

1

 Region Interaction: Contextual Events Callback Pattern

Abstract

twitter.com/adfArchSquare

ADF contextual events are a communication channel for

implemented through the ADF binding layer that you can

use for communications between independent regions or

between a region and its parent view in your ADF

applications.

A common use case for contextual events is to invoke a

managed bean configured in a region to perform data

actions and to refresh the region's user interface.

This article details a generic solution which you may

deploy and reuse from an ADF library.

Author: Frank Nimphius

Date: 15/Oct/2012

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adfarchitect-1639592.html
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adfarchitect-1639592.html

Region Interaction: Contextual Event Callback Pattern

2

Introduction
Contextual events are a publish-subscribe communication mechanism implemented through the

ADF binding layer that allows one part of the page to publish events to another part of the page to

consume, typically allowing parent-page-to-region, a-region-to-the-parent-page, or region-to-

region messaging. Typically this is configured in the pageDef of each view activity, where the

publisher defines the message and the consumer subscribes to the message and what method to

call on receiving the message.

The sender or publisher of the message is also referred to as the producer. The message

producer can be defined as a generic event binding or, more specifically, associated with an

attribute-, operation-, action- or collection binding in the producer page's PageDef file. For

purposes of demonstration, this article will assume an event binding in the "parent" page's

PageDef file that is created for the attribute binding referenced from the ManagerId field of a

Department form. Whenever the ManagerId field value for a department changes, a value

change event is raised on the attribute binding and propagated as a contextual event for other

regions to consume and act upon.

The event is propagated to all active PageDef files (which are binding containers at runtime). On

its way it "knocks" on every door asking the PageDef file to handle the event. If a PageDef file of

a view displayed in one of the regions is configured to respond to this specific event, the message

is passed to the message receiver (also known as the event or message handler).

Usually the message handler is defined as a method binding in the PageDef or an action binding

like the ADF BC, Next, Previous, Delete or Commit operations in the PageDef file of the view

displayed in the region. When the event handler receives the event notification, it also receives

the message payload, like the changed ManagerId from the example above. The payload

definition is defined by the message sender, requiring the event receiver to know about the

format.

Event handlers usually are specific for a view and are programmed as a JavaBean method, which

after receiving the event, would typically find a component on a page or a value in manage bean

to update as a result. For a JavaBean method to be exposed as a methd binding in a PageDef

file, you need to expose it as a JavaBean data as explained in the Oracle Fusion Middleware

Fusion Developer's Guide for Oracle Application Development Framework product

documentation.

Region Interaction: Contextual Event Callback Pattern

3

What's left in completing the plain English explanation of contextual events is to look at who

opens the door when an events "knocks" on the door of a PageDef file. The gatekeeper for

contextual events is a subscriber facility (also know as the event mapping) that knows which

events a PageDef file in a region is interested in and which method or action binding to invoke.

Now, here's the catch. Bounded taskflows don't consist of a single view and thus regions may

expose many different views at a time. To avoid creating a JavaBean and data control as an

event handler for each view, you need to be creative. Usually this creativity is expressed by a

single JavaBean and data control defined for handling the event. The method in the JavaBean

that handles the event uses a JSF ValueExpression to resolve the reference to a managed

bean in the region bounded task flow to delegate the event handling to.

The following paper explains this concept in more detail:

 http://www.oracle.com/technetwork/issue-archive/2011/11-may/o31adf-352561.html

While the approach explained in this paper works, there is a more elegant and generic way using

managed bean callback configuration that this paper will demonstrate.

Credits: This article is based on an idea of Jan Vervecken from Contribute in Belgium

(http://www.contribute.be/).

Prerequisite

This article assumes the reader to be familiar with the contextual event framework in Oracle ADF as

documented in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application

Development Framework product documentation.

A Generic Callback Handler Approach to Contextual Event Handling

The change suggested in this article is to replace the ValueExpression in the JavaBean method that

handles the contextual event with a call to a registered managed bean. To replace the expression in the

JavaBean, three things need to happen

 The message payload must be passed as an argument to the JavaBean method that handles the message.

 A second argument of the method is used to pass an object reference to the managed bean in the region

that you want to handle the contextual event.

