

1 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

Business / Technical Brief

Gluster Storage for Oracle Linux:
Best Practices and Sizing
Guideline

Planning Gluster Storage for Oracle Linux

May, 2022

Copyright © 2022, Oracle and/or its affiliates

Public

2 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

Purpose statement

This document provides an overview of features and enhancements included in

Gluster Storage for Oracle Linux. It is intended solely to help you assess the

business and technical benefits of the product and better plan your IT projects.

3 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

Table of contents

Purpose statement 2

Introduction 4

Gluster terminology 4

Gluster Storage for Oracle Linux 5

Optimize Gluster Storage for Oracle Linux 8

Local disks, storage nodes, and network speed 8

Brick and XFS recommendations 10

Example - Creating multiple bricks on a physical device 12

Network 14

Memory 14

Virtual memory parameters 14

Small file performance enhancements 15

Best practices for tuning event threads 15

Setting the event threads value for a client 16

Setting the event thread value for a server 16

Verifying the event thread values 16

Other parameters related to even threads tuning 16

Enabling lookup optimization 16

Sizing and recommendation: Gluster Storage for Oracle Linux for video

management system 17

Gluster Native Client, NFS, and NFS-Ganesha 18

Conclusion 19

4 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

Introduction

Gluster is an open source, scalable, distributed file system that aggregates disk storage resources from multiple

servers into a single global namespace. There are several advantages to using Gluster such as:

 Scales to several petabytes

 Handles thousands of clients

 POSIX compatible

 Supports commodity hardware

 Can use any on-disk filesystem that supports extended attributes

 Accessible using industry standard protocols like NFS, iSCSI and SMB

 Provides replication, quotas, geo-replication, snapshots

 Allows optimization for different workloads

Image 1. Gluster Storage Example Architecture

Gluster is used in production at thousands of organizations spanning media, healthcare, government, education, web

2.0 and financial services sectors. Enterprises can use it to scale their capacity, performance, and availability on

demand, without vendor lock-in, across on-premises, public cloud, and hybrid environments.

After years of inflexible proprietary hardware and appliance-based approaches, software-defined storage

solutions have emerged as the viable alternative. The success of web-scale IT and public cloud providers has

proven the way forward, with many embracing open software-defined storage as a fundamental strategy for

deploying flexible, elastic, and cost-effective storage that is matched to specific application needs.

Gluster terminology

We recommend becoming familiar with the GlusterFS documentation, but to get started, the following terms are

important to know:

 Brick (storage block): refers to the dedicated partition provided by the host for physical storage in the trusted

host pool. It is the basic storage unit in GlusterFS, and also the storage directory provided by the server in the

trusted storage pool.

https://docs.oracle.com/en/operating-systems/oracle-linux/gluster-storage/

5 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

 Trusted storage pool: A collection of shared files and directories based on the designed protocol.

 Block storage: Devices through which the data is being moved across systems in the form of blocks.

 Cluster: In Gluster storage, cluster and trusted storage pools convey the same meaning, the collaboration of

storage servers based on a defined protocol.

 Distributed file system: A file system in which data is spread over different nodes, allowing users to access a

file without knowing its location. Data sharing among multiple locations is fundamental to all distributed file

systems.

 Glusterd: The GlusterFS management daemon and file system backbone that runs whenever the servers are

in an active state.

 POSIX: Portable Operating System Interface (POSIX), the family of standards defined by the IEEE as a

solution to the compatibility between Unix variants in the form of an API.

 Volume: A logical volume is a collection of bricks. A volume is a logical device for data storage, similar to the

logical volume in Linux Logical Volume Manager (LVM). Most of the Gluster management operations are

performed on the volume.

 Subvolume: A brick after being processed by least at one translator.

 Translator: A piece of code that performs the basic actions initiated by a user from the mount point. It

connects one or more subvolumes.

 Metadata: Data providing information about other pieces of data.

 Client: The machine (or server) that mounts a volume.

 FUSE (file system in user space): a kernel module that allows users to create their own file systems without

modifying kernel code.

 VFS: the interface provided by kernel space to user space to access disk.

Gluster Storage for Oracle Linux

Gluster Storage for Oracle Linux is a software-defined, open source solution, designed to meet unstructured and

semi-structured data storage requirements, mainly focused on storing digital media files (images, video, and audio).

Gluster Storage for Oracle Linux allows organizations to combine large numbers of storage and compute resources

into a high-performance and centrally managed storage pool. The cluster can be scaled for increased capacity and/or

increased performance. Gluster Storage for Oracle Linux capabilities include:

 High availability and reliability. When setting up GlusterFS, the type of storage volumes needs to be

specified. The type chosen depends on the workload and the tradeoff between data protection and capacity.

