
 1 

 
 
 

 
 

 Oracle ADF Task Flow Transaction Fundamentals  

 
Abstract 

 
 

twitter.com/adfArchSquare 

Task flows are an integral part of Oracle Application 
Development Framework (ADF) applications built with 
Oracle JDeveloper 11g.  A task flow is a modular and 
reusable unit of business navigation between views and 
non-visual activities like routers and methods.  Through 
their design task flows provide opportunities such as 
reuse, the ability to map to business processes, and 
compose the overall application architecture. 
 
Within the context of task flows they also support the 
concept of the transaction allowing a collection of work to 
be committed or undone in its entirety. This whitepaper 
discusses the concepts and features round the 
transaction and data control scope features provided by 
task flows to allow ADF developers to choose the correct 
combination of options to meet the user requirements. 
 

Author: Chris Muir 
Date: 07/AUG/2012 
 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 2 

 

Introduction 
Oracle JDeveloper 11g introduces the powerful concept of task flows to the Application 
Development Framework (ADF) that goes beyond the limited page flow facilities provided in 
JavaServer Faces. Task flows enable the design of a modular set of views and flows that can be 
reused and coupled with other task flows to create a larger application.  Task flows allow 
developers to align web applications closely to the concept of business processes rather than a 
disparate set of web pages strung loosely together by URLs.  Overall ADF task flows are a key 
concept in defining the architecture of an ADF application. 

The transaction and data control scope behavioral options available to bounded task flows 
provide a sophisticated set of functionality for spawning and managing one or more transactions 
during an ADF user's session as well as sharing state between disparate parts of the application.  
Traditionally applications didn't require such features but with the increasing demands from users 
and the improved capabilities of technology such functionality is becoming a requirement for 
contemporary applications. 

To explain the requirements around transactions let's discuss an example. Imagine an application 
to support call center operators who are receiving orders from customers.  First the operator must 
take the customer's delivery address, and order one or more items at a time. Obviously any 
application we deliver to support the staff must aid taking orders, orders are our business's 
bottom line.  

Taking orders from customers presents many challenges though.  Customers give the wrong 
address, add new items to existing orders, remove other items, change their mind, call center 
staff don't have an easy job.  It would be made even more difficult if the system we provided to 
support them didn't assist with this chaotic process.  If staff record an order's items and the 
customer decides to change their delivery address, we don't want to undo all the work to start 
again and reenter the address.  The entry of the address should reside in a separate transaction 
to recording the order items.  It's this sort of problem the transactional capabilities of ADF task 
flows are designed to solve.  And the benefit is to the bottom line of the business in processing 
customers’ orders efficiently. 

This paper is designed to assist you in understanding the task flow transaction and data control 
scope options available to you in order to build a sophisticated and contemporary application. 

  



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 3 

What is an ADF Task Flow? 
Traditional web page development involves a series of pages connected by <a href> tags.  Trying 
to discover how a user flows through such an application is difficult as it requires the inspection of 
the <a href> tags in every page to know the navigation paths. 

JavaServer Faces overcame this difficulty by prescribing the page and navigation rules between 
them in a faces-config.xml file.   This makes it much easier to define and determine the path the 
user will take in our web applications, particularly important to enterprise applications where there 
is the need to take users through a prescribed set of steps. 

Oracle ADF 11g takes the JSF implementation one step further and introduces the concepts of 
task flows.  ADF task flows compared to JSF allow not only pages to be specified in the 
application's flow, but also router logic, method calls, transaction support, save points and more. 

An ADF unbounded task flow mimics the faces-config.xml implementation of JSF, where 
essentially there is no entry or exit point to the application.  With a bookmark containing a URL of 
any of the pages within the unbounded task flow, the user can leap into the application and start 
navigating the defined paths from there. 

 

  

Figure 1 - Unbounded task flow 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 4 

It is however the bounded 
task flow that brings true 
power to the ADF 
ecosphere.  A bounded 
task flow is analogous to a 
Java method, with a 
defined name, parameters, 
entry and exit points.  Each 
bounded task flow can be 
designed to provide a 
discrete function.  Bounded 

task flows can be assembled together through task flow calls to create logically larger functions or 
composite applications.  Overall bounded task flows allow a concept rarely seen in web 
application, that of modularization and reuse. 

Readers should have a good knowledge of ADF task flows before continuing with this document.  
At the conclusion of this document you will find a number of references can be found which will 
assist in learning task flow features. 

Who Defines a Transaction in ADF? 
In ADF transactions are defined and owned by the underlying business service implementation 
used within the Model layer of the application.  As example ADF Business Components (through 
the definition of root Application Modules) take out connections and transactions with the 
database.  Such services are then exposed to the ViewController layer through an abstraction 
known as a Data Control for the 
ViewController to work with. 

