

Oracle Cloud Native Environment on
Oracle Private Cloud Appliance

Best Practices of deployment of an HA Kubernetes cluster on

Oracle Private Cloud Appliance and deployment of Weblogic Server

November 17, 2021 | Version 2.01

Copyright © 2021, Oracle and/or its affiliates

Confidential – Public

2 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

PURPOSE STATEMENT

This document describes best practices and demonstrates installing Oracle Cloud Native Environment and deploying

WebLogic and Traefik on the Oracle Private Cloud Appliance Release Release , and describes best practices. While key

concepts are described, this paper is not a replacement for the official documentation on Oracle Private Cloud Appliance,

Oracle Cloud Native Environment, Kubernetes, WebLogic or Traefik. Further documentation is linked in this paper.

DISCLAIMER

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of

Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle software

license and service agreement, which has been executed and with which you agree to comply. This document and

information contained herein may not be disclosed, copied, reproduced or distributed to anyone outside Oracle without

prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any

contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation

and upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality, and

should not be relied upon in making purchasing decisions. The development, release, and timing of any features or

functionality described in this document remains at the sole discretion of Oracle.

Due to the nature of the product architecture, it may not be possible to safely include all features described in this document

without risking significant destabilization of the code.

3 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

TABLE OF CONTENTS

Purpose Statement 2

Disclaimer 2

Introduction 5

Oracle Private Cloud Appliance - Integrated Platform for Cloud 5
Oracle Private Cloud Appliance Benefits 5
Oracle Private Cloud Appliance Virtualization and cloud platform 5
Oracle Private Cloud Appliance X8-2 Hardware Platform 7

Overview of Oracle Cloud Native Environment (OCNE) 9
Oracle Cloud Native Environment Core Concepts: 9

Oracle Verrazzano Enterprise Container Platform 10

Overview of WebLogic Server and Traefik 11
Oracle WebLogic Server 11
Traefik 11
Demonstration Network topology 12

Demonstration Environment 14

OCNE Setup 15
Enable access to OCNE packages 15
Install chrony and disable swap 15
Set up firewall and netfilter 15
Install OCNE software and configure proxy servers 16
Prepare for built-in load balancer 17
Set up Certificates 17
Configure and Start Platform API Server and Platform Agent Services 18
Create OCNE Environment 19
Create, Validate, and Install Kubernetes Module 19

Set up kubectl 20
Manage the Cluster from your local machine 20
Install kubectl 20
Configure kubectl 20
Use kubectl CLI 21
Access Kubernetes Dashboard 22
Optionally create new user for dashboard access 22
Access the dashboard 23
Removal and cleanup 26

WebLogic Server in OCNE on Private Cloud Appliance 27
Install Helm and Clone WebLogic Repository 27
Install WebLogic Operator 27
Confirm WebLogic Operator 28
Prepare for WebLogic Domain 28
Confirm Traefik install 28
Create Weblogic Domain 29
Install the Ingress 30

Considerations for Production Deployment 31

Conclusion 31

Resources 32

4 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

5 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

INTRODUCTION

Oracle Private Cloud Appliance (PCA) is an on-premises converged infrastructure platform for on-premises clouds

that allows customers to efficiently consolidate business critical middleware and application workloads.

Oracle Private Cloud Appliance fully supports Oracle Cloud Native Environment (OCNE), a curated set of open-source Cloud

Native Computing Foundation (CNCF) projects. It can be easily deployed, has been tested for interoperability, and offers

enterprise-grade support. With the Oracle Cloud Native Environment, Oracle provides features for customers to develop

microservices-based applications that can be deployed in environments that support open standards and specifications.

This document will describe best practices and illustrate deploying an OCNE environment with WebLogic and Traefik on a

PCA system.

ORACLE PRIVATE CLOUD APPLIANCE - INTEGRATED PLATFORM FOR CLOUD

The Oracle Private Cloud Appliance (PCA) is an Oracle Engineered System designed for the application tier. It is an

integrated hardware and software system that reduces infrastructure complexity and deployment time for virtualized

workloads in private clouds. It is a complete platform for a wide range of application types and workloads, with built-in

management, compute, storage and networking resources.

Oracle Private Cloud Appliance Benefits

PCA enables rapid deployment of converged compute, network, and storage technologies for hosting workloads in guest

operating systems. Private Cloud Appliance provides ‘quick time to value’ for a robust virtualization platform, going from

first power-up to starting VMs in a matter of hours. PCA automatically discovers hardware components and configures them

to work with one another, reducing design and administrative effort, eliminating potential errors, and speeding time to

application deployment. PCA’s automated configuration implements Oracle best practices for optimal performance and

availability

PCA is cost effective, has high performance levels across a broad range of application types, easy to manage, and delivers

better ‘time to value’ than disparate build-your-own solutions. Oracle Private Cloud Appliance together

with Oracle Exadata provides powerful, single-vendor, application and database platforms for today’s data driven enterprise.

Oracle Private Cloud Appliance offers an optimized platform to consolidate enterprise mission-critical workloads and

modern cloud-native containerized workloads. It provides the simplest path to modernize your workloads and help you

accelerate the digital transformation to meet your changing business needs.

 Its built-in secure multi tenancy, zero downtime upgradability, capacity on demand and single pane of glass management

make it the ideal infrastructure for rapid deployment of mission critical workloads. Oracle Private Cloud Appliance together

with Oracle Cloud Infrastructure provides customers with a complete solution to securely maintain workloads on

both private and public clouds.

Oracle Private Cloud Appliance Virtualization and cloud platform

The Private Cloud Appliance provides virtualization life cycle management using Oracle VM. Oracle VM consists of two parts:

Oracle VM Manager and Oracle VM Server. These are automatically pre-installed on PCA without additional license fees,

representing a substantial cost savings over other virtualization platforms. Oracle Enterprise Manager is optional but highly

recommended, and is available without additional cost for providing cloud capabilities.

Oracle VM Manager is an advanced and widely used virtualization management product for controlling multiple servers,

VMs, networks and storage resources under a graphical browser user interface. Oracle VM Manager also provides

programmable REST APIs and command line interfaces to permit automation. Each PCA has one active instance of Oracle

VM Manager used as a central control plane to administer the entire PCA.

