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Introduction 

This white paper presents performance measurements for Oracle Berkeley DB under various 

conditions on several major operating systems and platforms. Performance estimates presented here 

are intended to help you understand what to expect from Berkeley DB in some common configurations 

on commodity hardware running widely used operating systems. Your application performance 

depends on your data, data access patterns, cache size, other configuration parameters, operating 

system and hardware. Benchmarks are almost never representative of the performance of a particular 

application. They do, however, provide guidelines and help to set basic operational expectations. 

Oracle Berkeley DB is a database engine designed for any application requiring efficient and robust 

embedded data storage. Berkeley DB is a complete data management library, including support for 

concurrent access, ACID transactions and recovery, and replication for fault tolerance and high 

availability. Berkeley DB is designed to support any structured information model and has been 

incorporated into relational, object, network and hierarchical systems. Due to its scalability and minimal 

overhead, it has also been used in a number of reliable messaging, data streaming, caching, and data 

archival systems. 

Platforms and Testing Methodology 

All performance tests were run on the following commodity hardware and operating system combinations, without 

customized configuration, tuning or any other performance enhancing techniques. All tests were run on clean 

installations in multi-user mode systems that were otherwise quiescent. For the workloads presented, these are the 

results that can be obtained under actual use. Performance is often the first critical factor when selecting a 

database. This paper measures the performance of Oracle Berkeley DB across a wide set of operating systems, 

hardware platforms, and software configurations.  

The following platforms represent common operating systems and hardware platforms chosen by software and 

systems developers. It is by no means an exhaustive list, as Berkeley DB runs on a much larger range of platforms. 

The version of Berkeley DB tested was 4.3. 

» Linux – SuSE Linux 9.1 running on an AMD Athlon™ 64 processor 3200+ at 1GHz system with 1GB of RAM. 

Western Digital Caviar SE 120GB EIDE (7200RPM) with 8MB cache RAM was connected via an SIS 5513 

controller formatted with the EXT3 file system with journaling enabled. The compiler was GCC 3.3.3. The system 

reported 4046.84 BogoMIPS. 

» Solaris – Sun Solaris 10 (x64) running on a SunFire v20z with dual AMD Opteron™ processors at 2GHz with 

16GB of RAM. A 80GB Seagate Cheetah (ST373453LC) SCSI hard drive was connected via an integrated SCSI 

controller on a PCI-X bus and formatted with the UFS filesystem. 

» BSD Unix – FreeBSD 5.3p4 running on an Intel™ Pentium™ 4 CPU at 3.00GHz with 2GB of RAM. An integrated 

Intel ICH5 SATA150 controller on a PCI bus controlled a Barracuda 7200.7 Plus (ST3200822A) Ultra ATA/100 

(7200RPM) hard drive formatted with the UFS file system. The compiler was GCC 3.4.2. 
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» Mac OS/X – Mac OS/X version 10.3.9 running on a dual Power Mac G4 CPUs at 1.25GHz with 2GB of DDR 

SDRAM. IBM Deskstar 120GXP 120GB UATA100 hard drive was connected via an integrated ATA bus formatted 

with the HFS+ file system with journaling enabled. The compiler was GCC 3.3. 

Note that the systems vary greatly. This is intentional. It is not the goal of this paper to demonstrate the relative 

performance of the profiled systems when performing similar tasks, but rather to demonstrate basic performance 

metrics on a wide variety of systems so that you can estimate how your system might perform when using Berkeley 

DB. 

Any transactional database claiming durability (the ‘D’ in ACID) will necessarily have to interact with some form of 

stable storage or replicate the transaction to other systems. The most common case is to use a hard disk drive. 

Hard drive technology, bus subsystems, and memory interconnects vary widely, as do their  performance. For this 

set of tests, we used commodity disk technology – that is, slow disks with average subsystems. If you add a fast 

disk subsystem with the fastest disks, you’ll see much higher throughput with Berkeley DB, just as you would with 

any disk-bound application. Additional hardware options can also affect performance. For instance, using a disk 

subsystem with a battery-backed memory write cache will improve throughput. There are other, faster storage 

systems, some based entirely on memory, but they are less common. These hardware-based techniques affect all 

databases in a similar manner and so are irrelevant for this study. This paper explores the performance curve of the 

Berkeley DB software, not the surrounding hardware. 

The test code can be downloaded at: 

http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/perf-186166.zip  

Performance 

Throughput – records read or written in a fixed time interval – is the most common measure of database 

performance. Each test in this benchmark uses fixed-size records containing keys that are eight bytes long and a 

data portion of thirty-two bytes. Pages are 32KB, the buffer for bulk transfers was set to 4MB, the log buffer is 8MB, 

and the buffer cache is 32MB. Source code for the benchmark is roughly 350 lines of C code and may be 

downloaded from the URL above. 