As our application can utilize multiple data 
controls, the ADF Controller (ADFc) through 
the facilities provided by the task flow 
transaction and data control scope options, 
allow one or more data controls to be grouped 
together and committed or rolled back as a 
group.  The underlying business services still 
own the transaction and ultimately execute the 

1

Figure 3 - A bounded task flow's transaction and 
data control scope options 

Figure 2 - Bounded task flow 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 5 

commit and rollback operations, but the ADF Controller defines the boundaries of the task flow 
transaction, namely where the transaction starts and stops and which data controls are involved. 

These task flow transaction and data control scope options are available by opening a bounded 
task flow in the IDE, selecting the Overview tab at the bottom of the document window, then the 
Behavior node as shown in Figure 3. 

The associated Transaction drop down, and the checkbox entitled Share data controls with 
calling task flow control the task flow transaction settings.  In manipulating these options the 
relating XML file for task flow is populated as follows: 

<?xml version="1.0" encoding="ISO-8859-1" ?> 
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2"> 
  <task-flow-definition id="task-flow-definition"> 
    <transaction> 
      <new-transaction/> 
    </transaction> 
    <data-control-scope> 
      <isolated/> 
    </data-control-scope> 
    <use-page-fragments/> 
  </task-flow-definition> 
</adfc-config> 

 
It's not necessary to be familiar with the XML structure nor definitions.  However for the purposes 
of this paper we'll use the XML element names for describing the options rather than the 
somewhat convoluted labels in the Behavior node of the bounded task flows Overview tab.  
Within this document the drop down options will be referred to as the transaction options, and the 
checkbox as the data control scope options. 

Task Flow Transaction Vocabulary 
Before discussing in detail what the actual task flow options do it is useful to have an 
understanding of the vocabulary used by other programmers. Learning the vocabulary will assist 
you when reading documentation, blogs and OTN forum posts, as well as speaking to your ADF 
peers and logging requests with Oracle Support. 

Firstly, as we saw in Figure 1, the transaction options and the separate data control scope 
options are edited through the bounded task flow's Behavior node on the Overview page.  Note 
these options are defined on the task flow itself.  The caller does not define them.  So whenever 
these options are discussed it is from the context of what was defined in the task flow that has 
been called.  Remember this when another programmer describes any transaction options. 

 

2



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 6 

For the bounded task flow transaction option itself there are only 4 options: 

• "<No Controller Transaction>" 
• "Always Begin New Transaction" 
• "Always Use Existing Transaction" 
• "Use Existing Transaction if Possible" 

 
Sometimes you might hear somebody use terms like New Transaction, Sharing Transactions and 
Chaining Transactions but these terms don't align well to the above four options. As an example, 
both the "Always Begin New Transaction" and "Use Existing Transaction if Possible" options can 
create a new transaction so the term is loose in its definition. Be careful not to make an incorrect 
assumption based on any generic terminology you hear.  

For the data control scope checkbox while it is either "Isolated" when unchecked or "Shared" 
when checked. There also appears to be a third option where the checkbox is a blue box or a 
dash.  This isn't a third distinct option; it simply means the "default" which is the "Shared" data 
control scope. 

Finally you might hear both options in combination discussed in an abbreviated way such as an 
"Isolated New Transaction BTF" or a "Shared No Transaction BTF". Again be careful as these 
terms have ambiguity, ask questions to get the exact options used if it isn't obvious. 

Working with the Data Control Scope and Data Control 
Frames 
ADF supports several different types of data controls.  Ultimately data controls are designed to 
provide a standard set of APIs to call the underlying business services.  For example ADF 
Business Components as a business service provides operations to query, insert, update and 
delete data.  However depending on the underlying business services implemented in the data 
control, not all functions consistently have an implementation.  As an example, ADF Business 
Components provide functionality to query, insert, update and delete data from a database, keep 
track of current row indicators on records sets, and even issue commits and rollbacks on the 
underlying database transaction.  Separately a web service data control may provide functionality 
to query, insert, update and delete data, but the concept of database transactions will be a foreign 
one as once the web service is called, it's assumed the transaction is complete. 

Moving from the concepts of the data control to that of the data control scope, this refers to the 
visibility or life of a data control across parts of our application.  When a task flow defines a 
shared data control scope, this implies the task flow will attempt to share any instance of a data 
control (and by implication it's state) with the task flow's caller if the data controls have the same 
definition, rather than creating a new instance.  Alternatively if a task flow defines an isolated data 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 7 

control scope, even if both task flows use the same design time data control definition, at runtime 
each task flow will have their own instance of the data control.  We'll look at some examples of 
this soon. 

