[PUBLISHING]

Business Process Execution
Language

Matjaz B Juric
Benny Mathew
Poornachandra Sarang

Chapter 4 “Oracle BPEL Process Manager”

For more information: www.PacktPub.com/book/BPEL

In this Package, you will find:

o A Biography of the authors of the book

o A preview chapter from the book, chapter 4 “Oracle BPEL Process
Manager”

o A synopsis of the book’s content

Information on where to buy this book

About the Authors

Matjaz B. Juric holds a Ph.D. in computer and information science. He works for the University
of Maribor. He has co-authored Professional J2EE EAI, Professional EJB, J2EE Design Patterns
Applied, and VB.NET Serialization Handbook, published by Wrox Press. He has published
chapters in the book More Java Gems (Cambridge University Press) and in Technology
Supporting Business Solutions (Nova Science Publishers). He has also published in journals and
magazines such as Java Developer's Journal, Java Report, Java World, Web Services Journal, eai
Journal, ACM journals, and presented at conferences such as OOPSLA, SIGS Java Development,
XML Europe, SCI, and others. He is also a reviewer, program committee member, and conference
co-organizer. Matjaz has been involved in several large-scale object technology projects. In
association with the IBM Java Technology Centre, he worked on performance analysis and
optimization in RMI-IIOP development, an integral part of the Java 2 Platform. He has recently
been classified in the Techiindex Evangelist.

My efforts in this book are dedicated to my family. Special thanks to Jerneja, my friends
at University of Maribor, and to Louay at Packt Publishing.

Benny Mathew is a Sr. Software Engineer at Hewlett-Packard (Global Delivery India Center). He
holds a Masters degree in Computer Applications. His fascination for computers dates back to
high school days and he has been programming with a passion for more than a decade and a half.
He has also co-authored Visual Basic .NET Reflection Handbook published by Wrox press. During
his free time, Benny likes to write technical articles and help people on the newsgroups relating to
.NET technologies and has been awarded Microsoft Most Valuable Professional (MVP) for two
consecutive years now. Before joining Hewlett Packard, he was with companies like Thomson
Financials and Delphi Software in Bangalore India. You can reach him at benny@mvps.org.

I'd like to thank Girish Nadkarni for recommending my name to the editor of this book, and
to Louay Fatoohi and all the reviewers; they really helped to steer my writing in the right
direction. I'd also like to thank my family for their support in writing this book.

Poornachandra Sarang, Ph.D., is CEO of ABCOM Information Systems. He has been a Visiting
Professor of Computer Engineering at University of Notre Dame, USA and is currently a visiting
professor for Post-Graduate Computer Science courses at University of Mumbai. Dr. Sarang
provides consulting services to worldwide clients in architecting and designing IT solutions based
on Java, CORBA, and Microsoft platforms. A well known and a highly sought after trainer, Dr.
Sarang has conducted several training programs on latest technologies for several top-notch IT
companies. He conducts lectures/seminars on emerging technologies across the world and has
made several presentations in international conferences. He has authored/co-authored several
books on Java, C++, J2EE, e-Commerce, and .NET.

Oracle BPEL Process Manager

In this chapter we will take a detailed look at the Oracle BPEL Process Manager Version 2.0, a
BPEL server that enables us to deploy and run business processes defined in BPEL. Oracle BPEL
Process Manager is developed in Java and runs on a J2EE application server. In addition to
deploying and running BPEL processes, it offers advanced functionality that makes it one of the
most powerful BPEL servers at the time of writing this book. Oracle also offers a BPEL Designer
that enables BPEL process development using an intuitive graphical editor instead of writing
BPEL code by hand and also allows us to automatically deploy BPEL processes. The BPEL
Designer eases the development (and maintenance) of BPEL processes considerably.

While discussing the capabilities of the Oracle BPEL Process Manager and the BPEL Designer,
we will discuss the following:

e Architecture of the BPEL Process Manager

e Major features

e Process deployment

® Managing and debugging processes with BPEL Console

e Graphical development with BPEL Designer

e Oracle-specific functions such as XSLT, XQuery, and XSQL engines

e Integration of BPEL processes with e-mail and IMS

¢ Integration with Java and J2EE

e XML business document facades

e Web Services Invocation Framework bindings

e Oracle BPEL Server Java APIs

e User tasks and their integration into processes

Overview and Architecture

The Oracle BPEL Process Manager (formerly known as Collaxa BPEL Server) is a run-time
environment for BPEL processes. BPEL Process Manager 2.0 fully supports BPEL version 1.1
and provides additional tools for deployment, monitoring, and management of BPEL processes.
At the time of writing this book, Oracle BPEL Process Manager is one of the most complete
BPEL servers available.

BPEL Process Manager is developed in Java and runs on a J2EE-compliant application server, for
example, the Oracle Application Server OC4J (Oracle Containers for Java). In addition to the
OC4]J version, Oracle also provides versions for the open source JBoss and for the BEA

WebLogic Server. With manual installation, Oracle BPEL Process Manager can also be used with
IBM and Sun application servers.

Let us now look at the architecture of the BPEL Process Manager, shown in the following figure:

Eclipse, JDeveloper

BPEL Processes \
BPEL Server

/—\\ "//—\\
BPEL Design, develop, Deploy, manage, BPEL
Designer deploy debug, admin Console

WSDL Bindings Integration Services
Web Services | \ XSLT \
| WSIF | | XQuery |
Java, J2EE, EJB,] XsQL |
JMS, JCA, ... ‘ Java APls ‘
| E-mail | | User Tasks | |
, N
k Core BPEL Engine 1
— (o))
2 o £ <
£ 'é g o g 5
— ¢ c 1] 8 = 2 ©
Wwec o 1] 0] 2] = ||
O @ x] IS % = =]
meg < o 3 S £
=2 (3| (2| 5] 2| |3
Cg 2| |5 G
- = Oracle,
SQL Sever,
DB2, ...
J2EE Application Server
(Oracle Oc4J, JBoss, WebLogic, ...)

The Oracle BPEL Process Manager has four major parts:

e BPEL Designer
e BPEL Server
e BPEL Console

e Database

BPEL Designer

BPEL Designer enables us to develop BPEL processes visually in a graphical environment
without having to write BPEL code by hand. Instead, we can drag and drop activities to the
process. We can add partner links and locate services through the UDDI browser. We can also use
function and copy wizards. BPEL Designer can deploy the developed processes directly to the
BPEL Server. This eases the development and maintenance of BPEL processes considerably.
BPEL Designer is a plug-in for the Eclipse 3.0 platform, but we expect that it will become a part
of the Oracle JDeveloper soon. Because it uses standard BPEL, processes developed by the BPEL
Designer can be used with other BPEL servers (and vice-versa) as long as we do not use
functionality specific to the Oracle product. We will discuss BPEL Designer later in this chapter.

BPEL Server

BPEL Server runs in a J2EE-compliant application server. It has the following main parts:

e Core BPEL engine
e WSDL bindings

* Integration services

Core BPEL Engine

The core BPEL engine is the run-time environment where the BPEL processes are deployed and
executed. In addition to full BPEL v1.1 support, the engine provides support for key web services
orchestration stack technologies, particularly WS-Addressing and the BPEL compensating
transaction model.

The BPEL engine also provides support for version control. This enables us to develop several
versions of a business process and deploy them side by side. This feature is important in real-
world scenarios because business processes evolve over time. Having an effective versioning
support simplifies the management.

Another very important feature is dehydration. In previous chapters we explained that business
processes can be long-running because the involved partners might not be able to react instantly to
the requests. This happens particularly in asynchronous scenarios where a business process
invokes a partner web service (using the <invoke> activity) and then waits for the response (using
the <receive> or <pick> activities). While waiting for the response the Oracle engine can store
the process (and its state) in the database, thus freeing up server resources. This is called
dehydration. When the engine receives the response it first restores the process with its state from
the database (hydration) and then continues with the execution of the process. In real-world

scenarios where many business processes might be running side by side, the dehydration
capability is important as it reduces the demands on hardware performance.

Oracle BPEL engine also provides support for clustering. Clustering increases server reliability
because fail-over can be configured on the engine. Clustering also improves scalability with load
balancing. These features are very important in real-world usage of the product.

WSDL Bindings

The WSDL binding framework is responsible for communication with the BPEL processes
deployed on the server. This includes clients that would like to access a BPEL process and BPEL
processes that would like to access other web services (partner links). Although the BPEL
specification talks only about web services, the Oracle BPEL Server even enables connectivity
using protocols other than SOAP. In real-world scenarios, a business process will often have to
connect to an existing application or system. Using the WSDL binding framework, the reach of
BPEL is extended to systems using protocols other than those supported by web services
(primarily SOAP).

Of particular interest here is connectivity to J2EE artifacts, such as EJBs (Enterprise Java Beans),
RMI (Remote Method Invocation), JMS (Java Message Service), JCA (Java Connector
Architecture), and also to e-mail and HTTP GET and POST. The integration is achieved through
the WSIF (Web Services Invocation Framework) from Apache (http://ws.apache.org/wsif/).
All this enables relatively easy and effective integration of backend systems, particularly existing
and legacy systems, which cannot be simply exposed as web services.

Integration Services

Business processes described in BPEL communicate with web services and exchange XML
documents. The integration services enable us to perform transformations (on these XML
documents) that go beyond the support of XPath.

Oracle BPEL Server provides support for XSLT transformations, XQuery, and XSQL.

XSLT (Extensible Stylesheet Language for Transformations) provides support for complex
transformations of XML vocabularies and can also be used to transform XML to other markup
formats such as HTML, WML, or VoiceXML for presentation purposes. For more information on
XSLT please refer to http://www.w3.0org/TR/xs1t. XQuery and XSQL are XML query
languages with functionality that goes beyond simple XPath queries. For more information on
XQuery please refer to http://www.w3.org/XML/Query. For more information on XSQL please
refer to Oracle documentation.

BPEL Server also provides Java integration. We have two choices:
® We can embed Java code in BPEL processes.
e We can use the Web Services Invocation Framework (WSIF).

The BPEL server exposes its functionality through a set of APIs. An important part of the
integration services is the user task service. The built-in BPEL service provides an easy way to
include user interaction in BPEL processes. Business processes often require that a user reviews or

7

confirms a decision before carrying out further steps. However, the BPEL specification does not
provide an easy way for doing this. The Oracle BPEL Server therefore provides user tasks through
which we can include user interaction in an easy way, as we will see later in the chapter.

BPEL Console and Database

Through BPEL Console we can deploy, manage, administer, and debug BPEL processes. The
most important features of the BPEL Console include:

e Visual process flows
e Audit trails
e Debugging view of processes

e Process history

Oracle BPEL Console uses a web-based interface, which is basically a set of JSP (Java Server
Pages) and servlets that call the BPEL Server API (in Java). This means we could easily develop
our own console if we need specific handling of BPEL processes.

We have already mentioned that Oracle BPEL Server supports dehydration, which stores the
process state in the database. BPEL Server supports Oracle DBMS, Microsoft SQL Server, and
IBM DB2. It can actually be configured to use any JDBC database. The trial version, which can be
downloaded from Oracle web site, comes bundled with Oracle Lite. Note that for real-world
scenarios a production-quality database should be used.

Process Deployment Example

Let us now show how we deploy a BPEL process on the Oracle BPEL Server. We will assume
that Oracle BPEL Process Manager has been successfully installed according to the installation
instructions and that it uses the default port 9700. If another port has been selected during
installation, the examples have to be modified accordingly.

We will use the Business Travel BPEL process example that we developed in Chapters 2 and 3.
The travel example is a simplified business process that selects the best airline ticket offer. To
refresh our memory, let us have a look at the process activity diagram:

®
Geceive the initial reque%
Grepare the input for the Employee web servi@
Getrieve the employee travel stat@
Gepare the input for both Airline web servic%

\V/ \

@;quire plane ticket offer from American Airlineg GCquire plane ticket offer from Delta Airline9

Wait for the callback Wait for the callback

Select the best offer

Return the offer

In the previous chapters we developed the BPEL code for the example; this consists of a
Travel.bpel file with the source code and the Travel.wsd1l where the WSDL definitions are
stored. We will not show the source of these files here as they have been already shown in
previous chapters. They can also be downloaded from http://www.packtpub. com.

Process Descriptor

Each BPEL process we deploy to the Oracle BPEL Process Manager requires a process descriptor.
This process descriptor is not covered by the BPEL standard and is specific to the BPEL server.

The deployment process descriptor is the only part of the implementation of a process on
a given platform that must be re-written to run the process on a different BPEL engine.

The Oracle process descriptor is an XML file specifying the following details about the BPEL
process:

e BPEL source file name

e BPEL process name (ID)

e WSDL locations of all partner link web services

e Optional configuration properties
The default file name for the process descriptor is bpel.xm1, but we can use any other name. Let
us now write the process descriptor for our process. First we have to specify the XML header and
the <BPELSui tcase> root element. In the <BPELProcess> element we specify two attributes, src,

which denotes the BPEL source file name (Travel.bpel), and ID (id), which denotes BPEL
process name as shown in the BPEL Console (we will use the Travelprocessch4 ID):

<?xml version="1.0" encoding="UTF-8"7>
<BPELSuitcase>

<BPELProcess src="Travel.bpel" id="TravelProcessCh4">

Next we specify the partner link binding properties for the location of the WSDL for each partner
link that we use in the process. In our travel example process we use the following partner links:

e client: Used for client interaction with the process
e employeeTravelstatus: The link to the Employee web service
e AmericanAirlines: The link to the American Airline web service

e peltaAirlines: The link to the Delta Airline web service

The WSDL for the client partner link is stored locally in the Travel.wsd1 file. For the location
of the other three partner web services' WSDLs, we have to specify the corresponding URLs. Here
we have provided simplified implementations of all three web services, which can also be
downloaded and deployed on the Oracle BPEL Server. The rest of the process descriptor with the
location of the WSDLs is shown below:

<partnerLinkBindings>

<partnerLinkBinding name="client">
<property name="wsdlLocation">
Travel.wsd]l
</property>
</partnerLinkBinding>

<partnerLinkBinding name="employeeTravelStatus">
<property name="wsdlLocation">
http://localhost:9700/orabpel/default/Employee/Employee?wsd]
</property>
</partnerLinkBinding>

<partnerLinkBinding name="AmericanAirlines">
<property name="wsdlLocation">
http://Tocalhost:9700/orabpel/default/AmericanAirline/AmericanAirline?wsd]l
</property>
</partnerLinkBinding>

<partnerLinkBinding name="DeltaAirlines">
<property name="wsdlLocation">
http://localhost:9700/orabpel/default/DeltaAirline/DeltaAirline?wsd]l
</property>
</partnerLinkBinding>

</partnerLinkBindings>

Optionally we can add configuration properties such as introduction text outputted by the BPEL
Console when starting the process and default input data. The introduction text should be included
within the <property> element with the attribute name set to testIntroduction:

<configurations>

<property name="testIntroduction">
The Business Travel Process example.
</property>

To add the default input data (also optional) we have to define the <property> element with the
attribute name set to defaultInput and provide the input XML message as CDATA:

<property name="defaultInput">
<! [CDATA[
<TravelRequest xmlns="http://packtpub.com/bpel/travel/">
<employee xmIns="http://packtpub.com/service/employee/">
<FirstName>Matjaz B.</FirstName>
<LastName>Juric</LastName>
<Departement>University</Departement>
</employee>
<flightData xmlns="http://packtpub.com/service/airline/">
<0riginFrom>Ptuj</0OriginFrom>
<DestinationTo>London</DestinationTo>
<DesiredDepartureDate>2004-04-20</DesiredDeparturebate>
<DesiredReturnDate>2004-04-24</DesiredReturnDate>
</flightData>
</TravelRequest>

>
</property>
</configurations>

</BPELProcess>
</BPELSuitcase>

Setting the Environment

We are now ready to start the BPEL Process Manager. We can do this from the Start menu (if
using Windows) or by executing the startoraBPEL script, which can be found in the

11

c:\orabpel\bin directory (assuming Oracle BPEL Process Manager has been installed in
c:\orabpel). It is recommended that we include this directory in the path for easy access.