Berkeley DB supports concurrent database access. On multi-processor systems, multi-threaded or multi-process 

Berkeley DB applications can take advantage of additional CPUs. Many application workloads will benefit from such 

concurrency, even on single-processor systems. Regardless of the system tested, the effects of concurrency are not 

measured in the following tests. The tests are single-threaded and single-process. On a multi-processor system, 

they will use no more than one of the CPUs at a time. 

This first test measures throughput as operations per second using Berkeley DB Data Store (DS). Since this is a 

non-transactional, in-memory test, performance is dependent on the operating system, memory, and CPU, and not 

the underlying I/O or disk system for the read tests. When writing using DS, the data is cached in memory and 

flushed when buffers are filled or when the application explicitly calls for data to be flushed to disk. These tests are 

written such that writes occur in memory and are not flushed to disk. 

 

DS (ops/sec) Linux Solaris BSD Mac OS/X 

Single-record 
read 

1,002,200 1,008,580 1,108,920 524,360 

Single-record 
write 

766,304 550,748 614,116 317,141 

 

http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/perf-186166.zip


 

 

 

3  |   ORACLE BERKELEY DB: PERFORMANCE METRICS AND BENCHMARKS 

Berkeley DB provides optimized access to sequential data allowing for faster overall throughput. If you read large 

amounts of data sequentially from your databases, using the bulk access APIs will improve your read performance. 

 

DS (ops/sec) Linux Solaris BSD Mac OS/X 

Bulk Read 13,501,800 12,114,500 19,299,700 5,615,280 

 

Most applications using Berkeley DB will require transactional access to data as a result of concurrent access or 

simply to maintain a reliable repository of data. This is accomplished by using the Berkeley DB Transactional Data 

Store (TDS) features. In this first test of TDS we enable the locking, logging and transaction subsystems. Although 

read-only transactions do not perform logging, performing reads in transactions will introduce locking overhead. That 

overhead is reflected in the following test results. 

TDS (ops/sec) Linux Solaris BSD Mac OS/X 

Single-record 
Read 

466,623 328,809 331,523 171,549 

 

The transactional system can be configured to run entirely in memory. If the process fails, the system is powered 

down, or some other unforeseen failure occurs, the data will be lost. Essentially, durability is sacrificed for speed. 

Replicated systems running entirely in core memory using Berkeley DB High Availability (HA) can provide full ACID 

transactional semantics, including durability, as long as one replica remains active, and will perform much faster 

than systems storing data to disk. The following measures only the in-memory speed of the transactional system 

without replication. 

TDS (ops/sec) Linux Solaris BSD Mac OS/X 

Single-record 
Write 

239,824 143,466 111,671 82,256 

 
 

When designing your system, your requirements will determine what, if any, transactional guarantees you can relax. 

The following tests examine the performance of each tradeoff from the most relaxed to the most stringent. 

Applications requiring the "ACI" (atomic, consistent, and isolatable) characteristics of transactions but willing to risk 

the "D" (durability) can configure Berkeley DB such that it does not synchronize transaction logs to disk on commit. 

In this case, the transaction log buffers are maintained in memory and only written to stable  storage when Berkeley 

DB determines that they are full, rather than as a component of the transaction. If the application, operating system, 

or hardware should fail, the data in those buffers that is not yet written to disk is lost. This "TDS no-sync" case is 

measured below. 

TDS (ops/sec) Linux Solaris BSD Mac OS/X 

Single-record 
Write 

141,109 107,626 70,528 68,591 

 

The performance is nearly identical to that of the "TDS in-memory logs" case. In neither case is disk access required 

in order to complete a transaction. The difference is that for the "TDS no-sync" case, the data is eventually written to 

disk. 
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Next, we consider a configuration that will guarantee no loss of data after an application crash, as long as the 

operating system does not also crash. TDS is again configured with locking, logging and transactions all enabled. 

However, in this case Berkeley DB requests that the operating system write to disk, but not explicitly flush those 

writes to disk at each transaction commit. The operating system will acknowledge the write and is likely to buffer 

writes for some amount of time before flushing the data to disk. In this mode, TDS is sacrificing some durability, but 

less than before. 

TDS write, no-
sync 

Linux Solaris BSD Mac OS/X 

Single-record 
Write 

90,774 85,101 62,087 34,888 

 

Notice the significant drop in performance, as each transaction commit requires a call into the operating system and 

copies data from the application's memory to the operating system's write buffers. If we enable fully synchronous 

writes, throughput will be limited by your disk's ability to perform such writes. The resulting numbers are, therefore, 

completely determined by your disk system and not the software.  