Oracle VM Server is a high-performance hypervisor that runs virtual machines, based on commands sent from Oracle VM

Manager. Oracle VM Server is automatically installed and configured on every compute node, both when a PCA rack is

installed, and when additional compute nodes are added. Oracle VM efficiently runs virtual machines, which may run Oracle

Linux, Oracle Solaris, other Linux versions, and Microsoft Windows, and the applications these operating systems support.

Oracle VM provides advanced functions that benefit applications.

6 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

 Administrators can set anti-affinity rules to ensure that virtual machines comprising a clustered application such as

WebLogic Server do not run on the same physical server, insulating them from single points of failure. Using anti-affinity

is a best practice for deploying OLCNE.

 High Availability (HA) settings can automatically reboot VMs if they or the server they are running on crash. For example,

HA can bring up a WebLogic administrative instance or Kubernetes master after an outage.

 Live migration allows you to move running VMs from one server to another without stopping the VM and interrupting its

applications. This is typically used for load balancing and to perform compute node maintenance without virtual machine

outage,

 Dynamic Resource Scheduling (DRS) policies can provide load balancing among server based on several parameters,

including CPU and network utilization according to policy settings. DRS automatically live migrates VMs from heavily

loaded servers to less loaded ones to permit optimal performance.

 Resource management policies control CPU allocation for differential service between applications sharing the same

servers, including CPU caps, and share-based priorities. This permits higher degrees of CPU oversubscription without

affecting the service level objectives for production applications running alongside less-critical applications.

 Administrators can define tenant groups to dedicate PCA compute nodes to different clients. This ensures dedicated

resources for applications or departments. PCA tenant groups leverage standard Oracle VM server pools, with additional

automation and default configuration.

PCA customers can optionally use Oracle Enterprise Manager 13c to provide Infrastructure as a Service (IaaS) cloud

capabilities, Oracle Enterprise Manager provides comprehensive management capabilities, including role-based access

control, monitoring and chargeback. It is a best practice for production environments with different user and role categories.

PCA can also leverage Ansible to provide “infrastructure as code”.

7 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

Oracle Private Cloud Appliance X8-2 Hardware Platform

Oracle Private Cloud Appliance is an easy-to-deploy, “turnkey” converged infrastructure solution that integrates compute,

network, and storage resources in a software-defined fabric.

Oracle Private Cloud Appliance rack consists of the following main hardware components:

 Management Nodes: PCA uses two latest generation Oracle servers X8-2 function as the management nodes for

Oracle Private Cloud Appliance X8. They serve as an active-passive cluster for management operations, providing

resiliency in case of planned outage or server failure. Oracle VM Manager and other management functions run on the

active management node. When a management node assumes the active role it takes over a virtual IP address (VIP)

address, so clients of the management interface do not need to know which management node is currently active.

 Compute Nodes. Compute nodes are Oracle Server X8-2 or X9-2 systems powered by two Intel® Xeon® Processors.

X8-2 servers have 24 cores per socket and can be ordered in three different memory configurations – 384GB, 768GB

and 1.5 TB. X9-2 servers have 32 cores per socket and can be ordered in three different memory configurations –

512GB, 1.0TB, and 2.0TB. Each compute node runs Oracle VM Server for x86 to provide server virtualization. Compute

nodes may be added or removed from the Oracle Private Cloud Appliance configurations without any downtime. A

8 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

Private Cloud Appliance rack can support up to 1,200 compute cores when using X8-2 servers, and up to 1,280

compute cores with X9-2 servers.

 Switches. Ethernet switches used for the data network and management network in a Private Cloud Appliance,

configured to provide “wire once” Software Defined Networking (SDN). This permits multiple isolated virtual networks to

be created on the same physical network hardware components.

 . The different types of switches used are:

 Leaf Switches - (2) 36 port 100GbE switches used for high-speed internal communication between the internal

hardware components (Compute Nodes, system disk, management servers) in a Private Cloud Appliance solution

 Spine Switches - (2) 36 port 100GbE switches used for high-speed communication between the Private Cloud

Appliance and other Engineered Systems, storage or the data center network. Spine switches form the backbone of

the network and perform routing tasks.

 Management Switch - (1) 48 port switch used to provide easy management of all internal hardware components

(Compute Nodes, system disk, fabric interconnects, management servers) in a Private Cloud Appliance. High speed

low latency SDN is implemented on top of 100GbE leaf and spine switches. These offer 100GbE connectivity for all

communication between internal-rack components and allow flexible 10/25/40 or 100 GbE connectivity to

customer datacenter.

 Integrated Storage. Oracle Private Cloud Appliance features a fully integrated, enterprise-grade Oracle ZFS Storage

Appliance ZS7-2 MR (“ZFSSA”) providing extreme performance and superior efficiency required by demanding

enterprise applications running in VMs. This storage subsystem is designed to be fully redundant for maximum fault

tolerance and serviceability in production. The Oracle Private Cloud Appliance X8-2 storage subsystem is loaded with

high-performance DIMM and flash memory for optimal read/write performance under the most demanding file storage

workloads. The storage capacity of Oracle Private Cloud Appliance X8-2 can be expanded beyond the initial

configuration by adding storage trays. Storage can also be expanded by adding data center racks containing external

Oracle ZFS Storage Appliances.

These elements provide a resilient management plane, network and storage resources, and scalable compute.

9 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

Image Caption 1. Oracle PCA X8-2 Software Environment

OVERVIEW OF ORACLE CLOUD NATIVE ENVIRONMENT (OCNE)

Oracle Cloud Native Environment (OCNE) is a fully integrated suite for the development and management of cloud-native

applications. It provides a framework for orchestrating microservices through Kubernetes, consistent with open standards

and practices emphasized by the Open Container Initiative (OCI), the Cloud Native Computing Foundation (CNCF), and

others.

The Kubernetes module is the core module. It is used to deploy and manage containers and automatically install and

configure CRI-O, runC and Kata Containers. CRI-O manages the container runtime for a Kubernetes cluster. The runtime

may be either runC or Kata Containers. Among OCNE properties, it is

• Very well suited for scalable microservices-based production deployments.

• Incorporates features needed by modern K8S ecosystem.