Next we will need a command prompt where we have to set the environment variables. We can do
this by executing the obsetenv script in the same c:\orabpel\bin directory. The script sets the
following environment variables:

e 0B_HOME: Specifies the path to the Oracle BPEL installation directory (c:\orabpel is
the default path)

e 0B_PLATFORM: Specifies the application server (oc4j_10g if using Oracle OC4J)

® MY_CLASSPATH and MY_CLASSES_DIR: Specify the class path for Oracle BPEL Server

® JAVA_HOME: Points to the Java SDK home directory

® OB_JAVA_PROPERTIES: Specifies the WSDL factory and the options proxy settings

® J2EE_APPLICATIONS: Specifies the application server directory where J2EE
applications can be deployed

Setting the environment variables is essential for successful deployment of BPEL processes.

BPEL Compiler

After we have written the process descriptor and set the environment we are ready to deploy the
BPEL process. For this, Oracle BPEL Process Manager provides the BPEL Complier, which can
be started with the bpelc command from the command line. bpelc compiles the BPEL process
source files and creates the BPEL process archive JAR file. It can also automatically deploy the
process to the Oracle BPEL Server. This is discussed in the next section.

The BPEL compiler has the following syntax:
> bpelc [options] process_descriptor_name.xml

The default for process_descriptor_name.xm1 is bpel.xm1. The most important options are:

® -rev <revision_tag>: Specifies the revision (version) number for the deployed
BPEL process

e —force: Directs the compiler not to check the timestamps of the .bpel, .wsd1, and
.xm1 files

We can use the following command to generate the BPEL process JAR archive with the revision
number 1.0 for our travel example:

> bpelc -rev 1.0

This command generates the bpel_TravelProcessch4_1.0. jar archive file, as shown:

5] Developer Prompt

C:\Prg\orabpel\Chapter4#\TravelProcess>bpelc -reuv 1.0

http://otn.oracle.com/bpel
Copyright (c) 2002-2004 - Oracle

bpelc> validating “C:\Prg\orabpel\Chapter#\TravelProcess\Travel .bpel” ...
bpele> BPEL suitcase generated in: C:\Prg\orabpel\Chapteri\TravelProcess\bpel_Tr|
avelProcessCh4_1.0. jar

bpelc completed successfully.

ter#\TravelProcess>

The generated archive includes the BPEL source and the related WSDL and XML files. It also
includes the process model file (in our example called Travelmodel.xm1) which is a normalized
BPEL representation with an added 1id for each activity.

Deployment and Domains

We have several options to deploy our travel process:

e Copy the BPEL archive to the server domain manually

e Use bpelc to deploy the process

e Use the obant utility to do the deployment

e Use the BPEL Console to deploy the BPEL process archive

Before we deploy, let's discus the Oracle BPEL Server architecture. Each Oracle BPEL Server
installation can be logically partitioned into several domains. The default domain is created
automatically by the installation (called default). Additional domains can be created using BPEL
Console; this is discussed later in the chapter. The domains are located in the
c:\orabpel\domains directory.

To manually deploy a BPEL process we simply copy the JAR archive to the corresponding
directory. In our case this is c:\orabpel\domains\default\deploy. The BPEL Server will
automatically pick up the process.

Using bpelc to deploy the process requires us to use the -deploy <domain_id> option, which
directs the compiler to automatically deploy the archive to the specified domain.

The domain to which the deployment is done must be accessible via the file system. To deploy our
travel example using bpelc we need to use the following command:

> bpelc -rev 1.0 -deploy default

The following screenshot shows the output:

13

Developer Prompt :

Oracle BPEL Processor Uersion 2.0
http: //otn.oracle.com/bpel
Copyright (c) 2002-2004% - Oracle
(type bpele -help for help)

bpelc> validating "C:\Prg\orabpel\Chapter4\TravelProcess\Travel.bpel” ...
bpele> BPEL suitcase deployed to: C:\prg\orabpelidomains\default\deploy

bpelc completed successfully.

ter4\TravelProcess>

Ant Utility

The Oracle BPEL Process Manager provides the Ant utility called obant. This can be used to
configure complex compilation and deployment scenarios. obant is just a wrapper around standard
Ant, which sets the environment and then invokes the standard Ant Java task. To use it we have to
prepare the corresponding project file, usually called build.xm1. The project file for our travel
example process is shown below:

<?xml version="1.0"7> . .
<project name="TravelProcessCh4" default="main" basedir=".">

<property name="deploy" val ue="g’efau'l t"/>

<property name="rev" value="1.0"/>
<target name="main">
<bpelc home="${home}" rev="${rev}" deploy="${deploy}"/>
</target>
</project>
For more information on Ant, visit http://ant.apache.org/.

To compile and deploy our BPEL process we simply start obant from the command line. The
output is shown in the following screenshot:

= Developer Prompt
C:\Prg\orabpel\Chapterd\TravelProcess>obant

C:\Prg\orabpel\Chapter4\TravelProcess>SETLOCAL
Buildfile: build.xml

main:
[bpelc] bpelc> validating "C:\Prg\orabpel\Chapterid\TravelProcess\Travel.bpel

..tbpelc] bpelc> BPEL suitcase deployed to: C:\prg\orabpel\domains\default\dep|
loy

BUILD SUCCESSFUL
Total time: 13 seconds

C:\Prg\orabpel\Chapteri\TravelProcess>ENDLOCAL

C:\Prg\orabpeliChapter4\TravelProcess>

Process Management with BPEL Console

Now that we have successfully deployed a BPEL process on the Oracle BPEL Server, let's execute
it. In Chapter 2 we mentioned that each BPEL process is a web service. Therefore, to start the
BPEL process we need to invoke it just like any other web service. This requires writing a web
services client based on the WSDL. Because web services are not bound to a particular platform or
programming language, we can do this using most languages (Java, C#, VB.NET, Delphi, etc.),
applications (SAP, Navision, even Microsoft Office), tools (XML Spy), or other BPEL processes.

In addition to these options, Oracle BPEL Process Manager provides a BPEL Console through
which we can execute, monitor, manage, and debug BPEL processes on a BPEL Server domain.
The BPEL Console is accessible at http://localhost:9700/BPELConsole/. Of course we can
replace Tocalhost with the valid computer name URL. Once we enter the domain password we
can start our travel process and create a new process instance by clicking the process name
(Travelprocessch4) on the BPEL Console dashboard, as shown in the following screenshot:

A Oracle BPEL Console v2.0 - Microsoft Internet Explorer : =1alx]

File Edit Wiew Favorites Tools Help ﬁ

“Back ~ @ - @@ & Qgearch HFavorites FMedia #|D- SR = 22

Address |§'| http://liquid2: 9700/BPELConsolefindex.jsp j ©Go ‘Umka &
ORACLE" BPEL Console -;I

Manage BPEL Domain | Logout | Suppart

[Dashboard T BPEL Processes I Instances I Activities]

Deployed BPEL Processes In-Flight BPEL Process Instances
- cess Last Modified T

Americanhirline

Deltasirline

Employes

TaskManager

TravelProcessChd

© Deploy New Process

Logged to domain: default Oracle BPEL Console v2.0 rc9
& [| ¥ Local intranet y

Note that in addition to the Travel Process, the Employee, American Airline, and Delta Airline
web services have to be deployed as well. After clicking TravelProcessCh4 we have to enter the

input XML message (the default from the process descriptor is shown) and click the Post XML
Message button:

15

2 Oracle BPEL Console v2.0 - Microsoft Internet Explorer (=[]

File Edit View Favorites Tools Help ﬁ
+Back v * - @[3 & | Qgearch HFavorites IMedia ¥ B SR T EH2
Address |@_1 http://localhost: 9700/BPELConsole/displayProcess jsp?processld=TravelProcessCh4&revisionTag=1.0 j “Go ‘Umks 2

ORACLE'" BPEL Console

Dashboard BPEL Processes T Instances I Activities 1

BPEL Process: TravelProcessChd. Version: 1.0 Lifecycle: Active

Manage BPEL Domain | Logout | Support

Statistics: i) Open Instances | 1 Complete Instances

Testing this BPEL Process
Q . =
¢ About this BPEL Process
2

The Business Travel Process example.

Initiate

Initiating a test instance [=isore =]
To create a new 'test' instance of this BPEL Process, fill the following text area with the XML
representation of the input message and click on the 'Post XML Message' button.

WSDL

Ganfig

<TravelRequest zmlns="http://packtpub.com/bpel/travel/"> =

<employee xmlns="http://packtpub.com/service/employes/">
<FirstName>Matjaz B.</FirstName>
<LastName>Juric</LastName>
<Departement>University</Departement:>

</employee>

<flightData xmlns="http://packtpub.com/service/airline/">
<OriginFrom>Ptuj</criginFrom>
<DestinationTo>london</DestinationTo>
<DesiredDepartureDate>2004-04-20</DesiredDepartureDate>
<DesiredReturnDate>2004-04-24</DesiredReturnDate> -

</flightData> =

Source

rPerform stress test

Post xML Message
Help: %ML Schema Type Formats
Logged to domain: default Oracle BPEL Caonsele v2.0 rc@
&l Done [| EELocd intraret o

We can also switch to the HTML form and enter the necessary fields:

A Oracle BPEL Console v2.0 - Microsoft Internet Explorer: (O] x|
File Edit View Favorites Tools Help ﬁ
+Back - - @@ 4| Qsearch HFavorites FMedia 3|2 B = H=2

Address |@J http://liquid2: 9700/BPELConsole/displayProcess.jsp?processld=TravelProcessCh4&revisionTag=1.0 j ®Go ‘Limkﬁ b

ORACLE" BPEL Console

Dashboard BPEL Processes I Instances I Activities]

Manage BPEL Domain | Logaut | Support

BPEL Process: TravelProcessChd version: 1.0 Lifecycle: Active
Statistics: 0 Open Instances | d Complete Instances

Testing this BPEL Process

About this BPEL Process
The Business Travel Process example.

Manage

Initiate

Initiating a test instance [mirom =1
To create a new 'test' instance of this BPEL Process, fill this form and click on the 'Post XML
Message' button.

wsbL

canfig

FirstName |Matjaz B.

LastName |Juric

Source

Departement|University

OriginFrom |Ptuj

DestinationTo |London
DesiredDepartureDate|2004-04-20
DesiredReturnDate |2004-04-24

rPerform stress test

Help:XML Schema Tepe Formats
Logged to domain: default Oracle BPEL Console ¥2.0 rc9
8 [T | EELocal intraret v

We now get a screen notifying us that the process instance is being processed asynchronously,
because this is an asynchronous process. If this was a synchronous process, we would see the final

result (returned through the <reply> activity) immediately.

Visual Flow

In the next step we can select the visual flow of the execution, instance auditing, or instance

debugging. The visual flow of the instance graphically shows the execution of a BPEL process
instance. We can monitor the execution of the process and its state (running, completed, canceled,

or stale):

17

A Oracle BPEL Console v2.0 - Microsoft Internet Explorer . (=] 4|
Eile Edit Wiew Favorites Tools Help |
“Back - @ - @ @ @& | Qgearch HFavorites BMedia ¥ |- SR EEH 2
Address Ie'l http://fliquid2; 9700/BPELConsole/displayInstance jsp?referenceld =11d 1def534ealbal; 1649b44:fej ©Go ‘Unka
OR LE' BPEL Console Manage BPEL Domain | Logout | Support
Dashboard I BPEL Processes T Instances Activities
Title: Instance #101 of TravelProcessChd Last Modified: 2004-08-19 23:36:30.058
Reference Id: bpel:/localhost/defaultyTravelProcessCha~1.0/101 State: closed.completed
BPEL Process: TravelProcessChd (v, 1.0 Priority: 0
Visual representation of the history of this BPEL business flow [As of 8/19/04 11:38 PM] Refresh View
g start
- |
” dlient
b (TravelApproval)
3 |
2 = RetrieveEmployeeTravelStatus
£ |
4 ‘.»’_'\ 1
2 | o= |
i assign
" g
employeeTrave
(EmployesTrav. ..
Assign
[CheckFlightavailability
JL
ﬁ ‘
Deltaairlines AmericanAirlines
(Flightawvaila... (Flightvaila...
Logged to domain: default Oracle BPEL Console v2.0 rc9
#]Done. 43 entries renderad, | Loca\ intranet 4

The important thing is that we can click on each activity symbol (such as <receive>, <assign>,
etc.) and we will see the corresponding XML input and output. This enables us to verify the
processing of each activity. Clicking on the first <receive> activity (client TravelApproval)
would open this screen, showing the received message, TravelRequest:

A Activity Audit Trail -- Web Page Dialog
4% client (TravelApproval)

Llx

[2 e
Received "TravelRequest” call from parther "client”

=TravelReguest=
< part xmlns: xsi="http: /A w3 .0rg/ 1999/ X MLS cherna-instance”
name="flightDiata"=
=flightData xmlns="http://packtpub.cam/service/airling" =
< OriginFrom =Ptuj</OriginFrom =
<DestinationTo>London</DestinationTo>
<DesiredDepartureDate »2004-04-20=< /DesiredDepartureDate =
<DesiredReturnDate >2004-04-24 </DesiredReturnDate =
< /flightData>
</part>
< part xmlns:xsi="http . /Awww w3,0rgf 1999/ XML chema-instance”
name="employee"=>
<employee xmins="http:/fpacktpub.com/service/employes/" >
<FirstMarne =Matjaz B.</FirstMame=
<LastMame=Juric</LastName =
<Departement=University</Departement=
</femployess
</part> -
=/TravelReguest>

=

Instance Auditing

The audit view of the process instance, which we can activate by selecting the Audit tag, shows a
complete BPEL process with the received and sent messages. This view is useful for auditing the
messages exchanged by the process and the execution of other activities, particularly those
manipulating data such as <assign>. The following screenshot shows the audit trail of our travel
example process with the XML messages for each activity:

19

A Oracle BPEL Console v2.0 - Microsoft Internet Explorer - (=]]
File Edit Yiew Favorites Tools Help ‘
“Back ~ * - @[4| Qgearch HFavorites PMedia & | D S H H 2
= 3 @ T
Address |@1 http:,v',v'llqmdz:9700/BPELConsoIe/d|sp|ayInstance.]sp?referenceld=11d1def534ea1be0:164j ®Go |Llnks
ORACLE" BPEL Console Manage BPEL Domain | Logout | Suppert
Dashboard I BPEL Processes T Instances Activities
Title: Instance #301 of TravelProcessChd Last Modified: 2004-08-21 11:41:30.209
Reference Id: bpel:/localhost/default/ TravelProcessCha~1.0/301 State: apen.running
BPEL Process: TravelProcessChd (v, 1.0 Priority: il
Audit trail of this BPEL instance | View Raw ®ML [As of 8/21/04 11:41 AM] Refresh View
:‘3"] Mew instance of BPEL process "TravelProcessCh4” initiated (& "301"). =
5
2 =
g - ent (TraveIApproval)
12 :28] Received "TravelRequest” call from partner "client” Less
& flightData" -
3
I Ptu]
~London-= >
eDate=>2004-04- ZU .'
= 2004-04-24-
B
a
employee”s
2 e~ Juric=L -
ﬁ N Unlverslty Dep
o Assign
[2004/08/21 1 > Updated variable "EmployeaTravelStatusRequest” Less
o, : “smployes’ =
- > Matjaz B.
& =Juric</
v Umversny De,
= employeeTraveIStatus (EmployeeTravelStatus)
1 Invoked 2-way operation "EmployeeTravelStatus” on partner "employeeTravelStatus”, Less
: “employee”>
o Matjaz B.
e=Juric=/1
t Unluerslty
“travelClass”:
"~Economy </
Logged to domain: default Oracle BPEL Console v2.0 rc@
[&)Core. 43 entries rendered, [| BELocal intraret 4

Debugging

The debug view of a process instance (accessible via the Debug tag) shows the BPEL source code.
Clicking on the underlined variable names provides access to variable content. We can debug
already completed instances or instances that are still running; this is called in-flight debugging.
The debug view shows the current state of the instance. If we use in-flight debugging, the point
where execution is paused is shown highlighted. The following figure shows the debug view of
our process instance, once completed:

ft Internet Explorer - =18lx|

»

File Edit View Favorites Tools Help
“Back v+ * - @[4 | Qgearch HFavorites PMedia @ ‘ B S@EH2
Address |§] http:,v',v'llqmdz:9700/BPELConsoIe/d|sp|ayInstance.]sp?referenceld=11d1def534ea1be0:16£j #Go ‘Llnks
ORACLE" BPEL Console | |
Manage EPEL Darmain Logout Suppart
Dashboard T BPEL Processes T Instances Activities
Title: Instance #301 of TravelProcessChd Last Modified: 2004-08-21 11:41:40.113
Reference Id: bpel:#flocalhost/default/ TravelProcessCha~1.0/301 State: closed.completed
BPEL Process: TravelProcessChd (v, 1.0 Priority: o
This instance is already completed. Show Activity IDs
% <1-— hsynchrnous BPEL process —-—3> —
é —<process nawe="BusinessTravelProcess” targetMawespaces"htop://packopub.com/bpel/travel/" >
—<partnerLinks>
<partnerLink myRole="travelService” name="clienc” partnerLinkType="trv:travellT"
2 partnerBole="trave lServicecustomer?” f>
-
<partnerLink name="employeeTravelStatus" partnerLinkType="emp:employeelT"
partnerRole="employeeTravelStatusService™ />
& <partherLink myRole="airlinecustomer” namwe="lmsricaniirlines" partnerLinkType="aln:flightLT"
2 partnerRole="airlineService” /> L
<partnerLink myRole="airlineCustomer” nemwe="Deltakirlines" partnerLinkType="aln:£lightLT"
o partnerRole="airlineService"” />
_é </partnerLinkss>
f= —<varisbles>
H <!-— input for this process —->
B <varishle neme="TravelRequest" messageType="trv:Trave lRequestHessage” />
| veriable senesplrevelRequesy
<
<!-— input for Awerican and Delta weh services -->
<variskle name= ils" messageType="aln:FlightTicketRequestlessage™ />
«!-— output from BEPEL process ——»
<varishle name="TravelResponse" messageType="aln:TravelResponssMessage" />
<!-- fault to the BPEL client -->
<varishle name="TravelFault” messageType="trv:TravelFaultMessage" />
</variables>
—<faultHandlers>
—<catchill>
—<sequences:
<!-— Create the TravelFault variable -->
~<assign>
—<copyr
<from expression="string('Other fault'i" />
<to part="error” varisble="TravelFault” />
</copy>
</assign>
<invoke 1nputVar1ablE:"TraVElFaul§" operation="ClientCallbackFault" partnerlink="client"
portType="trv:ClientCallbackPT" />
</gequence>
</oatchills
</faultHandlers:>
—<sequence:
<!-- PBeceive the initial request for business travel from client --> -
Logged to domain: default Oracle BPEL Console ¥2.0 rc9

EIResizing View (11 of 10) f\ | B8 Local intraret

4

Clicking on the TravelResponse variable, for example, gives us the following output:

21

A XML Watch Window -- Web Page Dialog x|
wariable: TravelResponse Capy to clipboard

<confirmationData > =
<confirmationData xmlns =
"http://packtpub.com/service/airline/" >
<FlightNo >
123
</FlightNo>
<TravelClass >
Economy
<fTravelClass>
<Price >
120
</Price>
<DepartureDateTime >
2004-01-01
</DepartureDateTime>
<ReturnDateTime > =
2004-01-05
</ReturnDateTime>
<Approved >

J true l _»|_'I

Close Watch Window

Overview of Other Console Functions

Using the BPEL Processes tab we can manage the process lifecycle and process state. The state of
a process can be on or off. When the state of a process is off, new instances cannot be created and
access to existing instances is blocked. The lifecycle of a process can be active or retired. When a
process is retired, new instances cannot be created. Existing instances can, however, complete
normally. We can also get configuration data, WSDL and endpoint locations, and a source view.

Under the Instances tab we can overview process instances. We can archive and purge instances,
remove completed process instances, and supervise those that have not completed yet. A BPEL
process instance can have the following states:

e Running

e Completed

e Canceled

e Stale

Under the Activities tab we can locate activities by name and find relations to instances and
processes. An activity can also have four states: open, completed, canceled, or stale.

Deploying Processes

We have already mentioned that new processes can be deployed using BPEL Console. To do this
we first have to generate the process JAR archive (using bpelc or obant). We then click the
Deploy New Processes link on the Dashboard or BPEL Processes tabs. We then specify the full
path to the process JAR archive and press the Deploy button, as shown on the screenshot below:

2 Oracle Console v2.0 - Microsoft Internet Explorer

=lolx|
File Edit View Favorits Tools Help | = |
+Back ~ * - @ 2 &f| Ogearch “Favorites FMedia ¥ | D~ S@ = H=2
Address [¢1 http: //liquid 2:9700/BPELConsole/deployProcessForm jsp -] 9Go |urks”
S S Manage BPEL Domain | Logout | support
Dashboard | BPELProcesses | instances | Actwies |
Deploy New BPEL Process
Please locate the BPEL suitcase you would like to
deploy.
‘C:\Prg\orabpeI\Chapter4\TraveIProcess\bpe Browse...
Nota: Yau can use the PEL dasigner or the bpele cormand ine toa o package » BREL projectnta 3
deployable BPEL suitcase (bpel_* jar)
Deploy | Cancel
Logged to domain: packt Oracle BPEL Console v2.0 rc9 =
5] [[@ Local intranet. y

Management

BPEL Console also provides tools for BPEL domain management. These can be accessed by

pressing the Manage BPEL Domain link in the upper right corner of the screen, which shows the
following screen:

23

2 Oracle BPEL Console v2.0
Eile Edit View Favorites Toals Help

Jlicrosoft Internet Explorer

“Back ~ * ~ @[& | Qgearch HFavorites FMedia 3 |D- SR EH2

Address |§‘| http://liquid2: 9700/BPELConsolefdomain.jsp

j WGO ‘Umks &

ORACLE" BPEL Console

Dashboard

I BPEL Processes] Instances T Activities]

Threads Trace HPATH | Passwd ./ Config

Stats

audit-detail-threshold

audit-level

bpel-pes-check-secs

Manage BFEL Domain | Logout | suppo

rt

BPEL Domain: packt
Statistics:

2 Active Processes | 0 Retired Processes

Configuration Descriptor of this BPEL Domain

Audit trail details logging
threshold

Audit trail logging level

development

BPEL Process stale check
interval

Comment

The maximum size (in KiloBytes) an audit trail details string can be before it is stored
separately from the audit trail. If a details string is larger than the threshold it will nat
be immediately loaded when the audit trail is initially retrieved; a link will be
displayed with the size of the details string.

Typically, the details string will contain the contents of 3 BPEL variable. In cases
where the variable is very large performance may be severely impacted by logging it
to the audit trail.

The default walue is 50 kilobytes

Controls the amount of audit events logged by a process; currently supported logging
levels are:

off - absolutely no logging performed whatsoever; may result in a slight
performance boost far processing instances

minimal - all events are logged; however, no audit details are logged,
production - all events are lngged. The audit details for assign actvities
are not logged; the details for all other nodes are logged.
development - all events are logged; all audit details for all actitivies
are logged.

The default value is "development”,

The number of seconds to wait since the last tims the process container checked the
bpel archive before checking it again, By “checking” we mean checking the last
modified time stamp on the bpel archive for a particular process; if the specified
number of seconds has passed and the bpel archive file has been modified since the
last time we checked, the process will be refreshed from the new archive. If not
enough time has passed since the last time the stale check was performed, the

=l

Logged to domain: packt

QOracle BPEL Conscle v2.0 rc@

&) Dore

@Loca\ intranet

4

The management console has the following important options:

Configuration descriptor

Setting the password

Setting the logging configuration (trace)
Thread allocation statistic

Runtime performance statistic

List of XPath extension functions

The configuration descriptor enables us to set various important parameters that affect the BPEL
Server operation. These parameters include:

Process instance stale check interval (specified in seconds)

Allocation of invocation threads and load factor

Instance cache size (minimum and maximum)

Persistence and database parameters
Recovery agent settings

Audit trail and other settings

We can also set a parameter that defines the behavior of the server when performing the <assign>
activity. This parameter is called Relax BPEL4WS1.1 spec assign rules. BPEL specification sets
certain rules by assignments (discussed in Chapter 3). For example, null assignments are not
allowed by default. If these rules are too restrictive for us, we can change the behavior by setting
this parameter to true. However, doing this is not recommended because it can hinder portability
of BPEL processes. The default value of this parameter is false.

Performance Tuning

The above-mentioned parameters on stale check, threads and load factor, cache size, etc. affect the
performance of the Oracle BPEL Server. Together with the runtime performance statistic (Stats
tab) and thread allocation statistic (Thread tab), they can be used to tune the performance. The
runtime performance statistics provide comprehensive data about the execution time of processes
and a breakdown of times by activities, as shown in the following screenshot:

A Oracle BPEL Console v2.0 - Microsoft Internet Explorer 2 - M [=1F]
Eile Edit ¥iew Favorites Tools Help ﬁ
E: " 7
“Back ~ @ - @[4| Qgearch HFavorites @Media @ B I@ = EH2
= 5w T »
Address |a http: //liquid2:9700/BPELConsolefdomain.jsp?mode=stats j &Go ‘L\ﬂks
ORACLE" BPEL Console Manage BPEL Domain | Logout | Support
Dashboard I BPEL Processes I Instances T Activities W
BPEL Domain: default
Statistics: 5 Active Processes | 0 Retired Processes
Runtime Statistics for this BPEL Domain Print Friendly | Refresh Wiew | Clear Statistics
£l synchronous BPEL process statistics Average =
5
2 Employee 1.0 (2 stats, min = 200 ms, max = 310 ms) 255.0 ms
2l Asynchronous BPEL process statistics Average -
@ | TravelProcessChe 1.0 ¢ 1 8 max = 8782 ms) 8782.0 ms
Americanairling 1.0 (7 < 72ms) 1031.0 ms
x
E Deltasirling 1.0 (2 st s) 1416.5 ms
Request breakdown Average
% | eng-composite-request [1% s s 616.13 ms
5 eng-single-request (43 146.27 ms
w &ng-callback [2 100 ms
®
o eng-finalize 5.0 ms
= eng-until [© 0.0 ms
N eng-manage [7 st 5.0ms
2 load-warkitern { 2 stats, o 200 ms
- load-wi-datasource (2 200 ms
wi-load (2) 20,0 ms
Populate-context 0.0ms
handle-workitern 156.64 ms
do-perform (25)] 156,28 ms
check-schedulable (- 0.0ms
check-expirable | 0.0ms
actual-perform [26 siots, 152.35 ms
employeeTravelStatus (7 < 0.0 ms
Acsign (9 stats, min 1111 ms
parse [7 ctats 0.0 ms =
Logged to domain: default Oracle BPEL Console ¥2.0 rcd
4] (] Local intraret y

The thread allocation statistics provide information on the usage of threads and their allocation,
and on the number of requests on BPEL processes, as shown in the next screenshot:

25

A Oracle BPEL Console v2.0 - Microsoft Internet Explorer
File Edit Wiew Favorites Tools Help

“Back - @ - @@ 4 | Dgearch HFavorites TMedia F|2- IR T D2

Address I@ http://liquid2: 9700/BPELConsole/domain.jsp?mode=thread

j WGo ‘Unks >l

ORACLE" BPEL Console

Dashboard] BPEL Processes] Instances T Activities 1

Manage BPEL Domain | Logout | Support

BPEL Domain: default

Statistics: 5 Active Processes | 0 Refired Processes

Thread Allocation Statistics for this BPEL Domain

Config

Pending Requests
BPEL Domain Management Requests

BPEL Process Management Requests

Paszud

Transaction Coordination Requests
Callback Requests
Activity Execution Requests

KBATH

new Instance Requests

 Trace

Active threads
Active invacation threads
Active engine threads

Highest number of active threads

Threads

Total number of allocated threads allocated over time

Average JMS thread allocation overhead

stats

#werage lifetime for allocated threads
average number of messages processed per thread

Load Factar (# of scheduled messages/ # of working messages)

Scheduled

a
a
a
o
a
a

Thread allocation Activity

Print Friendly

=

Active

0
1}
1}
L}
0
1}

o
o
a
3

12

603 (ms)
o (ms)

o

nfa

Logged to domain: default

Oracle BPEL Console v2.0 rc9

&1Done

[T | Lol intranet y

When creating a BPEL process test instance the Oracle BPEL Server provides an option through
which we can perform stress tests. Stress tests enable us to monitor the performance and to do load
testing of processes. With the performance statistic we can identify the possible bottlenecks and
optimize the performance. To perform a stress test we simply select the Perform stress test option
as shown in the following screenshot. We then have to specify the number of concurrent threads
allocated to the process, number of loops for the test, and the delay between invocations. We also
have to select whether to clear statistics before running the stress test. This way we can identify

the most appropriate number of threads:

2 Oracle BPEL Console v2.0 - Microsoft Internet Explorer 4 (=l 3|

Eile Edit Wiew Favorites Tools Help ﬁ
+Back - & - @ @ 4| Qgearch GiFavorites FMedia 3| D- SR = H =2
Address IEJ http: //liquid2:9700/BPELConsole/displayProcess jsp?processld=TravelProcessCh4&revisionTag=1.0 j ©Go ‘Links 7

ORACLE" BPEL Console
Dashboard BPEL Processes | Instances | Activities |

BPEL Process: TravelProcessChd ¥ersion: 1.0 Lifecycle: Active

Manage BPEL Demain | Logout | Support

intistic 0 Gpen Instances | 1 Complete Instances

Testing this BPEL Pracess

Initiating a test instance [rmcrom =1
To create a new 'test' instance of this BPEL Process, fill this form and click on the 'Post XML
Message' button.