In typical deployments, both distributed and distributed-replicated volumes are used.

o Distributed volume, the default type, spreads files across the bricks in the volume. It doesn’t provide

redundancy, but it’s easy and inexpensive to scale the volume size. The downside is that a brick failure

leads to complete data loss, and the underlying hardware must be relied on for data loss protection.

6 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

Image 2. Distributed volume setup with Gluster Storage

o Replicated volume creates copies of files across multiple bricks in the volume. Use replicated volumes in

environments where high availability and high reliability are critical. A client-side quorum must be set on

replicated volumes to prevent split-brain scenarios.

Image 3. Replicated volume setup with Gluster Storage

o Distributed-replicated volume provides node-level fault tolerance but less capacity than a distributed

volume. Use distributed-replicated volumes in environments where the critical requirements are to scale

storage and maintain high reliability. Distributed-replicated volumes also offer improved read

performance in most environments.

Image 4. Distributed-replicated volume setup with Gluster Storage

7 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

o Dispersed volume is based on erasure coding (EC). In this method of data protection, data is broken into

fragments, expanded, and encoded with redundant data pieces, then stored across a set of different

locations.

Image 5. Dispersed volume setup with Gluster Storage

 Elastic volume management. Gluster stores data in logical volumes that are independent of the logical

storage pool. Logical storage pools can be added and removed online without causing business disruption.

When volumes change, the data remains available without application interruption. With Gluster Storage for

Oracle Linux, storage volumes are abstracted from the hardware and managed independently. The needs of

the environment should be expanded or contracted elastically. In the multi-node scenario, the global uniform

namespace can also do load balancing based on different nodes, which greatly improves access efficiency.

 Persistent storage for containerized applications. Containerized applications need persistent storage. In

addition to bare metal, virtualized, and cloud environments, Gluster Storage for Oracle Linux can be deployed

as persistent storage for Oracle Cloud Native Environment that includes a dedicated storage interface for

Gluster.

 Scalability. Gluster Storage for Oracle Linux lets organizations start small and easily grow to support multi-

petabyte repositories. Gluster Elastic Hash solves the dependence of Gluster on metadata server. Gluster uses

Elastic Hash algorithm to locate data in storage pool. Gluster can intelligently locate any data fragment (store

the data fragment on different nodes), without looking at the index or querying the metadata server. This

design mechanism realizes the horizontal expansion of storage, improves the single point of failure and

performance bottleneck, and realizes the parallel data access.

 High performance. Gluster Storage for Oracle Linux provides fast file access by eliminating the typical

centralized metadata server. Files are spread throughout the storage nodes, helping to eliminate I/O

bottlenecks and high latency. Organizations can use enterprise disk drives, local NVMe storage, and 10+

Gigabit Ethernet (GbE) to maximize distributed storage performance.

 Industry-standard compatibility. Gluster Storage for Oracle Linux service supports NFS, CIFS, HTTP, FTP,

SMB, and Gluster native protocols, and is fully compatible with POSIX file systems standards. Existing

applications can access the data in Gluster without any modification, or access it using a dedicated API, more

efficient, which is very useful when deploying Gluster in a cloud environment.

 Unified global namespace. Gluster Storage for Oracle Linux aggregates disk and memory resources into a

single common pool. This flexible approach simplifies management of the storage environment and helps

https://docs.oracle.com/en/operating-systems/olcne/

8 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

eliminate data silos. The global unified namespace aggregates all storage resources into a single virtual

storage pool, which blocks the physical storage information for users and applications.

 Cost-effective enterprise support. Gluster Storage for Oracle Linux support is included in Oracle Linux

Premier Support at no extra cost.

Optimize Gluster Storage for Oracle Linux

One of the benefits of Gluster is the ability to tailor storage infrastructure to different requirements and workload

types. Local storage (rotating disks or NVMe storage) and network interface cards (NICs) are the hardware foundation

where Gluster Storage for Oracle Linux resides. Based on hardware capacity, specific workloads and I/O requirements

can be addressed. Multiple combinations are possible by varying:

 The number of Gluster Storage for Oracle Linux nodes

 The capacity and speed of local storage

 The capacity, in term of latency and bandwidth, of the network architecture (that includes also network

switches)

 The layout of the underlying local storage, RAID configured or not

 The Gluster configuration, replicated or dispersed

The RAID configurations usually leveraged with Gluster Storage for Oracle Linux are RAID-6 and RAID-10:

 RAID-6 offers better disk space efficiency, good sequential write/read performance on large files; configured

on 12 hardware disk devices RAID-6 can grant 40% more usable disk space while compared to RAID-10.