• Has a predictable roadmap based on key open source component releases

OCNE provides a framework for orchestrating microservices through Kubernetes, based on the Open Container Initiative

(OCI) and Cloud Native Computing Foundation (CNCF).

Oracle Cloud Native Environment Core Concepts:

An OCNE environment is a namespace that encapsulates OCNE software modules, including at a minimum the Kubernetes

module. An OCNE module is essentially a unit of software that OCNE can install and manage within an environment, such as

the Kubernetes module, Istio module, and the Operator Lifecycle Manager module.

Node types

OCNE makes use of the following types of Kubernetes node:

• Operator node performs and manages the deployment of environments, including deploying the Kubernetes

cluster. An operator node may be a node in the Kubernetes cluster, or a separate host. The operator node calls on

Kubernetes APIs to communicate with Kubernetes agents on target nodes.

• Control plane nodes run management services. There can be a single node in a non-resilient configuration, but

the recommended configuration and best practice uses multiple nodes to avoid single points of failure.

• Worker nodes run the applications. There are a minimum of two worker nodes, sized according to application

requirements.

The following diagram provides a high-level view of the OCNE architecture. The Platform CLI is used to communicate with

the Platform API server and uses the olcnectl command. The Platform API server is responsible for managing the overall

environment. The Platform Agent runs on each host and receives requests from the Platform API server. The operator node

runs the Platform CLI and Platform API, and the Kubernetes control plane and worker nodes run the Platform Agent.

10 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

Image Caption 2. Architectural overview of HA Kubernetes clusters on Oracle Private Cloud Appliance / Private Cloud at Customer

A Kubernetes cluster configured this way is Highly Available (HA), avoiding Single Point of Failure (SPOF), as it has:

 3 Kubernetes Master Nodes

 Multiple Kubernetes Worker Nodes (scaled as needed)

 Integrated Load Balancer support

ORACLE VERRAZZANO ENTERPRISE CONTAINER PLATFORM

Oracle Verrazzano Enterprise Container Platform is an important technology related to OCNE, which enhances Oracle’s

extensive portfolio of standards-based open software technologies for cloud native application development, deployment,

and lifecycle management in Oracle Cloud, other clouds, and on-premises.

Many enterprises have an investment in custom applications. Many of these applications are critical to their mission and

business; some of these applications are traditional WebLogic Server applications, and some are not. As the industry focus

shifts to the cloud, these enterprises are looking for solutions that enable them to flexibly adopt cloud-native technologies to

improve productivity and innovation, to modernize their existing applications, and to run their applications where they

choose.

You can use your Oracle Verrazzano Enterprise Container Platform subscription to run Verrazzano workloads on systems

where Oracle Linux is running, such as Oracle Private Cloud Appliance. The Oracle Verrazzano Enterprise Container Platform

is an ideal fit for the Oracle Private Cloud Appliance, the premiere Oracle Engineered System for application tier.

11 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

OVERVIEW OF WEBLOGIC SERVER AND TRAEFIK

This paper uses WebLogic and Traefik to demonstrate using Oracle Cloud Native on the PCA.

Oracle WebLogic Server

Oracle WebLogic Server is the industry leading application server for building enterprise applications using Java, and

deploying them on a reliable, scalable runtime with low cost of ownership.

A WebLogic domain is a basic unit of WebLogic server, which includes the administration server and managed servers, as

well as related resources and services. An administration server manages the domain configuration and hosts the

Administration Console, and Managed Servers hosts the actual application and associated resources. From a developer

perspective, WebLogic Server is Java middleware. WebLogic Server has been updated to support modern Cloud deployment

patterns in Kubernetes.

Oracle WebLogic Server: Application server to build and run enterprise application.

• WebLogic Domain: A basic administrative unit of WebLogic server. It includes administration server and managed

servers, as well as related resources and services.

• Administration Server: Manages domain configuration and hosts the Administration Console.

• Managed Server: Hosts the application and associated resources.

Traefik

Traefik is a modern reverse proxy and load balancer supporting dynamic configuration through service discovery. In this

demonstration, Traefik is used for load balancing across Kubernetes nodes hosting WebLogic server instances.

Requirements for on-premises Load Balancer

A load balancer must distribute load across active nodes in a Kubernetes cluster and must adjust to recognize when a node

has been added or removed from a cluster.

Kubernetes service type LoadBalancer is a specification describing this capability, not an implementation. In public cloud

use, the Kubernetes cloud-controller-manager (CCM) interfaces with the public cloud provider, which provides a load

balancer implementation. Kubernetes service type LoadBalancer has a corresponding load balancer implementation in the

CCM to match the specification to the cloud-provided service.

For on-premises use, Kubernetes cloud-controller-manager does not exist, therefore no implementation is defined for

the LoadBalancer service type and one must be provided. An implementation can either use a load balancer specifically

designed for on-premises Kubernetes and other applications, such as F5 BigIP, or manually configure load balancers with

other forms of ingress. This demo employs a manually configured external load balancer (haproxy) and only represents

Traefik’s use as an ingress controller.

For production, we recommend, as a best practice, the use of an implementation conforming to the Kubernetes

LoadBalancer on ingress sautomated. Examples include NGINX Ingress Controller and F5 BigIP Controller for Kubernetes.

The following diagram shows the WebLogic and Traefik perspective of the demo environment. We have manually

configured haproxy, the reverse proxy in this diagram, to handle network traffic.

In this demo haproxy is configured so that the host name ca-pca-vm10 routes to the node port 30701, which exposes the

WebLogic administration server to allow access to the WebLogic Administration console. The host name ca-pca-vm20

routes to node port 30305 of the Traefik ingress controller, which will deliver the request to the Managed Server hosting the

application in the WebLogic domain. Therefore, the host name ca-pca-vm20 will allow access to the application itself.

12 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

Image Caption 3. Demonstration Network Traffic Flow

Demonstration Network topology

For this demonstration we use the network architecture illustrated in the Level 3 diagram below.

There are three networks: a DMZ, the Load Balancer Backend, and the Kubernetes Pod network. The DMZ is the network

where hosted applications are exposed to end users through the load balancer. The Load Balancer Backend network links

the backend of the load balancer to the frontend of the Kubernetes cluster. And the Kubernetes pod network is usually a

private, non-routed network for traffic that is internal to the Kubernetes cluster. As a PCA best practice, use a VLAN based

on the PCA default_internal network for best latency, throughput, and network isolation.

