
 Java Performance, Scalability, Availability & Security with Oracle Database 12c

An Oracle White Paper

June 2013

Java Performance, Scalability, Availability
& Security with Oracle Database 12c

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

1 - Introduction .. 1

2 – Support for Latest Java Standards... 2

Java SE 7 and Multiple Java SE .. 2

JDBC 4.1 ... 2

In-Database JNDI .. 2

In-Database Java Logging ... 3

3 – Support for the Multitenant Container Database 3

Multitenant DataSource for Java .. 4

3 – JDBC Support for New SQL Data Types 4

32K VARCHAR, NVARCHAR, and RAW 4

Invisible or Hidden Columns .. 5

Implicit Results .. 5

Auto-Increment Columns (IDENTITY columns) 5

PL/SQL Package Types as parameters ... 6

5 – Java Performance and Scalability .. 6

New JDBC Memory Management ... 6

Large Network Buffers (SDU) .. 7

Database Resident Connection Pool ... 7

Global Data Services for Java ... 8

6 – Transaction Guard and Application Continuity for Java................ 9

New Concepts ... 9

FAN - HA Events & Notification ... 9

Transaction Guard for Java ... 10

Application Continuity for Java ... 12

Exclusions, Restrictions, and Design Considerations 13

Global Data Services - Connection HA Services.......................... 14

7 – Manageability, Ease of Use ... 14

Row Count Per Iteration For Array DML 14

Monitoring and Tracing Database Operations 14

Intelligent Connectivity and Faster Dead Client Detection 15

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

8 - Security .. 15

Advanced Security Option ... 15

Customizing Default Java Security for Java in the database 15

Runtime.exec with Java in the Database 16

9 - Applications Migration .. 16

SQL Statement Translation ... 16

Conclusion .. 16

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

 1

 1 - Introduction

No matter your programming model Java SE, Java EE, JPA/POJO, the RDBMS has a

significant impact on the efficiency
1
 of your Java components, applications, frameworks.

Have you ever needed to deploy Java applications with tens of thousands of concurrent users?

Have you ever experienced paying twice the same flight ticket, the same article or your taxes?

Have you ever wanted the system to just deal with database failure and not ask you to restart

your transaction from start? Looking to exploit the new Oracle Multitenant Container Database

with Java?

If you are a Java architect, Java designer or wannabe looking to exploit new Oracle database

12c enhancements in the areas of performance, scalability, availability, security and

manageability/ease-of-use, this is the paper for you.

The Oracle database furnishes the JDBC drivers, the Universal Connection Pool (UCP), the

database resident JVM, the JPublisher utility and the SQLJ driver
2
; this paper covers the new

Oracle database 12c features across these components.

1 Including performance, scalability, availability manageability and security

2 The SQLJ driver is not covered in this paper.

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

 1

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

2

2 – Support for Latest Java Standards

Through its Java components
3
, the Oracle database 12c supports Java SE 7 (in addition to

Java SE 6), JDBC 4.1, in-database JNDI, and in-database Java Logging.

Java SE 7 and Multiple Java SE

Both Oracle JDBC and UCP now support Java SE 7 (ojdbc7.jar, ucp.jar).

The database-resident Java VM which allows running plain Java SE applications directly in the
database, now supports Java SE 6 (the default) and Java SE 7, with the ability to
upgrade/downgrade from one to the other (see the Java Developer guide for more details).

JDBC 4.1

Oracle Database 12c now supports the JDBC 4.1 getObject() method with two signatures.
getObject(int parameterIndex,java.lang.Class<T> type)
 throws SQLException

getObject(java.lang.String parameterName,java.lang.Class<T> type)
 throws SQLException

Example

ResultSet rs = . . . ;
Character c = rs.getObject(1, java.lang.Character.class);

Other JDBC 4.1 feature include try-with-resources however, Oracle JDBC does not yet
have support for setObject and the RowSetFactory interface.

