

Automate Infrastructure Lifecycle Management
on PCA using Ansible

O R A C L E W H I T E P A P E R | S E P T E M B E R 2 0 1 8

0 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Contents

Introduction 1

Prerequisites 2

How Ansible Works 2

Architecture 3

Custom Module Arguments 5

Executing the Module 6

Ansible Ad-Hoc Command Method 7

Playbook Execution 7

Create a VM 8

The execution of the code for creating a VM is shown in Appendix I. 8

Case 1: Specified VM doesn’t on PCA, Desired State: present 8

Case 2: Specified VM exists on PCA, Desired State: present 10

Delete a VM 11

Case 1: Specified VM is running on PCA, Desired State: absent 11

Case 2: Specified VM doesn’t exist on PCA, Desired State: absent 13

Start a VM 14

Case: Specified VM exists on PCA and is in stopped condition, Desired State:

start 14

Stop a VM 16

Case: Specified VM exists on PCA and is in stopped condition, Desired State:

stop 16

1 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Idempotency 17

Appendix I: Code execution 19

Authentication 19

Creating a Virtual Machine 24

Conclusion 28

Resources 28

1 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Introduction

Oracle Private Cloud Appliance is an Engineered System designed for rapid and turn-key deployment

of private cloud at an industry-leading price point. The agile and intelligent infrastructure allows for

scaling compute capacity on demand, zero downtime upgrades and supports your choice of external

storage. Whether running Linux, Microsoft Windows or Oracle Solaris applications, Oracle Private

Cloud Appliance supports a wide range of mixed workloads in medium-to-large sized data centers.

High-performance, low-latency Oracle Fabric Interconnect and Oracle SDN allow automated

configuration of the server and storage networks. The embedded controller software automates the

installation, configuration, and management of all infrastructure components.

Automation is a key requirement for achieving cloud-like agility. Ansible is an IT automation engine that

automates cloud provisioning, configuration management, application deployment and orchestration.

Ansible uses no agents and can be used to automate repetitive IT tasks in multi-node deployments. A

machine that has Ansible installed (‘Control Machine’) pushes code blocks (‘Ansible modules’) to the

remote machines (‘Managed nodes’) and executes them over SSH. This paper describes the process

to use the custom Ansible module ‘ovmm_vm.py’ to automate creation, deletion, halting and starting a

Virtual Machine in Oracle PCA.

The module interfaces with the REST APIs for Oracle VM and hence, can be even used in an Oracle

VM environment outside of a PCA.

Sample code is provided for educational purposes or to assist your development or administration efforts. Your use rights
and restrictions for each sample code item are described in the applicable license agreement. Except as may be expressly
stated in the applicable license agreement or product documentation, sample code is provided "as is" and is not supported
by Oracle.

2 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Prerequisites

The versions of major software components used in this setup are:

» Version of Oracle PCA software. 2.3.1+ (The module works with Oracle VM 3.3+)

» Version of Ansible. 2.1.0.0 or newer

» Download and install the Ansible RPM from OTN. The files contained in the RPM are as follows:

[root@dhcp-10-211-54-119]# rpm -qpl pca_ansible_examples-1.0-
1.el7.noarch.rpm

/usr/lib/python2.7/site-packages/pca/plugins/ovmm_vm.py
/usr/lib/python2.7/site-packages/pca/plugins/ovmm_vm.pyc
/usr/lib/python2.7/site-packages/pca/plugins/ovmm_vm.pyo
/usr/share/doc/pca_ansible_examples-1.0
/usr/share/doc/pca_ansible_examples-1.0/COPYING
/usr/share/doc/pca_ansible_examples-1.0/Copyright
/usr/share/pca_ansible_examples/examples
/usr/share/pca_ansible_examples/examples/deletevm.yml
/usr/share/pca_ansible_examples/examples/play.yml
/usr/share/pca_ansible_examples/examples/startvm.yml
/usr/share/pca_ansible_examples/examples/stopvm.yml

Ansible checks for the custom module in the /library subdirectory of the directory where your playbook is

stored. Thus, in the above directory structure, you can place the ovmm_vm.py file in directory
/usr/share/pca_ansible_examples/examples/library/

Note: For the purpose of simplifying the directory paths in this paper, we will place the playbooks in the

Ansible directory (/etc/ansible) and the module in the library subdirectory of the Ansible directory (here

etc/ansible/library) on Control Machine.