One of the benefits of this network structure is that the cluster can be placed behind a firewall, with only the load balancer

exposed. This achieves security, public IP address conservation, and operational flexibility. It enhances performance by

minimizing network contention and allowing each subnet to be separately tuned. Finally, a private certificate authority can

be used for the backend infrastructure, which permits cost savings for certificates.

For these reasons, most customer deployments should consider this topology as a minimal baseline for their on-premises

Kubernetes network design, then make appropriate changes for specific requirements.

13 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

Image Caption 4. Demonstration Network Topology

14 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

DEMONSTRATION ENVIRONMENT

For this demonstration we used the configuration shown below and instructions in the “Oracle Cloud Native Environment

Getting Started Guide” up to step 3.6.2.

Note that OCNE High Availability (HA) requires a minimum of 3 control plane nodes to form a quorum, and the number of

control plane nodes must be an odd number so one partition can ‘win’ a vote. There must also be at least two worker nodes.

In this example we use the following configuration:

• Network definitions were set up for inter-instance communication between OCNE nodes, and for access to and

from hosts external to the PCA. We used a VLAN based on the pre-configured PCA network default_external

for access to and from non-PCA hosts. For production deployments a virtual network based on a VLAN on the pre-

configured PCA network default_internal is recommended for low-latency, private networks between OCNE

nodes. This configuration provides external access to hosts outside the PCA system while providing optimized

private access for inter-node communication.

• Seven VMs running Oracle Linux 7.9 were created on the PCA:

• 1 operator node, 3 control plane nodes, and 3 worker nodes.

• The operator node was assigned 4 CPU threads (2 cores) and 8GB of RAM, control plane nodes had 4 CPU

threads (2 cores) and 16GB of RAM, and worker nodes have 8 CPU threads (4 cores) and 16GB of RAM. In a

non-demo environment, size the worker nodes based on the application requirements.

• Oracle VM Manager anti-affinity rules were created to ensure that each control plane node was on a

different physical compute node server from other control plane nodes, and to ensure that worker nodes

are assigned to different compute nodes. This is a best practice for PCA to enhance availability.

• All nodes run Oracle Linux 7.9 with latest patches applied by running ‘yum update’.

• The OCNE 1.3 Getting Started Guide was followed, completing all steps through 3.6.2.

• Uses Private CA Certificates. You can also use vault certificates.

• Uses Oracle Container Registry instead of a private registry.

• Proxy settings are configured on all nodes.

• JAVA_HOME environment variable is set on the operator node to /usr/lib/jvm/java-11-openjdk-
11.0.12.0.7-0.0.1.el7_9.x86_64

• git is installed on the operator node, which will run the kubectl command.

For commands requiring root privileges, either become root and issue the commands directly, or use a non-root user and

preface the command with sudo, according to your preferences and standards. In this paper, we indicate whether root or

non-root is being used by showing the shell prompt character # or $. Output from standard Linux commands (yum,

systemctl, etc.) will not be shown.

https://docs.oracle.com/en/operating-systems/olcne/start/index.html

15 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

OCNE SETUP

The following material shows procedures used in this demo. It is assumed that each of the Oracle Linux instances have

already been installed and updated to current patch levels.

Enable access to OCNE packages

The first step is to add the OCNE repositories by issuing the following commands on each node.

On all nodes issue:

yum install oracle-olcne-release-el7

yum-config-manager --enable ol7_olcne13 ol7_kvm_utils ol7_addons ol7_latest ol7_UEKR6

yum-config-manager --disable ol7_olcne ol7_olcne11 ol7_olcne12 ol7_developer

Install chrony and disable swap

Kubernetes is a clustered environment that requires synchronized time on control plane and worker nodes. It also requires

disabling swap. On control plane and worker nodes issue:

yum install chrony

systemctl enable --now chronyd.service

swapoff –

Set up firewall and netfilter

The following steps set up firewall settings to permit access to necessary ports.

On operator node:

firewall-cmd --add-port=8091/tcp --permanent

systemctl restart firewalld.service

On control plane nodes:

firewall-cmd --zone=trusted --add-interface=cni0 --permanent

firewall-cmd --add-port=8090/tcp --permanent

firewall-cmd --add-port=10250/tcp --permanent

firewall-cmd --add-port=10255/tcp --permanent

firewall-cmd --add-port=8472/udp --permanent

firewall-cmd --add-port=6443/tcp --permanent

If installing OCNE Release 1.2 or later on Oracle Linux 7:

firewall-cmd --add-masquerade --permanent

Then

systemctl restart firewalld.service

On worker nodes:

firewall-cmd --zone=trusted --add-interface=cni0 --permanent

firewall-cmd --add-port=8090/tcp --permanent

firewall-cmd --add-port=10250/tcp --permanent

16 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

firewall-cmd --add-port=10255/tcp --permanent

firewall-cmd --add-port=8472/udp --permanent

firewall-cmd --add-masquerade --permanent

systemctl restart firewalld.service

Set up HA cluster firewall roles on control plane nodes:

sudo firewall-cmd --add-port=10251/tcp --permanent

sudo firewall-cmd --add-port=10252/tcp --permanent

sudo firewall-cmd --add-port=2379/tcp --permanent

sudo firewall-cmd --add-port=2380/tcp --permanent

sudo systemctl restart firewalld.service

Check for netfilter and install if needed

On all nodes issue:

lsmod | grep br_netfilter

If there is no output, issue:

sh -c 'echo "br_netfilter" > /etc/modules-load.d/br_netfilter.conf

Install OCNE software and configure proxy servers

The following steps install the OCNE software and configure the proxy servers.

On operator node - Install Platform CLI, Platform API Server and utilities

yum install olcnectl olcne-api-server olcne-utils

systemctl enable olcne-api-server.service

On Kubernetes nodes (control plane + worker nodes):

Install platform agent and utilities:

yum install olcne-agent olcne-utils

systemctl enable olcne-agent.service

Configure proxy server with CRI-O:

mkdir /etc/systemd/system/crio.service.d

Edit proxy.conf and set the following lines, substituting in the hostname of your site’s proxy server and port number, and

your institution’s domain name. The last part indicates which hosts can be accessed without going to your proxy server.