 The managed bean you pass as reference must contain a commonly known public method that accepts

the event message as an input argument. To ensure all managed beans that register as an event handler

have this method defined, you use a Java interface class that all of these managed beans implement.

http://www.oracle.com/technetwork/issue-archive/2011/11-may/o31adf-352561.html
http://www.contribute.be/

Region Interaction: Contextual Event Callback Pattern

4

Figure 1 shows an example implementation of a generic contextual event receiver that allows developers

to configure a managed bean to be called when an event is received. For this, the event receiver method

defines two arguments: i) the payload delivered by the contextual event and ii) a callback handler reference

to a managed bean implementing the contextual event handler interface (ContxtualEventHandler

in this sample).

The event handler method in the ContextualEventReceiver class receives the managed bean

reference and invokes its handleEvent() method defined by the contextual event handler interface. By

invoking the handleEvent() method, the event receiver passes the payload it receives from the

contextual event to the managed bean.

The event receiver class, ContextualEventReceiver in the sample, is exposed by the JavaBean

Data Control so the receiveEvent() method it contains can be exposed as a method binding on a

PageDef file.

Figure 1: Managed bean interface and event handler method

You can save the bean data control, the receiver bean and the interface class in an ADF library for reuse

in other projects.

Configuring the Generic Callback Message Handler

Assuming you deployed the files shown in Figure 1 in an ADF library, adding the ADF library to a view

controller project makes the POJO Data Control available in the Oracle JDeveloper Data Control panel

for declarative addition to a PageDef file.

Region Interaction: Contextual Event Callback Pattern

5

Figure 2: Contextual event callback handler in action

To configure the generic event receiver for a view in a task flow:

1. Create or download the ADF library containing the generic contextual event handler and configure it

with your ViewController project

2. Create a managed bean in backing bean scope that implements the ContextualEventHandler

interface. Implementing the ContextualEventHandler interface you define the call back method

– handleEvent(…) – that will be called by the generic contextual event receiver to pass control to the

managed bean.

3. Create a method binding in the PageDef file of the view that you want to listen for contextual events.

For this, open the view's PageDef file in Oracle JDeveloper and press the plus icon in the "Bindings"

section, as shown in Figure 3. In the Insert Item dialog, click the methodAction item in the Generic

Bindings category and select the POJO Data Control that exposes the receiveEvent method.

Use the EL editor to reference the managed bean you created before for the pContextualEventHandler

argument. Leave the pPayLoad argument blank as this will be provided by the contextual event mapper.

Region Interaction: Contextual Event Callback Pattern

6

Figure 3: Creating a method binding manually

3. Configure a contextual event subscriber definition (as shown in Figure 4) in the same PageDef file

you defined the method binding in

Figure 4: Contextual event subscriber definition dialog

Region Interaction: Contextual Event Callback Pattern

7

Configure the contextual event subscriber as follows

 Producer name: choose "Any" in JDeveloper which will add the '*' wild card to the

configuration. This basically means that you accept calls from all producers

 Event name: Here you define the name of the event this method binding should listen for. The

event name is defined by the event producer.

 Payload: The value of the payload field should map the pPayLoad argument to the payload

sent with the incoming event (as shown in Figure 5). The event payload is accessible from

${payLoad} (note the capital L on Load, this is required)

Figure 5 shows the final configuration as it shows in the view's PageDef file. Note that the event name

needs to match name of the producer event you define when setting up the event producer.

Figure 5: Method binding and event map definition

Summary

This article explains an implementation for a generic and reusable contextual event handler that invokes a

method on a configured managed bean to have the contextual event payload handled in the context of a

view to be changed in response of an event.

RELATED DOCUMENTATION

 Implement Contextual Events

http://www.oracle.com/technetwork/issue-archive/2011/11-may/o31adf-352561.html

 ADF Contextual Events in Product Documentation

http://docs.oracle.com/cd/E35521_01/web.111230/e16182/contextual_events.htm#BABFCAFI

http://www.oracle.com/technetwork/issue-archive/2011/11-may/o31adf-352561.html
http://docs.oracle.com/cd/E35521_01/web.111230/e16182/contextual_events.htm#BABFCAFI