In-Database JNDI

The database resident Java VM now supports a general purpose directory service for
storing/binding objects references including:

 A namespace: similar to Unix file system structure
/pub
/etc

 A namespace browser (ojvmjava utility): enables browsing permissions and properties of
objects stored in the OJDS

ojvmjava -u scott/tiger
connected to scott
--OJVMJAVA--
--type "help" at the command line for help message
$ ls
etc/ public/

3 JDBC drivers, UCP, and embedded Java VM

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

3

$ bindds ds1 -host localhost -port 5521 -sid jvmj4 -user scott
$ ls
ds1

$ bindurl myURL http://www.oracle.com -g PUBLIC
$ ls
myURL

 A Java Directory Service Namespace Provider (OJDS)

 String url = "ojds://thin:"+host+":"+port+":"+sid;
 DirContext cctx = (DirContext)ctx.lookup(url+"/public");
 System.out.println("'/public' is bound to "+cctx);
 Attributes attrs = new BasicAttributes(true);
 attrs.put("owner","xxx");
 attrs.put("read","xxx");
 attrs.put("write","xxx");
 attrs.put("execute","xxx");
 ctx.bind(url+"/public/myObj",new Byte("100"),attrs);
 System.out.println("'/public/myObj' is bound to
 "+ctx.lookup(url+"/public/myObj"));
 Attributes answer = ctx.getAttributes(url+"/public/myObj");

In-Database Java Logging

The database-resident Java VM now supports Java Logging and furnishes a
logging.properties file. It is initialized once per session with the LogManager API,
extended with the database resource lookup.

 If $ORACLE_HOME/javavm/lib/logging.properties resource is set in the current user
schema, this resource is used for configuring the LogManager and the
java.util.logging.config.file property is set

 Otherwise the $ORACLE_HOME/javavm/lib/logging.properties resource in the SYS
schema is used

You may configure a different properties file and load them in your schema using the
loadjava utility.

3 – Support for the Multitenant Container Database

The Oracle database 12c introduces a new multitenant architecture consisting of a root
infrastructure called CDB which contains exclusively Oracle provided metadata, then a set of
pluggable databases (PDBs), which are full-fledged databases containing customers and
applications data and metadata.
The benefits of multitenant architecture are:

 Fast provisioning of a new database or of a copy of an existing database.

 Fast redeployment, by unplug and plug, of an existing database to a new platform.

 Quickly patch or upgrade the Oracle Database version for many databases and for the
cost of doing it once.

 Patch or upgrade by unplugging a PDB and plugging it into a different container database
(CDB) in a later version.

 A server machine sustains more PDB databases than traditional non-CDB databases.

 Separation of roles and duties of CDB administrator from a PDB administrator.

http://www.oracle.com/

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

4

From Java containers, frameworks and applications perspective, the PDBs feel and operate
identically to non-CDB databases i.e., traditional Oracle databases provided the “service
name” (Oracle Net Services parlance) of the target PDB is used in JDBC URL connect strings.

Multitenant DataSource for Java

In order to allow sharing a single pool of connections across multiple PDBs i.e., tenants,
Oracle JDBC and UCP furnish the Multitenant Datasource for Java. In this release, it is based
on a combination of (i) global database user i.e., may access any PDB, (ii) UCP connection
labeling, (iii) the new “ALTER SESSION SET CONTAINER=<PDB Name>”, and (iv) the UCP
connection labeling callback interface.

Here is a sketch of how Multitenant Datasource for Java works

4

1. Tenant1 asks for a connection to PDB1, by calling getConnection() with the
corresponding label (mapped to database id)

2. UCP searches the pool for a free connection (tentatively with the specified label)
3. If Conn1 label reads “PDB1” then it is handed to JDBC then to Tenant1 for use.
4. Otherwise

(i) the user-implemented callback “configure” method is invoked by UCP to set Conn1
to PDB1 using ALTER SESSION SET CONTAINER …

(ii) the “ … SET CONTAINER …” statement is passed to the server and parsed

(iii) the server executes the statement, assigns Tetant1 the PDB1-specific-role
5
 and

connects Conn1 to PDB1 then returns the corresponding database id (“dbid”) and other
properties to JDBC
(iv) JDBC notifies the conn pool (UCP), then hands Conn1 to Tenant1 for use.