 RAID-10 offers improved performance for small-size files as well as random writes; RAID-10 is the preferred

path for small-size files read and writes.

One important parameter, related to the hardware RAID configuration, is the stripe size.

With RAID 10, it's suggested to leverage a size of 256Kb striping while, for RAID-6, the striping size has to be defined

by evaluating the number of hardware disk-devices leveraged. For RAID-6 configurations with 12 disks (10 dedicated

to data), striping size suggested is 128Kb.

With JBOD (Just a Bunch of Disks) configuration the local disks are not aggregated by hardware RAID; JBOD supports

36 local-disks per storage node and, usually, one of those disks is leveraged as the cache for Gluster Storage.

"Replicated volumes" on RAID 6 bricks are usually leveraged for performance-optimized configurations, especially for

workloads with a smaller file size while "dispersed volumes" on JBOD bricks are often more cost effective for large-file

archive situations that do not have particular performance requirements. Among supported configurations, dispersed

volumes can offer better read and write performance for workloads with large file sizes.

Standard 12 local-disk systems are often more performant and cost effective for smaller clusters and small-file

applications, while dense 24 local-disk storage servers and larger are often more cost effective for larger clusters;

Factors, including caching and tiering, with either standard SSDs or NVMe SSDs can provide significant benefits,

especially for read performance. Also, leveraging full local storage based on SSD(s) or NVMe(s) can be evaluated,

mostly while having high performance demand and low latency networking in place.

Local disks, storage nodes, and network speed

Local disks

In most scale-up systems, disk speed and seek time are the biggest determinants of performance. While the use of

solid state drives or NVMe can eliminate the impact of spin time, such drives are generally more expensive per GB

compared to low end SATA drives. In a typical Gluster configuration, the workload is spread across a large number of

TB drives. Thus, the spin time of any individual drive becomes largely irrelevant. For example, Gluster has been able

9 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

to achieve upwards of 16 GB/s read throughput and 12 GB/s write throughput in an 8 nodes storage cluster created

using 7.2 K RPM SATA drives. For most customers, therefore, the scale-out approach can eliminate the need for

expensive drives or complicated tiering systems. In certain circumstances characterized by very high performance

and low-capacity requirements (e.g. risk modeling), Gluster can be used in combination with SSD/NVMe for these

workloads or in a full SSDs/NVMe solution for very demanding I/O throughput.

In most scale-out systems with a centralized or distributed metadata server, adding disks often leads to performance

degradation or to non-linear gains in capacity. With Gluster, adding additional disks to a storage node will result in

linear gains in effective capacity, and will generally result in either neutral to moderately positive impacts on

performance.

Storage nodes

Gluster performance is most directly impacted by the number of storage nodes. In general, distributing the same

number of disks among twice as many storage nodes will double performance. Performance in a Gluster cluster

increases near-linearly with the number of storage nodes; an 8 storage nodes Gluster cluster will deliver

approximately 4 times the throughput of a 2 storage nodes cluster.

Networking

In most cases, by the time a system has 8 or more storage nodes, the network becomes the bottleneck, and a 1 GbE

system will be easily saturated. By adding a 10GbE or faster network, faster per node performance can be achieved.

Gluster statistics show that it can achieve 16 GB/s read throughput and 12 GB/s write throughput in an 8 storage

nodes cluster using low end SATA drives when configured with a 10GbE network. The same cluster achieved

approximately 800 MB/s of throughput with a 1 GbE network.

Impact of disks, storage nodes, and networking components

To illustrate how Gluster Storage for Oracle Linux can scale, this example shows how a baseline system can be scaled

to increase both performance and capacity:

 To support a requirement for 200 TB of capacity, a deployment might have 4 servers, each of which contains

a quantity of 12 X 6 TB SATA drives.

 If performance levels are acceptable, but the desire is to increase the capacity by 33%, an option is to add

another 4 X 6 TB drives to each server. This addresses the requirements and should not introduce

performance degradation. (i.e., each server would have 16 X 6 TB drives). Note that an enterprise does not

need to upgrade to larger, or more powerful hardware to increase capacity; it simply adds 8 more SATA

drives.

 If the capacity is good, but the desire is to increase the performance by 100% (double-up) , an option is to

distribute the drives among 8 servers, rather than 4, where each server would have 6 X 6 TB drives, rather

than 12 X 6 TB,. Note that in this case, 2 more low-priced servers can be added, and existing drives would be

redeployed.

 If the target is to both increase the performance by 100% (double-up) and also increase the capacity by 33%,

as an example, then distributing among 8 servers where each server has 16 X 6 TB drives will address the

requirement.