Manags

Initiate

FirstName |Matjaz B.

wsbL

LastName |Juric

Departement|University

Gonfig

OriginFrom IPtuj

DestinationTo |London
DesiredDepartureDate|2004-04-20
DesiredReturnDate |2004-04-24|

Seurce

w Perform stress test

Number of concurrent threads? 10 (threads)
Number of loops? 5 (loops)
Constant delay between each invocation?[1000 | (ms)
Clear statistics? « Yes c No

Post XML Message

Help: ML Schema Type Formats

Logged to domain: default Oracle BPEL Console ¥2.0 rc9

&Done [T [[BLocal Intranet i

Note that the default download edition of Oracle BPEL Process Manager on Windows platform
bundles Oracle Lite as the database, which will not yield meaningful results for a stress test. The
BPEL Server should be configured to use a production-quality database (Oracle, SQL Server, or
DB2) before doing stress testing. A technical note on http://otn.oracle.com/bpel describes
how to configure the Oracle BPEL Process Manager for a database server other than Oracle Lite.

Domains and Administration

BPEL Console can also be used for server administration. The BPEL administration can be
accessed if we follow the Goto BPEL Admin link on the main logon page. We have to supply the
administration password, which is initially oracle. The BPEL Admin has two major functions:

e Administration of server-related parameters and administration passwords

e Managing BPEL domains

27

The administration of server-related parameters includes three tabs: Config, Password, and Trace:

A BPEL Admin v2.0 - Microsoft Internet Explorer : E —[oix|
File Edit ‘iew Favorites Tools Help ﬁ
B - .
+Back ~ @ - © B 2| Qgearch HFavorites TMedia @ | Br IL = H 2
o 5 = T
Aﬂdre%Iéjhttp:/,’l|qU|d2:9700/BPELAdm|n,’server.]sp j ©Go |Llnk5
ORACLE" BPEL Admin |
Logout Support
Server BPEL Domains
Configuration Descriptor of this BPEL Server
Bl Froperty _Comment
£
S bpel-platform Oracle BPEL Container J2EE oc4j_10g The JZEE platform that the BPEL container is currently running on, Currently supported
latform = platforms include:
i
3 @ weblogic 5.1 {weblogic_8)
d & 3Boss 3.2.0 (jboss_3)
® 0C4) 9.0.4 (004j_10g)
| datasource-jndi Oradle BPEL server datasource [jdbe/BPELServerDatss The INDI name for the server datasource, This datasource may refer to any
INDI datasource (JTA not required)
If a new domain is created without a datasource JNDI this value will be used.
domain-auth-enabled BPEL domain authentication | — If set to fafse users are permitted to access domains without authenticating.,
rode
The default is true.
domain-listing-enabled BPEL domain listing access b= 1 If set o true users are permitted to query the current list of domains deployed onthe ™
server.
The default is true.
production-server b= 1
soap-server-url BPEL soap server URL [etp/iquidziaron This URL is published as part of the SOAP address of a process and asynchronous
callback endpaointURL in the WSDL file
Oracle BPEL Admin v2.0 rc9
&) Done I 28 Local intranet .

Within Config we can modify various server parameters, including J2EE container platform
(0C4], JBoss, WebLogic), data sources, and BPEL SOAP server URL. We can also specify
whether users need to supply a password when they log on to a BPEL domain and whether they

can see a list of available domains.

This brings us to the BPEL domains. We have already mentioned that Oracle BPEL Server is
organized into domains. Since domains enable us to logically organize business processes, using
several domains is recommended in real-world scenarios. After installation, the default domain is
created automatically. Additional domains can be created under the BPEL Domains tab, as shown

in the following screenshot:

ABPEL Admin v2.0

crosoft Internet Explorer 2 i - o] x|
Eile Edit Wiew Favorites Tools Help ‘i
“Back ~ * - @4 4 Qgearch HFavorites TMedia @ B- 2R T2
Address |@ http:/fliquid2:9700/BPELAdmin/domains.jsp?home=Back+to+Domains j “Go ‘LiﬂkS i
‘ : =
ORACLE" BPEL Admin |
Logout Support
Server BPEL Domains]
Related Tasks Deployed Domains
P Open Instances Complete Instances
© Create New BPEL Domain rme 5 5 4
© Delete BPEL Domain
packt 0 0 0
Oracle BPEL Admin v2.0 rc9
I |
&l [| EELocal intranet 4

If we follow the Create New BPEL Domain link we can create new domains. We have to specify

the domain ID, password, and JNDI (Java Naming and Directory Interface) addresses for regular
and transactional data sources.:

29

2 BPEL Admin v2.0 - Microsoft Internet Explorer E =laix|

File Edit View Favorites Tools Help ﬁ
“Back » * ~ @ [& | QSearch HFavorites FMedia @ |Br SR T2
Address Iéj http:/fliquid2:9700/BPELAdmin/createDomain.jsp j ®Go |Uﬁk5 i

ORACLE" BPEL Admin

Server BPEL Domains]

Create New BPEL Domain

Logout | support

A BPEL Domain is a logical grouping of processes,
instances and activities. A domain may be accessed
either by the domain or administrative password.

Domain Id: |packt

Domain |*****
Password:
Domain
Password [*****

(again):

Each domain requires access to a JDBC datasource to store
instances and activities. Tx Datascurce JNDI must refer to a
datasource with JTA support. Datascurce IJNDI may refer to any
datasource (JTA not required).

Datasourcer:

INDI: |Jdbc/BF’ELServerDataSource

Tx

Datasource|jdbc/BPELServerDataSource

INDI:

Cancel
=l

&) Done [[BELocal intranet 4

With this we have concluded our review of the BPEL Console. In the next section we look at the
BPEL Designer.

Graphical Development with BPEL Designer

Writing BPEL processes by hand as we have done in previous chapters can become time
consuming. Therefore Oracle has developed the BPEL Designer, which enables graphical
development of BPEL processes. Instead of writing BPEL code we can develop processes in a
graphical environment where we can add activities using drag-and-drop. BPEL Designer
simplifies development and makes it faster. In addition to drag-and-drop modeling it provides a
browser through which we can locate web services. It also provides a copy assistant, an XPath
editor, and the ability to compile and deploy a process on the BPEL Server with one mouse click.

Oracle BPEL Designer natively supports BPEL version 1.1, so we can also use it for developing
BPEL processes that will be deployed on other BPEL servers. BPEL Designer supports Oracle-
specific functions such as user tasks and Java embedding. However, using these limits portability.

The BPEL Designer has been developed as an Eclipse plug-in. Therefore we should get familiar
with the basics of the Eclipse platform (http://www.eclipse.org/). BPEL Designer 1.0 requires
that we install Eclipse 3.0. For detailed installation instructions please refer to Oracle tutorials,
which can be downloaded from http://www.oracle.com/technology/products/ias/bpel
/index.html.

The following screenshot shows the main BPEL Designer screen with the opened Travel process
(the example used in this and previous chapters). It shows the overview of the process with partner
links and global XML variables exposed:

& BPEL - Travelbpel - Eclipse Platform 15 x|
File Edit MNavigate Search Project Run BPEL ‘Window Help
ls-go a2 |lee-o- | B 8 % B[Saerer (Resource
| es -~ | overview Process Map Zoom: =LP—— [100/%
E-lap Travel =
) 5
= «project BusinessTravelProcess
=) bpel.xml
&) build. xml client employeeTravelStatus
& Travel.bpel
Travelapproval & EmployeeTrav...
) Travel.wsd i e ‘?i
ClientCallback 0
ClientCallbackF... P ——
<
efresh
[..] Americanairlines
FlightAvailability =|
FlightTicketCall...
) Flighthotavalia...
© Edit Process Map
TicketNotAvalia...
Global XML Variables
TravelRequest
FlightDetails Deltairlines
TravelResponse Flightavailability =)
TravelFault : .
Ant 82 = |m FlightTicketCall...
> - © Add XML Variable L
% v 8 ightNotavalia...
TicketNotAvalia..
© Add Partner Link
EBPEL Designer | BPEL Source

Problems | & Console 2 _Error Log
<terminated: BPELAntLauncher [Ant Build] c:\pra\ec

e\ Travelbuid.xml

% | 68 4

=

K|

|| event:jfLogwarmingEvent? - duplicate element definition (type or eleme. ..03{03/addressing" schemal ocation="http:/{PC147881198624:9700 orab...) ‘

Here we can add partner links and variables to our process.

Partner Links and Web Services

o=
=
|

To add a partner link to the process, we simply click Add Partner Link, located in the lower right
corner of the main window. After entering the partner link name and WSDL location, the designer
will help us in selecting the partner link types and roles. This is shown in the following screenshot:

31

/3 Oracle BPEL Designer -- Web Page Dialog

New partnerLink Wizard
Use this form to configure the attributes of the element to be created

name
Americanairline

loading...

wsdlLocation
http:f/localhost:9700/orabpel/default/Americanairline/americanAirline ?wsdl J refresh
loading...

partnerLinkType
aln:flightLT %]

loading...

partnerRole i
airlineService "‘

loading...

myRole
[airlineCustomer I ¥, ‘
loading...

Done Cancel

If we do not know the exact location of the WSDL, we can use the UDDI browser, through which
we can locate and select the appropriate web service. The web service can be located on the local
computer, or we can use a UDDI registry. Later we will discuss BPEL Server's built-in services.
The following screenshot shows the view on the local services:

3 Oracle BPEL Designer -- Web Page Dialog

UDDI Browser E
Select the service that you want to integrate I

UDDI provider | Local BPEL Server LI

Built-in BPEL Services
XMethods Service
Local XMethods Bookmark

(@ AmericanAirline

(3 Deltaairline

(@ Employee
=
Cancel I
Variables

By following the Add XML Variable link, we can add a global variable to the process. Variables in
BPEL processes can be defined globally or within scopes. Adding them with BPEL Designer
requires us to fill out the following form:

33

/) Oracle BPEL Designer -- Web Page Dialog x|

New variable Wizard I
Use this form to configure the attributes of the element to be created il

name
testvariable

messageType

element

type

I

xsd:anyURI =)
= xsd:byte

= xsd:base64Binary

= xsd:boolean

= xsd:date

= xsd:dateTime

= xsd:decimal

= xsd:double Daone Cancel
— = xsd:duration

We have to enter the variable name and type, which can be a message type, an element, or an
XML Schema type.

Process Map

Let us now switch from the Overview to the Process Map view. BPEL Designer will show the
graphical representation of the process, similar to what we have seen in the BPEL Console. In this
view we can click on each activity to get the details (in the right-hand window). We can also add
activities by dragging-and-dropping them on the required location in the process. As shown in the
following figure, all standard BPEL and Oracle-specific activities are supported:

£ BPEL - Travel.bpel - Eclipse Platform

File Edit Mavigate Search Project Run BPEL ‘Window Help

ls-ao |- |@lee-o-| 2 & &

=18l x|

| Sy8PEL L[Resource

m\&u"‘hwl 1§a*Java-bpel IDT k

le.wsdl [ﬁaﬁn }

&

[Overview l ProcessMap | &) Upper Element

| PR assign
% invoke
8 reply

4 receive

akorduwzanai iy

<

e

TravelApproval
{client)

S

assign |

«empty»
gy
s

EmployeeTrav...
(employeeTrav...

(1)

assign |

More Activities v

BPEL Palette

@ wait
2 terminate
b &throw

¥ compensate

@ empty

S scope
& switch
&) while
® pick
0 flow
*xN flowN

% sequence

& Java embedding
& user task macro

S sync servics macro

- ,5% async service macro
| »|

BPEL Designer | BPEL Source |

|| event://DirtyEvent?bpel.xml

We can also right-click on each activity and select the required option from the menu. If we select
an <assign> activity, we can select the Add Copy Rule option. This opens the Copy Rule window

where we can enter the details of a copy activity:

35

3 Oracle BPEL Copy Customizer -- Web Page Dialog

Copy Rule

Use this form to custorize this copy rule

From (‘ \Variable

¢ | Literal

To ¢ Variable

Part :
] 9|
L
XPATH Query
|
6]
¢ | Expression .
alv -..[
v
« >
W
Kl >
Part
£ £
XPATH Query
v |
Done Cancel

To enter an expression we can open the BPEL Function Wizard. The wizard helps us to compose

an XPath expression. In the first step we have to select a function from the list of available

functions. Note that it also offers some Oracle-specific functions (those with ora prefix), which

are discussed later in this chapter:

/23 Oracle BPEL Function Wizard -- Web Page Dialog

Function Wizard - Step 1 of 2
Select a function from the list below

Pick a function:

N

VAR S S VL

bpws:getLinkStatus
bpws:getVariableData
ora:addChildNode
ora:countNodes
ora:doc
ora:formatDate

bows:getl/ariableData (variableName, partiiame?, locationPath?)
This function extracts arbitrary values from BPEL variables.

Returns node

Help on this function

After selecting the function, we have to fill in the required parameters. In our case we have

selected the bpws:getvariablepata() function. Therefore we have to enter the variable, part, and
XPath query (optional):

37

’3 Oracle BPEL Function Wizard -- Web Page Dialog

Function Wizard - Step 2 of 2
Select XML Data from BPEL Variable

Variable Part
TravelRequest ¥| |employee (<]

XPATH Query

To complete extraction of variable data you must supply the variable name, the part (which
may be optional), and an XPath query expression into the DOM of that variable.

The XPath query can be picked based on the inspected XML schema of the variable chosen, You
can also type in an XPath query by hand.

Help on this function Cancel I << Previous I Finish I

BPEL Designer also provides the source-code view where we can edit the BPEL code directly.
Changes made in source view are reflected immediately in the BPEL Designer visual
representation, and vice versa.

Building and Deploying
BPEL Designer offers direct compilation and deployment on the Oracle BPEL Server. This can be

done from the toolbar or from the BPEL menu. In addition to building and deploying, we can also
validate our project and open the BPEL Console:

£ BPEL - Travelbpel - Eclipse Platform s =181 x|

[| SaBPEL L(Resource
*TaskSample.bpel | & |

Zoom: =LP—on— [100 % | R

-] assign

File Edit Mavigate Search Project Run | BPEL Window Help

] o qu -] 5 J»;‘ o 2D validate BPEL Project

BRI, L UTLbpel | ot iln
jf (Open BPEL Console
Overview Process Map | ()

58 invoke
5 reply
B receive

More Activities v

BPEL Inspector

<assign> % =

L

Travelapproval name
Jient
i, 5 Copy Rules

employee v

\
|
|

|

EmployeeTrav...
(employeeTrav...