The Data Control Frame is the magic behind how this works.  Essentially each task flow has the 
potential to have it's own data control frame containing a list of the used data controls.  A data 
control frame is created at runtime for your application's unbounded task flow and any isolated 
data control scoped bounded task flow.  However when a bounded task flow specifies a shared 
data control scope the current task flow uses the data control frame of the caller rather than 
creating its own, giving the called task flow the chance to share data control instances attached to 
the frame.  Alternatively if the bounded task flow specifies an isolated data control scope, a new 
frame will be created and a new instance of any data controls used by the bounded task flow will 
be attached to this new frame. 

Figure 4 gives an example of the logical data control frame boundaries that exist when different 
combinations of data control scope are defined within your application.  As seen the unbounded 
task flow (UTF1) starts a new data control frame that it can then share with future bounded task 
flows (BTF2, BTF3 and BTF4) as long as they specify a shared data control scope.  Alternatively, 
separate data control frames are created whenever a bounded task flow specifies an isolated 
data control scope.  As demonstrated in Figure 2 BTF5 and BTF7 start new data control frames.  
However note using an isolated data control scope doesn't preclude any subsequent BTFs 
sharing the data control frame, so BTF6 with a shared data control scope can join BTF5 in the 
second data control frame, and BTF8 can also share with BTF7 in the third data control frame: 

It is worth reminding readers, though it may seem the point of a data control frame is to couple 
with a single data control, as stated earlier the data control frame is designed to track multiple 
different data controls and commit and rollback them as a group.  In Figure 4's example UTF1 
can introduce both an ADF Business Component data control and BTF2 alternatively can 
introduce a POJO Data Control.  However as the two data controls are of different types and 

Figure 4 - When data control frames are created 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 8 

implementations it's not possible for them to share state, as they don't represent the same type of 
objects.  But for purposes of task flows essentially the data control frame is tracking both data 
controls and will commit and rollback them as a group. 

Data Control Scope Examples 

In Figure 5 you can see an unbounded task flow 
that calls two separate bounded task flows.  
The first bounded task flow uses the shared 
data control scope with "<No Controller 
Transaction>".  The second task flow uses 
isolated data control scope with the same "<No 
Controller Transaction>" option. 

Across the three task flows, each has a view 
activity that shows a read only ADF table 
displaying Departments data from a view object 
in an ADF Business Component data control. 

Let's investigate the different options at runtime. 

In Figure 6 below on entering the unbounded 
task flow we select department ID 80.  This 
updates the current row indicator of the view object attached to an ADF Business Component 
application module data control and is part of the state stored within the data control. We then 
navigate to the shared data control scope bounded task flow which is re-using the same ADF 
Business Component data control defined at design time: 

        
As seen in Figure 6 the current row indicator state is maintained across the task flow calls thanks 
to the shared data control scope and this occurs as the instance of the data control is shared.  
This sharing of state for the data control can be shown to go both ways.  In Figure 7 while still 

Figure 6 - An unbounded task flow calling a shared data control scope bounded task flow 

Figure 5 - An unbounded task flow that calls two 
separate bounded task flows, one shared, one 

isolated 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 9 

using the shared data control scope bounded task flow if we select department ID 30, we can see 
the selection is reflected in the unbounded task flow page on return:  

In Figure 8 we have the near identical options to the first except when the unbounded task flows 
calls the bounded task flow, the bounded task flow has an isolated data control scope: 

In the previous Figure 8 you can see even though the user selected department ID 80 in the 
unbounded task flow, the current row indicator state is not shared by the page in the bounded 
task flow as controlled by the isolated data control scope option because there are now 2 
instances of the data control with independent states.  And indeed selecting the different 
department ID 100 in the bounded task flow will not influence the result on returning to the 
unbounded task flow, it's at department ID 80 as shown in Figure 9: 

As explained the data control scope option is pivotal in allowing disparate task flows to share an 
instance of a data control and it's underlying state, or alternatively spawn two separate instances 
of the data control which will not share state.  Each option is viable, but which you select for your 

Figure 7 - Returning to the unbounded task flow from the shared bounded task flow 

Figure 8 - An unbounded task flow calling an isolated bounded task flow 

Figure 9 - Returning to the unbounded task flow from an isolated task flow 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 10 

application is dependent on your requirements, do you need to share the data control state or 
maintain them separately? 

In a standalone single application that consists of an unbounded task flow and several bounded 
task flows, it's an easy case for ADF to share or isolate data controls especially if at design time 
there's only one data control that exists in your design.  Yet ADF allows applications to have 
multiple data controls, and indeed data controls can be split across separate ADF Libraries 
comprised of separate task flows that are later compiled into a master application.  In this case 
how does ADF know that the separately defined data controls can be shared, and don't represent 
two disparate data controls implementing different business services instead? 

The problem is solved through the fact that data controls are exposed in the DataBindings.cpx file 
for each ViewController workspace in each ADF Library.  As a developer you need to ensure the 
same name and type is used for each data control across the two DataBindings.cpx files of the 
separate workspaces. 