As shared above, the power of Gluster Storage for Oracle Linux scalability covers both the capacity and the

performance where both can scale linearly to meet requirements. It is not necessary to know what performance

levels will be needed in the future, since the Gluster Storage for Oracle Linux configuration can be easily adapted

based on new requirements.

10 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

Brick and XFS recommendations

Format bricks using the following configurations to enhance performance:

The steps for creating a brick and multiple bricks from a physical device are listed below.

 Creating the physical volume

The pvcreate command is used to create the physical volume. The Logical Volume Manager can use a portion of the

physical volume for storing its metadata while the rest is used as the data portion. Align the I/O at the Logical Volume

Manager (LVM) layer using --dataalignment option while creating the physical volume.

The command is used in the following format:

pvcreate --dataalignment alignment_value disk

For JBOD, use an alignment value of 256K.

In case of hardware RAID, the alignment_value should be obtained by multiplying the RAID stripe unit size with the

number of data disks. If 12 disks are used in a RAID 6 configuration, the number of data disks is 10; on the other

hand, if 12 disks are used in a RAID 10 configuration, the number of data disks is 6.

For example, the following command is appropriate for 12 disks in a RAID 6 configuration with a stripe unit size of

128 KiB:

pvcreate --dataalignment 1280k disk

The following command is appropriate for 12 disks in a RAID 10 configuration with a stripe unit size of 256 KiB:

pvcreate --dataalignment 1536k disk

To view the previously configured physical volume settings for --dataalignment, run the following command:

pvs -o +pe_start disk
 PV VG Fmt Attr PSize PFree 1st PE
 /dev/sdb lvm2 a-- 9.09t 9.09t 1.25m

 Creating the volume group

The volume group is created using the vgcreate command.

For hardware RAID, in order to help ensure that logical volumes created in the volume group are aligned with the

underlying RAID geometry, it is important to use the -- physicalextentsize option. Execute the vgcreatecommand

in the following format:

vgcreate --physicalextentsize extent_size VOLGROUP physical_volume

The extent_size should be obtained by multiplying the RAID stripe unit size with the number of data disks. If 12

disks are used in a RAID 6 configuration, the number of data disks is 10; on the other hand, if 12 disks are used in a

RAID 10 configuration, the number of data disks is 6.

For example, run the following command for RAID-6 storage with a stripe unit size of 128 KB, and 12 disks (10 data

disks):

11 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

vgcreate --physicalextentsize 1280k VOLGROUP physical_volume

In the case of JBOD, use the vgcreate command in the following format:

vgcreate VOLGROUP physical_volume

 Creating the thin pool

A thin pool provides a common pool of storage for thin logical volumes (LVs) and their snapshot volumes, if any.

Execute the following command to create a thin-pool:

lvcreate --thinpool VOLGROUP/thin_pool --size <pool_size> --chunksize <chunk_size> --
poolmetadatasize <meta_size> --zero n

 poolmetadatasize

Internally, a thin pool contains a separate metadata device that is used to track the (dynamically) allocated regions of

the thin LVs and snapshots. The poolmetadatasize option in the above command refers to the size of the pool meta

data device.

The maximum possible size for a metadata LV is 16 GiB. The recommendation for GlusterFS is to create the metadata

device of the maximum supported size. If space is a concern, less than the maximum size can be allocated, but in this

case a minimum of 0.5% of the pool size should be allocated.

 chunksize

An important parameter to be specified while creating a thin pool is the chunk size, which is the unit of allocation. For

good performance, the chunk size for the thin pool and the parameters of the underlying hardware RAID storage

should be chosen so that they work well together.

For RAID 6 storage, the striping parameters should be chosen so that the full stripe size (stripe_unit size * number of

data disks) is between 1 MiB and 2 MiB, preferably in the low end of the range. The thin pool chunk size should be

chosen to match the RAID 6 full stripe size. Matching the chunk size to the full stripe size aligns thin pool allocations

with RAID 6 stripes, which can lead to better performance. Limiting the chunk size to below 2 MiB helps reduce

performance problems due to excessive copy-on-write when snapshots are used.

For example, for RAID 6 with 12 disks (10 data disks), stripe unit size should be chosen as 128 KiB. This leads to a full

stripe size of 1280 KiB (1.25 MiB). The thin pool should then be created with the chunk size of 1280 KiB.

For RAID 10 storage, the preferred stripe unit size is 256 KiB. This can also serve as the thin pool chunk size. Note that

RAID 10 is recommended when the workload has a large proportion of small file writes or random writes. In this case,

a small thin pool chunk size is more appropriate, as it reduces copy-on-write overhead with snapshots.

