
 

1 

 
 
 

 
 

 Angels in the Architecture  

 
 

twitter.com/adfArchSquare 

 
In the rush to implement projects, programming teams 
often focus on the nitty-gritty development details to get 
the job done.  Agile development promotes rapid 
iteration, with an importance on implementing small 
incremental feature enhancements each iteration.  Yet it 
can often forget the bigger picture of design and 
architecture, allowing development teams to paint 
themselves into a corner with ill-conceived application 
architectures. 
 
Oracle’s Application Development Framework (ADF) is 
an extremely flexible application framework from an 
architecture perspective.  ADF promotes reuse as a 
primary feature and offers to adopters all the benefits of 
reuse, through the concepts of ADF libraries, page 
templates, CSS skins, declarative components, business 
services and most importantly of all bounded task flows 
which are akin to web services but for web page 
development mapped around business processes. 
 
But like many flexible solutions, it’s left up to ADF 
developers to choose the best combination of features 
for their own use case.   And this is where the world of 
project pressures and ADF systems may lose their way, 
as developers are initially focusing and learning the nitty-
gritty programming details, by natural extension best 
practices and good architecture follow. Who is 
considering the bigger picture of how all those ADF 
reusable components come together?  And what 
established patterns are there for ADF application 
architectures?   

Author: Chris Muir 
Date: 30/JUL/2014 



 
Angels in the Architecture  

 

 

2 

 

Prerequisite Knowledge 

In order to understand the ADF architectural concepts put forth in this article you must be 
familiar with ADF basics, including ADF Business Components, ADF Faces and 
importantly task flows and ADF libraries.  Arguably to architects and the like not familiar 
with ADF they may still draw some value from this article, in particular an appreciation of 
how ADF and the task flow provides a level of reuse and architectural flexibility not seen 
by other web frameworks. 

ADF Architectural Patterns 

An evolving series of videos by Oracle’s ADF Product Management team 
(http://youtu.be/toEuQvp73h8) has established patterns for constructing ADF 
applications for ADF designers, architects and senior developers.  These patterns while 
not a guaranteed blueprint for success, establish different practices with both positives 
and negatives that make them suited to different requirements, teams, skill sets, 
infrastructure and development budgets.  Indeed ADF teams must consider each pattern 
against their own circumstances and needs to pick what will work for them. 
While readers are encouraged to watch the previously linked video, this article will 
broadly cover each of the patterns covered by the presentation.  

Pattern Genealogy 

In considering the following proposed patterns it’s useful to understand that the patterns 
do follow an evolutionary path or in other words could be considered to have a 
genealogy. As will be seen each pattern builds upon the successes or avoids 
weaknesses of its predecessors, and in some cases as you’ll see with the Sum-of-the-
Parts pattern this opens up a wealth of options for the patterns that follow it. 
 
In studying the patterns readers need to be careful to not assume that the last pattern is 
the “ultimate” pattern that every ADF project should take on board.  As described 
previously, each pattern has a number of positive and negatives that suit different 
requirements, teams, skill sets and development budgets.  There is no “on size fits all”. 

The Small and Simple Architectural Pattern 

In investigating ADF architectural patterns it helps to both start with a simple pattern for 
learning purposes, and as a mechanism for introducing the diagramming notation which 
readers will need to understand for later more sophisticated patterns covered in this 
article. 
 
The Small and Simple Architectural Pattern as shown in Figure 1 is a pattern that should 
be familiar to most JDeveloper beginners, even those from the JDeveloper 10g past, as 
its basic structure of 1 workspace and a Model and ViewController project is what the 
default Fusion Web Application wizard creates by default: 
 



 
Angels in the Architecture  

 

 

3 

 

Figure 1 - Small and Simple Architecture Pattern 
 
Beyond the single workspace containing the Model and ViewController projects, the 
other characteristics of the pattern are: 

1. Contained with the Model project are the standard ADF Business Component 
(ADF BC) objects including Entity Objects (EOs), View Objects (VOs) an 
Application Module (AM) and recommended Framework Extension Classes. 

2. In context of the ViewController project is contains only an Unbounded Task Flow 
(UTF) composed of pages, and some reusable structures such as page 
templates, declarative components, skins and associated utility classes. 