For an ADF Business Components derived application this typically requires you to use the same 
Application Module definition for both the master application and the associated ADF Libraries.  In 
turn as the Application Module name is then used to generate a default data control name (e.g. 
AppModuleDataControl) it's not recommended to change the default data control name as this 
makes it not possible to share the data control.  If you do decide to use different names the data 
controls cannot be shared and will have their own instances.  In our previous limited examples 
this would mean the current row indicators would always be out of sync. 

However as we will see not everything is lost as the task flow transaction options allow disparate 
task flows to participate in the same transaction. 

As a final note when bringing different DataBindings.cpx files together into a composite 
application via ADF Libraries, the individual DataBindings.cpx files must reside in different Java 
packages/namespaces otherwise a naming conflict will occur. 

 
  



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 11 

Investigating the Task Flow Transaction Options 
Having understood that the data control scope options allow us to share data controls and their 
state, let's now discuss the transaction options in detail.   

As a user interacts with an application, a transaction can encompass the actions of viewing, 
editing, committing and rolling back data.  In the context of ADF the term transaction is aligned 
with the same concept from the Oracle RDBMS.  The work undertaken in a transaction is visible 
only to the current user session until either a commit or rollback occurs.  A commit will result in 
the transaction results being available to other users, while a rollback undoes all the work and is 
no longer available to even the original user. 

The power of the transaction is that a set of operations can be committed or rolled back together.  
As an example, imagine a banking application where we're transferring funds between two 
accounts.  First we must subtract money from the first account and then add it to the second 
account.  Without transactions we must commit at the end of each operation.  If we successfully 
subtract money from the first account and commit, but encounter an error on adding the money to 
the second account, the money is in danger of being lost.  A transaction would solve this problem 
as we only commit at the end of both operations, and if an error occurs, we rollback both 
operations so no work is done.  

Such a simple but powerful concept is extended to ADF task flows through task flow transaction 
options. Data controls and the underlying business services own and implement the transactional 
behavior, and ADF task flow transaction options allow you define where the transactions start and 
finish in terms of application pages and commit and rollback the associated data controls as a 
group.   

For bounded task flows there are essential four values for the transaction options with the 
following meaning: 

• "Always Begin New Transaction" - the "Always Begin New Transaction" option configures a 
bounded task flow to start a new transaction in your application.  Typically this option is coupled 
with the isolated data control scope and a new separate data control frame. 

If the "Always Begin New Transaction" option is coupled with a shared data control scope, this 
means the previous task flow's data controls are shared with the current task flow.  As a result 
the pre-existing data controls may already have an open transaction (i.e. isTransactionDirty() 
== true).  If this is true where an existing transaction is detected at runtime the framework will 
throw "ADFC-00020 + Task flow '<name>' requires a new transaction, but a transaction is 
already open on the frame". 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 12 

If a bounded task flow does start with a new transaction, when it wishes to complete it must call 
a task flow return activity commit or rollback.  These call the underlying commit() or rollback() 
operations on the associated data control frame, essentially committing or rolling back all data 
controls attached to the frame. 

Alternatively programmatically you can call the following code which has the same result: 

BindingContext bc = BindingContext.getCurrent(); 
String dcfName = bindingContext.getCurrentDataControlFrame(); 
DataControlFrame dcf = bc.findDataControlFrame(dfcName);  
dcf.commit(); // or dcf.rollback(); 

 

This is in contrast to using a commit or rollback operation from the Data Control Palette . These  
only commit or rollback the associated data control, not all data controls for the frame.  As a 
result your task flow would break the intended task flow transaction behaviour and as such 
should not be used in conjunction with the task flow transaction options (besides <No Controller 
Transaction> explained later) unless you specifically have a reason to commit a single data 
control within the frame. 

• "Always Use Existing Transaction" - a bounded task flow that uses the "Always Use Existing 
Transaction" option is designed to share the transaction of the previous task flow in your 
application, it will not start a new transaction.  When opened it enforces that it is joining an 
existing transaction of the previous task flow otherwise it throws "ADFC-00006: Existing 
transaction is required when calling task flow <task flow name>" at runtime. 

How this is enforced is through the fact this option is only available with a shared data control 
scope implying it always shares the previous task flow's data control frame. You cannot select 
an isolated data control scope at design time for this option.  At runtime using the shared data 
control frame ADF immediately calls the DataControlFrame.getOpenTransactionName() 
method and expects it to return a none null result as the previous task flow should have created 
a transaction. 