For JBOD, use a thin pool chunk size of 256 KiB.

 block zeroing

By default, the newly provisioned chunks in a thin pool are zeroed to prevent data leaking between different block

devices. In the case of Gluster, where data is accessed via a file system, this option can be turned off for better

performance with the --zero n option. Note that n does not need to be replaced. The following example shows how

to create the thin pool:

12 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

lvcreate --thinpool VOLGROUP/thin_pool --size 800g --chunksize 1280k --poolmetadatasize 16G
--zero n

 Creating a thin logical volume

After the thin pool has been created as mentioned above, a thinly provisioned logical volume can be created in the

thin pool to serve as storage for a brick of a Gluster volume.

lvcreate --thin --name LV_name --virtualsize LV_size VOLGROUP/thin_pool

Example - Creating multiple bricks on a physical device

The steps above (LVM Layer) cover the case where a single brick is being created on a physical device.

Note: In these steps, we are assuming the following:

 Two bricks must be created on the same physical device

 One brick must be of size 4 TiB and the other is 2 TiB

 The device is /dev/sdb, and is a RAID-6 device with 12 disks

 The 12-disk RAID 6 device has been created according to the recommendations in this chapter, that is, with a

stripe unit size of 128 KiB

This example shows how to adapt these steps when multiple bricks need to be created on a physical device.

 Create a single physical volume using pvcreate

pvcreate --dataalignment 1280k /dev/sdb

 Create a single volume group on the device

vgcreate --physicalextentsize 1280k vg1 /dev/sdb

 Create a separate thin pool for each brick using the following commands

lvcreate --thinpool vg1/thin_pool_1 --size 4T --chunksize 1280K --poolmetadatasize 16G --
zero n
lvcreate --thinpool vg1/thin_pool_2 --size 2T --chunksize 1280K --poolmetadatasize 16G --
zero n

In the examples above, the size of each thin pool is chosen to be the same as the size of the brick that will be created

in it. With thin provisioning, there are many possible ways of managing space.

 Create a thin logical volume for each brick

lvcreate --thin --name lv1 --virtualsize 4T vg1/thin_pool_1
lvcreate --thin --name lv2 --virtualsize 2T vg1/thin_pool_2

 Follow the XFS recommendations (next step) in this sectionfor creating and mounting file systems for each of

the thin logical volumes

mkfs.xfs options /dev/vg1/lv1
mkfs.xfs options /dev/vg1/lv2
mount options /dev/vg1/lv1 mount_point_1
mount options /dev/vg1/lv2 mount_point_2

13 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

 XFS inode Size

As GlusterFS makes extensive use of extended attributes, an XFS inode size of 512 bytes works better with GlusterFS

than the default XFS inode size of 256 bytes. So, inode size for XFS must be set to 512 bytes while formatting the

GlusterFS bricks. To set the inode size, use -i size option with the mkfs.xfs command as shown in the following

Logical Block Size for the Directory section.

 XFS RAID Alignment

When creating an XFS file system, the striping parameters of the underlying storage can be explicitly specified in the

following format:

mkfs.xfs other_options -d su=stripe_unit_size,sw=stripe_width_in_number_of_disks device

For RAID 6, ensure that I/O is aligned at the file system layer by providing the striping parameters. For RAID 6 storage

with 12 disks, if the recommendations above have been followed, the values must be:

mkfs.xfs other_options -d su=128k,sw=10 device

For RAID 10 and JBOD, the -d su=<>,sw=<> option can be omitted. By default, XFS will use the thin-p chunk size and

other parameters to make layout decisions.

 Logical block size for the directory

An XFS file system allows a logical block size to be selected for the file system directory that is greater than the logical

block size of the file system. Increasing the logical block size for the directories from the default 4 K, decreases the

directory I/O, which in turn improves the performance of directory operations. To set the block size, use -n

size option with the mkfs.xfs command.

Following is the example output of RAID 6 configuration along with inode and block size options:

mkfs.xfs -f -i size=512 -n size=8192 -d su=128k,sw=10 logical volume
meta-data=/dev/mapper/gluster-brick1 isize=512 agcount=32, agsize=37748736 blks
 = sectsz=512 attr=2, projid32bit=0
data = bsize=4096 blocks=1207959552, imaxpct=5
 = sunit=32 swidth=320 blks
naming = version 2 bsize=8192 ascii-ci=0
log =internal log bsize=4096 blocks=521728, version=2
 = sectsz=512 sunit=32 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

 Allocation strategy

inode32 and inode64 are the two most common allocation strategies for XFS. With inode32 allocation strategy, XFS

places all the inodes in the first 1 TiB of disk. With a larger disk, all the inodes would be stuck in the first 1 TiB.

inode32 allocation strategy is used by default.

With inode64 mount option inodes would be replaced near to the data which would minimize the disk seeks.