3 – JDBC Support for New SQL Data Types

Java applications may leverage new data types including: 32K VARCHAR, NVARCHAR, and
RAW, invisible/hidden columns, implicit results, auto-increment or IDENTITY columns, PL/SQL
packaged types and as parameters, larger row count data type, and XStream enhancements.

32K VARCHAR, NVARCHAR, and RAW

The maximum size of the VARCHAR2, NVARCHAR2, and RAW data types has been
increased from 4,000 to 32,767 bytes. Java applications using JDBC will no longer need to
switch to large objects (LOBs) for data inferior to 32K in size; indexes may also be built on top
of columns declared with such data types.
In order to use these extended data types, database administrators must perform the following
steps

4 A forthcoming Multitenant Datasource for Java white paper will be posted @
http://www.oracle.com/technetwork/database/application-development/index-099369.html

5 Once in a PDB a global user cannot do much without being assigned a password protected role.

http://www.oracle.com/technetwork/database/application-development/index-099369.html

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

5

1. Set the COMPATIBLE initialization parameter to 12.0.0.0.
2. Set the MAX_STRING_SIZE initialization parameter to EXTENDED.
3. Run the rdbms/admin/utl32k.sql script.

Invisible or Hidden Columns

New columns can be created or added to table(s) then hidden, using the INVISIBLE SQL
keyword. Invisible columns are not displayed during generic access such as a “SELECT *
FROM table” or “DESCRIBE table” however these may be displayed when specified
explicitly in the SELECT list.
For Java, Oracle JDBC furnishes metadata and a method (isColumnInvisible) to check
whether a column is invisible / hidden or not.

Example

OracleResultSetMetaData rsmd = (OracleResultSetMetaData)rset.getMetaData();
...
System.out.println("Visibility:" + rsmd.isColumnInvisible(2));

Implicit Results

Problem to solve: make easy the migration of Java applications from foreign databases to
Oracle. Implicit Results allows Java applications to retrieve the return of stored procedures
(PL/SQL, Java) directly, using the PL/SQL procedure DBMS_SQL.RETURN_RESULT, without
the need to use Ref Cursor.

create or replace procedure p_imres as
 result sys_refcursor;
 begin
 open result for select * from tab;
 dbms_sql.return_result(result);
 end;

Java applications may use the following methods to consume implicit results

 getMoreResults() or getMoreResults(int) to check if there are more results
available in the result set.
The int parameter that can have one of the following values:

o KEEP_CURRENT_RESULT
o CLOSE_ALL_RESULTS
o CLOSE_CURRENT_RESULT

 getResultSet: iteratively retrieves each implicit result from an executed PL/SQL

statement.

Example

 CallableStatement cstmt = null;
 ResultSet rs = null;
 cstmt = conn.prepareCall(“{call p_imres()}”);
 cstmt.execute();
 boolean resultsAvailable = cstmt.getMoreResults();

Auto-Increment Columns (IDENTITY columns)

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

6

Problem to solve: portability or easy migration of Java, C, C++, or C# applications built on
foreign RDBMS.
The Oracle database 12c implements the ANSI compliant and automatically incrementing
columns using the SQL keyword IDENTITY.
CREATE TABLE t1 (c1 NUMBER GENERATED BY DEFAULT ON NULL AS IDENTITY, c2
VARCHAR2(10));

PL/SQL Package Types as parameters

For Java application, Oracle JDBC now supports PL/SQL package types as parameters using
ADT APIs i.e., STRUCT or ARRAY classes or a custom Java class

 Use %ROWTYPE to create PLSQL package types, then obtain the rows of a table as

java.sql.Array or java.sql.Struct
 The PL/SQL package type names must be specified as <schema name>.<package

name>.<type name> or <package name>.<type name>

This feature makes easier to fetch query results as ADT, thereby simplifying Object-Relational
mapping.