K| : | Ll_l |

BPEL Designer | BPEL Source

|| event:i/DirtyEvent?.bpel ‘

For more information about the BPEL Designer refer to Oracle documentation. In the next section
we look at the Oracle-specific functions of the BPEL Process Manager. We will start with the
Oracle-specific extension functions.

Oracle-specific Functions

In Chapters 2 and 3 we saw that BPEL is very flexible with respect to the expression and query
language. By default we use XPath 1.0; however, we can use any other language supported by the
BPEL server. The idea behind this flexibility has been to open up BPEL for future versions of
XPath (and XQuery).

XPath 1.0 does not provide all functions necessary to develop BPEL processes. Therefore, the
BPEL specification defines additional functions such as getvariablebata(),
getvariableProperty(), and getLinkstatus (). Oracle BPEL Process Manager provides
additional extension functions to simplify the development.

Using these functions limits the portability of BPEL processes, because these functions
will not be available in other BPEL servers.

39

Oracle extension functions are defined in the following namespace URI:
http://schemas.oracle.com/xpath/extension. We will use the ora prefix for this namespace,
which corresponds to the following XML declaration
xmlns:ora="http://schemas.oracle.com/xpath/extension".

The extension functions are related to:

e Transformation and query support
e Data and array manipulation

e XML manipulation

e Date and time expressions

e Process identification

All Oracle-specific functions can be accessed using BPEL Designer's Function Wizard.

Transformation and Query Support

In real-world business processes we often have to match the schema of our XML document to the
schema required by the partner web service. Consider our travel process example. Here we
designed both the process and the partner web services, so we only had to perform minimal
transformations for calling the Employee or Airlines web services. In real-world examples this
will often not be the case and we will have to make more complex transformations.

To perform the transformations, we can use the BPEL <assign> activity. As this can be time
consuming, Oracle provides an XSLT engine and an extension function through which we can
activate the XSLT engine. This enables us to use XSLT to do more complex data transformations.
Using XSLT is more appropriate than using <assign> because XSLT is the standard
transformation language for XML. Also, sometimes we already have the stylesheets for
transformation. This way we can easily integrate them into BPEL processes.

To activate the XSLT engine we use the ora:processxsLT() function. The function requires two
parameters, the XSLT stylesheet and the XML input on which the transformation should be made.
The result of the function is the transformed XML. The syntax is:

ora:processXSLT('stlyesheet', 'XML_input')

Usually we use this function within the <assign> activity, in the <from> clause. For example, to
modify our travel process and make a more complex transformation to prepare the input for the
Employee web service, we could use the XSLT engine, as shown in the following code excerpt:

<assign>
<copy>

<from expression="ora:processxsLT('employee.xslt',
bpws:getvariableData('TravelRequest', 'employee'))"/>

<to variable="EmployeeTravelStatusRequest" part="employee"/>

</copy>
</assign>

For this code to work we must create the empTloyee.xs1t stylesheet and deploy it with the process.
For more information on XSLT please refer to http://www.w3.0org/TR/xs1t.

In addition to the XSLT engine, Oracle BPEL Process Manager also provides:
¢ An XQuery engine
®* An XSQL engine

With the XQuery engine we can perform complex queries on XML documents, going beyond the
capabilities of XPath. We can use the built-in XQuery engine through the ora:processxquery()
function. We have to provide the query template and the context XML on which the query should
be performed:

ora:processxQuery('query_template', 'XML_context')

We will use the function from the <assign> activity. Suppose we would like to create the
EmployeeTravelstatusResponse with an XQuery. We would have to create the query and store it
into the query.xq file and use the following code snippet:

<assign>
<copy>

<from expression="ora:processxquery(query. x? '
bpws:getvariableData('EmployeeTravelStatusRequest',

. 'employee’))"/>
<to variable="EmployeeTravelStatusResponse" part="employee"/>

</copy>
</assign>

To process only a specific item, we can use the ora:processxQueryItem() function. The syntax is
similar to ora:processxquery(); here we have to provide the item:

ora:processxQueryItem('query_template', 'item','XML_context')
For more information on XQuery please refer to http://www.w3.org/xXmML/Query.

In a similar way we can use the Oracle XSQL engine. It can be activated using the
ora:processxsQL() function. We have to provide the XSQL template and the input XML on
which the query should be performed:

ora:processXsQL('query_template', 'XML_input')

Data and Array Manipulation

Data manipulation in BPEL is done within the <assign> activity, where we can use XPath and
BPEL functions in the <from> and <to> clauses. In addition, Oracle provides several custom
functions that ease data manipulation considerably.

A very important aspect in data manipulation is arrays. In Chapter 3 we mentioned that arrays in
BPEL are realized with XML elements, which can occur more than once. In XML schema they are
identified with the maxoccurs attribute, which can be set to a specific value or can be unbounded
(maxoccurs="unbounded"). The items are addressed with the XPath position() function, as
shown in the following example:

<assign>
<copy>

41

<from variab1e="Ticket0ffer"
part="ticket"
quer¥ "/1tem[pos1t1on() 1]"/>
<to variable="Firstoffer" part="ticket"/>
</copy>
</assign>

The short notation is:

<assign>
<copy>
<from variable="Ticketoffer"
part="ticket"
query="/item[1]"/>
<to variable="Firstoffer" part="ticket"/>
</copy>
</assign>

Often we need to dynamically address the items. Instead of hard-coding the index we can use a
variable, such as:

<variable name="position" type="xsd:integer"/>

We could then create the XPath query expression, store it in a variable, and then use this variable
to address the desired item, as shown in the following example:

<assign>
<copy>
<from expression="concat('/item[',
bpws:getvariablebata('position'), '1")"/>
<to variable="1itemAddress"/>
</copy>
<copy>
<from expression="bpws:getvariablepata('Ticketoffer', 'ticket',
ws:getvariablebata('itemAddress'))"/>
<to variable="selectedoffer" part="ticket"/>
</copy>
</assign>

Alternatively we can use an Oracle-specific function called ora:getelement (). The function takes
four parameters: variable name, part name, query path, and element index:

ora:getElement('variable_name', 'part_name', 'query', qindex)

The previous example using this function would look like this:

<assign>
<copy>
<from expression="ora:getElement(’ T1 cketoffer 'ticket', '/item
. etVar‘1 ab1 eData(’ pos1 tion)) "/>
<to variable="selectedoffer" part= t1c et"/>
</copy>
</assign>
We usually dynamically address items in loops using the <whiTe> activity. To determine the
number of items (array size), we can use the Oracle-specific function ora: countNodes(). The
function returns the number of items as an integer and takes three parameters: variable name, part

name, and query path (the last two parameters are optional):
ora:countNodes('variable_name', 'part_name', 'query')
To count the number of ticket offers in our example we could use the following code:

<assign>

<copy> . .
<from expression="ora: countNodes(:T] cket?ffer ',

ticket',
'/item')" />
<to variable="Noofoffers"/>
</copy>
</assign>

To append an item to the existing items we can use the Oracle-specific function
ora:addchildNode(). The syntax of the function is:

ora:addchildNode('existing_elements', 'new_item')

To add a new ticket offer to the existing offers we can use the following code:

<assign>
<copy>
<from expression="ora:addchildNode(
bpws:getvariablepata('Ticketoffer', 'ticket'),
bpws:getvariableData('Newoffer'))"/>
<to variable="Ticketoffer" part="ticket"/>
</copy>
</assign>
To add more than one item to the existing items, Oracle provides another function called

ora:mergechildNodes (). The syntax of the function is:

ora:mergecChildNodes('existing_elements', 'new_elements')

For example, to add a several new ticket offers to the existing offers we use the following code:

<assign>
<copy>
<from expression="ora:mergecChildNodes(
bpws:getvariableDpata('Ticketoffer', 'ticket'),
bpws:getvariableData('Additionaloffers'))"/>
<to variable="Ticketoffer" part="ticket"/>
</copy>
</assign>
We have seen that Oracle-specific functions simplify array management considerably. Next we

look at functions related to XML manipulation.

XML Manipulation

In some cases our BPEL processes will invoke web services that return strings. The content of
these strings is XML. This approach is used by some developers, particularly on the NET
platform. Using such web services with BPEL is problematic because no function exists to parse
string content to XML. In programming languages such as Java and C# we use XML parser
functions or XML serialization (JAXB in Java).

Oracle therefore provides a custom function called ora:parseescapedxmL (). The function takes a
string as a parameter and returns structured XML data:

ora:parseEscapedXML(string)
Let us suppose that the Employee web service returns a string instead of XML. We can parse it
using the ora:parseescapedxmL () function:

<!-- synchronously invoke the Employee Travel Status web Service -->

<invoke partnerLink="employeeTravelStatus"

portType="emp:EmployeeTravelStatusPT"

43

operation="EmployeeTravelStatus"
inputvariable="EmployeeTravelStatusRequest" .
outputvariable="EmployeeTravelStatusResponsestring" />

<assign>
<copy>
<from expression="ora: parseEsca edXML (

bpws:getvariableData(’EmployeeTravelstatusResponsestring'))"/>
<to var‘1ab1e— EmployeeTravelStatusRespose"” part="employee"/>
</copy>
</assign>

To perform an inverse operation—convert structured XML to a string—we can use the
ora:getContentAsstring() function. It takes structured XML data as a parameter and returns
a string:

ora:getContentAsString(XMLETement)

To set a value of an XML node, Oracle provides the ora:setNodevalue() function with the
following syntax:

ora:setNodevalue('variable_name', 'part', 'query', 'new_node_value')

To get a value of an XML node as a string, we can use the ora:getNodevalue() function with the
following syntax:

ora:setNodevalue(node)

To get the node value as an integer instead of a string we can use the ora:integer () function:
ora:integer(node)

To add single quotes to a string we can use the ora:addquotes() function:

ora:addQuotes(string)

Oracle even provides a function to read the content of a file. The function is called
ora:readrile() and is often used together with the ora:parseescapedxmL () function, which
converts the file content to structured XML (if the file content is XML). The syntax of the
ora:readrile() function is:

ora:readfFile('file_name')

Next, we look at the expressions related to date and time.

Date and Time Expressions
Sometimes in our BPEL processes we need the current date and/or time, for example, to time-
stamp certain data. For this, we can use the Oracle-specific functions:

® ora:getCurrentbate(): Get current date

e ora:getCurrentTime(): Get current time

® ora:getCurrentbDateTime(): Get current date and time

Note that all three functions return strings (and not the date or date/time types). All three functions
also take an optional parameter that specifies the date/time format. The format is specified
according to java.text.SimpleDateFormat. For details, refer to Java API documentation at
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.htm1).

To format an XML Schema date or dateTime to a string representation, which is more suitable for
output, Oracle provides the ora: formatbate() function. The syntax of the function that returns a
string is:

ora:formatDate('dateTime', 'format')
Once again, the format is specified according to java.text.SimpleDateFormat format.

Finally, let's look at functions related to process identification.

Process ldentification
Oracle provides several functions related to process identification. With these functions we can get
process IDs, URLs, and more. These functions are:

e ora:getpProcessId(): Returns the ID of the current BPEL process

® ora:getProcessURL(): Returns the root URL of the current BPEL process

e ora:getInstancerd(): Returns the process instance ID

® ora:getConversationId(): Returns the conversation ID used in asynchronous
conversations

e ora:getcCreator(): Returns the process instance creator

® ora:generateGUID(): Generates a unique GUID (Globally Unique ID)

E-mail and JMS Messaging Support

Oracle BPEL Process Manager provides two built-in services to integrate BPEL processes with e-
mail and messaging. These services expose their operations like any other web service and are
actually wrappers for the underlying e-mail or JMS (Java Message Service) services. So, in to
order to use them with our own processes we create partner links and then invoke the operations
on the corresponding port types. The two built-in services with the WSDL locations are:

e E-mail service: http://localhost:9700/orabpel/xm11ib/Mailservice.wsdl
e JMS service: http://localhost:9700/orabpel/xm11ib/IMSService.wsd]

The Oracle E-mail service offers two port types: Mailservice and MailServicecallback. The
Mailservice port type is used to:

¢ Send e-mail messages (using the sendMessage operation)

e Subscribe (or unsubscribe) to be notified about incoming messages (using subscribe
and unsubscribe operations)

The Mailservicecallback port type is a callback interface that should be implemented by our
BPEL process. It provides the onmessage operation through which our process is notified about an
incoming e-mail message. All operations require parameters (input messages). Their exact
structure will be shown in the next example (can also be seen from the E-mail service WSDL).
The following figure shows the architecture of the E-mail service:

45

BPEL Process

R sendMessage |
@OKL subscribe 7
unsubscribe >
. = e-malil
Service server
RV onMessage e
<recieve>
”””” wsbL

The JMS service can be used to integrate BPEL processes with applications using JMS. It is
similar to the E-mail service and offers two port types: JMsService and JvsServicecallback.
The JMsservice port type provides sendMessage, subscribe and unsubscribe operations. The
Jmsservicecallback interface provides the onMessage operation.

E-mail Example

To demonstrate how to use the E-mail service we will add an e-mail confirmation to our travel
process example. Originally our process selected the best ticket offer by comparing offers from
American and Delta Airlines web services and invoked a callback to the client. We will add an e-
mail message confirmation just before the client callback.

Before we start modifying the BPEL code, we need to make modifications to the TravelRequest
message in the travel process WSDL. We must add the e-mail address to which our process will
send the confirmation. Therefore we first define an EmailType (in the Travel.wsd1 file):

<types>
<xs:schema elementFormbDefault="qualified"
targetNamespace="http://packtpub.com/bpel/travel/">

<xs:complexType name="EmailType'">
<Xs:sequence>
<xs:element name="Address" type="xs:string" />
</Xs:sequence>
</xs:complexType>
</Xs:schema>
</types>

Next we add a new email part to the TravelRequestMessage:

<message name="TravelRequestMessage'>
<part name="employee" type="emp:EmployeeType" />
<part name="ﬂ1’ghtData" type="aln:FlightRequestType" />
<part name="email" type="tns:EmailType" />

</message>

Now we are ready to modify the BPEL source code (Travel.bpel file). First we have to add the
namespace declaration to our process. The E-mail service uses the

http://services.oracle.com/bpel/mail namespace, so we add the following line to the
<process> tag:

<process name="BusinessTravelProcess"
targetNamespace="http://packtpub.com/bpel/travel/"
xmIns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:trv="http://packtpub.com/bpel/travel/"
xmlns:emp="http://packtpub.com/service/employee/"
xmIns:aln="http://packtpub.com/service/airline/"
xmins:mail="http://services.oracle.com/bpel/mail" >

Next we add the partner link according to the partner link type definition in the E-mail service

WSDL. Let's call the link Mai1Service and the partner role MailserviceProvider. The role of
our process is Mailservicerequester:

<partnerLink name="MailService"
partnerLinkType="mail:MailService"
partnerRole="MailSserviceProvider"
myRole="MailServiceRequester"/>

E-mail service (and JMS service) partner links can be added using BPEL Designer UDDI
Browser (select built-in BPEL services).