For a bounded task flow using the "Always Use Existing Transaction", on closing it cannot 
make use of a commit or rollback task flow return activity, at design time such a task flow return 
activity will be flagged in error.  Only a task flow that starts a new transaction can call these.  In 
this case the "Always Use Existing Transaction" option will depend on its caller to finalize the 
transaction.  Instead the "Always Use Existing Transaction" task flow simply calls a task flow 
return activity with its End Transaction property set to "<Default> None".  If at runtime an 
"Always Use Existing Transaction" bounded task flow does use specify a commit or rollback 
they're just ignored and default to none. 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 13 

• "Use Existing Transaction if Possible" - this option is designed to be the most flexible of the 
transaction options and it is a combination of the "Always Begin New Transaction" and "Always 
Use Existing Transaction" options. 

If "Use Existing Transaction if Possible" is used with an isolated data control scope, it operates 
in the same manner as the "Always Begin New Transaction" with an isolated data control 
scope creating a new data control frame. 

If "Use Existing Transaction if Possible" is used with a shared data control scope it's behavior is 
dependent on if a transaction is open on the shared data control frame of the caller (again 
determined by calling getOpenTransactionName(). 

If a transaction is open it has the same behavior of "Always Use Existing Transaction" with a 
shared data control scope.  If a transaction is not open, it behaves the same as "Always Begin 
New Transaction" and a shared data controls scope. 

If you're not sure how the task flow is going to be used, using the "Use Existing Transaction if 
Possible" option along with the shared data control scope is a good option, making the task 
flow rather promiscuous in its nature. 

In terms of finalizing a "Use Existing Transaction if Possible" bounded task flow, as it's unclear 
at design time if the task flow will really start a transaction or join one, you should make use of 
commit and rollback task flow return activities regardless.  If the task flow does result in a new 
transaction the task flow return activities will commit and rollback the data control frame, and if 
the task flow instead joins a transaction, the return activity commit and rollbacks will simply be 
ignored. 

• "<No Controller Transaction>" - of all the task flow transaction options the "<No Controller 
Transaction>" option is potentially the hardest to understand.  Where as the "Use Existing 
Transaction if Possible" option has a promiscuous nature with the data control frame, the "<No 
Controller Transaction>" could be considered chaste in its relationship with the data control frame 
for the current task flow. 

A "<No Controller Transaction>" task flow when started: 

o Doesn't start a transaction on the data control frame like the "Always Begin New 
Transaction" option 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 14 

o Doesn't check or enforce if a transaction is open on the data control frame 

o Will not call finalize the data control frame transaction by calling the DataControlFrame 
commit() or rollback().  

Be mindful the established rules still apply for the data control scope though. If an isolated data 
control scope is specified for the task flow a new data control frame and data controls will be 
instantiated. For a shared data control scope the previous task flow's data control frame and 
data controls will be shared. 

In some ways while the "<No Controller Transaction>" option is restricted in its interaction with 
the data control frame, it does have a more liberal relationship with it's relating data controls 
and their transactions.  The other task flow transaction options wish you to commit and rollback 
at the data control frame level by using task flow return commit and rollback activities.  For the 
"<No Controller Transaction>" option you can call the data control's associated commit and 
rollback operations. 

In terms of finalizing a task flow using "<No Controller Transaction>", it should not use commit 
or rollback task flow return activities, but rather a task flow return activity with its End 
Transaction property set to none. 

Task Flow Transaction Option Examples 

The intention of the following section is to run through the combination of options to see how two 
bounded task flows interact with the different transaction and data control options.  However there 
is 64 theoretical combinations making it impossible (and rather tedious) to cover all of them. 

Rather than trying to cover the 64 combinations a select set of examples will be included to 
describe common use cases between two bounded task flows including how to: 

• Completely separate transactions - isolate two bounded task flow transactions completely so 
that they can be committed or rolled back separately. 

• Guarantee joined transactions - guarantee two bounded task flows share a transaction to save 
connection resources (and fail the task flow transaction join if they can't join). 

• Creating a flexible transaction regime - create a bounded task flow if called will join the calling 
bounded task flows transaction if it exists, otherwise create its own. 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 15 

• Using the "<No Controller Transaction>" option - this final bullet point wont talk to a use case, 
but rather how the "<No Controller Transaction>" option used in combination with the other task 
flow transaction options creates the most complex combination of options and should be used 
with caution. 

Each use case will be diagrammatically expressed to assist reader's learning on what's 
happening under the covers.  While the diagrams should assist readers to learn the transaction 
options, to further assist readers each use case will be backed by an online recording showing a 
real ADF application.  Follow the URLs in each scenario to find these online resources. 

  



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 16 

Completely Separate Transactions Example 

The following section should be read in conjunction with the following recorded demonstration: 

http://bit.ly/ADFTranFundSepTranDemo 

The call center scenario described earlier in this document provides a good example of where an 
application should support completely separate task flow transactions for the current user. In 
order to achieve such separate transactions essentially both bounded task flows involved must 
use isolated data control scopes and the "Always Begin New Transaction" options.  The following 
flow chart in Figure 10 describes how the task flows will interact with these options: 

Figure 10 - Complete separate transactions task flow example 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 17 

First the unbounded task flow starts with its own data control frame #0.  A call to bounded task 
flow #1 with an isolated data control scope and "Always Begin New Transaction" set results in a 
new separate data control frame #1. 