Control Machine

/etc/ansible

 Play.yml , deletevm.yml, startvm.yml, stopvm.yml

 Library

 ovmm_vm.py

How Ansible Works

Ansible works by pushing code blocks (‘modules’) to remote hosts (‘managed nodes’), executing them then

removing them after the remote host is in the ‘desired’ state.

The automation jobs are described in YAML language. Playbooks, written in YAML, are used to manage

configurations and deployment to remote systems.

Playbooks contain plays which map remote hosts to tasks. A task is nothing more than a call to a Module. Modules

are task plugins that do the actual work on a remote host.

http://www.oracle.com/technetwork/server-storage/vm/downloads/ovm-tools-3604795.html

3 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 1: Sample Ansible Playbook

Figure 1 shows a sample playbook that has only one play to be executed on remote host ‘bastion’ as remote user

root. The task is to make sure httpd service is started on bastion host. This task calls the ‘service’ module and

declares the desired state as ‘started’ for service httpd.

Handlers are special tasks that are carried out if the preceding task was successful i.e. it made a change in state of

the remote host. Thus, in this case the handler “restart httpd” would only be called if httpd service had to be started

on bastion host by the task ‘make sure httpd is statrted’. In other words, if httpd was already running on bastion (i.e

task ‘make sure httpd is running’ didn’t make any change to the remote host bastion), the handler would not have

been executed.

Architecture

Figure 2 shows an Ansible Control Machine components and also the architecture of Oracle VM Manager located

on the Management node of PCA. Ansible manages the PCA by connecting to the REST APIs for Oracle VM

Manager (accessible by HTTPS over port 7002 as shown in figure). The detailed architecture for Oracle VM can be

found here.

https://docs.oracle.com/cd/E64076_01/E64081/html/vmcon-ovm-arch.html

4 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 2. Architecture diagram for Ansible based deployments

This lab setup has the following components:

 Control Machine: An Oracle Linux 7 system external to the PCA on which Ansible is installed serves as the

Control Machine. Ansible package is available via the ol7_developer_EPEL Channel.

 Managed Nodes: The remote systems that Ansible manages remotely. In our case, the managed nodes would

be the PCA management nodes. The location of managed nodes (Host names or IP address) is defined in

Inventory File. The default inventory file is etc/ansible/hosts on the control machine.

Figure 3. A sample inventory file located at /etc/ansible/hosts

5 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Custom Module Arguments

The custom module ovmm_vm.py takes the following arguments as inputs from the user.

 state=dict(required=True, choices=['present', 'absent', 'start', 'stop']),

 name=dict(required=True),

 description=dict(required=False),

 ovm_user=dict(required=True),

 ovm_pass=dict(required=True),

 ovm_host=dict(required=True),

 ovm_port=dict(required=True),

 server_pool=dict(required=False),

 repository=dict(required=False),

 vm_domain_type=dict(default='XEN_HVM',

choices=["XEN_HVM","XEN_HVM_PV_DRIVERS","XEN_PVM","LDOMS_PVM","UNKNOWN"]),

 memory=dict(required=False, default=4096, type='int'),

 max_memory=dict(required=False, default=None, type='int'),

 vcpu_cores=dict(required=False, default=2, type='int'),

 max_vcpu_cores=dict(required=False, default=None, type='int'),

 operating_system=dict(required=False),

 networks=dict(required=False, type='list'),

 disks=dict(required=False, type='list'),

 boot_order=dict(required=False, type='list')

Note: The arguments with required=True have to be supplied while making a call to this module, else the module

execution fails and Ansible throws a message “missing required arguments: <argument_name>”.

Note: The ovm_user and ovm_pass are required for basic HTTP Authentication. They are not required if you

set up SSL Certificate verification for Oracle VM as discussed in Appendix I. In this case, (required=False)

needs to be set for both ovm_user and ovm_pass in order to not supply

The ‘ovmm_vm’ module can be used for automating the following operations on a PCA.