[Service]

Environment="HTTP_PROXY=http://my-proxy-server-FQDN:80"

Environment="HTTPS_PROXY=http://my-proxy-server-FQDN:80"

Environment="NO_PROXY=127.0.0.0/8,localhost,10.0.0.0/8,.my-domain-name”

Then issue:

17 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

systemctl disable --now docker.service

systemctl disable --now containerd.service

Prepare for built-in load balancer

On control plane nodes issue:

firewall-cmd --add-port=6444/tcp

firewall-cmd --add-port=6444/tcp --permanent

firewall-cmd --add-protocol=vrrp

firewall-cmd --add-protocol=vrrp --permanent

Set up Certificates

This example uses private CA certificates. You can also use HashiCorp Vault certificates or certificates validated by a trusted

Certificate Authority. A software-based secrets manager is recommended to manage these certificates. The HashiCorp Vault

secrets manager can be used to generate, assign and manage the certificates. Oracle recommends you implement your own

instance of Vault, setting up the appropriate security for your environment

On the operator node issue the following, substituting in your fully qualified domain names. The –cert-request-*

operands in italics are optional.

cd /etc/olcne

./gen-certs-helper.sh \

--cert-request-organization-unit "My Company Unit" \

--cert-request-organization "My Company" \

--cert-request-locality "My Town" \

--cert-request-state "My State" \

--cert-request-country US \

--cert-request-common-name cloud.example.com \

--nodes \

nodename0.myFQDN,nodename1.myFQDN,nodename2.myFQDN,nodename3.myFQDN,nodename104.myFQDN,nodena

me5.myFQDN,nodename106.myFQDN

The next line copies certificates to all nodes.

bash -ex /etc/olcne/configs/certificates/olcne-tranfer-certs.sh

ls /etc/olcne/configs/certificates/production

The scp command can also be used to copy certificates.

Set up X.509 Certificates for External IPs Kubernetes Service

On operator node issue the following. The –cert-request-* operands in italics are optional.

cd /etc/olcne

./gen-certs-helper.sh \

--cert-dir /etc/olcne/configs/certificates/restrict_external_ip/production/ \

--cert-request-organization-unit "My Company Unit" \

18 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

--cert-request-organization "My Company" \ --cert-request-locality "My Town" \

--cert-request-state "My State" \

--cert-request-country US \

--cert-request-common-name cloud.example.com \

--nodes externalip-validation-webhook-service.externalip-validation-system.svc,\

externalip-validation-webhook-service.externalip-validation-system.svc.cluster.local \

--one-cert

Configure and Start Platform API Server and Platform Agent Services

On operator node:

/etc/olcne/bootstrap-olcne.sh \

--secret-manager-type file \

--olcne-node-cert-path /etc/olcne/configs/certificates/production/node.cert \

--olcne-ca-path /etc/olcne/configs/certificates/production/ca.cert \

--olcne-node-key-path /etc/olcne/configs/certificates/production/node.key \

--olcne-component api-server

systemctl status olcne-api-server.service

On Kubernetes nodes:

/etc/olcne/bootstrap-olcne.sh \

--secret-manager-type file \

--olcne-node-cert-path /etc/olcne/configs/certificates/production/node.cert \

--olcne-ca-path /etc/olcne/configs/certificates/production/ca.cert \

--olcne-node-key-path /etc/olcne/configs/certificates/production/node.key \

--olcne-component agent

systemctl status olcne-agent.service

19 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

Create OCNE Environment

Before you create an OCNE cluster, you have to create an environment. In this example, we create an environment directly

using certificates, but you can also create an environment using certificates managed by HashiCorp Vault. So on the

operator node, run the following command.

The olcne-node-cert-path points to where node certificates are in, olcne-ca-path option is where the CA certificate

is in, and node-key-path is where the node key is in. These certificates were created in the prior configuration steps. Make

sure these paths are consistent across all nodes.

On operator node:

olcnectl --api-server 127.0.0.1:8091 environment create \

--environment-name myenvironment\

--update-config \

--secret-manager-type file \

--olcne-node-cert-path /etc/olcne/configs/certificates/production/node.cert \

--olcne-ca-path /etc/olcne/configs/certificates/production/ca.cert \

--olcne-node-key-path /etc/olcne/configs/certificates/production/node.key

Create, Validate, and Install Kubernetes Module

Once you have created an environment, you can create a Kubernetes module

On operator node:

$ olcnectl module create \

--environment-name myenvironment \

--module kubernetes \

--name mycluster \

--container-registry container-registry.oracle.com/olcne \

--virtual-ip 10.147.36.192\

--master-nodes nodename1.myFQDN:8090,nodename2.myFQDN:8090,nodename3.myFQDN:8090 \

--worker-nodes nodename4.myFQDN:8090,nodename5.myFQDN:8090,nodename6.myFQDN:8090 \

--selinux enforcing \

--restrict-service-externalip-ca-

cert=/etc/olcne/configs/certificates/restrict_external_ip/production/production/ca.cert\

--restrict-service-externalip-tls-

cert=/etc/olcne/configs/certificates/restrict_external_ip/production/production/node.cert\

--restrict-service-externalip-tls-

key=/etc/olcne/configs/certificates/restrict_external_ip/production/production/node.key\

--pod-network-iface eth1

$ olcnectl module validate \

--environment-name myenvironment \

--name mycluster

$ olcnectl module install \

--environment-name myenvironment \

 --name mycluster

20 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

SET UP KUBECTL

Preceding steps established the Kubernetes environment. The Kubernetes command-line tool, kubectl, allows you to run

commands against Kubernetes clusters. You can use kubectl to deploy applications, inspect and manage cluster

resources, and view logs.

Manage the Cluster from your local machine

You can manage your Kubernetes cluster deployed on Oracle Private Cloud Appliance/Private Cloud at Customer from your

local desktop or laptop. This requires you to install kubectl on your local machine. Depending on the operating system on

your local machine, follow the steps in Kubernetes documentation to install kubectl:

https://kubernetes.io/docs/tasks/tools/install-kubectl/

Installing kubectl locally allows you to manage all your Kubernetes clusters from a single central machine, thereby removing

the need to be on the master management node of Oracle Private Cloud Appliance. This simplifies operations for

Kubernetes cluster management.