Note that it is possible to get spectacular numbers in this mode, because some disks report writes as having 

completed once the data has been written into the disk's cache, instead of when the data is actually on the disk. This 

performance boost comes at the price of durability guarantees, and we advise running critical applications on disk 

subsystems that do not respond to synchronous write requests until the data is persistently on the disk. Berkeley DB 

can optionally group commit operations, allowing higher throughput when doing synchronous transactions. 

In conclusion, Berkeley DB allows application designers to make transaction durability tradeoffs when building a 

high throughput system, based on their design goals and the characteristics of the data involved. With an 

understanding of these  and other tuning parameters found in Berkeley DB and in your deployment system it is 

possible to exceed these measurements. 

ASPECTS OF BERKELEY DB NOT MEASURED 

» Out of cache performance – The impact of storage to disk is so great that when measuring database performance 

out of cache, you are essentially measuring the underlying operating system and associated hardware. The time 

spent waiting on disk accesses takes up the vast majority of the overall access time. As a result, the tests have 

been designed to work entirely in cache except for those times when it is necessary to write to disk for 

transactional guarantees. Systems with faster disks or disk controllers with built-in RAM-based cache will perform 

better. 

» Recovery time – Transactional databases must be able to recover to a known state at startup. Berkeley DB, like 

most transactional database systems, will recover in time proportional to the amount of data written to the log 

since the last checkpoint. The additional cost of taking the checkpoints is not reflected in these measurements. 

» Deadlock discovery and resolution time – Transactional databases can deadlock. Berkeley DB offers many 

different methods for deadlock detection and resolution. These benchmarks do not measure the cost of deadlock 

processing as they are written to be deadlock-free. 

» Startup time – A database's cache subsystem is one of the most performance-critical aspects of its design. There 

are two states for a cache: empty and warm. We do not measure the cost of warming the cache. All benchmark 

programs first warmed the cache and then began collecting timings. 

» Effects of concurrency – Multi-threaded applications often get better performance than single-threaded 

applications, because whenever any single thread blocks for I/O, others can use the CPU to do useful work. This 

is especially true in Berkeley DB, since the database library includes support for a feature called "group commit", 

which allows one active thread to do work on behalf of other threads when one or more transactions commit. 

Concurrency also introduces opportunities for contention for locks, buffers or other resources. In general, multi-



 

 

 

5  |   ORACLE BERKELEY DB: PERFORMANCE METRICS AND BENCHMARKS 

threaded applications see performance improvements until contention among too many threads causes 

performance to fall off. 

» Access Methods – Berkeley DB provides a few different access methods. Each method provides a different 

performance characteristic. The measurements in this paper use the btree access method because it is the 

fastest access method for a wide range of workloads and data sizes. 

» Replication – The Berkeley DB High Availability subsystem is a single master, multi-replica system that supports 

fail-over and master election using  a Paxos-compliant election algorithm. It replicates transaction logs among 

systems. The transport of these logs is application-specific. To replicate database information, Berkeley DB High 

Availability uses a transport layer provided by the application to relay coordination messages and log segments 

among replicas. Any form of message transport can be employed. The application designer may choose among 

hardware-specific transport, TCP/IP or any other communications infrastructure. For this reason, measurement of 

the High Availability system is beyond the scope of this paper. 

» Comparing Oracle Berkeley DB to Relational Database Management Systems 

Client/Server architecture increases complexity and slows down performance because applications must cross a 

process boundary and often a network link to access data. SQL query processing is extra code that a relational 

engine must execute at runtime. Parsing, planning, optimizing and executing a query introduce runtime overhead to 

each data access. Oracle offers a wide range of SQL-capable database management products for applications that 

need the expressive power and flexibility of SQL. For those that need fast, reliable, embeddable data management 

engine without a human database administrator, however, Berkeley DB is often a more attractive choice. Berkeley 

DB delivers the most direct route to data and avoids cross-process copies, query parsing and planning overhead 

found in relational systems. 

Naturally, head-to-head comparisons depend heavily on the application and its data management requirements. 

Conclusions 

Oracle Berkeley DB, as a component of your application, can be configured in a number of different ways to meet 

specific application requirements for speed, scale, and reliability. This paper has taken a look at a few of the critical 

aspects of any database system and shown that Berkeley DB has benefited from years of research, design and 

careful tuning. 

Berkeley DB provides outstanding speed, efficiency and flexibility for a wide range of applications. Berkeley DB 

offers extraordinary programming flexibility for applications ranging from mobile phones to desktop applications, 

large servers, networking gear and major websites. Download Berkeley DB today at  

http://www.oracle.com/database/berkeley-db.html , and run the performance tests on your platform.  

http://www.oracle.com/database/berkeley-db.html
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