» Creating a Virtual Machine

» Deleting a Virtual Machine

» Starting a Virtual Machine

» Stopping a Virtual Machine

Argument ‘state’ can take 4 values: Present, absent, start, stop. Each value represents the desired final state of

the VM. The value of argument ‘state’ determines the desired action.

» State=present means that the specified VM should exist on the PCA after execution of the module.

Thus, if it is already present, Ansible returns the ID of the existing VM without making any change to the

remote system. If the specified VM doesn’t exist, it is created with the specified configuration

» State=absent means the VM will be deleted if it exists on the PCA. This deletes the VM disk mapping,

VM disk and VNICs along with the Virtual Machine.

» State=start would start the specified VM, would do nothing if the VM doesn’t exist or is already running

6 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

» State=stop will stop the specified VM if it is in ‘running’ state and do nothing otherwise

Executing the Module

The custom module and the Ansible playbook that uses the module need to be placed on the Ansible control
machine. For custom modules, Ansible will look in the library directory relative to the playbook, for

example: playbooks/library/your-module.

Figure 4 shows the relative location of playbook play.yml and Ansible module ovmm_vm.py on the Control
Machine.

Figure 4. Playbooks are located at /etc/ansible and custom modules are in /etc/ansible/library

Each of the tasks described in module ovmm_vm.py can be carried out by either making a call to the module from

Ansible command line (Ad-hoc command) or using Ansible Playbook. Both methods are discussed in the

following sections.

Figure 5 shows the Oracle VM Manager GUI for PCA. We have 2 VMs on Server Pool SP1, named ‘ST_vm1’ in

Stopped state and ‘testvm’ in the Running state. Let’s automate the lifecycle management tasks that can be

performed using the custom Ansible module ovmm_vm.py

7 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 5. Oracle VM Manager GUI showing 2 VMs – ST_vm1 in stopped state and testvm in Running state

Ansible Ad-Hoc Command Method

An ad-hoc command is something that you might type in to do something really quick, but don’t want to save for

later. The syntax for ad-hoc commands is

$ ansible <hostname> -m <module_name> -a <arguments_to_module>

Playbook Execution

Playbooks are Ansible’s configuration, deployment, and orchestration language. They can describe a policy you

want your remote systems to enforce, or a set of steps in a general IT process. Playbooks are written in YAML

format. The syntax for running a playbook is:

$ ansible-playbook –i<inventory file> <playbook_name.yml>

Note: Ansible uses the default inventory file located at /etc/ansible/hosts if flag –i is not specified while executing the

playbook.

Examples of executing the module ovmm_vm.py using playbook are shown in the following section.

8 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Create a VM

To create a VM with Virtual Disks and Virtual NICs, the following arguments need to be specified while executing the

module ovmm_vm.py

 state=present

 name

 ovm_user

 ovm_pass

 ovm_host

 ovm_port

 repository

 server_pool

 networks – provide a list of all the networks corresponding to the Virtual NICs that the VM should have.

For two VNics on same network, type the network name twice as shown in Figure 6.

 disks – provide a list of virtual disks in the form of a tuple [Virtual Disks name, size in bytes, Repository] as

shown in Fig 6.

The playbook used for creating the VM is shown on Figure 6.

Figure 6. Playbook play.yml showing the task ‘Create a VM’ on remote host ovm

The execution of the code for creating a VM is shown in Appendix I.

Case 1:

Specified VM doesn’t exist on PCA, Desired State: present

In this case, as the specified VM doesn’t exist on PCA, we expect the module to create it on the specified server

pool and repository on PCA and display a changed=True message. Figure 7 shows this execution on the VM

‘ST_vm33’ and Ansible returns a message saying “VM created” and “changed=True”.

9 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 7. Execution of Playbook play.yml when the VM doesn’t exist on the remote host

The fact that the VM ‘ST_vm33’ is created on the remote host can be seen in Figure .

