "isDefaultGateway": true\n }\n}\n' >/etc/cni/net.d/10-

flannel.conf

chmod +x /usr/local/bin/cni-bridge.sh

systemctl enable cni-bridge && systemctl start cni-bridge

exit

3. Run the following command to check the status of the service:

sudo systemctl status cni-bridge

31 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

The output should be similar to the following example:

ubuntu@kubew3:~$ sudo systemctl status cni-bridge.service

 cni-bridge.service

 Loaded: loaded (/etc/systemd/system/cni-bridge.service; static; vendor

preset: enabled)

 Active: active (exited) since Fri 2017-09-15 18:20:25 UTC; 27s ago

 Process: 1940 ExecStart=/usr/local/bin/cni-bridge.sh (code=exited,

status=0/SUCCESS)

 Main PID: 1940 (code=exited, status=0/SUCCESS)

Sep 15 18:20:25 kubew3 systemd[1]: Starting cni-bridge.service...

Sep 15 18:20:25 kubew3 cni-bridge.sh[1940]: + /sbin/ip link add name cni0

type bridge

Sep 15 18:20:25 kubew3 cni-bridge.sh[1940]: ++ grep '^FLANNEL_SUBNET'

/run/flannel/subnet.env

Sep 15 18:20:25 kubew3 cni-bridge.sh[1940]: ++ cut -d= -f2

Sep 15 18:20:25 kubew3 cni-bridge.sh[1940]: + /sbin/ip addr add

10.200.63.1/24 dev cni0

Sep 15 18:20:25 kubew3 cni-bridge.sh[1940]: + /sbin/ip link set dev cni0

up

Sep 15 18:20:25 kubew3 systemd[1]: Started cni-bridge.service.

ubuntu@kubew1:~$ ifconfig

cni0 Link encap:Ethernet HWaddr 32:2a:0a:be:35:a2

 inet addr:10.200.63.1 Bcast:0.0.0.0 Mask:255.255.255.0

 inet6 addr: fe80::302a:aff:febe:35a2/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:8 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 B) TX bytes:648 (648.0 B)

Install Docker

1. Install Docker as follows:

wget https://get.docker.com/builds/Linux/x86_64/docker-1.12.6.tgz

tar -xvf docker-1.12.6.tgz

sudo cp docker/docker* /usr/bin/

2. Create the Docker service by creating the following

/etc/systemd/system/docker.service file:

 [Unit]

Description=Docker Application Container Engine

Documentation=http://docs.docker.io

After=network.target firewalld.service cni-bridge.service

Requires=cket cni-bridge.service

[Service]

ExecStart=/usr/bin/dockerd \

 --bridge=cni0 \

 --iptables=false \

 --ip-masq=false \

32 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

 --host=unix:///var/run/docker.sock \

 --insecure-registry=registry.oracledx.com \

 --log-level=error \

 --storage-driver=overlay

Restart=on-failure

RestartSec=5

[Install]

WantedBy=multi-user.target

3. Start the Docker service:

sudo systemctl daemon-reload

sudo systemctl enable docker

sudo systemctl start docker

sudo docker version

sudo docker network inspect bridge

4. Ensure that Docker is properly configured by running the following command:

sudo docker network inspect bridge

The output should show that Docker is configured to use the cni0 bridge.

Install Kubelet

1. Use the following commands to download kubelet version 1.7.4:

wget -q --show-progress --https-only --

timestamping https://storage.googleapis.com/kubernetes-

release/release/v1.7.4/bin/linux/amd64/kubectl

wget -q --show-progress --https-only --

timestamping https://storage.googleapis.com/kubernetes-

release/release/v1.7.4/bin/linux/amd64/kube-proxy

wget -q --show-progress --https-only --

timestamping https://storage.googleapis.com/kubernetes-

release/release/v1.7.4/bin/linux/amd64/kubelet

2. Install kubelet:

chmod +x kubectl kube-proxy kubelet

sudo mv kubectl kube-proxy kubelet /usr/bin/

3. Create the following /etc/systemd/system/kubelet.service file:

/etc/systemd/system/kubelet.service

[Unit]