PLSQL Package type example

CREATE OR REPLACE PACKAGE pack1 AS
 TYPE employee_rowtype_array IS A TABLE OF Employee%ROWTYPE;
END;
/

Java/JDBC Code

CallableStatement cstmt =
 connection.prepareCall(“BEGIN SELECT * INTO :1 FROM EMPLOYEE;
END;”);
cstmt.registerOutParameter(1, OracleTypes.ARRAY,
 “PACK1.EMPLOYEE_ROWTYPE_ARRAY”);
cstmt.execute();
Array employeeArray = cstmt.getArray(1);

Schema objects such as INTEGER, VARCHAR are mapped respectively to Java int and
String.

5 – Java Performance and Scalability

New performance and scalability enhancements include: new JDBC memory management
Database Resident Connection Pool, very large network buffers (SDU), and Runtime
Connections Load Balancing across geographies (Global Data Services).

New JDBC Memory Management

JDBC memory management has a significant impact on the JVM memory and ultimately on
Java performance.
Problem to solve: given a query returning 1000 rows (fetchsize), each row has 255 columns,
each column is a VARCHAR2(4000).

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

7

a) In prior releases (up to 11gR2), no matter the actual data content (e.g., fewer characters,
NULL values), the JDBC driver allocates the maximum possible value for each column
hence 8k bytes for VARCHAR(4000) (2 byte per character) times 255 columns times 1000
rows = 2040K bytes (or 2MB) per row x 1000 = 2GB char[].

b) With Oracle database 12c, the JDBC driver performs lazy allocation, in other words, it
allocates only enough memory to store the metadata (15 bytes per value) + the actual
data. If the value of a column is less than 4000, the driver will allocate 15 bytes of
metadata + enough bytes to hold the actual value; if the value of a column is NULL then
only 15 bytes will be allocated for that column; resulting in potentially significant memory
saving when column data are less than the maximum possible value.

For a complete discussion, see the white paper “Oracle JDBC Memory Management” on the
JDBC portal of Oracle Technology Network @

http://www.oracle.com/technetwork/database/application-development/index-
099369.html

Large Network Buffers (SDU)

Session Data Unit (SDU) defines the size of internal buffers used by Oracle Net Services to
move data from tables to database clients. If you can imagine moving GB of data using a 16KB
buffer (the default), you will immediately understand the impact of SDU on query performance
for Java applications retrieving large result sets of XML documents.
Oracle database 12c now supports very large network buffers up to 2 MB, up from 64K in
Oracle database 11g Release 2. SDU can be configured at application level in JDBC URL, at
database service level in TNSNAMES.ORA or globally at database level in SQLNET.ORA.
Note: SDU is not used when data is streamed directly to the client, without intermediate
materialization e.g., SecureFile LOBs.

Database Resident Connection Pool

Database Resident Connection Pool (DRCP) is an RDBMS-side pool of servers processes
shared across client applications, programming languages and middle-tiers. Introduced in
Oracle database 11g OCI for C, C++, PHP, Python and Perl, it is indispensable for single-
threaded systems (such as PHP/Apache) that cannot do client/middle-tier connection pooling.
DRCP is also beneficial for multi-threaded systems such as Java, for large scale deployment
of thousands of middle-tier accessing the same database. The reduction of database server
processes and memory may reach orders of magnitude.