Sending E-mails

Next we add the e-mail confirmation code. We will send an e-mail confirmation after we have
checked that the ticket has been approved and before invoking the callback to the client. We put
all code related to the e-mail confirmation in a new scope called EmailcConfirmation, where we
also declare the required variables. We call the variable that holds the e-mail message sent by our
process mailmsg. The e-mail reply message is stored in the variable maiTResponse. Both variables
are of type mailenvelope. To subscribe the process to the incoming messages we need the
subscriptionRequest variable:

<scope name="EmailConfirmation">

<variables>
<variable name="mailMsg"
messageType="mail:mailEnvelope" />
<variable name="subscriptionRequest"
messageType:"mai]:subscriptionMessage"/>
<variable name="mailResponse"
messageType="mail:mailEnvelope" />

</variables>

Next we create the content of the send e-mail message and copy it to the maiIMsg variable. We use
the following assign:

<sequence>
<assign>
<!-- Create the mail message -->
<copy>
<from>
<ma}1Message xmIns="http://services.oracle.com/bpel/mail">
<from>

47

<email>your.email@address.com</email>
</from>
<replyTo>
<email>your.email@address.com</email>
</replyTo>
<to>
<address>
<email/>
</address>
</to>
<subqect/>
<mailAccount>TravelEmailAccount</mailAccount>
<contentType>text/plain</contentType>
<content/>
</mailMessage>
</from>
<to variable="mailMsg" part="payload"/>
</copy>

Next we copy the 'to' e-mail address from the TravelrRequest message (client input) to the 'to’
address:

<!-- Add the email to address -->
<copy>
<from variable="TravelRequest" part="email"
query="/email/Address" />
<to variable="mailMsg" part="payload"
query="/mailMessage/to/address/email" />
</copy>

We also create the message subject and copy the travel response confirmation XML data into the
message body:

<!-- Add the message subject -->
<copy>
<from expression="concat('Travel confirmation for ',
bpws:getvariablebata('TravelRequest',
'employee','/employee/LastName'))"/>
<to variable="mailMsg" part="payload"
query="/mailMessage/subject”/>
</copy>

<!-- Add the message content -->
<copy>
<from variable="TravelResponse" part="confirmationbata" />
<to variable="mailMsg" part="payload"
query="/mailMessage/content”/>
</copy>
</assign>

Now we are ready to send the e-mail message. To do this, we have to invoke the sendvessage
operation on the Mailservice partner link. Note that Oracle E-mail service is actually a wrapper
that provides access to e-mail via web services. So, we can use the service in the same way as any
other partner web service:

<!-- Send the email by invoking the service -->
<invoke partnerLink="MailService"
portType="mail:Mailservice"

operation="sendvessage"
inputvariable="mailmMsg" />

Receiving E-mail Confirmations

Suppose we want the user to confirm the travel arrangement by replying to the e-mail message
before completing the process. To implement this we will subscribe our BPEL process to the e-

mail account and then wait for the onmessage callback. The E-mail service will invoke the
onMessage callback once the reply e-mail has been received.

To subscribe to the e-mail service we first have to create the subscription request. We will also add
a filter to limit the subscription to the e-mail message with the specified subject and from address:

<!-- Crate the subscription request -->
<assign>

<copy>
<from>
<subscription xmlns="http://services.oracle.com/bpel/mail">
<mailAccount>TravelEmailAccount</mailAccount>
<filter/>
</subscription>
</from>
<to variable="subscriptionRequest" part="payload"/>

</copy>

<!-- Add a filter by subject and from address -->

<copy> . .
<from expression="concat('subject="’,

bpws:getvariablebData('mailMsg’, 'pay'lgad' , '/mailMessage/subject'),

'" and from="',

bpws:getvariableData('TravelRequest', 'email’,'/email/Address'),

'")" />
<to variable="subscriptionRequest" part="payload"
query="/subscription/filter"/>
</copy>
</assign>

Then we will register our process for the incoming e-mail message by invoking the subscribe

operation on the Mailservice:

<!l-- Register subscription by invoking the service -->

<invoke partnerLink="MailService"
portType="mail:MailService"
operation="subscribe"
inputvariable="subscriptionRequest"/>

Finally our process will wait for the callback. Therefore we add a <receive> activity for the

onMessage operation:

<!-- wait for the confirmation email -->

<receive partnerLink="MailService"
portType="mail:Mailservicecallback"
operation="onMessage"
variable="maiTResponse"/>

</sequence>
</scope>

49

Configuring an E-mail Account

To make the e-mail example work, we also have to set up an e-mail account we will use. When
sending and subscribing to the e-mail we have declared that we will use the TravelemailAccount:

<mailAccount>TravelEmailAccount</mailAccount>

We create the TravelemailAccount.xm] file with the following content:

<mailAccount xmlns="http://services.oracle.com/bpel/mail/account">
<userInfo>
<displayName>[display name]</dispTlayName>
<organization>[organization name]</organization>
<replyTo>[replyTo email address]</replyTo>
</userInfo>

<outgoingServer>
<protocol>smtp</protocol>
<host>[outgoing smtp server]</host>
<authenticationRequired>false</authenticationRequired>
</outgoingServer>

<incomingServer>
<protocol>pop3</protocol>
<host>[incoming pop3 server]</host>
<email>[email address]</email>
<password>[email password]</password>
</incomingServer>

</mailAccount>

Remember to provide details of a valid e-mail account. We then copy this file to the BPEL Server
domain. Since we are using the default domain, we copy the file to the following directory:
c:\orabpel\domains\default\metadata\MailService.

We are now ready to compile, deploy, and test the example. The source code can be downloaded
from http://www.packtpub.com/.

Integration with Java

Sometimes we need to integrate our BPEL processes with resources other than web services. In
the Java world this could be EIBs (Enterprise Java Beans), JMS (Java Message Service), ERP
systems accessible through JCA (Java Connector Architecture), JDBC databases, or even simple
Java classes. Accessing these resources from BPEL processes natively is important because many
existing systems use these technologies and we often cannot convert all existing resources to web
services before using them in BPEL processes.

Oracle BPEL Process Manager provides native integration with Java. This extends the reach of
BPEL and makes it suitable for EAI (Enterprise Application Integration). BPEL Process Manager
offers two solutions to integrate Java resources:

¢ Java embedding: This allows us to embed Java code within a BPEL process.

e Web Services Invocation Framework (WSIF) with Java binding: This is covered
in the next section.

Let's look at Java embedding. Oracle provides a custom BPEL activity called <exec>, defined in
the http://schemas.oracle.com/bpel/extension namespace. This namespace is usually
declared with the bpelx prefix, so we write the activity as <bpelx:exec>.

The <bpelx:exec> activity allows us to embed Java code within BPEL processes. The server will
execute the embedded Java code within its JTA (Java Transaction API) transaction context. If the
embedded Java code calls EJBs (session or entity beans), the transactional context will be
automatically propagated. If an exception occurs during the execution of the embedded Java code,
the exception will automatically be converted to a BPEL fault and thrown to the BPEL process.

The <bpelx:exec> activity supports three attributes (in addition to the BPEL standard attributes):

e import: Used to import Java packages.

e Tanguage: Denotes the used language. Currently the only supported language is Java,
but support for other languages such as C# may be added.

e version: Denotes the version of the language. The supported version of Java is 1.4.
The <bpelx:exec> activity also provides built-in methods we can use in the embedded Java code.

They allow us to access and update BPEL variables, get JNDI access, update the audit trail, and
set priorities and other parameters. These built-in methods are explained in the following table:

Method Description

Object getvariableData(String name) Access BPEL variables
Object getvariablebata(String name, String partOrQuery)
Object getvariablebData(String name, String part,
String query)
void setvariableData(String name, Object value) Update BPEL variables

void setvariablebpata(String name, String part,
Object value)

void setvariableData(String name, String part,

String query, Object value)
void addAuditTrailEntry(String message, Object detail) Add an entry or an exception
void addAuditTraileEntry(Throwable t) to the audit trail

Object lookup(String name)

Locator getLocator()
long getInstanceId()

void setTitle(String title)
String getTitle()

void setStatus(String status)
String getStatus()

void setPriority(int priority)
int getPriority()

void setCreator(String creator)
String getCreator()

JNDI lookup

Access to BPEL Process
Manager Locator service

Returns the process instance
unique ID

Set/get the title of the process
instance

Set/gett the status of the
process instance

Set/get the priority of the
process instance

Set/gett the creator of the
process instance

51

Method Description

void setCustomKey(String customKey) Get/set the custom key for the
String getCustomkey() process instance

void setMetadata(String metadata) Get/set the metadata of the
String getMetadata() process instance

File getContentFile(String rPath) Access to the files stored in

the BPEL suitcase (JAR)

Invoking a Java Class

In the next example, we will invoke a Java class from our travel BPEL process. Suppose we want
to call a Java class (instead of a web service) to determine the employee travel status. As we will
see later, we can invoke an EJB, JMS, JCA, or any other Java resource in the same way as we will
invoke the Java class.

First let us write a simplified version of the class, called EmpTloyeestatus. The class
implementation is oversimplified and always returns the economy class:

package com.packtpub;
public class EmployeeStatus {
public String getTravelStatus (String firstName, String lastName) {
return "Economy";

}

Now let's modify the BPEL code. As mentioned, we will call this class instead of the Employee
web service. To use the <bpelx:exec> activity, we first have to declare the namespace:

<process name="BusinessTravelProcess"
targetNamespace="http://packtpub.com/bpel/travel/"
xmIns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmIns:trv="http://packtpub.com/bpel/travel/"
xmlns:emp="http://packtpub.com/service/employee/"
xmlns:aln="http://packtpub.com/service/airline/"
xmins:bpelx="http://schemas.oracle.com/bpel/extension" >

Then we make the necessary Java imports. We have to import the DOM Element and our class:

o <bpelx:exec import="org.w3c.dom.Element"/>
<bpelx:exec import="com.packtpub.EmployeeStatus"/>

We can also add the <bpelx:exec> activity using BPEL Designer.

Finally we replace the <invoke> of the Employee web service with the Java embedded code. In
Java we first create a new Employeestatus object. Then we use the getvariablebata() function
to retrieve the first and the last name from the BPEL variable EmployeeTravelStatusRequest.
We need the name to invoke our Java class. We then add an entry to the trail. Finally we set the
EmployeeTravelstatusResponse BPEL variable using the setvariablepata() function:

<!-- Invoke the EmployeeStatus Java class instead of web service -->

<bpelx:exec name="1invokeJavakExec" Tanguage="java" version="1.4">
<! [CDATAL

EmployeeStatus e = new EmployeeStatus();

string firstName = ((Element)getvariablebata(
"EmployeeTravelStatusRequest", "employee",
"/empTloyee/FirstName™)) .getNodevalue();

String lastName = ((Element)getvariableData(
"EmployeeTravelStatusRequest", "employee",
"/empTloyee/LastName")) .getNodevalue();

String empStatus = e.getTravelStatus(firstName, TlastName);

addAuditTraileEntry("Employee status is: + empStatus);

setvariableData("EmployeeTravelstatusResponse"”, "travelClass",
"/travelClass", empStatus);
11>
</bpelx:exec>

We have seen that invoking Java resources from BPEL is rather straightforward. For this example
to work, we have to pack the Java class file in the BPEL process suitcase JAR archive. We have to
store it into the BPEL-INF/classes directory. We could invoke an EJB, IMS, JCA, or other Java
resources in the same way.

XML Facades and Schema Compiler

Looking at the embedded Java code, we can see that most lines of code have been used to access
the BPEL variables and map individual values to Java variables. With more complex variables this
can become time consuming and error prone. Instead of hand coding the access to BPEL variables,
we can use XML facades.

XML facades are a set of Java interfaces and classes through which we can access and modify
BPEL (and other XML) variables using get/set methods. The concept is known as XML
serialization and is also used in JAXB (Java API for XML Bindings). The idea behind XML
facades is to generate Java classes from XML Schemas.

Let us demonstrate this with an example. The EmployeeTravelsStatusRequest variable is defined
by the EmployeeType complex XML type (located in the EmpToyee.wsd1 file):

<xs:schema elementFormDefault="qualified" .
targetNamespace="http://packtpub.com/service/employee/">

<xs:complexType name="EmpTloyeeType">
<Xs:sequence>
<xs:element name="FirstName" type="xs:string" />
<xs:element name="LastName" type="xs:string" />
<xs:element name="Departement" type="xs:string" />
</Xs:sequence>
</xs:compTlexType>

</Xs:schema>

An XML fagade for this variable consists of an interface (IEmployeeType) and a class
(EmployeeType) which provides the following methods:

® getFirstName() and setFirstName()

e getLastName() and setLastName()

53

e getDepartement() and setDepartement()

There is also a factory class (EmpToyeeTypeFactory) through which we can create the
IEmplyeeType using the createFacade () method.

Oracle BPEL Process Manager provides a schema compiler utility called schemac. Using this we
can generate XML facades. To generate the XML facade for Employee.wsd1 we can use the
following command line:

schemac -d ./BPEL-INF/classes Employee.wsdl

With the -d option we have defined the directory where the generated facade classes should be
stored. To see the fagade source code we can use the -trace option:

E] eveloper Prompt

C:\Prg\orabpel\Chapter4\5_TravelJavaClassFacade>schemac -d ./BPEL-INF/classes Em
ployee.wsdl

Oracle XML Schema Processor Uersion 2.0
http://otn.oracle.com/bpel

Copyright (c) 2002-2004 - Oracle

(type schemac -help for help)

schemac> parsing schema file 'Employee.wsdl’ ...

schemac> Loaded schemas from wsdl located at Employee.wsdl
schemac> generating XML business document ...

schemac> compiling XML business documents ...

Schemac completed successfully.

tertd\5_TravelJavaClassFacade>

Let us now implement the Java embedded code. First we have to import the XML facade:

' -<bpe1 x:exec import="org.w3c.dom.Element"/>
<bpelx:exec import="com.packtpub.EmployeeStatus"/>
<bpelx:exec import="com.packtpub.service.employee.*"/>

Then we can modify the code that accesses the BPEL variables. First we have to obtain the DOM
element using the getvariablebata() function. We then create the XML fagade and use it to
access the first and the last name. Because the facade can throw an exception we have to introduce
a try/catch block:

""Z1-- Invoke the EmployeeStatus Java class instead of a web service -->
<bpelx:exec name="invokeJavaExec" language="java" version="1.4">
<! [CDATAL
try {

EmployeeStatus e = new EmployeeStatus();

Element empRequest = (Element) getvari ableData(
EmployeeTravelStatusRequest",

"employee","/employee");
IEmployeeType emp = EmployeeTypeFactory.createFacade(empRequest);

string firstName = emp.getFirstName(Q);
String lastName = emp.getLastName();

String empStatus = e.getTravelStatus(firstName, lastName);

addAuditTrailentry("Employee status is: + empStatus);

setvariableData("EmployeeTravelStatusResponse™, "travelClass",
"/travelClass", empStatus);

}
catch(Exception e)
addAuditTrailentry(e);

11>
</bpelx:exec>
We can see that using the XML facade makes the code simpler and easier to maintain; this is
particularly true for larger variables with many member fields. For this example to work, we have
to include the XML facade classes in the BPEL process suitcase.