3. In terms of deployment units, the workspace results in a single Java EE EAR file 
deployed to our Java EE server. 

 
In essence this pattern is Small and Simple as it composed of so few architectural 
pieces as we’ll see in later patterns, and is very familiar to many JDeveloper and ADF 
developers out there.  From a design perspective focusing on architecture, there’s not a 
lot to consider, possibly how many root ADF BC application modules should the 
application have, or a focus on a page by page design like traditional web site 
development, but nothing that would be considered a major stretch of an ADF architects 
skills. 
 
This pattern presents a number of advantages including: 

1. It’s self contained – there are no external reusable components that must be 
built, versioned and deployed separately to the application. 

2. As extension building and deploying the application is a simple one click affair.  
No additional infrastructure such as Continuous Integration (CI) servers like 
Hudson or build dependency tools such as Apache Maven are required (though 
they should still be considered as a best practice). 



 
Angels in the Architecture  

 

 

4 

3. And ignoring the code and infrastructure, given its small and simple nature the 
solution suits small teams who don’t have the resources to maintain larger 
complex systems, and beginners who don’t want to be overwhelmed by 
architecture decisions when they’re just learning the framework, and even small 
applications where a sophisticated architecture is just overkill. 

 
However there are disadvantages of this pattern: 

1. To keep this pattern simple, no reusable Bounded Task Flows (BTF) were 
introduced.  The knock on affect is the lost opportunities that BTFs provide such 
as reusable page fragments and the associated reusable processes.  Moving 
beyond the technical, without BTFs programmers lose the opportunity to talk to 
business analysts in the language of the business, “processes” and “flows”, 
which BTFs articulate well. 

2. Focusing on the code solution, as one or more developers are essentially 
working on one code base within one workspace, by inference it’s very easy for 
programmers to create tightly coupled, poorly modularized code.  Senior and 
disciplined programmers may be able to avoid this, but it would have been helpful 
that the architecture solution had provided a mechanism to separate concerns so 
programmers wouldn’t have to think about best practices, the end pattern would 
have just inherently been loosely coupled, well modularized, easily unit tested 
and so on. 

3. And obviously as all the code is packed into one workspace, as the solution 
grows, the build process is still an all or nothing affair.  Change one little thing, 
you need to rebuild the whole application which can take considerable time. 

  



 
Angels in the Architecture  

 

 

5 

The Colossal Architectural Pattern 

In complete contrast the Colossal Architectural Pattern as the name suggests becomes 
overly large as seen in Figure 2: 
 

 

Figure 2 - The Colossal Pattern 
 
A key change in the characteristics of this pattern over the previous is we introduce 
Bounded Task Flows (BTFs) for the first time, the number depending on the 
requirements and design of the system.  For all intent and purposes the rest of pattern is 
the same with a single workspace, Model and ViewController projects, and a single EAR 
deployment profile.  Potentially the only minor change is through the introduction of 
Bounded Task Flows, Task Flow Templates are now a viable option for reuse too. 
 
In designing an application based on the Colossal Pattern and characteristics, the major 
design consideration is that purely of the Bounded Task Flows.  BTFs like web services 
have many of the same design intricacies such as how granular should the task flows 
be?  What should be their functional boundaries, how many should you have, do you just 
create fine grained single activity flows, or coarse grained multi activity flows, or a 
mixture of both?  These are all choices for the ADF architect to make and enforce across 
the system to be developed. 
 
Ultimately the many benefits of the Colossal Pattern are those introduced by Bounded 
Task Flows themselves: 

1. The introduction of BTFs now allows a reusable architecture of pages and/or 
page fragments based around the processes the BTFs model.  Previously if the 
same functionality or screen layout and data was wanted on multiple pages, it 
would have had to be coded twice.  Now with BTFs such a construct can be 
defined once and consumed by two master pages, much like 3GL languages 
make use of functions for reuse. 



 
Angels in the Architecture  

 

 

6 

2. Conversations with business analysts can move away from web concepts such 
as pages, HTML and CSS and can no move to discussions on processes, tasks, 
transactions and business outcomes, speaking the “language of the business” as 
you will and hopefully reducing the barrier between IT and the business. 

3. As BTFs present an API, with a name, parameters both in and out, and a defined 
set of steps, the concept of designing by contract is now possible where 
requirement specifications, design and testing specifications can be written 
around each BTF. 

4. Arguably another benefit for the Colossal Pattern is it is still a relatively simple 
architecture as it only has one workspace. 