DRCP pools must be explicitly created configured, started and stopped by the DBA using the
DBMS_CONNECTION_POOL package (available/installed out-of-the-box).

sqlplus /nolog
connect / as sysdba
execute dbms_connection_pool.start_pool();
execute DBMS_CONNECTION_POOL.CONFIGURE_POOL (session_cached_cursors=>50);
...
execute dbms_connection_pool.stop_pool();

DRCP is now available for Java through Oracle JDBC drivers. A client-side connection pool
e.g., Oracle’s Universal Connection Pool for Java is required for tracking connections check-in
and check-out on the clients/mid-tiers.
New JDBC connection properties oracle.jdbc.DRCP.name and oracle.jdbc.DRCP.purity

http://www.oracle.com/technetwork/database/application-development/index-099369.html
http://www.oracle.com/technetwork/database/application-development/index-099369.html

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

8

allow Java applications to name DRCP pools and sub-partition a single pool across several
applications.

To enable DRCP with JDBC and UCP, perform the following steps:

 Pass a non-null and non-empty string value to the connection property
oracle.jdbc.DRCPConnectionClass

 Add POOLED qualifier to the URL in the short connection string
 Example: jdbc:oracle:thin:@//localhost:5221/orcl:POOLED

 Add (SERVER=POOLED) in the long connection string or in TNSNAMES.ORA
LongURL =
"jdbc:oracle:"+getTS()+":@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)"+"(HOST="+
getHost()+")(PORT="+getPort()+"))(CONNECT_DATA=(SERVICE_NAME="+
getSvcName()+")(SERVER=POOLED)))";

To enable DRCP with third party client-side connections pools, you must use new public
methods under oracle.jdbc.pool.OraclePooledConnection. See the Oracle JDBC guide
for more details.

Global Data Services for Java

Prior to Oracle database 12c, the scope of services such as Runtime Connection Load
Balancing, Fast Connection Failover, web Session Affinity, Transaction Affinity were limited to
single physical databases with multiple instances (i.e., RAC). Global Data Services (GDS) is a
new framework which extends those services to database deployed anywhere within a globally
distributed configuration (i.e., across geographies). Target databases configurations include
Real Application Clusters (RAC), Active Data Guard, as well as configurations based on
GoldenGate or other replication technology. Universal Connection Pool (UCP) have been
enhanced to furnish Fast Connection Failover, Runtime Load Balancing, Web Affinity, and
Transaction Affinity, across geographies.

How to Enable GDS

1. Enable Fast Connection Failover (FCF)
2. Automatic ONS configuration – i.e., no need to call setONSConfiguration()
3. Specify global service name and region in connect URL

 (DESCRIPTION=
 (ADDRESS_LIST= (LOAD_BALANCE=ON) (FAILOVER=ON)
 (ADDRESS=(GDS_protocol_address_information))
 (ADDRESS=(GDS_protocol_address_information))
)
 (CONNECT_DATA= (SERVICE_NAME=global_service_name)
 (REGION=region_name))
)

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

9

Runtime Load balancing Enhancements

With Oracle database 12c, the Universal Connection Pool (UCP) brings significant
enhancements to Runtime Load Balancing (RLB) in the areas of performance and smooth
rebalancing. UCP now enforces strict Web and Transaction Affinity

6
.

6 – Transaction Guard and Application Continuity for Java

Ensuring that customers do not pay twice a flight ticket, book or taxes is a universal usability
requirement but a very hard technical problem to solve; similarly, capturing and replaying in-
flight work in the face of database outage, is also a technically challenging problem to solve.

When a database outage occurs, four problems confront applications: (1) hangs, (2) errors, (3)
determining the outcome of in-flight work and (4) the resubmission of in-flight work.

In “Application Failover with Oracle database 11g”

7
, we described how applications can deal

with hangs through Fast Application Notification (FAN). Oracle database 12c pushes the
envelope further with: Transaction Guard for a reliable outcome of in-flight work and
Application Continuity for capturing and replaying in-flight transactions.

New Concepts

Recoverable Error: Oracle database 12c exposes a new error attribute is_recoverable that
applications can use to determine if an error is recoverable or not without maintaining their own
list of error codes (e.g., ORA-1033, ORA-1034, ORA-xxx). JDBC throws
SQLRecoverableException if the error is recoverable.