Figure 8. The VM ‘ST_vm33’ is successfully created in the Oracle VM Manager GUI

10 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Case 2:

Specified VM exists on PCA, Desired State: present

In this case, as the specified VM exists on PCA, we expect the module to not make any changes on PCA and

display a changed=False message. Figure 9 shows the playbook play.yml used for this case. Figure 10 shows this

execution on the VM ‘ST_vm1’ and Ansible returns a message saying “VM exists” and “changed=False”.

Figure 9. Playbook play.yml with state=present when the VM already exists on the remote host

If the specified VM already exists on PCA, Ansible makes no change to the remote system and returns the ID of the

already existing VM with same name. In this case, the specified VM ‘ST_vm1’ exists and has ID

‘0004fb0000060000c16ea2401e5b80f4’

Figure 10. Execution of Playbook play.yml with state=present when the VM already exists on the remote host

11 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Delete a VM

To delete a VM along with the VM disk mapping and Virtual Disk, the following arguments need to be specified while

executing the module ovmm_vm.py

 state=absent

 name

 ovm_user

 ovm_pass

 ovm_host

 ovm_port

The playbook used for deleting the VM is shown on Figure 11.

Figure 11. Playbook deletevm.yml showing the task ‘Delete a VM’ on remote host ovm

Note: The module ovmm_vm.py carried out the deletion of a VM by calling the deleteVM function (defined in

ovmm_vm.py). This function deletes the VM disk mapping, virtual disk and the Virtual machine from the PCA as

shown in Figure 13.

Case 1:

Specified VM is running on PCA, Desired State: absent

In this case, the VM ‘testvm’ exists and is running on the PCA, so Ansible should kill it and then delete it on the

remote system and show a changed=True message to show that VM is deleted.

Figure 11 shows the playbook deletevm.yml used for this case. The VM “testvm” is present on the remote host

“ovm” and should be deleted after execution of this playbook. The state=absent

When this playbook is executed, we expect Ansible to change the state of remote host ‘ovm’ by deleting the

specified VM ‘testvm’.

Figure 12 shows the result of execution of this playbook. The output of the execution clearly shows that task ‘Delete

a Virtual Machine’ changed the state of remote host ovm. The test output shows “changed=True” and has a

message “VM deleted”.

12 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 12. Execution of Playbook deletevm.yml when the remote host is not in desired state

The fact that the VM ‘testvm’ has actually been deleted can be verified by looking at the Oracle VM Manager GUI as

shown in Figure 13.

Figure 13. The VM ‘testvm’ is deleted as seen in the Oracle VM Manager GUI

13 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Case 2:

Specified VM doesn’t exist on PCA, Desired State: absent

In this case, the VM ‘myvm’ doesn’t exist on the PCA, so Ansible should not make any change to the remote system

and should exit gracefully.

Figure 14 shows the playbook deletevm.yml used for this case. This playbook contains one play called “test my

module” to be executed on the remote host ovm (specified in the /etc/ansible/hosts file). The playbook has 2 tasks –

Delete a VM and dump test output.

Figure 14. Playbook play.yml showing two tasks to be executed on remote host ‘ovm’

When this playbook is executed, we expect Ansible to not make any change on the remote system ‘ovm’ as the

specified VM ‘myvm’ doesn’t exist. In other words, the remote host ‘ovm’ is already in the desired state.

Figure 15 shows the result of execution of this playbook. The output of the execution clearly shows that nothing was

changed on the remote host and our module returns a message “VM doesn’t exist”

Figure 15. Execution of Playbook play.yml when the remote host is already in desired state

14 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Start a VM

To start a VM, the following arguments need to be specified while executing the module ovmm_vm.py

 state=start

 name

 ovm_user

 ovm_pass

 ovm_host

 ovm_port

The playbook used for starting a VM on PCA is shown in Figure 16.

Figure 16. Playbook startvm.yml showing the task ‘Start a VM’ on remote host ovm

Case:

Specified VM exists on PCA and is in stopped condition, Desired State: start

In this case, as the specified VM is stopped, we expect the module to start it on the PCA and display a

changed=True message. Figure 17 shows this execution on the VM ‘ST_vm33’ and Ansible returns a message

saying “VM started” and “changed=True”.