 
This simplistic architecture is potentially the downfall of the Colossal Pattern too: 

1. While BTFs introduce a level of modularization into the application where 
different functions can be mapped to each BTF, hopefully promoting loose 
coupling and improved unit testing, it can’t be guaranteed in the one workspace 
where developers work with each others’ code. 

2. As our application gets larger building the application is still an all or nothing 
affair. 

3. If we broaden this out to testing, as we can’t 100% guarantee code isn’t 
accidentally coupled, we can’t necessarily isolate parts of the solution to test 
standalone, we’re just not sure if there’s dependencies between code units.  This 
further presents itself as a problem for regression testing where ideally we’d like 
to segment parts of our application so if a change occurs in one of those 
segments, we’d only need to retest that part.  Because of the weak 
modularization we just can’t guarantee the boundaries between the segments 
exist, so a regression test likely has to cover all of the application at much 
expense (particularly if regression testing is a manual rather than automated 
exercise). 

4. And finally BTFs do inject their own complications into the software build.  BTFs 
aren’t just a reusable page or page fragment.  They have sophisticated and what 
could be considered to beginners complex options around transactions and ADF 
data control scopes that require a medium level of ADF knowledge to implement 
and use correctly. 

  



 
Angels in the Architecture  

 

 

7 

The Sum-of-the-Parts Architectural Pattern 

So an undesirable part of the Colossal Pattern is the concerns around tight coupling and 
poor modularization.  While senior and experienced developers may be able to ensure 
this doesn’t occur, ideally it would be great if the ADF framework itself could promote a 
solution that makes all of this less likely to occur. 
 
In the Sum-of-the-Parts Pattern this goal is realized through the implementation of ADF 
Libraries as shown in Figure 3: 
 

 

Figure 3 - The Sum-of-the-Parts Pattern 
 
As ADF Libraries allow workspace projects to be packaged and consumed by other 
JDeveloper ADF workspace projects, containing ADF features such as ADF Business 
Components, Task Flow Templates, Page Templates, Declarative Components, and 
most importantly Bounded Task Flows, this allows us to break our logical application into 
many separate workspaces where developers can work in isolation from each other until 
they need to bring their work back together in a single composite application.  Similar to 
previous the analogy here is of separate 3GL modules/classes with functions that 
different team members write, and other team members make use of. 
 
From a design perspective the separated architecture allows Bounded Task Flows to be 
placed in 1 or more separate workspaces, consuming the more primitive reusable 
components, and consumed by a master/composite application.  Of course this may 
sound simple but the architect is then hit with the challenge of what and how many BTFs 
should go in each BTF workspace, and the previous pattern’s issue of how granular the 
BTFs should be isn’t solved (and no pattern will solve this – this is something each ADF 
team will need to solve themselves with a goal of consistency being important). 
 
  



 
Angels in the Architecture  

 

 

8 

This separated architecture presents many obvious benefits including: 

1. The BTFs have an excellent separate of concerns, the opportunity to achieve 
loose coupling, and can be easily tested standalone as the separated 
workspaces clearly isolated BTFs in one workspace from another. 

2. Previously for large development teams, all working on the one workspace can 
become a bit of a version control nightmare as developers are continuously 
having to update their local workspace from updates checked into the version 
control repository.  With the new separate architecture developers can be aligned 
with their own workspace and live a level of isolation from other developers’ work 
(though of course eventually all the code must make use of each other, so there 
is no ultimate isolation here though this would never be desirable as why would 
you want to write code that nobody else uses?). 

3. And ideally developers now have ownership of code.  Where previously it was 
quite possible that code was all mashed together in one workspace making 
identification of who was responsible for a bug harder, now with the clear 
architectural separation if a BTF workspace fails a round of unit testing, the 
developers responsible is much more obvious.  From a psychological perspective 
this will make developers much more attached to their code and quality will rise 
as a result.  Academically it’s curious here how a technical feature of ADF can 
have an impact on your teams’ psychology. 

 
But with all this flexibility comes a cost.  This is a relatively complex architecture 
compared to the previous patterns.  As a new large issue comes to the fore.  You’ll now 
need to build your workspaces in a specific order, from the least dependent to the most 
in correct dependent order.  This will require tools to track the dependencies, tools to 
track the required versions of the dependents and dependee, and skills amongst your 
teams to deal with some of the challenging build issues that all software development 
teams get into in this arena.  This is the overhead of large software development projects 
that is often underestimated.  At many organizations they have change control teams 
who are responsible for this work alone. 