Web Services Invocation Framework Bindings

Integration of Java code into BPEL processes to invoke Java resources is useful. However, such an
approach also has disadvantages. In our previous example we had to modify the BPEL process
code in order to invoke a Java class instead of the Employee web service. Embedding Java code
into BPEL is also a proprietary approach and works only with Oracle BPEL Process Manager.

A much better approach would be if we only needed to modify the service binding and not the
BPEL process to replace the Employee web service with a Java class. This is exactly what the
WSIF offers. WSIF extends the web services model. It allows us to describe each service in
WSDL (even if it is not a web service that communicates through SOAP). It also allows us to map
such a service to the actual implementation and protocol.

In other words, we can bind the abstract description of the Employee web service (the port types)
to a SOAP-based implementation, to a Java class, to an EJB, or any other supported resource
simply by modifying the WSDL binding. No code changes in the BPEL process are necessary.
The bindings supported are determined by the providers offered by the WSIF. Oracle BPEL
Process Manager currently supports providers for:

e HTTP GET and POST resources
e Java classes

e EJBs

e JCA

In the future support for IMS will be added. Providers support WSDL bindings and allow the
invocation of the service through particular implementations.

With WSIF we can integrate resources other than web services into BPEL processes by
modifying the WSDL of the services. No changes in the BPEL code are required.

This approach is suitable for real-world scenarios and makes BPEL very useful for EAI as well as
for B2B. Enterprise information systems usually consist of a large number of different software

55

pieces, such as legacy applications accessible though JCA, EJBs, messaging infrastructure
(accessible via IMS), web services developed on different platforms, etc. To integrate all these
pieces we have to deal with different protocols. If software we use migrates to a different server or
has been upgraded to use a new technology, we have to upgrade the integration code—unless we
use WSIF. WSIF allows us to describe all these services with WSDL and then bind them to the
actual software through providers. It actually separates the interface and the protocol. This gives
us the flexibility to change the protocol (and implementation technology) without the need to
modify (or even recompile) the BPEL code.

WSIF is an Apache technology that was originally developed by IBM alphaWorks as a part of
WSTK (Web Services Toolkit). Oracle has implemented WSIF in the BPEL Process Manager. For
more information of WSIF, visit http://ws.apache.org/wsif/.

Invoking a Java Class through WSIF

To demonstrate how WSIF works, let's invoke a Java class. Remember that with WSIF we will
only have to modify the WSDL of the service and not the BPEL code. So, in this example we will
use the original BPEL code that invokes the Employee service using the <invoke> activity.

Instead of invoking the Employee web service we will bind it to a Java class. In order to replace
the web service with a Java class we will need a class with the exactly the same interface as the
web service. We need to modify the Java class from our previous example slightly.

Looking at the Employee web service interface, we can see that it provides an operation that takes
as input the EmpToyeeTravelStatusRequestMessage, which is of type EmpTloyeeType. To map the
EmployeeType to Java we use the corresponding XML fagade (using the schemac tool) as we did
in our previous example. The web service operation returns the
EmployeeTravelstatusResponseMessage message of type TravelClassType, which is actually a
specialization of xs:string. We map this type to java.lang.string. We will call the new Java
class EmployeeStatusFull:

package com.packtpub;
import com.packtpub.service.employee.*;
public class EmployeeStatusFull {
public String getTravelStatus (EmployeeType emp) {

System.out.printin("Java employee status for "+emp.getFirstName()+
" "t+emp.getLastName()+": Economy.");

return "Economy";

}
}

We added a console output to verify that our process calls the Java class and not the web service.

Next we modify the Employee WSDL. We have to add the binding section, which defines the Java
provider to be used. We also have to map the XML types to Java types and the WSDL operation
to the Java method. We start by defining the two namespaces used by WSIF providers:

<?xml version="1.0" encoding="utf-8" ?>
<definitions xmins:xs="http://www.w3.0rg/2001/XMLSchema"

xmlns:tns="http://packtpub.com/service/employee/"
targetNamespace:"http://qacktpub.com/service/emp1oyee/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-Tink/"
xmins:format="http://schemas.xmlsoap.org/wsdl/formatbinding/"
xmins:java="http://schemas.xmlsoap.org/wsdl1/java/" >

Next we add the binding section (usually after port type declarations and before partner link
types). Here we define a Java binding for the EmpTloyeeTravelstatusPT port type. We define the
type mapping from XML to Java:

e XML EmployeeType is mapped to the
com.packtpub.service.employee.EmployeeType Java class

e XML TravelcClassType is mapped to java.lang.String

We also have to specify that the WSDL operation EmployeeTravelStatus is mapped to the Java
method getTravelstatus():

TTl1-- Java binding -->
<binding name="JavaBinding" type="tns:EmployeeTravelStatusPT">
<java:binding/>
<format:typeMapping encoding:"]ava" style="Java">
<format:typeMap typeName="tns:EmployeeType"
formatType="com.packtpub.service.employee.EmployeeType" />
<format:typeMap typeName="tns:TravelClassType"
formatType="java.lang.String" />
</format: typeMapping>
<operation name="EmployeeTravelStatus">
<java:operation methodName="getTravelStatus"/>
<input/>
<output/>
</operation>

</binding>
Next we have to define the Java port and specify that the Employee service will use the
com.packtpub.EmployeeStatusFull Java class:
" iservice name="Employee">
<documentation>EmpTloyee</documentation>
<port name="JavaPort" binding="tns:JavaBinding">
<java:address className="com.packtpub.EmployeeStatusFull"/>
</port>
</service>

The rest of the Employee WSDL (including partner link types) has not been changed. We make no
changes to the BPEL process code. Notice that we use the same partner link and invoke the
EmployeeStatusFull Java class with the usual <invoke> activity used for invoking the web
service, as shown in the following code excerpt:

57

<!-- synchronously invoke the Employee Travel Status -->

<invoke partnerLink="employeeTravelStatus"
portType="emp:EmployeeTravelStatusPT"
operation="EmployeeTravelStatus"
inputvariable="EmployeeTravelStatusRequest"
outputvariable="EmployeeTravelStatusResponse" />

To test this example we must first generate the XML facade using the schemac utility. Then we
have to compile the Java class and deploy it (and the XML facade) to the
c:\orabpel\system\classes directory. Finally we can compile the BPEL and deploy it. If the
BPEL successfully invokes the Java class, the BPEL Process Manager console window will show
the following output:

[Start BPEL Process Manager - G:\prg'orabpel'bin'\startOr:

Process "TravelJavaBinding” (revision "1.8") successfully compiled.
04/08/24 00:19:03 Java employee status for Matjaz B. Juric: Economy.

In a similar way we could map the Employee web service to an EJB or other supported resources
using the corresponding WSIF provider.

BPEL Server APIls

Until now we have discussed how to develop, deploy, and manage BPEL processes on the Oracle
BPEL Process Manager. We have also discussed how to integrate BPEL with Java resources. In
complex real-world scenarios we may also need to access the BPEL Server functionalities. For
example, we might want to develop our own console through which users could monitor active
processes, start new process instances, set the priorities, etc. We might also want to integrate user
tasks with BPEL processes.

To realize these requirements, BPEL Server provides access to its functionality through a set of
APIs. As the Oracle BPEL Server has been developed in Java, these APIs are packages for use by
developers. Using them we can develop our own applications that interact with the server and
provide information about the state of the process instances, enable their management, and provide
other useful information. Oracle provides Javadoc files to help learn how to use these APIs. The
BPEL Console also uses these APIs and the source code is provided (a set of JSPs). Developers
can use it to learn how to use the APIs.

The BPEL Process Manager provides the following APIs:
e com.oracle.services.bpel.task: Used to interact with the user tasks (discussed
later in this chapter).

e com.oracle.bpel.client: Provides interfaces and classes for accessing server
functionality, such as performing operations on activities and introspecting processes
deployed on a server domain.

e com.oracle.bpel.client.auth: Used to authenticate against a server domain or for
administrative authentication.

e com.oracle.bpel.client.dispatch: Used to invoke processes (create process
instances) that are deployed on a server domain from Java (for example from JSPs).

e com.oracle.bpel.client.util: Contains utility classes for HTML and SQL
interaction.

e com.collaxa.xml: Provides XML and XPath utility classes. This package might be
renamed to a com.oracle package.

® com.collaxa.common.util: Provides access to BPEL Server performance statistics.
This package might also be renamed to a com.oracle package.

In the next section we will show how to use some of these APIs to develop user tasks and include
user interaction in BPEL processes.

User Interactions and Task Manager

With BPEL we can compose web services (and other resources) into business processes.
Real-world business processes sometimes require including user tasks. For example, a user might
want to make the final decision about the selected airline ticket, confirm a stock price, or choose
a load offer. The BPEL specification does not provide a standard way to include user tasks in
BPEL processes.

To solve this problem Oracle BPEL Process Manager provides the Task Manager. Task Manager
is a built-in BPEL service (similar to E-mail and JMS service), which enables us to include user
tasks in BPEL processes. Task Manager is an asynchronous service and provides two interfaces:

e The first is a WSDL interface used by the BPEL process. A BPEL process simply
invokes the Task Manager. Through the invocation it expresses the need for the user
interaction (initiateTask operation). It can also update or complete an existing user
task (updateTask, completeTask). The Task Manager performs a callback to the
BPEL process after the user interaction has been completed (onTaskresult) or if the
user task times out (onTaskExpired).

¢ The second interface of the Task Manager is the client API. Using this API,
developers can build custom user interfaces to carry out user interaction. Developers
can also list and look up tasks. The client API is available as a Java API (called
Worklist API) and can be used to develop user interfaces in Java (JSPs, for
example). We will show how to use the Java API in the next example. The client
APl is also available as a WSDL interface. This enables custom user interfaces to be
implemented in Microsoft .NET, Adobe Forms, or any other client technology that
supports web services. The client WSDL interface is not available by default and has
to be deployed through Worklist Manager service, which is actually a wrapper for
the Java Worklist API (c:\orabpel\samples\utils\worklistManager).

The architecture of the Task Manager is shown in the following figure:

59

BPEL Process

initiateTask

<invoke>

updateTask
completeTask

onTaskResult

A 4

<recieve>

onTaskExpired

User Task Example

To demonstrate how to add a user task to a BPEL process, consider our travel process example.
We will add a user task to confirm the selected airline ticket. We will proceed as follows:

e Modify the BPEL process to invoke the Task Manager

Task Manager
Service

<<JSP>>

e Develop a custom user interface using JSPs

e Deploy and test the example

Modifying the BPEL Process

We first declare an additional namespace that is used by the Task Manager:

<process name="BusinessTravelProcess"
targetNamespace="http://packtpub.com/bpel/travel/"
xmIns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmIns:trv="http://packtpub.com/bpel/travel/"
xmlns:emp="http://packtpub.com/service/employee/"
xmIns:aln="http://packtpub.com/service/airline/"
xmins:task="http://services.oracle.com/bpel/task" >

listTasks() Display user
tasks
lookupTask() <<JSP>>
Update a task
completeTask() é;iqsp?;;
atask
Java API
listTasks() D;;Y;/ys :s>er
tasks
lookupTask() <<WS>>
Update a task
completeTask() é;gj;;
a task
WSDL

We then add a partner link. We will call the partner link userTaskmanager. The location of the
Task Manager WSDL is http://Tocalhost:9700/orabpel/default/Taskmanager/

TaskManager?wsdl:

<partnerLink name="userTaskManager"

partnerLinkType="task:TaskManager"
partnerRole="TaskManager"
myRole="TaskManagerRequester" />

Next we invoke the Task Manager. For this we create a new scope just after the <switch> activity,
where we select the best plane ticket offer. To initiate a user task we invoke the initiateTask
operation on the Task Manager. This operation requires a taskmMessage parameter that specifies
the task details. Therefore we create the taskmessage, fill in the required data, and invoke the
initiateTask operation. Finally we wait for the callback onTaskresult (when the user has
approved the ticket) and copy the user input to the TravelResponse variable:

<!l-- User task to approve the ticket -->
<scope name="ApproveTicket">
<variables>
<variable name="ApproveTask" element="task:task"/>
</variables>

<sequence>
<assign>
<!l-- Assign 'title' in task document -->
<copy>
<from expression="string('Approve Ticket')"/>
<to variable="ApproveTask" query="/task/title"/>
</copy>
<l-- Assign 'creator' in task document -->
<copy>
<from expression="string('TraveluserTask')"/>
<to variable="ApproveTask" query="/task/creator"/>
</copy>
<!l-- Assign 'assignee' in task document -->
<copy>
<from expression="string('travel@packtpub.com')"/>
<to variable="ApproveTask" query="/task/assignee"/>
</copy>
<!l-- Assign 'duration' in task document -->
<copy>
<from expression="string('PT1H')"/>
<to variable="ApproveTask" query="/task/duration"/>
</copy>
<l-- Assign 'priority' in task document -->
<copy>
<from expression="3"/>
<to variable="ApproveTask" query="/task/priority"/>
</copy>
<!l-- Assign 'attachment' in task document -->
<copy>
<from variable="TravelResponse" part="confirmationData">
</from>
<to variable="ApproveTask" query="/task/attachment"/>
</copy>
</assign>

<scope name="UserInteraction">

<variables>
<variable name="taskRequest" messageType="task:taskMessage"/>
<variable name="taskResponse" messageType="task:taskMessage"/>
</variables>

<sequence>
<!-- Assign task document to taskMessage -->
<assign>
<copy>
<from variable="ApproveTask"/>

61

<to variable="taskRequest" part="payload"/>

</copy>
</assign>

<!-- 1Initiate task -->

<invoke partnerLink="userTaskmanager"
portType="task:TaskManager"
operation="initiateTask"
inputvariable="taskRequest" />

<!-- Receive the outcome of the task -->

<receive partnerLink="userTaskManager"
portType:"task:TaskManagerCa11back"
operation="onTaskResult"
variable="taskResponse" />

<!-- Read task document from taskmessage -->
<assign>
<copy>
<from variable="taskResponse" part="payload"/>
<to variable="ApproveTask"/>
</copy>
</assign>
</sequence>
</scope>
<!l-- Copy updated task attachment to variable -->
<assign>
<copy>
<from variable="ApproveTask" query="/task/attachment"/>
<to variable="TravelResponse" part="confirmationbata"/>
</copy>
</assign>
</sequence>
</scope>

Using BPEL Designer to Add a User Task

Instead of adding the Task Manager partner link and the related code by hand we could use the
BPEL Designer. To add the partner link we can use the UDDI Browser and select the built-in
BPEL Services, as shown in the following screenshot:

UDDI Browser

; Oracle BPEL Designer -- Web Page Dialog

Select the service that you want to integrate

Email Service

BPEL built-in email service.