15 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 17. Ansible changes the state of remote system to start the specified VM on remote host

The fact that the VM ‘ST_vm33’ has actually been started can be verified by looking at the Oracle VM Manager GUI

as shown in Figure 18.

Figure 18. The VM ‘ST_vm33’ can be seen running in the Oracle VM Manager GUI

16 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Stop a VM

To stop a VM, the following arguments need to be specified while executing the module ovmm_vm.py

 state=stop

 name

 ovm_user

 ovm_pass

 ovm_host

 ovm_port

The playbook used for this task ‘stopvm.yml’ is shown in Figure 19.

Figure 19. Playbook stopvm.yml showing task “Stop a VM’ to be executed on host ovm

Case:

Specified VM exists on PCA and is in stopped condition, Desired State: stop

In this case, as the specified VM is already stopped, we expect the module to not change anything on the PCA. This

property of Ansible is referred to as Idempotency. Figure 20 shows this execution on the VM ‘ST_vm1’ and Ansible

returns a message saying “VM is already stopped” as expected.

17 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 20. Ansible makes no change when the remote system is already in desired state

In this case, if the VM ‘ST_vm1’ was in the Running state prior to execution of the playbook, Ansible would have

stopped the VM and displayed “changed: True and VM stopped” message.

Idempotency

The custom module ‘ovmm_vm.py’ is Idempotent i.e. running the module multiple times has no side effects. In other

words, an operation is idempotent if the result of performing it once is exactly the same as the result of performing it

repeatedly without any intervening actions.

To illustrate this concept, we can use the same playbook as shown in Figure 10. The playbook specifies that the VM

‘testvm’ should be absent from the target host ovm. Running the playbook once, deleted the specified VM from the

target host. This means that the VM ‘testvm’ doesn’t exist anymore and running this playbook now should not make

any change to the remote host ‘ovm’.

Figure 21 shows that when we run the playbook play.yml again, the task “Delete a Virtual Machine” doesn’t change

anything on the remote host. We can also see from the test output that Ansible returns “changed=False” and the

message says “VM doesn’t exist” as expected.

This playbook can now be run any number of times without making any change to the remote host. This is an

important property of Ansible, which allows the user to only specify the desired state of the remote host without

having to worry about the current state.

18 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 21. Ansible module ‘ovmm_vm.py’ is Idempotent

19 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Appendix I: Code execution

Prerequisites for Ansible Control Machine

The following packages need to be installed on the Ansible Control Machine in order to initiate REST calls to PCA:

 Requests: HTTP library for python. Installed using $ yum install python-requests

 urllib3: HTTP client of python used by Requests to keep sessions alive and HTTP connection pooling. Installed

using $ yum install python-urllib3

We import the Requests Python library to take care of our HTTP request processing using REST. The auth function

returns a REST session by passing the username and password credentials for Oracle VM for basic authentication.

It is possible to have certificate based SSL Authentication as described in the next section ‘Authentication’.

Figure 22. Prerequisites for executing Ansible module

Authentication

This lab setup has the following components:

 HTTP Basic Authentication: Basic authentication is the simplest means of authenticating REST calls to OVM

ws-api using REST; simply provide the user name and password used to log into the Oracle VM Manager

(admin by default). This is simple solution, but weak security since it will send clear text password when you

make a REST call.

 SSL Certificate Authentication: It is possible to use a signed SSL certificate to authenticate against Oracle

VM Manager via the REST API. To do this, you must have the certificate and key stored in a single PEM file

available to your application. The Requests library allows you to send a certificate with each request, or to set it

to be used for every request within a session:

session.cert='/path/to/mycertificate.pem

As long as the certificate is valid and can be authenticated by Oracle VM Manager, the session is automatically

logged in using your certificate.

http://docs.python-requests.org/en/latest/

20 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 23. Initiating a REST session using auth function

Note: In the above figure, you can see that Certificate based authentication has been enabled to set up a HTTPS

requests to the REST API. Thus, you don’t need the ovm_user and ovm_pass parameters to authenticate and

hence, the line session.auth = (ovm_user, ovm_pass) has been commented.