Bounded task flow #1 works on two entirely separate data control fields X and Y initially set to 10 
and 20.  During the processing of the bounded task flow the user updates X = 30, leaving Y still at 
20.  At the point of the update task flow transaction A associated with the data control frame #1 
becomes dirty as data has been modified in the underlying data control. 

Bounded task flow #1 then calls bounded task flow #2.  As the 2nd bounded task flow is also 
using an isolated data control scope with "Always Begin New Transaction", another new separate 
data control frame #2 is created. 

As the task flow transaction of the data control frame #1 has yet to be committed, and the new 
data control frame #2 has a separate connection to the database and a separate task flow 
transaction as a result, the values for X and Y are still the original values 10 and 20 which initially 
came from the database. 

Then in bounded task flow #2 the user updates Y = 40 which also makes the underlying task flow 
transaction B for the data control frame #2 dirty. 

Next the bounded task flow #2 finalizes via a task flow commit return activity which saves the 
changes for Y to the database.  As X was not modified ADF has no changes to commit to the 
database. 

On returning to bounded task flow #1, as it has a separate data control frame and task flow 
transaction the values for X and Y are still at 30 and 20 respectively.  A task flow commit return 
activity saves the changes to X to the database, but as Y is not changed nothing is committed 
here. 

Finally on returning to the unbounded task flow and refreshing the copies of X and Y from the 
database, both updated values 30 and 40 are returned respectively. 

It's worth noting that if the 2nd bounded task flow's data control scope is set to shared, at runtime 
ADF will throw "ADFC-00020 <task flow name> requires a new transaction, but a transaction is 
already open on the frame" making this an invalid runtime option if a task flow transaction is 
already open on the caller's data control frame. 

  



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 18 

Guarantee Joined Transactions Example 

The following section should be read in conjunction with the following recorded demonstration: 

http://bit.ly/ADFTranFundJoinTranDemo 
 
Sometimes you will want to ensure that a bounded task flow can borrow the task flow transaction 
of its calling bounded task flow.  For example if you built a bounded task flow to create the line 
items in an invoice, it wouldn't make sense for the invoice lines to be committed in a separate 
task flow transaction to that of creating the invoice in another bounded task flow.  They can't exist 
without each other. 

In order to guarantee that two bounded task flows join task flow transactions, the first task flow 
must start a task flow transaction with the "Always Begin New Transaction" option and the second 
task flow must use a shared data control scope and "Always Use Existing Transaction" options.  
The following flow chart in Figure 11 describes how the task flows will interact with these options: 

 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 19 

 

First the unbounded task flow starts with its own data control frame #0.  A call to bounded task 
flow #1 with an isolated data control scope and "Always Begin New Transaction" set results in a 
new separate data control frame #1. 

Bounded task flow #1 works on two entirely separate data control fields X and Y initially set to 10 
and 20.  During the processing of the bounded task flow the user updates X = 30, leaving Y still at 
20.  At this point of the update task flow transaction A associated with the data control frame #1 
becomes dirty as data has been modified in the underlying data control. 

Bounded task flow #1 then calls bounded task flow #2.  As the 2nd bounded task flow is sharing 
data control scope with the "Always Use Existing Transaction" option no new data control frame 

Figure 11 - Guarantee joined transactions task flow example 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 20 

is created, rather the 2nd bounded task flow uses the data control frame of the 1st.  Because of 
this changes applied to X in bounded task flow #1 are visible to task flow #2.  In turn updates to Y 
in task flow #2 upon a task flow commit return activity are visible to task flow #1 when it receives 
control not because of the commit, but rather the shared data control scope. 

As a reminder the task flow return commit of the 2nd bounded task flow does not actually commit 
to the database, commit and rollback task flow return activities are only valid for bounded task 
flows that start a transaction.  Only the commit of the 1st bounded task flow that established the 
task flow transaction actually finalizes the changes to the database. 

The above scenario describes how to setup the correct settings to guarantee both bounded task 
flows share a task flow transaction. What it doesn't describe though is how the 2nd bounded task 
flow enforces an open task flow transaction.  If you were to change the 1st bounded task flow's 
transaction option to "<No Controller Transaction>", at runtime when the 1st bounded task flow 
calls the 2nd with the "Always Use Existing Transaction" option set, at runtime ADF will throw 
"ADFC-00006: Existing transaction is required when calling task flow <task flow name>" and will 
stop, enforcing our mandatory task flow transaction option. 