Install kubectl

In this exercise, we show the steps to install kubectl-1.17.4 on macOS. Similar command sequences are used for Linux.

You can also use a package manager for your operating system, such as Homebrew, yum, apt-get as appropriate

$ curl -LO \

https://storage.googleapis.com/kubernetesrelease/release/v1.17.4/bin/darwin/amd64/kubectl

$ chmod +x ./kubectl;

$ sudo mv ./kubectl /usr/local/bin/kubectl

Configure kubectl

The next several steps describe how to configure kubectl for CLI and browser

If on a control plane node:

$ mkdir -p $HOME/.kube

$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

$ sudo chown $(id -u):$(id -g) $HOME/.kube/config

$ export KUBECONFIG=$HOME/.kube/config

$ echo 'export KUBECONFIG=$HOME/.kube/config' >> $HOME/.bashrc

If on operator node:

$ olcnectl module property get \

 --environment-name myenvironment \

 --name mycluster \

 --property kubecfg | base64 -d > kubeconfig.yaml

$ mkdir -p $HOME/.kube

s

$ export KUBECONFIG=$HOME/.kube/config

$ echo 'export KUBECONFIG=$HOME/.kube/config' >> $HOME/.bashrc

https://kubernetes.io/docs/user-guide/kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

21 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

Use kubectl CLI

Once the Kubernetes configuration is exported, you can run kubectl commands to display and manage the cluster:

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

mydemo-1-cluster-m-1 Ready master 1d v1.17.4+1.0.1.el7

mydemo-1-cluster-m-2 Ready master 1d v1.17.4+1.0.1.el7

mydemo-1-cluster-m-3 Ready master 1d v1.17.4+1.0.1.el7

mydemo-1-cluster-w-0 Ready <none> 1d v1.17.4+1.0.1.el7

mydemo-1-cluster-w-1 Ready <none> 1d v1.17.4+1.0.1.el7

mydemo-1-cluster-w-2 Ready <none> 1d v1.17.4+1.0.1.el7

All the pods that have been deployed in the 'kube-system' namespace can be viewed as follows:

$ kubectl get pods -n kube-system

NAME READY STATUS RESTARTS AGE

coredns-d6c8c99d8-ft5hs 1/1 Running 0 1d

coredns-d6c8c99d8-tknbm 1/1 Running 0 1d

etcd-mydemo-1-cluster-m-1 1/1 Running 0 1d

etcd-mydemo-1-cluster-m-2 1/1 Running 0 1d

etcd-mydemo-1-cluster-m-3 1/1 Running 0 1d

kube-apiserver-mydemo-1-cluster-m-1 1/1 Running 3 1d

kube-apiserver-mydemo-1-cluster-m-2 1/1 Running 0 1d

kube-apiserver-mydemo-1-cluster-m-3 1/1 Running 0 1d

kube-controller-manager-mydemo-1-cluster-m-1 1/1 Running 1 1d

kube-controller-manager-mydemo-1-cluster-m-2 1/1 Running 2 1d

kube-controller-manager-mydemo-1-cluster-m-3 1/1 Running 4 1d

kube-flannel-ds-amd64-5xffg 1/1 Running 6 1d

kube-flannel-ds-amd64-grhtq 1/1 Running 0 1d

kube-flannel-ds-amd64-hq7n5 1/1 Running 0 1d

kube-flannel-ds-amd64-jqbpg 1/1 Running 0 1d

kube-flannel-ds-amd64-lm7n4 1/1 Running 4 1d

kube-flannel-ds-amd64-nlpxl 1/1 Running 0 1d

kube-proxy-2p8cg 1/1 Running 0 1d

kube-proxy-49k6m 1/1 Running 0 1d

kube-proxy-4xsjc 1/1 Running 0 1d

kube-proxy-74w9w 1/1 Running 0 1d

kube-proxy-lt4pg 1/1 Running 0 1d

kube-proxy-z2v4d 1/1 Running 0 1d

kube-scheduler-mydemo-1-cluster-m-1 1/1 Running 2 1d

kube-scheduler-mydemo-1-cluster-m-2 1/1 Running 0 1d

kube-scheduler-mydemo-1-cluster-m-3 1/1 Running 1 1d

22 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

Access Kubernetes Dashboard

The Dashboard is a web-based Kubernetes user interface. You can use Dashboard to deploy containerized applications to a

Kubernetes cluster, troubleshoot your containerized application, and manage the cluster resources. You can use Dashboard

to get an overview of applications running on your cluster, as well as for creating or modifying individual Kubernetes

resources (such as Deployments, Jobs, etc.).

The Kubernetes Dashboard container is created as part of the kube-system namespace. It provides an intuitive graphical

user interface to a Kubernetes cluster that can be accessed using a standard web browser. The Kubernetes Dashboard is

described in the upstream Kubernetes documentation at: https://kubernetes.io/docs/tasks/access-application-

cluster/web-ui-dashboard/

This section shows you how to start and connect to the Kubernetes Dashboard.

Display the Kubernetes Dashboard for monitoring

This pod can be seen running in the ‘kubernetes-dashboard’ namespace.

$ kubectl get pods -n kubernetes-dashboard

NAME READY STATUS RESTARTS AGE

kubernetes-dashboard-74f8fcbc74-88697 1/1 Running 0 28d

Get token needed to authenticate.

On the node with kubectl, obtain the secret token needed to access the dashboard and launch the proxy service.

This generates a long line of text. Copy the entire line for pasting into your browser in the step ‘Access the dashboard’ below

$ kubectl -n kube-system describe $(kubectl -n kube-system get secret -n kube-system -o name

| grep namespace) | grep token:

…eyJhbGciOiJSUzI1NiIsImtpZCI6IjItMDZtN3ZhMHFXemh2….much more text……

Optionally create new user for dashboard access

Optionally, you can create a new user using Service Account mechanism of Kubernetes to display and login to the web-

based dashboard. You can create this user, grant the user cluster-admin permissions and login to Dashboard using bearer

token tied to this user.