Database Request: a unit of work submitted by the application, including SQL PL/SQL, local
calls, and remote procedure calls; has typically one COMMIT but could has zero or more than
one.
Logical Transaction ID (LTXID): for determining the outcome of the last COMMIT statement.

Mutable Functions: non-deterministic functions that can change their results each time they are
called e.g., SYSDATE, SYSTIMESTAMP, SEQUENCES, SYS_GUID.

FAN - HA Events & Notification

RAC and Data Guard emit HA events such as NODE DOWN, INSTANCE UP/DOWN,
SERVICE UP/DOWN, etc; upon emission, these events are sent/notified to subscribers
(drivers, applications) using Oracle Notification Services (ONS). Oracle JDBC drivers and the
Universal Connection Pool subscribe to all HA events types when Fast Connection Failover is
enabled and act upon. Java applications and third party drivers and connections pools may
subscribe directly to DOWN events, using use SimpleFAN.jar (UP events are not currently
supported).

6 Affinity is covered in“Java developers Perspective on Oracle Database 11g” white paper.

7 http://www.oracle.com/technetwork/database/app-failover-oracle-database-11g-173323.pdf

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

10

Transaction Guard for Java

Problems to solve

Address the 3
rd

 issues that is: make a reliable determination of the outcome of the in-flight
work. Following a break in communication between Java applications and the RDBMS, the
outcome of last COMMIT operation is often doubtful and leads to the resubmission of work
already committed thereby committing the same transaction twice or several times. This
problem is challenging because simply checking the outcome at a given time does not
guarantee a reliable outcome, as the COMMIT statement may eventually complete after the
check.
Transaction Guard is an API for implementing “at most one COMMIT” by determining the
outcome of the last COMMIT operation, in a fast, reliable and scalable manner; thereby
ensuring that the execution of each logical transaction is unique.

Typical usage

1) Upon database instance crash: (i) death of sessions belonging to that instance; (ii) Fast
 Application Notification immediately sends the event to subscribers; (iii) application gets an
 error quickly; (iv) the connection pool (UCP) removes orphan connections from the pool

2) server-side package and procedure to help determine the outcome of the last COMMIT

a) New DBMS_APP_CONT package
b) Here is a sketch of the RDBMS and application interaction

 If “recoverable error”
 then
 Get last LTXID from dead session or from your JDBC callback

 Obtain a new database session

 Call DBMS_APP_CONT.GET_LTXID_OUTCOME with last LTXID to obtain

 COMMITTED and USER_CALL_COMPLETED status

 If COMMITTED and USER_CALL_COMPLETED

 Then return result

 ELSEIF COMMITTED and NOT USER_CALL_COMPLETED

 Then return result with a warning

 ELSEIF NOT COMMITTED

 Cleanup and resubmit request
 Note: the RDBMS prevents the transaction from committing (RETENTION_TIMEOUT)

 END

And here is the definition of GET_LTXID_OUTCOME

 CREATE OR REPLACE PROCEDURE get_ltxid_outcome(
 client_ltxid IN RAW,
 committed OUT INT,
 user_call_completed OUT INT)
 AS
 committed_b BOOLEAN;
 user_call_completed_b BOOLEAN;
 BEGIN
 dbms_app_cont.get_ltxid_outcome(client_ltxid, committed_b,
 user_call_completed_b);
 IF committed_b=TRUE THEN committed := 1;

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

11

 ELSE
 committed := 0;
 END IF;
 IF user_call_completed_b=TRUE THEN
 user_call_completed := 1;
 ELSE
 user_call_completed := 0;
 END IF;
 END;
 /

Ensure that execute permission on the DBMS_APP_CONT package has been granted to the

database users that will call GET_LTXID_OUTCOME:

GRANT EXECUTE ON DBMS_APP_CONT TO <user-name>;

3) Application Usage (Java)

 addLogicalTransactionIdEventListener()//register a listener to
 // Logical Transaction Id events