The Two-for-One Architectural Pattern 

As can be seen the Sum-of-the-Parts pattern opens up many interesting architectural 
options in terms of ADF application development, a level of flexibility in application 
design that isn’t afforded in many other web frameworks, realized through the ADF 
Library and Bounded Task Flow. 
 
Of particular interest is one advantage that wasn’t covered in the Sum-of-the-Parts 
pattern.  If BTFs can be turned into ADF Libraries, and consumed by the main 
application’s workspace, couldn’t in theory they be consumed by other master 
application workspace too?  Isn’t it likely that building say a BTF to show Customer 
Details will be a common requirement across the systems of an enterprise for example? 



 
Angels in the Architecture  

 

 

9 

Indeed this is one of the major benefits of Oracle’s framework, that you can build BTFs 
to be reused across a wide range of applications with the opportunity to dramatically cut 
your overall development time by reusing previously created ADF artefacts. 
 
The Two-for-One Architectural Pattern introduced in Figure 4 from an architectural 
perspective shows the sharing of BTFs via BTF workspaces and ADF Libraries across 
multiple master workspaces: 
 

 

Figure 4 - The Two-for-One Pattern 
 
This level of reuse is certainly an exciting opportunity for development teams and could 
be considered a nirvana not experienced in web development previously.  “Reuse like I 
was taught at university”.  Yet from a design perspective it also introduces challenges.   
 
Typically development teams would ideally like to achieve this level of reuse.  But as 
enterprise’s resources are often limited this often means only one application can be 
specified, designed and built at a time.  So in the process of building BTFs for one 
application with the goal of reusing them in another application yet to be specified, how 
do you go about designing and building the BTFs for requirements of the future system 
that has not yet been detailed?  Should you extend all your BTFs for example that allow 
users to edit data with an optional readOnly parameter?  But what if only half your BTFs 
end up getting reused, is adding that parameter by default an overkill in this regards? 
 
Considerably build, versioning and dependency management issues become even more 
complicated once we establish this level of reuse too.  If two master workspaces reuse 
the same BTF workspace, but require different versions of the BTF workspace, and 
multiply that by 10s if not 100s of BTF workspaces, keeping track of all of this and 
building your applications in the right order may become extremely complex and time 
consuming. 
 
Reuse may feel like a programmer’s nirvana, but it can be taken too far.  Ultimately 
every flexibility has a cost associated with it, and it’s up to architects and developers to 
take the opportunity into account rather than following an ideal blindly which can have 
significant costs associated with it. 



 
Angels in the Architecture  

 

 

10 

The Cylinder Architectural Pattern 

Stepping back from the Two-for-One architectural pattern, there is another interesting 
issue that wasn’t articulated in the Sum-of-the-Parts pattern. 
 
A key changing part for any brand new ADF system written from the ground up is the 
ADF Business Components. As our developers working on their separate BTF 
workspaces may require numerous changes to the ADF Business Components to 
support their own needs, the knock on effect is that separate BTF workspaces may also 
be impacted by these continuous changes to the ADF BC layer from the Common 
workspace.  Can we propose an architectural pattern that will isolate teams from 
changes to what is likely the most fluid part of our shared components? 
 
The Cylinder Architectural Pattern as shown in Figure 5 proposes a distinct change from 
the Sum-of-the-Parts Pattern in the fact that each BTF workspace gets its own ADF BC 
Model project: 
 

 

Figure 5 - The Cylinder Pattern 
 
The clear advantage of this pattern is that each BTF workspace developer is now 
isolated from the more rapidly changing ADF BC Model changes required by other 
teams.  By having their own copy of ADF Business Components they can control the 
tempo of changes and not be severely impacted by the acts of other team members. 
 
Of course the major disadvantage of this pattern is we now have the potential for many 
duplicated pieces of code.  If two workspaces require a Customer Entity Object, and a 
new column is added to the relating Customer table, it is up to each BTF workspace 
developer to keep their EO up to date (with all the potential risks they wont). 
 