Description=Kubernetes Kubelet

Documentation=https://github.com/GoogleCloudPlatform/kubernetes

After=docker.service

Requires=docker.service

[Service]

ExecStart=/usr/bin/kubelet \

 --allow-privileged=true \

33 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

 --cluster-dns=10.32.0.10 \

 --cluster-domain=cluster.local \

 --container-runtime=docker \

 --image-pull-progress-deadline=2m \

 --kubeconfig=/var/lib/kubelet/kubeconfig \

 --require-kubeconfig=true \

 --network-plugin=cni \

 --pod-cidr=10.200.88.0/24 \

 --serialize-image-pulls=false \

 --register-node=true \

 --runtime-request-timeout=10m \

 --tls-cert-file=/var/lib/kubelet/kubew2.pem \

 --tls-private-key-file=/var/lib/kubelet/kubew2-key.pem \

 --hostname-override= kubew2.sub08071631352.kubevcn.oraclevcn.com \

 --v=2

Restart=on-failure

RestartSec=5

[Install]

WantedBy=multi-user.target

4. Drop iptables before starting the kubelet service

iptables -F

5. Start the kubelet service:

sudo systemctl daemon-reload

sudo systemctl enable kubelet

sudo systemctl start kubelet

sudo systemctl status kubelet --no-pager

Install kube-proxy

1. Create the following/etc/systemd/system/kube-proxy.service file for the kube-proxy

service:

 [Unit]

Description=Kubernetes Kube Proxy

Documentation=https://github.com/GoogleCloudPlatform/kubernetes

[Service]

ExecStart=/usr/bin/kube-proxy \

 --cluster-cidr=10.200.0.0/16 \

 --kubeconfig=/var/lib/kube-proxy/kube-proxy.kubeconfig \

 --proxy-mode=iptables \

 --v=2

Restart=on-failure

RestartSec=5

[Install]

WantedBy=multi-user.target

34 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

2. Start the kube-proxy service:

sudo systemctl daemon-reload

sudo systemctl enable kube-proxy

sudo systemctl start kube-proxy

sudo systemctl status kube-proxy --no-pager

Remove a worker

If you need to remove a worker, you can do so by using the following commands. Replace

nodename with the name of your Kubernetes worker node from kubectl get nodes.

1. Remove any pods from the node:

kubectl drain nodename

2. Remove the worker node:

kubectl delete node nodename

NOTE: These actions do not delete the instance. If you want to delete the Oracle Cloud Infrastructure

Compute instance, you must do that via the CLI or Console.

Step 7: Configure kubectl for Remote Access

kubectl is the command line tool used to control and manage Kubernetes clusters. By installing

and configuring kubectl on your local computer, you can manage your Kubernetes clusters easily

through your computer, rather than logging in to the cluster or some other remote location to

manage the clusters. If you want to manage your Kubernetes cluster from a computer other than

your local one, run these steps on that computer.

This step enables you to connect to your cluster in Oracle Cloud Infrastructure. Run the following

commands on your local computer, replacing ${LB_IP} with your load balancer’s IP address.

kubectl config set-cluster kubernetes-the-hard-way \

 --certificate-authority=ca.pem \

 --embed-certs=true \

 --server=https://${LB_IP}:6443

kubectl config set-credentials admin \

 --client-certificate=admin.pem \

 --client-key=admin-key.pem

kubectl config set-context kubernetes-the-hard-way \

 --cluster=kubernetes-the-hard-way \

 --user=admin

kubectl config use-context kubernetes-the-hard-way

35 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

Step 8: Deploy Kube-DNS

1. Deploy the kube-dns cluster add-on:

kubectl create -f https://storage.googleapis.com/kubernetes-the-hard-

way/kube-dns.yaml

The output should be similar to the following example:

Service account "kube-dns" created configmap "kube-dns" created service

"kube-dns" created deployment "kube-dns" created

2. List the pods created by the kube-dns deployment:

kubectl get pods -l k8s-app=kube-dns -n kube-system

The output should be similar to the following example:

NAME READY STATUS RESTARTS AGE

kube-dns-3097350089-gq015 3/3 Running 0 20s

kube-dns-3097350089-q64qc 3/3 Running 0 20s

Step 9: Smoke Test

This section walks you through a quick smoke test to ensure the cluster is working as expected.