Using SSL Certificate Authentication

PART I: Changes on Master Management Node of PCA

1) Create a New SSL Key on Master Management Node of PCA

For accessing the Oracle VM REST API over Virtual IP of the Private Cloud Appliance, a new SSL key signed by the

Oracle VM internal CA, has to be generated. Oracle VM Manager includes a key management utility to help manage

SSL certificates.

Oracle VM Key Tool: /u01/app/oracle/ovm-manager-3/ovm_upgrade/bin/ovmkeytool.sh

By default, Oracle VM Manager generates and signs an SSL certificate that is valid for ten years from the date of

installation. You can use the genssl command to generate a new SSL certificate that is signed by the Oracle VM

Manager internal CA.

Here’s how you can generate a new SSL key for the VIP of PCA:

 Log onto the Master Management node of PCA as oracle user and navigate to the directory where

ovmkeytool.sh is located.

Figure 24. ovmkeytool on the Master Management Node of Oracle PCA

21 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

 Use the genssl command with ovmkeytool.sh to generate a new SSL certificate

[oracle@ovcamn06r1 bin]$./ovmkeytool.sh gensslkey

Path for SSL keystore: [/u01/app/oracle/ovm-manager-

3/domains/ovm_domain/security/ovmssl.jks]

The hostname should be the fully qualified hostname of the system

(this is the hostname you'd use to access this system from outside the

local domain). Depending on your machine setup the value below may not

be

correct.

Fully qualified hostname: 10.147.x.x

Key distinguished name is "CN=10.147.x.x, OU=Oracle VM Manager,

 O=Oracle Corporation, L=Redwood City, ST=California, C=US". Use these

values? [yes]

Alternate hostnames (separated by commas): [10.147.x.x,

myserver.example.com]

You may either specify passwords or use random passwords.

If you choose to use a random password, only WebLogic, the Oracle VM

Manager, and this application will have access to the information stored

in this keystore.

Use random passwords? [yes]

Generating SSL key and certificate and persisting them to the

keystore...

Updating keystore information in WebLogic

Oracle MiddleWare Home (MW_HOME): [/u01/app/oracle/Middleware]

WebLogic domain directory: [/u01/app/oracle/ovm-manager-

3/domains/ovm_domain]

Oracle WebLogic Server name: [AdminServer]

WebLogic username: [weblogic]

WebLogic password: [********]

WLST session logged at: /tmp/wlst-session178461015146984067.log

Note that the command prompts you to provide the values for various steps through the procedure as the new

SSL certificate is generated. Notably, you must enter a valid fully qualified domain name for the server. This

value is used for the hostname in the SSL certificate and must match the hostname that is used to access the

Oracle VM Manager web-based user interface.

 Restart the ovca service and wait for 3-5 minutes to make sure everything is running

 [root@ovcamn06r1 bin]$ service ovca restart

[root@ovcamn06r1 bin]$ service ovca status

Checking Oracle Fabric Manager: Running

22 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

MySQL running (1658352) [OK]

Oracle VM Manager is running...

Oracle VM Manager CLI is running...

tinyproxy (pid 1660422 1660421 1660420 1660419 1660418 1660416 1660415

1660414 1660413 1660412 1660408) is running...

dhcpd (pid 1660442) is running...

snmptrapd (pid 1660460) is running...

log server (pid 1657404) is running...

remaster server (pid 1657406) is running...

http server (pid 1660463) is running...

taskmonitor server (pid 1660467) is running...

xmlrpc server (pid 1660465) is running...

nodestate server (pid 1660469) is running...

sync server (pid 1660471) is running...

monitor server (pid 1660473) is running...

 Use the check command to verify the current CA and SSL configuration. If any issues exist with the

configuration, the command displays information to help you resolve them.

The following is an example of the check command:

Figure 25. Running ovmkeytool.sh to check whether OVM CA and SSL configuration are correct

We can see that the Oracle VM Manager Certificate Authority and SSL configuration have been correctly configured.

Now, this certificate can be used for SSL verification of the REST session.