IMS Service
BPEL built-in jms service.

Task Service
BPEL built-in task service.

UDDI provider [{SRlisli=iu=

=l
Cancel I

To add the code for invoking the Task Manager we can use the User Task macro and drag-and-

drop it to the process, as shown:

£ BPEL - Travel.bpel - Eclipse Platform

=181 x|
File Edit MNavigate Search Project Run BPEL ‘Window Help
les- |la-|#|oe-—-| 2 2 5 | dhepeL [(Resource
oz N s

330105 553301 dAREILSSBULNG

A

Travelapproval
(client)

CallbackClient

E| & assion

& invoke
48 reply
<8 receive
More Activities v
@ wait
) terminate
A throw

W compensate

@ empty

& scope
& switch
) while
@ pick
0 flow

xN flown

E. sequence

£ Java embedding

[& user task macro

&b sync service macro
user task macro

e

BPEL Designer | BPEL Source |

|| event:f/DirtyEvent?.bpel

63

We will have to enter the task name and finally modify the assignments to add the task data. For
more information about using BPEL Designer, refer to Oracle documentation.

Developing the Custom User Interface

After we have successfully modified the BPEL code we are ready to develop the custom user
interface through which the user will approve the airline tickets. We will develop three JSPs:

® One to display the tasks waiting for approval
¢ One to display and enter the airline ticket information

e One to make the ticket confirmation

To simplify the data management we will use the XML facade for the TravelResponse message.
For this we use the schemac tool on the Airline WSDL. Let us now develop the first JSP.

Displaying Tasks

To display the tasks that are waiting for approval, we use the BPEL Server Locator through which
we connect to the BPEL default domain. Next we connect to the Worklist service and get the list
of tasks that require approval:

<%@page import="java.util.Date" %>

<%@page import="com.oracle.bpel.client.Locator" %>

<%@page import="com.oracle.services.bpel.task.IwWorklistService" %>
<%@page import="com.oracle.services.bpel.task.ITask" %>

<%
// This page should not be cached
response.setHeader("Pragma", '"no-cache");
response.setHeader("Cache-Control", "no-cache");

// Connect to the default BPEL domain using Locator
// Please set the password (bpel 1is initial password)
Locator Tocator = new Locator("default", "bpel");

// Look up the worklist service
IworklistService worklist = . . .
(Iworklistservice)locator. TookupService(IWorklistService.SERVICE_NAME);

// List of tasks assigned to confirm
ITask[] tasks = worklist.listTasksByAssignee("travel@packtpub.com");
%>

Next we list the tasks in the table and make a hyperlink to the next JSP through which we display
the ticket information. Note that we use the task ID to identify which task the user has selected:

<html>
<head>
<meta http-equiv="PRAGMA" content="NO-CACHE" />
<meta http-equiv="EXPIRES" content="-1" />
</head>
<body>
<h1>BPEL Travel process tasks waiting for approval</hl>
<table>
<%
for (int i = 0; i < tasks.length; i ++)

ITask thisTask = tasks[i];

// Select only tasks that belong to us
}f (! "TravelUserTask".equals(thisTask.getCreator()))

continue;

// GEt the task title
String title = thisTask.getTitle();

// Get the task ID
String taskId = thisTask.getTaskid();

// Get the task expiration date
Date expiration = null;
if(thisTask.getExpirationbate() != null)
expiration = thisTask.getExpirationbate().getTime();

<tr>
<td>
<%= expiration %>
</td>
<td>
<§ 2ref="disp1ayTicket.jsp?taskId=<%= taskId %>"><%= title %>
</ta>
</tr>
<%
}
%>
</table>
</body>
</html>

Displaying and Entering Ticket Information

In the second JSP we display information about the airline ticket and allow the user to edit the
approval field (which can be true or false). We again use the Locator to connect to the BPEL
domain. Then we connect to the Worklist service and locate the task by ID. We use the XML
facade to obtain the ticket data:

<%@ page import="java.util.*" %>

<%@ page import="org.w3c.dom.Element" %>

<%@ page import="com.oracle.bpel.client.Locator" %>

<%@ page import="com.oracle.services.bpel.task.IworklistService" %>

<%@ page import="com.oracle.services.bpel.task.ITask" %>

<%@ page import="com.packtpub.service.airline.FlightConfirmationType" %>
<%@ page import="com.packtpub.service.airline.FlightConfirmationTypeFactory'
%>

<html>
<head>
<meta http-equiv="PRAGMA" content="NO-CACHE" />
<meta http-equiv="EXPIRES" content="-1" />
</head>
<body>
<%
String taskid = request.getParameter("taskid");
}f(taskid == null || "".equals(taskid))

List of BPEL Travel process tasks to approve.

else

65

// Connect to the default BPEL domain using Locator
// Please set the password (bpel is initial password)

Locator Tocator = new Locator("default", "bpel");

// Lookup the worklist service
IworklistService worklist =
(Iworklistservice)Tocator. TookupService(
IworklistService.SERVICE_NAME);

// Lookup the specific task the user has to confirm
ITask task = worklist.TlookupTask(taskId);

// Get the data using XML facade
Element rsElement = (Element) task.getAttachment();
FlightConfirmationType fc =
FlightConfirmationTypeFactory.createFacade(rseElement);

string flightNo = fc.getFlightNo();
string travelClass = fc.getTravelClass(Q);
float price = fc.getPrice();

% boolean approved = fc.getApproved();

%>

We display the ticket data in a form and allow the user to edit the approved field. The form is
linked to the third JSP:

" <h1>Travel Ticket Approval User Task</hl>

<form action="confirmTicket.jsp" method="POST">

<!-- The task ID is passed from page to page -->
<input type="hidden" name="taskId" value="<%=taskId%>" />
<table>

<tr>

<td>Flight number</td>
<td><%= flightNo %></td>
</tr>
<tr>
<td>Travel class</td>
<td><%= travelClass %></td>
</tr>
<tr>
<td>Price</td>
<td><%= price %></td>
</tr>
<tr>
<td>Approved</td>
<td>
<input type="text" name="approved" value="<%= approved %>"/>
</td>
</tr>
</table>

<input type="submit" alt="Confirm Ticket" value="Confirm Ticket"/>
</form>

</body>
</html>

Ticket Confirmation

In the third JSP we set the user input regarding the ticket approval. We again use the XML facade.
Then we notify the Task Manager that the user task is completed. The Task Manager will invoke
the callback to the BPEL process:

<%@ page 1mport_ Java util.*" %>

<%@ page import="org.w3c.dom.Element" %>

<%@ page import="com.oracle.bpel.client.Locator" %>

<%@ page import:"com.orac1e.services.bpe1.task.ITas " %>

<%@ page 1mport— 'com.oracle.services.bpel.task.IworklistService" %>

<%@ page 1mport— 'com.packtpub.service.airline.FlightConfirmationType" %>
;%@ page import="com.packtpub.service.airline.FlightConfirmationTypeFactory"
0>

<html>
<head>
<meta http-equiv="PRAGMA" content="NO-CACHE" />
<meta http-equiv="EXPIRES" content="-1" />
</head>
<body>
/<h1>Trave1 Ticket Approval User Task</hl>
<%
String taskId = request.getParameter("taskIid");
}f(taskId == null || "".equals(taskid))
%>
List of BPEL Travel process tasks to
aBprove.
<%

else

// Connect to the default BPEL domain us1n? Locator
// Please set the password (bpel 1is initia password)
Locator Tlocator = new Locator("default", "bpel ;

// Lookup the worklist service
IworklistService worklist = . . .
(Iworklistservice)locator. TookupService(IWorklistService.SERVICE_NAME);

// Lookup the specific task the user has selected
ITask task = worklist.lookupTask(taskid);

// Set the approved field using XML facade
Element rsElement = (Element) task.getAttachment();
FlightConfirmationType fc =
F11ghtconf1rmat1onT eFactory.createFacade(rsgElement);

if ((request.getParameter("approved" §§ equalsIgnorecase("true")) {

fc.setApproved(true);
} else {

fc.setApproved(false);

// Update the attachment so that it reflects the user changes
task.setAttachment(fc.getRootElement());

// Complete the task to activate the callback
workTist.completeTask(task);

out.printin("Ticket approved status: "+fc.getApprovedQ+".");
%>

</body>
</html>

67

Deployment and Testing

To deploy and test our example, we first have to compile and deploy the BPEL process. We then
create a Java WAR web archive and deploy it to the OC4J application server. This can be done
using obant. For more details look at the example code, which can be downloaded from
http://www.packtpub.com/.

After we have successfully deployed the example we can test it. We use the BPEL Console to
initiate the process. From the visual flow we can see that the process has not completed but is
waiting for the Task Manager callback:

i Oracle BPEL Console v2.0 - Microsoft Internet Explorer .

File Edit View Favorites Tools Help
*“Back - @ - @2 @] Ogearch HFavorites FMedia 3| D- 3R ==

Address IEJ http://localhost: 9700/BPELConsole/displayInstance.jsp?referenceld = 9fa 9322 7be554402: 1649b44:fe83cd7b90:-7ej #Go ‘ Lirks ™

ORACLE" BPEL Con:
Comole Manage BPEL Domain | Logout | Support
Dashboard BPEL Processes Instances | Activities |
Title: Instance #622 of TravelliserTask Last Modified: 2004-06-25 00:25:25 081
Reference 1d: bpel://lacalhost/default/TravellserTaskn1 0/622 state: apen.running
BPEL Process: TravellserTask (v, 1.0 Priority: o

[As of 8/25/04 1228 AM] Refresh View

Visual representation of the history of this BPEL business flow

=
Switeh

& (Y
{assign
Assian

& I

5 ApproveTicket

m

assign

= UserInteraction

userTaskManager
(initiateTask)

|

userTaskManager
(onTaskResult)

Oracle BPEL Console v2.0 rcd

Logged to domain: default

{# Local intranet y

&) Done. 49 enries rendered

Now we have to use our custom user interface to approve the ticket. The user interface can be
accessed at http://localhost:9700/TravelUserTaskul/:

Ahttp://localhost:9700/ TravelUser TaskUI/ - Microsoft Intes o [=[3
Eile Edit View Favorites Tools Help

“Back v ¥ v @ @ & Ogearch HFavorites IMedia & D SR I=2
Address |¢J http://localhost: 9700/ TravelUserTaskUI/ ﬂ ©Go ‘Lmks "1

|
BPEL Travel process tasks
waiting for approval

Wed Aug 25 01:28:26 CEST 2004 Approve Ticket

a @ Local intranet 4

After we click on the Approve Ticket link we will see the following screen:

playTicket. jsp! =[0x]

Flle Edit View Favorites Tools Help

+Back v @ - @ 4 & | Asearch “Favorites IMedia I D SR FEH=2
Address & hitp:/localhost:9700/ Travel User TaskUl/display Ticket.jsp ~| ©Go |Links ™

Travel Ticket Approval
User Task

Flight number 123
Travel class Economy
Price 120.0

Approved true
Confirm Ticket

& Dore

[EELocal infranet 4

Now we can enter a value in the Approved field. After clicking on the Confirm Ticket button we
have finished the user task. In the BPEL Console we can observe that the process has now either
completed successfully if we have approved the ticket or an exception has been thrown if we have

not approved the ticket. We can see that user tasks can be a very useful way to integrate user
actions into BPEL processes.

Summary

In this chapter we provided a detailed overview of the Oracle BPEL Process Manager. We saw
that Oracle BPEL Process Manager is a J2EE based BPEL server that also provides an integrated
graphical development environment called BPEL Designer (an Eclipse plug-in) and a BPEL
Console, which can be used for process deployment, monitoring, debugging, and administration.

The Oracle BPEL Server provides several advanced features such as dehydration, version control,
and clustering.

The Oracle BPEL Process Manager also provides several integration capabilities. It has built-in
XSLT, XQuery, and XSQL engines that we can use in our BPEL processes. It supports the Web
Services Invocation Framework through which we can include resources other than web services
into our BPEL processes by simply specifying the service bindings. Oracle BPEL Process

Manager also supports integration with email and messaging. These features extend the usability
of BPEL considerably.

Oracle BPEL Process Manager also provides integration with Java. We can embed Java code in
BPEL and therefore integrate BPEL processes with Java and J2EE resources (such as EJBs, JCA,

69

JMS, etc.). We can also access the functionality of the BPEL Process Manager from Java through
a set of APIs. In this way we can develop our own consoles and other applications. We can also
integrate user tasks with BPEL processes. In this way users can confirm process activities or
provide other input to BPEL processes.

Oracle BPEL Process Manager offers a comprehensive, powerful, and relatively easy-to-use
environment for the development and deployment of BPEL processes.

PUBLISHING

Business Process Execution Language
for Web Services

Business Process Execution Language for Web Services (BPEL4WS) is the new standard for
orchestrating business process using web services. BPEL is supported by more platform vendors
than its predecessors that tried to achieve similar goals, such as ebXML and Web Services
Choreography Interface (WSCI). BPEL is supported by Microsoft, IBM, BEA, SAP, Hewlett-
Packard, Oracle, Siebel, and others.

The book explains the BPEL standard and how it relates to the web services stack and to previous
similar standards. It also covers the Microsoft BPEL server—BizTalk, and the Oracle BPEL
Process Manager. We will see how these servers use web services and XML for document
exchange. The book presents the service oriented architecture for web services development which
enable us to develop loosely-coupled solutions.

What This Book Covers

Chapter 1 provides a detailed introduction to Service Oriented Architecture (SOA) and the
distributed SOA model. The chapter goes on to discuss the important standards and specifications
for implementing SOA with web services and integrating web services.

Chapter 2 discusses the composition of web services with BPEL. The chapter introduces the core
concepts of BPEL and explains how to describe synchronous and asynchronous business
processes with BPEL. The chapter finishes with an overview of Orchestration Servers.

Chapter 3 goes deeper into the BPEL specification and covers advanced functionality for
modeling complex business processes. Advanced activities, scopes, serialization, fault and event
handling, and correlation sets are covered in detail.

Chapter 4 explains how to use the Oracle BPEL Process Manager for deploying and running
business process defined in BPEL. The chapter also looks at graphical development of BPEL
business processes using Oracle BPEL Designer. Important topics such as integrating web services
with Java, special Oracle-specific functions, and adding user interactivity (using Oracle Task
Manager) are discussed in detail.

Chapter 5 discusses MS BizTalk Server 2004, an integration server product that allows us to
import and export business processes to BPEL. The chapter also explains how to use the
Orchestration Designer tool to define business processes graphically.

Appendix A provides a syntax reference for BPEL v 1.1. The appendix covers standard BPEL
activities and elements, functions, attributes, and faults.

For more information: www.PacktPub.com/book/BPEL

Where to buy this book

You can buy Business Process Execution Language for Web Services direct from the Packt
Publishing website: www . PacktPub.com/book/BPEL. This book carries at least a 10%
discount on the website as well as free shipping to the US, UK, Europe, Australia & New Zealand.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and most internet
book retailers.

PUBLISHING

www.PacktPub.com

73