To set the allocation strategy to inode64 when the file system is being mounted, use the -o inode64 option with

the mount command as shown in the following Access Time section.

 Access time

If the application does not require an update to the access time on files, then the file system must be mounted

with noatime mount option. For example:

mount -t xfs -o inode64,noatime <logical volume> <mount point>

14 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

This optimization improves performance of small-file reads by avoiding updates to the XFS inodes when files are

read.

/etc/fstab entry for option E + F
 <logical volume> <mount point>xfs inode64,noatime 0 0

 Allocation groups

Each XFS file system is partitioned into regions called allocation groups. Allocation groups are similar to the block

groups in ext3, but allocation groups are much larger than block groups and are used for scalability and parallelism

rather than disk locality. The default allocation for an allocation group is 1 TiB.

Allocation group count must be large enough to sustain the concurrent allocation workload. In most of the cases

allocation group count chosen by mkfs.xfs command would provide optimal performance. Do not change the

allocation group count chosen by mkfs.xfs, while formatting the file system.

 Percentage of space allocation to inodes

If the workload is very small files (average file size is less than 10 KB), then it is recommended to set maxpct value

to 10, while formatting the file system.

For small-file and random write performance, using writeback cache is strongly recommend, that is, non-volatile

random-access memory (NVRAM) in the storage controller. For example, typical Dell and HP storage controllers have

it. Ensure that NVRAM is enabled, that is, the battery is working. Refer to the hardware documentation for details on

enabling NVRAM.

Do not enable writeback caching in the disk drives, this is a policy where the disk drive considers the write is complete

before the write actually made it to the magnetic media (platter). As a result, the disk write cache might lose its data

during a power failure leading to file system corruption.

Network

Data traffic on the network becomes a bottleneck as and when the number of storage nodes increase. By adding a

10GbE or faster network for data traffic, faster per node performance can be achieved. Jumbo frames must be

enabled at all levels, that is, client, Gluster node, and ethernet switch levels. MTU of size N+208 must be supported by

the ethernet switch where N=9000. It is recommended that there is a separate network for management and data

traffic when protocols like NFS /CIFS are used instead of native client. Preferred bonding mode for Gluster client is

mode 6 (balance-alb), this allows the client to transmit writes in parallel on separate NICs much of the time.

Memory

Gluster does not consume significant compute resources from the storage nodes themselves. However, read-

intensive workloads can benefit greatly from additional RAM.

Virtual memory parameters

The data written by the applications is aggregated in the operating system page cache before being flushed to the

disk. The aggregation and writeback of dirty data is governed by the Virtual Memory parameters. The following

parameters may have a significant performance impact:

 vm.dirty_ratio

 vm.dirty_background_ratio

The appropriate values of these parameters vary with the type of workload:

15 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

 Large-file sequential I/O workloads benefit from higher values for these parameters.

 For small-file and random I/O workloads it is recommended to keep these parameter values low.

The Gluster tuned profiles set the values for these parameters appropriately. Hence, it is important to select and

activate the appropriate Gluster profile based on the workload.

Small file performance enhancements
For each file access, an operation via the network is executed on Gluster metadata for files and directories; this

process is called "lookup". Due to this in-place process, a heavy workload on many small files performs poorly

compared to other types of workloads. With big files, most of the time is dedicated to the file transfer while for small

files, the metadata management could take more time than the storage operation.

Metadata intensive workloads (small files, high concurrency) require some optimization on both the network and the

storage to minimize the possibility of slow throughput and response time;

To address this kind of limitation for small files, one option is to enhance the Gluster metadata cache translator (md-

cache), so the lookup requests are cached indefinitely on the client. This solution needs the client-side cache to be

invalidated (upcall) if files or directories are modified in the meantime by other clients. With upcalls enabled, the

number of lookups drops to a lower number on all subvolumes. This drop grants an improved throughput for small

file workloads.

To enable upcall in md-cache, specify the following:

gluster volume set <volname> features.cache-invalidation on
gluster volume set <volname> features.cache-invalidation-timeout 600
gluster volume set <volname> performance.cache-samba-metadata on
gluster volume set <volname> performance.cache-invalidation on
gluster volume set <volname> performance.stat-prefetch on

The following parameters can help fine tune file access for small-file sizes. These examples are for reference and may

need further tuning to obtain the best performance on the specified environment:

gluster volume set <volname> client.event-threads 4
gluster volume set <volname> server.event-threads 4
gluster volume set <volname> performance.io-thread-count 64
gluster volume set <volname> server.outstanding-rpc-limit: 128
gluster volume set <volname> cluster.lookup-optimize ontuned-adm profile throughput-
performance

Best practices for tuning event threads

Performance improvements for Gluster Storage for Oracle Linux could be obtained by tuning the number of threads

processing events from network connections. Here some tuning recommendations related to event thread values.