PART II: Changes on Ansible Control Machine

Create your own signed certificate file that will be referenced in your function/code when instantiating a REST

session object; the name of the signed certificate in this example is OVMSignedCertificate.pem. However, the file

can be any name and live on any server where your python code/script is installed and should ultimately be moved

to a directory where your code will expect to find it; the certificate should work from any server including the Oracle

23 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

VM management server/node - it does not need to exist on the Oracle VM management node unless that is where

you are running your code.

The process below is the same for Oracle VM 3.3 and 3.4.

1) Create temporary key files

This step is only performed once to create the signed certificate file that will be used by your application/script/code

to access Oracle VM WS-API using REST; the certificate file that will be used in your python code is used to

authenticate against the certificate file that is shipped with Oracle VM (ovmca.pem).

First create a key and certificate locally using the OpenSSL tool available on the Oracle VM management server.

The mykey.pem file shown in the example below is an important file that is used in a later step to create the

certificate you will use in your code; it must not have a passphrase. The first two lines below create this important

file. It takes two steps because specifying -des3 (des3 is higher security) on the first line requires at least a four

character passphrase; give it any passphrase that comes to mind because the second line below removes the

passphrase.

$ openssl genrsa -des3 -out mykey-with-pass.pem 2048

$ openssl rsa -in mykey-with-pass.pem -out mykey.pem

$ openssl req -new -key mykey.pem -out mycertreq.csr

$ openssl x509 -req -days 365 -in mycertreq.csr -signkey mykey.pem -out mycert.pem

2) Create signed certificate file using python

You will need to include the absolute path for "mycert.pem" file in the example below if you started python in a

different directory from the one you created the temporary cert files.

Step 2.1: Add your certificate to Oracle VM Manager

This step adds the certification key created in Step 1 to the Oracle VM Manager permanently. It also gets a key that

is returned from Oracle VM Manager and writes it to one of our temporary files.

import json

import requests

from requests.packages.urllib3 import disable_warnings

from requests.packages.urllib3.exceptions import InsecureRequestWarning

s=requests.Session()

s.verify=False

s.auth=('admin','Welcome1')

s.headers.update({'Accept': 'application/json', 'Content-Type': 'application/json'})

disable_warnings()

cert=open('mycert.pem').read()

body={'certificate': cert}

r=s.post('https://<mymanager.fqdn>:7002/ovm/core/wsapi/rest/Utilities/Certificate?sign=True',

 data=json.dumps(body))

24 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

signed_cert=r.json()['certificate']

f=open('signed.pem','w')

f.write(signed_cert)

f.close()

Step 2.2: Create the final signed certificate file

This step creates the file you will point to in your python code when creating a REST session. To use this certificate to

authenticate to either the REST or SOAP API using Python, it should be combined with its key.

You can do this easily on the command line: $ cat signed.pem mykey.pem >> OVMSignedCertificate.pem

Once you have created a certificate, you can use the REST API to sign it (python, using requests module).

Creating a Virtual Machine

Figure 26. ‘Main’ function of the ovmm_vm.py module

The main function takes arguments from the user (provided as YAML playbook). Above figure shows that the

baseUri in our examples is https://<ovm_manager_host>:7002/ovm/core/wsapi/rest.

Note: Once SSL verification has been set up as shown in the previous steps, we no longer need to supply clear text

ovm_user and ovm_password. In this case, we can make (required=False) for ovm_user and ovm_pass

parameters. In that case, you don’t need to supply these as arguments in the playbook.

http://docs.python-requests.org/en/latest/

25 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

When the desired state is specified as “present”, the module checks is the specified VM exists. This is done by a call

to the function ‘vmExists’.

Figure 27. ‘vmExists’ function of the ovmm_vm.py module

If the VM with the name specified by the user doesn’t exist on the target host, the createVM function is called. It

takes the restsession, modeule and the baseUri described above as arguments.

First, the ID for repository and server pool on the PCA where the VM needs to be created, is obtained by calling the

get_id_from_name function. The VM Data provided by the user as input YAML file is then passed as JSON input to

the POST request to uri https://<ovm_manager_host>:7002/ovm/core/wsapi/rest/Vm

Figure 28. ‘get_id_from_name’ function (above) and ‘CreateVM’ function of the ovmm_vm.py module

The vm_id variable is obtained by calling the wait_for_job function, which returns the ID of the job once it is
successfully completed or an error if the job run failed.