1. Create an nginx deployment with three replicas by using the following command:

kubectl run nginx --image=nginx --port=80 --replicas=3

The output should look as follows:

deployment "nginx" created

2. Run the following command to see the pods that your deployment created and ensure

that they are in a Running state:

kubectl get pods -o wide

The output should be similar to the following example:

NAME READY STATUS RESTARTS AGE IP NODE

nginx-158599303-btl44 1/1 Running 0 18s 10.99.49.5 k8s-

worker-ad1-0

nginx-158599303-ndxtc 1/1 Running 0 18s 10.99.49.3 k8s-

worker-ad2-0

nginx-158599303-r2801 1/1 Running 0 18s 10.99.49.4 k8s-

worker-ad3-0

3. Create a service to connect to your nginx deployment.

kubectl expose deployment nginx --type NodePort

36 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

4. View the service that you created. Note that --type=LoadBalancer is not currently

supported in Oracle Cloud Infrastructure.

kubectl get service

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes 10.21.0.1 <none> 443/TCP 1h

nginx 10.21.62.159 <nodes> 80:30050/TCP 1h

At this point, you must either manually create a load balancer in BMC that routes to the

cluster (in this example, that would be 10.21.62.159:80) or expose the node port (in this

case, 30050) publicly via Oracle Cloud Infrastructure’s security lists. In this guide, you do

the latter.

5. Modify the worker’s security list, allowing ingress traffic to 30050.

6. Get the NodePort that was set up for the nginx service:

NodePort=$(kubectl get svc nginx --output=jsonpath='{range

.spec.ports[0]}{.nodePort}')

7. Get the worker_public_ip value for one of the workers from the UI.

8. Test the nginx service with these values by using curl:

curl http://${worker_public_ip}:${NodePort}

The output should look like the following example:

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

 body {

 width: 35em;

 margin: 0 auto;

 font-family: Tahoma, Verdana, Arial, sans-serif;

 }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully installed

and

working. Further configuration is required.</p>

<p>For online documentation and support please refer to

nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

37 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

Appendix A: Security Rules

This appendix outlines the security rules for the following security lists:

 etcd: etcd_security_list.sl

 Kubernetes masters: k8sMaster_security_list.sl

 Kubernetes workers: k8sWorker_security_list.sl

The specific ingress and egress rules for each of these security lists are provided in the following

tables. All rules are stateful.

ETCD SECURITY LIST INGRESS RULES

Source IP Protocol Source Port Range Destination Port Range

10.0.0.0/16 TCP All ALL

10.0.0.0/16 TCP All 22

10.0.0.0/16 TCP All 2379-2380

ETCDSECURITY LIST EGRESS RULES

Destination IP Protocol Source Port Range Destination Port Range

0.0.0.0/0 All All All

KUBERNETES MASTER SECURITY LIST INGRESS RULES

Destination IP Protocol Source Port Range Destination Port Range

10.0.0.0/16 All All All

10.0.0.0/16 TCP All 3389

10.0.0.0/16 TCP All 6443

10.0.0.0/16 TCP All 22

KUBERNETES MASTER SECURITY LIST EGRESS RULES

Destination IP Protocol Source Port Range Destination Port Range

0.0.0.0/0 All All All

38 KUBERNETES ON ORACLE CLOUD INFRASTRUCTURE

KUBERNETES WORKER SECURITY LIST INGRESS RULES

Destination IP Protocol Source Port Range Destination Port Range

10.0.0.0/16 TCP All All

10.0.0.0/16 TCP All 22

10.0.0.0/16 UDP All 30000-32767

KUBERNETES WORKER SECURITY LIST EGRESS RULES

Destination IP Protocol Source Port Range Destination Port Range

0.0.0.0/0 All All All

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0218

Kubernetes on Oracle Cloud Infrastructure
February 2018
Author: Kaslin Fields

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