To do this, we used the following file 'dashboard.yaml'

$ cat dashboard.yml

apiVersion: v1

kind: ServiceAccount

metadata:

 name: admin-user

 namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: admin-user

roleRef:

23 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cluster-admin

subjects:

 - kind: ServiceAccount

 name: admin-user

 namespace: kube-system

The tasks in this 'dashboard.yaml' file can be executed with the kubectl apply command

$ kubectl apply -f dashboard.yml

Use a similar method as above to extract the authentication token, which we then copy, and later paste into the “Enter

Token” field in the browser page.

$ kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep admin-

user | grep token:

Start the proxy service

$ kubectl proxy

Starting to serve on 127.0.0.1:8001

Leave that terminal window undisturbed to let the service operate. You can stop it by issuing CTRL-C, You can run it as a

system service by issuing

systemctl enable --now kubectl-proxy.service

Access the dashboard

If kubectl is running remotely from your desktop or laptop, first ssh to that host with port forwarding. Substitute in the IP

address of the host running the kubectl proxy:

$ ssh -L 8001:127.0.0.1:8001 root@my-IP-address:

Then, whether kubectl is running remotely or locally, point your web browser to:

http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-

dashboard:/proxy/

http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/
http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/

24 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

Paste in the authentication token obtained previously. After authenticating you’ll see the dashboard and can navigate

through its screens. Several of the standard screens are illustrated below:

Image Caption 5. Kubernetes Dashboard for cluster ‘sonit-3-cluster’

25 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

26 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

Removal and cleanup

Run these commands if you wish to remove the demo environment after completing the exercise. Alternatively, you can

stop and delete the VMs used for this demonstration.

Uninstall Kubernetes module

$ olcnectl module uninstall \

--environment-name myenvironment \

--name mycluster

Delete environment

$ olcnectl environment delete \

--environment-name myenvironment

27 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

WEBLOGIC SERVER IN OCNE ON PRIVATE CLOUD APPLIANCE

The OCNE environment established above is now ready to install Helm and WebLogic server. Helm is the Kubernetes

package manager, used to locate and install software repositories for Kubernetes environments. Helm Charts are used to

install, manage, and upgrade Kubernetes applications. See http://helm.sh for further information.

Install Helm and Clone WebLogic Repository

All WebLogic related commands are run on the host running kubectl. First we obtain the get_help.sh script from the

Helm website, and then clone the WebLogic Kubenetes repository.

Install helm:

$ curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/master/scripts/get-

helm-3

$ chmod +x get_helm.sh

$./get_helm.sh

Clone Repository:

The next step clones the repository and populates a directory containing all the files needed to install WebLogic.

$ mkdir -p ~/WLS_K8S_OLCNE_demo

$ cd WLS_K8S_OLCNE_demo

$ git clone --branch v3.2.3 https://github.com/oracle/weblogic-kubernetes-operator

Install WebLogic Operator

Create namespace and service account for operator:

This step creates a namespace and service account for a Kubernetes operator:

$ kubectl create namespace sample-weblogic-operator- ns

$ kubectl create serviceaccount -n sample-weblogic-operator-ns sample-weblogic-operator-sa

Set up helm:

$ helm repo add traefik https://containous.github.io/traefik-helm-chart/ --force-update

Install operator using helm:

Specify the namespace, image, and the service account that was created earlier. The enableClusterRoleBinding option

enables the operator to have privilege in all namespaces. The labelselector will allow the operator to manage any

Kubernetes domains with the label weblogic-operator enabled. You can also add a debug option to see the process of

installing the operator.

$ cd weblogic-kubernetes-operator

$ helm install sample-weblogic-operator kubernetes/charts/weblogic-operator \

 --namespace sample-weblogic-operator-ns \

 --set image=ghcr.io/oracle/weblogic-kubernetes-operator:3.2.5 \

 --set serviceAccount=sample-weblogic-operator-sa \

 --set "enableClusterRoleBinding=true" \

 --set "domainNamespaceSelectionStrategy=LabelSelector" \

 --set "domainNamespaceLabelSelector=weblogic-operator\=enabled" \

 --wait

http://helm.sh/
https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3
https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3
https://github.com/oracle/weblogic-kubernetes-operator

28 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

Confirm WebLogic Operator

Run the following commands to confirm that the WebLogic operator is functional. The following commands check the pods,

logs and Helm chart.

$ kubectl get pods -n sample-weblogic-operator-ns

$ kubectl logs -n sample-weblogic-operator -ns \

-c weblogic-operator deployments/weblogic-operator

$ helm list -n sample-weblogic-operator-ns

Prepare for WebLogic Domain

The following steps create and label the domain namespace, create the Traefik namespace and install the Traefik ingress

controller.

Create domain namespace:

$ kubectl create namespace sample-domain1-ns

Label domain namespace:

$ kubectl label ns sample-domain1-ns weblogic-operator=enabled

Create Traefik ingress controller’s namespace:

$ kubectl create namespace traefik

Install Traefik ingress controller:

$ helm install traefik-operator traefik/traefik \

 --namespace traefik \

 --values kubernetes/samples/charts/traefik/values.yaml \

 --set "kubernetes.namespaces={traefik,sample-domain1-ns}"

Confirm Traefik install

Run the following commands to validate that Traefik is installed:

$ kubectl get pods -n traefik

$ kubectl get pods -n traefik -o wide # provides more detail

$ kubectl get svc -n traefik # show all services running in the Traefik namespace

Note that the external IP field remains pending because for on-premises deployment there is no cloud provider that will

assign an external IP.

29 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

Create Weblogic Domain

To create a domain, first create a Kubernetes secret for the WebLogic domain admin credentials using the create-

weblogic credentials script that was downloaded.

Create domain credentials:

$ kubernetes/samples/scripts/create-weblogic-domain-credentials/create-weblogic-

credentials.sh \

 -u weblogic -p welcome1 -n sample-domain1-ns -d sample-domain1

Upgrade WebLogic operator to manage domain:

This step adds the domainNamespaces

$ helm upgrade sample-weblogic-operator kubernetes/charts/weblogic-operator \

--namespace sample-weblogic-operator-ns --reuse-values \

--set "domainNamespaces={sample-domain1-ns}" --wait

Copy domain inputs yaml file to my version:

This step lets us create our own script settings by using a new yaml file instead of changing the distributed one.