Creating a Flexible Transaction Regime Example 

The previous ADFC-00006 error does show a problem with the previous scenario.  What if you 
want a bounded task flow that ideally will share a task flow transaction with the caller, but if not 
available creates it's own?  The option to use is the "Use Existing Transaction if Possible" on the 
2nd bounded task flow with a shared data control scope. 

As described earlier in this document in such a scenario where the 2nd bounded task flow detects 
a task flow transaction on the calling task flow, the "Use Existing Transaction if Possible" option in 
combination with the shared data control scope will default to the behavior of "Always Use 
Existing Transaction" with a shared data control scope.  As such we won't show this 
diagrammatically here, simply refer back to the previous Figure 11. 

Alternatively if the 2nd bounded task flow is using the "Use Existing Transaction if Possible" 
option in combination with an isolated data control scope, the 2nd bounded task flow will default 
it's behavior to "Always Begin New Transaction" with an isolated data control scope regardless 
what options the 1st bounded task flow uses.  See Figure 10 again for the resulting scenario. 

  



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 21 

<No Controller Transaction> Example 

The following section should be read in conjunction with the following recorded demonstration: 

http://bit.ly/ADFTranFundNoContDemo 

The "<No Controller Transaction>" task flow transaction option in combination with the other task 
flow transaction options creates the most complex runtime behavior.  While ADF does support 
this combination of options, because of its complexity it is recommend that you don't mix them.  
Either use the "<No Controller Transaction>" option for all your bounded task flows, or use the 
other task flow transaction options, but don't mix them unless you're very sure about the expected 
behavior. 

To demonstrate this lets discuss the following scenario in Figure 12 where an isolated data 
control scope bounded task flow using the "<No Controller Transaction>" option calls a 2nd 
bounded task flow using a shared data control scope with the "Use Existing Transaction if 
Possible" option: 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 22 

 

When the unbounded task flow calls the 1st bounded task flow, because the bounded task flow is 
using the isolated data control frame option a new data control frame is created.  This guarantees 
a separate transaction to the unbounded task flow.  However the bounded task flow will not at any 
point create and track a task flow transaction as its option explicitly says "<No Controller 
Transaction>". 

Like the previous scenarios in the 2nd bounded task flow X is updated to 30, while Y retains its 
original value. 

Figure 12 - <No Controller Transaction> task flow example 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 23 

On calling the 2nd bounded task flow, because it is sharing data control scopes it can now see 
the X = 30 value and original Y = 20 value.  As the "Use Existing Transaction if Possible" option is 
set, upon updating Y = 40 the 2nd bounded task flow starts a task flow transaction and it now 
believes it is the custodian of the task flow transaction. 

Because the 2nd bounded task flow controls the task flow transaction, of special note at the 
conclusion of the 2nd bounded task flow, the task flow commit return activity sends the update for 
both X and Y to the database.  This is completely different behavior to that described in Figure 11. 

As such on returning to the 1st bounded task flow and executing the task flow commit return 
activity, nothing is sent to the database as bounded task flows without task flow transactions 
cannot commit or rollback the associated data control frame. 

Regardless the end result when returning to the unbounded task flow it can still see the changes 
as they were indeed committed to the database. 

If for any reason the 1st bounded task flow using the <No Controller Transaction> option further 
edited the data and needed to commit the changes, it cannot make use of a task flow commit 
return activity and instead should commit the associated data control using the commit binding 
from the Data Control Palette. 

Prematurely Terminated Task Flows 

Typically a bounded task flow undertaking a task flow transaction should use the task flow return 
commit and rollback options.  However as bounded task flows can be embedded in regions of a 
parent page or page fragment (potentially in a unbounded task flow or bounded task flow), the 
parent can for whatever reason refresh the embedded bounded task flow in a region, navigate 
away from the View Activity containing the bounded task flow , or itself be terminated by it's caller.  
The effect of the parent doing this is the framework will prematurely terminate the child bounded 
task flow and it will also make a decision on how to terminate the task flow's transaction. 

If the task flow has joined the transaction of the caller's data control frame, the framework will 
simply return the control to the calling task flow.  The assumption being the parent should 
manually take care of tidying up the transaction in this case. 

However if the called task flow is the initiator of the data control frame and transaction rather than 
the parent, essentially their transactions are separate, the parent cannot operate and tidy up the 
child's transaction in this case.  So on behalf of the called task flow the framework will 
automatically rollback the called task flow's transaction. 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 24 

If the called task flow is isolated and as a result has its own data control instance, the rollback 
undoes any work on the data control which is specific to the called task flow, and the undo work is 
encapsulated and does not effect anything else.  However if the task flow is sharing data control 
scope where an instance of a data control is shared between the calling and called task flow, 
developers can experience a nasty little side effect if they're using ADF Business Components. 
Because the rollback issued by the called task flow is against a shared AppModuleDataControl, 
the rollback will go across task flow boundaries regardless that their task flow transactions are 
separated. 