26 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

The result of the createVM function is a bare bones VM with the specified name, cpu cores, memory in the
specified location on a PCA. This VM still doesn’t have any disks or Virtual NICs attached. The next step is to call
configvm function.

Attaching Disks and VNICs to a newly created VM

After a VM of specified configuration is created on the PCA, the next step is to attach VNICs on specified networks

and VirtualDisks of specified size, name and in the desired repository on PCA. This is done by a call to configvm

function after the createvm function has finished creating a bare bones VM.

27 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

The ‘configvm’ function does the following things:

 Create Virtual Disks.

The user specifies the details for Virtual Disks to be attached to the newly created VM in the form of a

parameter ‘disks’ via the playbook.

The data type for ‘disks’ is list and Ansible expects the input to be in the form of a list of lists as shown in

playbook in Figure 6.

disks : [[‘disk1_name’, disk1_size bytes, ‘disk1_repo’] , [‘disk2_name’, disk2_size bytes, ‘disk2_repo’]..]

 Disk 1 parameters Disk 2 parameters

The function then loops over the list, creating each virtual disk of required name, size and on the specified

repository. This is done by sending a POST request to uri3 as shown in Figure above.

o The request path contains the repository ID of the repo where the Virtual Disk needs to be created.

o The request body contains the ‘name’ and ‘size’ as required inputs

o The parameter ‘sparse’ should be passed as a query parameter. Set it to True to create a Sparse

disk image.

 Create VM Disk Mapping.

After creating each disk, Oracle VM also needs to create a VM Disk Mapping to represent the association of

Virtual Disk and VM. Thus, for each virtual disk, a Disk Mapping is created by sending a POST request to uri4

as shown in above figure.

o The request path contains the VM ID of the VM to which the Virtual NICs needs to be associated.

o The request body contains the ‘virtualDiskId’ and ‘diskTarget’ as required inputs. VirtualDiskId is

obtained after the Oracle VM finishes creating a disk in last step. diskTarget maps the slot on the VM

to which the VirtualDisk should be attached.

 Create Virtual NICs.

The user specifies the names of the networks on which the VirtualNics for the VM need to be created as a

parameter ‘networks’ in the playbook. The data type for ‘networks’ is list and Ansible expects the input to be in

networks : [‘Network_name’, ‘Network_name’, …]

If you need 2 VNICs on the same network, specify the network name twice as shown in Figure 6.

The function then loops over the list, creating virtual NICs on each specified network by sending a POST

request to uri2 as shown in Figure above.

o The request path contains the VM ID to which the VNIC needs to be associated.

o The request body contains the ‘networkId’ as required inputs

The module exits with a message “VM created” if the execution was successful and returns an error otherwise.

28 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Conclusion

Ansible is a simple IT automation tool that can automate repeatable IT tasks, thus reducing human error and also

bringing down the operating expenses. The custom Ansible module ‘ovmm_vm’ can be used to manage the

complete lifecycle of a Virtual Machine on Oracle Private Cloud Appliance by automating creation, deletion, starting

and stopping of a Virtual Machine. This paper described the Ansible Ad-Hoc command and the Playbook method of

executing the custom Ansible module.

The module ‘ovmm_vm.py’ can be used to rapidly deploy a minimal server Virtual Machine on PCA. Ansible

Playbooks for deploying Oracle Databases and applications can be used in conjunction with this module to rapidly

deploy a VM with specified software in minutes on a PCA.

Resources

Oracle VM REST API guide

Ansible documentation

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0918

Automate Infrastructure Lifecycle Management on PCA using Ansible
September 2018
Author: Sonit Tayal

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

Sample code is provided for educational purposes or to assist your development or administration efforts. Your use rights
and restrictions for each sample code item are described in the applicable license agreement. Except as may be expressly
stated in the applicable license agreement or product documentation, sample code is provided "as is" and is not supported
by Oracle.

https://docs.oracle.com/cd/E64076_01/E64087/html/index.html
http://docs.ansible.com/ansible/latest/user_guide/intro.html