$ cp create-domain-inputs.yaml my-inputs.yaml

Edit the following in my-inputs.yaml:

domainUID: sample-domain1

domainHome: /u01/oracle/user_projects/domains/sample-domain1

weblogicCredentialsSecretName: sample-domain1-weblogic-credentials

namespace: sample-domain1-ns

domainHomeImageBase: container-registry.oracle.com/middleware/weblogic:12.2.1.4

Finally – create the domain:

 The next step runs the create-domain script with my-input, specifies the output directory that will contain the domain

configuration yaml file, with the username of the secret created earlier, and the password.

$./create-domain.sh -i my-inputs.yaml -o ~/WLS_K8S_OLCNE_demo/weblogic-kubernetes-operator \

-u weblogic -p welcome1 -e

Edit the domain.yaml file that was generated:

$ cd ~/WLS_K8S_OLCNE_demo/weblogic-kubernetes-operator/weblogic-domains/sample-domain1

$ vi domains.yaml

Edit the image name: "iad.ocir.io/weblogick8s/weblogic-operator-tutorial-store:1.0"

Uncomment the admin server part so the admin server can be exposed over a node port:

adminServer is used to configure the desired behavior for starting the administration

server.

 adminServer:

 # serverStartState legal values are "RUNNING" or "ADMIN"

30 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

 # "RUNNING" means the listed server will be started up to "RUNNING" mode

 # "ADMIN" means the listed server will be start up to "ADMIN" mode

 serverStartState: "RUNNING"

 adminService:

 channels:

 # The Admin Server's NodePort

 - channelName: default

 nodePort: 30701

 # Uncomment to export the T3Channel as a service

 # - channelName: T3Channel

Then reapply the domain.yaml file to apply changes to the domain, then confirm the domain results.

$ kubectl apply -f domain.yaml

$ kubectl describe domain sample-domain1 -n sample-domain1-ns

$ kubectl get pods -n sample-domain1-ns

$ kubectl get pods -n sample-domain1-ns -o wide # for more details

$ kubectl get services -n sample-domain1-ns

Install the Ingress
$ cd ~/WLS_K8S_OLCNE_demo/weblogic-kubernetes-operator

$ helm install sample-domain1-ingress kubernetes/samples/charts/ingress-per-domain \

 --namespace sample-domain1-ns \

 --set wlsDomain.domainUID=sample-domain1 \

 --set traefik.hostname=my-traefik-host.FQDN

$ kubectl get ingress -n sample-domain1-ns

$ kubectl edit ingress -n sample-domain1-ns

Then add more traefik hostnames by issuing the above kubectl edit ingress

31 Technical Brief | Oracle Cloud Native Environment on Oracle Private Cloud Appliance| Version 2.01

 Copyright © 2021, Oracle and/or its affiliates | Confidential – Public

CONSIDERATIONS FOR PRODUCTION DEPLOYMENT

The preceding material describes a demonstration of Oracle Cloud Native Environment on Private Cloud Environment. For a

production deployment, additional planning is needed. While this is outside the scope of this paper, issues to keep in mind

are:

• Cluster sizing: sufficient capacity should be available to run peak loads both in terms of size of each worker node,

and the number of nodes being used. OCNE provides the ability to scale up as needed.

• Upgrade planning: as new OS, Kubernetes and applications become available, there has to be planning to upgrade

instances or to create new instances to test in parallel and then transition into production.

• Alignment of Kubernetes zones to hardware fault domains: workload should be distributed across separate physical

hardware to prevent single point of failure (SPOF) taking the application down. OCNE and PCA support this by

providing mechanisms to assign instances to different fault domains (hardware failure separation boundaries) or

by setting ‘anti-affinity’ rules.

• PKI (Vault) management to store and control certificates, encryption keys and private name/value information

needed by applications.

• Network planning

o Segregate pod network from other traffic

o Configure application load balancing

• Plan for persistent storage – see the OCNE documentation for further detail

o Kubernetes storage classes

o External databases

CONCLUSION

Oracle Private Cloud offers the most optimized infrastructure to host middleware and applications. They are ideal for

consolidating enterprise mission-critical workloads along with modern cloud native containerized workloads and manage

them from a single pane of glass. You can create fully HA Kubernetes clusters and scale them in minutes, simplifying your

journey to digital transformation.

The integrated cloud native environment allows you to modernize your Weblogic server applications while providing you the

best price/performance. Weblogic Kubernetes operator 3.0 is fully tested and supported on Oracle Private Cloud Appliance.

 CONNECT WITH US

Call +1.800.ORACLE1 or visit oracle.com.

Outside North America, find your local office at oracle.com/contact.

blogs.oracle.com

facebook.com/oracle

twitter.com/oracle

 Copyright © 2021, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are subject to change without

notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties

and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed

either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without

our prior written permission.

This device has not been authorized as required by the rules of the Federal Communications Commission. This device is not, and may not be, offered for sale or lease, or sold or

leased, until authorization is obtained.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of

SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered

trademark of The Open Group. 0120

Oracle Cloud Native Environment on Oracle Private Cloud Appliance

November 2121

Author: Sonit Tayal

RESOURCES

 Oracle Private Cloud Appliance website

 Oracle Private Cloud Appliance documentation

 Oracle Cloud Native Environment documentation https://docs.oracle.com/en/operating-systems/olcne/start/

 Introducing Oracle Verrazzano Enterprise Container Platform:

https://blogs.oracle.com/developers/post/introducing-oracle-verrazzano-enterprise-container-platform

 Weblogic Kubernetes Operator User Guide https://oracle.github.io/weblogic-kubernetes-operator/

 Helm description and documentation https://helm.sh

https://www.oracle.com/
https://www.oracle.com/corporate/contact/
https://blogs.oracle.com/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.oracle.com/engineered-systems/private-cloud-appliance/on-premises/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/
file:///C:/Users/jsavit/Oracle%20Content%20-%20Accounts/Oracle%20Content/PCA/CloudNative-OLCNE-K8S-Kubernetes/Oracle%20Cloud%20Native%20Environment%20documentation
https://docs.oracle.com/en/operating-systems/olcne/start/
https://oracle.github.io/weblogic-kubernetes-operator/
https://helm.sh/