This may seem confusing but it does highlight the fact stated earlier in this document that the task 
flow transaction is an abstraction that sits above the transactions controlled by the data controls.  
Ultimately the data controls are what implement the real transactions, in this example a 
transaction controlled by an ADF Business Component application module.  And as our task 
flows have shared data controls we see this spill over affect of the rollback. 

The solution to avoid this scenario is to not share data controls. 

An example scenario can be found in the following blog http://bit.ly/ICYZUp. 

ADF Business Component Transaction Use Cases 

Some readers of this paper may be aware of three blog entries by Chris Muir that describes the 
changing behavior of task flow transactions and ADF Business Component's Application Modules 
between ADF 11gR1 and 11gR2 releases.  The three blog entries in chronological order are 
available as follows: 

• http://bit.ly/MOVC1S 

• http://bit.ly/KOv5NY 

• http://bit.ly/KBCx0P 

 
The first two blog entries articulate how ADF Business Components Application Modules in 
11gR1 are "automagically" nested for chained task flows sharing the same task flow transaction.  
While this approach certainly works in most use cases it has a limitation that only the initiating 
Application Module's configurations were used to configure the "automagically" nested Application 
Module group.  If the developer wanted to tune each individual Application Module, or to connect 
to a different database, it wasn't possible as the first Application Module's configurations were 
used to configure the overall behavior. 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 25 

JDeveloper 11gR2 solves this problem by totally separating the ADF BC Application Modules at 
runtime, they all run as root Application Modules.  This now allows each Application Module at 
runtime to run with it's own configurations and be tuned separately. 

However note that all the Application Modules within the task flow transaction will use the data 
source of the primary Application Module, effectively the data sources of any secondary 
Application Modules that join the task flow transaction are ignored.  This presents a catch if the 
secondary Application Modules are designed to work with different database schemas, they will 
now throw error at runtime when they can't access the expected database components.  As such 
with all Application Modules in an application using ADF Business Components it is necessary 
that they are designed to work with the same data source and database schema. 

Recommendations 

When using the transaction and data control scope options Oracle suggests you follow these 
recommendations:  

On the transaction options: 

• The "<No Controller Transaction>" option does not imply your task flow cannot participate in a 
database transaction.  Rather it simply doesn't participate in the data control frame transaction.  
As such don't ignore this option because of its slightly misleading name. 

• If your application only has one data control, and as implication you have no need to group data 
control commits, the "<No Controller Transaction>" option is a viable choice by itself.  It even 
supports multiple transactions simply by using an isolated data control scope. 

• If a standalone bounded task flow could be potentially used as part of a number of steps in a 
greater logical transaction, for maximum reuse it should specify a shared data control scope with 
the "Use Existing Transaction if Possible" transaction option. 

On the data control scope options: 

• Isolated Data Control Scope tasks flows cannot share transactions, Shared Data Control Scope 
task flows can.  If your application uses ADF Business Components, be wary of using multiple 
transactions in your application as every transaction is a connection for, and typically where an 
application gives a user one connection for each request, multiple transactions means multiple 
connections per user limiting your application's scalability.  A potential mid solution is to allow use 
additional transactions and connections for task flows that you know will have a short life. 



 
Oracle ADF Task Flow Transaction Fundamentals  

 

 26 

On committing and rolling back a task flow: 

• If a task flow starts a data control frame transaction, it must conclude it by using a task flow return 
activity commit or rollback.  Do not use the commit and rollback operations available for the data 
controls via the Data Control Palette. 

• A "<No Controller Transaction>" task flow should not programmatically commit or rollback the 
data control frame it is participating in.  Instead it should use the commit and rollback bindings of 
its associated data control. 

Gotchas to watch out for: 

• If separate task flows initiate separate transactions on the same ADF BC components, it's 
possible if the user in the separate task flows updates the same record, for the user to row-lock 
themselves. 

Summary 
Oracle's Application Development Framework (ADF) provides ADF developers a level of power 
with task flows to spawn multiple transactions and share data controls.  However developers 
need not only be aware of the features, but how the options can be used in combination to create 
efficient use of the features available. 

RELATED DOCUMENTATION 

  

 Oracle® Fusion Middleware Fusion Developer's Guide for Oracle Application Development 
Framework 11g Release 1 (11.1.1.6.0) 

 - Section 14 Getting Started With Task Flows http://bit.ly/adfdevguide111160s14 

 - Section 16.4 Sharing Data Control Instances http://bit.ly/adfdevguide111160s164 

 - Section 18 Introduction to Complex Task Flows http://bit.ly/adfdevguide111160s18 

 - Section 18.3 Managing Transactions http://bit.ly/adfdevguide111160s183 

 

Credit 
The author Chris Muir would like to thank Luc Bors and Chad Thompson for participating in the 
review of this document. 