Ultimately this all about a trade off.  Stretching the separation of our solutions so they 
nearly become isolated cylinders that don’t rely on each other and affect each other with 



 
Angels in the Architecture  

 

 

11 

changes, with the expense to reuse our business components and avoid maintenance 
issues. 
 
In considering this pattern it’s worth noting that a less-changing reusable artefacts such 
as task flow templates, page templates, declarative components, skins and other utility 
classes are still good candidates for a common workspace.  As these may likely change 
fairly rapidly initially, but then settle down and likely change rarely over a project, it’s still 
good practice to place them into a separate shared resource.  Of course if they become 
a rapidly changing construct too, then potentially the same consideration should be 
made, can we move some of these shared artefacts to each BTF workspace, and at one 
cost to maintenance? 
 
A final point to make is this architectural pattern will not protect you from a rapidly 
changing database model.  Skilled database developers will know a level of stability in 
your database model is essential for not disrupting your dependent applications, 
including but not limited to just ADF systems. Employing a seasoned database modeller 
is well worth the cost versus the disruption an unstable database model can cause 
during a software build. 

The Pillar Pattern 

There is another interesting challenge that has yet to be addressed by any architectural 
pattern seen to date.  In the previous architectural patterns the end deployment artefact 
is a single EAR.  Arguably WebLogic Server shared libraries can be utilized in deploying 
ADF library JARs to be loaded by the main EAR, but the end result is still a single 
application running on the server.  So what happens when that application grows so 
large that in grows beyond the capabilities of a single WLS or Java EE server to run? 
 
This might seem unlikely that you can build an application to this scale, but certainly 
some programming teams do hit these limits. If you consider Oracle’s own Fusion 
Applications which is made up of numerous modules, HR, Financials, Incentive 
Compensation and is still growing to this day, it simply is an application that is too large 
to run on a single Java EE server with ultimately limited JVM, CPU and memory 
resources.  So how do you solve this? 
 
The Pillar Architectural Pattern as extension to the Cylinder Pattern seen earlier attempts 
to solve this problem as described in Figure 6: 



 
Angels in the Architecture  

 

 

12 

 

Figure 6 - The Pillar Pattern 
 
The key difference between this pattern and the previous patterns is that each Pillar is a 
deployed application in its own right.  Rather than a final single master/composite 
application workspace taking all the BTFs from each cylinder and presenting a single 
unified application through a single Unbounded Task Flow, each Pillar has its own UTF 
and is deployed and treated as a standalone application it’s own right. 
 
The predominate advantage of this architectural patterns is you can now shift each pillar 
to a separate Java EE node where it will get its own dedicated resources. 
 
Yet such an architecture introduces a number of additional challenges that were not 
present in a single unified application.  Technically the logical application is separate 
applications, deployed separately, accessed separately, with different memory models, 
separated user state, separate authentication schemes.  This will throw up issues like: 

1. The user will not want to login to every single application so a Single Sign On 
mechanism is an imperative. 

2. The user will expect the logical application to be a single logical application so 
will have expectations of a single application chrome/shell, a single menu model, 
a unified look and feel.  You will need to unify your applications so they feel like 
one application. 

3. And the user will when, say, working in the Financials pillar editing one customer 
invoice, will expect when navigation to the Stock Order system to look at the 
order of that customer, that the customer details are shared across the 
applications.  They wont want to have to copy and paste the customer ID 
between systems. So a mechanism to share state between pillars is required too. 

 



 
Angels in the Architecture  

 

 

13 

All of these challenges can be overcome but as can be seen it does add additional 
complexity to a solution which may be beyond the skills and experience of many smaller 
and less advanced development teams.  Is the Pillar Pattern for you? 

Summary 

As Oracle’s Application Development Framework continues to mature there is a distinct 
opportunity for ADF development teams to look beyond the how-do-I-get-this-
selectOneChoice-to-work to a broader concern on how to make best use of this 
framework to limit development time.  Through the opportunities of reuse ADF provides 
an extremely flexible solution for achieving this.  Yet it is important to have an eye to the 
different architectural patterns and their pros and cons versus your own requirements 
early on such that the wrong architecture solution isn’t chosen, or even worse no 
architecture what so ever.   
 
For Oracle customers interested in learning more about ADF architecture concepts, 
you’re encouraged to pursue the ADF Architecture TV channel, a set of YouTube videos 
focusing on the design & architecture concerns of ADF systems: http://bit.ly/adftvsub 
 