 One thread manages one single connection at a time; having more threads than connections, either on

Gluster server(s) or the Gluster client is not recommended.

 Introducing, on both Gluster server and client, a number of threads higher than the number of CPU core(s)

available on the system could cause context switches with the result of slower performance.

 In the case of a single thread consuming high percentages of CPU time, the increase of the even thread value

could improve the performance and response time of the Gluster server.

16 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

Setting the event threads value for a client

GlusterFS Server performance can be tuned using the event thread values.

gluster volume set VOLNAME client.event-threads <value>
gluster volume set test-vol client.event-threads 4

Setting the event thread value for a server

GlusterFS Server performance can be tuned using event thread values.

gluster volume set VOLNAME server.event-threads <value>
gluster volume set test-vol server.event-threads 4

Verifying the event thread values

Verify the event thread values that are set for the client and server components by executing the following command:

gluster volume info VOLNAME

Other parameters related to even threads tuning

The following parameters may also help on Gluster Storage for Oracle Linux:

 server.outstanding-rpc-limit configuration which queue the requests for brick processes

 performance.io-thread-count configuration which performs the actual IO operations

For further details related to these two parameters, please refer to GlusterFS community documentation.

Enabling lookup optimization

A lookup for a file/directory that does not exist is a negative lookup; negative lookups are expensive and typically

slow down file creation, as DHT(Distributed Hash Table) attempts to find the file in all subvolumes. This especially

impacts small file performance, where a large number of files are being added/created in quick succession to the

volume.

The negative lookup fan-out behavior can be optimized by not performing the lookup process in a balanced volume.

The cluster.lookup-optimize configuration option enables lookup optimization. To enable this option run the

following command:

gluster volume set VOLNAME cluster.lookup-optimize <on/off>

Note: The configuration takes effect for newly created directories immediately after setting the above option. For

existing directories, a rebalance is required to help ensure the volume is in balance before DHT applies the optimization

on older directories.

https://rajeshjoseph.gitbooks.io/test-guide/content/cluster/chap-Configuring_Gluster_for_Enhancing_Performance.html
https://docs.gluster.org/en/latest/Quick-Start-Guide/Architecture/

17 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

Sizing and recommendation: Gluster Storage for Oracle Linux for video management system

This paper provides a representation of use cases and respective best practices for Gluster Storage for Oracle Linux

volumes. Gluster volumes can be used productively for a large variety of data workloads, starting from development

storage solution requirements to production and intensive I/O requirements.

A video management system, such as streaming HD video recording and management, usually involves a sequential

write-heavy workload that is sensitive to overall latency. It also includes accompanying concurrent read workloads

that may be smaller and random in nature; usually writes cover 80% of the workload while reads only cover the

remaining 20%. The in-place architecture has to be able to grant the required number of simultaneous high-

definition recording streams (writes) before reaching any data loss.

Based on the best practices shared in earlier sections, it's evident that the replicated volume on RAID 6 bricks is not

the best option for this kind of use case. A dispersed volume on JBOD bricks provides the advantages of additional

storage and higher capacity, in term of the number of write streams clients.

To avoid data loss in case of local disk failure (JBOD does not preserve on this), the "dispersed volume" type is

suggested. This option leverages local NVMe storage as well as high bandwidth networking (10+G/bit devices).

At the system level, tuned profile throughput-performance is suggested; throughput-performance disables power

saving mechanisms and enables sysctl settings that improve the throughput performance of disk and network IO.

CPU governor is set to performance and CPU energy performance bias is set to performance. Disk readahead values

are increased.

Other recommendations are also related to Gluster volume as well as Gluster clients.

For Gluster Storage for Oracle Linux volume:

 disperse.eager-lock

 Suggested value: off

If eager-lock is on, the lock remains in place either until lock contention is detected, or for 1 second in order to check

if there is another request for that file from the same client. If eager-lock is off, locks release immediately after file

operations complete, improving performance for some operations, but reducing access efficiency.

 cluster.lookup-optimize

 Suggested value: on

This option enables the optimization of -ve lookups, by not doing a lookup on non-hashed subvolumes for files, in

case the hashed subvolume does not return any result. This option disregards the lookup-unhashed setting, when

enabled. lookup-unhashed does a lookup through all the subvolumes, in case a lookup didn’t return any result from

the hashed subvolume. If set to OFF, it does not do a lookup on the remaining subvolumes.

 performance.client-io-threads

 Suggested value: on

Performance improves for parallel I/O from a single mount point for dispersed (erasure-coded) volumes by allowing

up to 16 threads to be used in parallel. When enabled, 1 thread is used by default, and further threads up to the

maximum of 16 are created as required by the client workload.

 server.event-threads

 Suggested value: 4 or more (32 is the max limit)

18 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

Specifies the number of network connections to be handled simultaneously by the server processes.

 client.event-threads

 Suggested value: 4 ore more (32 is the max limit)

Specifies the number of network connections to be handled simultaneously by the client processes accessing Gluster

Storage for Oracle Linux.

For Oracle Linux Gluster clients:

 net.core.netdev_max_backlog

 Suggested value: 131072 or higher

Increases number of incoming connections backlog queue. Sets the maximum number of packets, queued on the

INPUT side, when the interface receives packets faster than the kernel can process them.

 sunrpc.tcp_slot_table_entries

 Suggested value with 10 GigE network: 48 or higher depending on the round-trip time

sunrpc.tcp_slot_table_entries sets the number of (TCP) minimum RPC entries to pre-allocate for in-flight RPC

requests

 net.core.somaxconn

 Suggested value: check number of cores available and requirements

Each CPU core can hold a number of packets in a ring buffer before the network stack is able to process them. If the

buffer is filled faster than the TCP stack can process them, a dropped packet counter is incremented and they will be

dropped. The net.core.netdev_max_backlog setting should be increased to maximize the number of packets

queued for processing on clients with high burst traffic. It's important to remember that

net.core.netdev_max_backlog is a per CPU core setting. The default value for net.core.somaxconn comes from

the SOMAXCONN constant, which is set to 128 on the Unbreakable Enterprise Kernel (UEK) 5 for Oracle Linux (or

upstream kernels lower than 5.4), while SOMAXCONN had been raised to 4096 in UEK6.

 net.ipv4.tcp_fin_timeout

 Suggested value: 5

The length of time an orphaned (no longer referenced by any application) connection will remain in the FIN_WAIT_2

state before it is aborted at the local end.

Gluster Native Client, NFS, and NFS-Ganesha

Gluster’s Native FUSE client will deliver better read and write performance than Gluster NFS across a wide variety of

block sizes. However, Gluster NFS will deliver better write performance at small (<32 K) block sizes because of its

kernel-based write caching. Native clients write performance is sensitive to changes in block size, and is not sensitive

to changes in file size. For NFS, both read and write performance are not sensitive to changes in block size, but are

sensitive to changes in file size. The reason that this happens is that NFS clients perform write caching in addition to

read caching, while the Gluster native client only caches the reads.

Generic performance benchmarks demonstrated a discrete performance improvement while leveraging NFS-Ganesha

over the standard Kernel NFS Server. Introducing the adoption of NSF-Ganesha server-side (on Gluster Storage for

Oracle Linux nodes) does not introduce any impact or requirement on NFS clients.

19 Business / Technical Brief / Gluster Storage for Oracle Linux: Best Practices and Sizing Guideline

 Copyright © 2022, Oracle and/or its affiliates / Public

Conclusion

As these Gluster Storage for Oracle Linux guidelines and considerations show, a little up-front work to plan the

environment is well worth the time investment as it can help ensure service level commitments are met and services

can be delivered on time and on budget.

Gluster Storage is available on the Unbreakable Linux Network (ULN) and the Oracle Linux yum server. For more

information on hardware requirements and how to install and configure Gluster, please review the Gluster Storage for

Oracle Linux Documentation.

For more information about Oracle Linux, visit oracle.com/linux and blogs.oracle.com/linux.

Connect with us

Call +1.800.ORACLE1 or visit oracle.com/linux. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2022, Oracle and/or its affiliates. All rights reserved. This document is

provided for information purposes only, and the contents hereof are subject to change

without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied

warranties and conditions of merchantability or fitness for a particular purpose. We

specifically disclaim any liability with respect to this document, and no contractual

obligations are formed either directly or indirectly by this document. This document

may not be reproduced or transmitted in any form or by any means, electronic or

mechanical, for any purpose, without our prior written permission.

This device has not been authorized as required by the rules of the Federal

Communications Commission. This device is not, and may not be, offered for sale or

lease, or sold or leased, until authorization is obtained.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be

trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC

trademarks are used under license and are trademarks or registered trademarks of SPARC

International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or

registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open

Group. 0120

https://linux.oracle.com/
https://yum.oracle.com/
https://docs.oracle.com/en/operating-systems/oracle-linux/gluster-storage/
https://docs.oracle.com/en/operating-systems/oracle-linux/gluster-storage/
https://www.oracle.com/linux
https://blogs.oracle.com/
https://www.facebook.com/Oracle/
https://twitter.com/oracle