 LogicalTransactionId firstLtxid = oconn.getLogicalTransactionId();
 //sent by the server in a piggy back message and hence this
 //method call doesn't make a roundtrip.
 …
 CallableStatement cstmt = oconn.prepareCall(GET_LTXID_OUTCOME);
 // procedure defined above
 …
 committed = cstmt.getBoolean(1);

Supported Transaction Types

Transaction Guard supports the following transaction types: local transactions, DDL and DCL

transactions, distributed and Remote transactions, parallel transactions, commit on success

(auto-commit), and PL/SQL with embedded COMMIT.

Exclusions

In this release, Transaction Guard excludes the following transaction types

 Intentionally recursive transactions and autonomous transactions intentionally so that

these can be re-executed.

 XA transactions

 Active Data Guard with read/write DB Links for forwarding transactions

 Golden Gate and Logical Standby

Configuration

RDBMS
On Service

 COMMIT_OUTCOME: values {TRUE or FALSE}, default is FALSE; applies to new sessions

 RETENTION_TIMEOUT: Units in seconds, default is 86400 (24 hours); maximum value is
2592000 (30 days)

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

12

SQL>

declare

params dbms_service.svc_parameter_array;

begin

 params('COMMIT_OUTCOME'):='true';

 params('RETENTION_TIMEOUT'):=604800;

 dbms_service.modify_service('[your service]',params);

end;

/

For a deeper coverage of Transaction Guard, please consult the “Transaction Guard” white

paper on the Oracle Technology Network (OTN).

Application Continuity for Java

Problem to Solve

Address the 4
th
 issue that confronts applications upon RDBMS instance failure, in other words,

the resubmission of in-flight work resulting in masking database instance outage (hardware,
software, network, and storage) to applications.

Solution

Application Continuity is a packaged solution which building blocks include: the unit of work
(a.k.a. “database request”), the JDBC replay data source, Transaction Guard for Java, and
RDBMS High Availability configurations (RAC, Data Guard).
Application Continuity works as follows:
1. Transparently captures in flight work a.k.a. “database request”, during normal runtime
2. Upon RDBMS instance outage or site failure, if recoverable errors then Transaction

Guardis used under the covers then the driver reconnects to a good RDBMs instance
(RAC) or disaster recovery site (ADG)

3. The driver and RDBMS cooperate to replay the in-flight work captured during normal
runtime (until the point of failure).

When successful

8
, Application Continuity masks hardware, software, network, and storage

outages to applications; end-users will only observe/experience a slight delay in response
time.

Table 1 below summarizes how Application Continuity works

8 See restrictions and application design considerations in “Maximum Application Availability” or
“Application Continuity” white papers

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

13

Configuration

In Oracle database 12c Release 1, Application Continuity is available with JDBC-Thin and
UCP. These Oracle clients transparently demarcate units of work on connection check-
out/check-in whereas third party drivers and connection pools must explicitly demarcate the
units of work (a.k.a. “database requests”) using beginRequest()/endRequest() calls.

Application Continuity for Java requires standard JDBC interfaces instead of deprecated
oracle.sql.* concrete classes: BLOB, CLOB, BFILE, OPAQUE, ARRAY, STRUCT, or

ORADATA (see My Oracle Support Note 1364193.1
9
 for the deprecation notice).

1- Java Application

 sets the new replay data source either in property file, as follows, or inline.
 datasource=oracle.jdbc.replay.OracleDataSourceImpl

2- Enable Application Continuity on Service

FAILOVER_TYPE = TRANSACTION
REPLAY_INITIATION_TIMEOUT = 1800
FAILOVER_DELAY = 3 seconds
FAILOVER_RETRIES = 60 retries
SESSION_STATE_CONSISTENCY = DYNAMIC
COMMIT_OUTCOME = TRUE

Exclusions, Restrictions, and Design Considerations

Application Continuity exclusions, restrictions and design considerations are discussed further
in Oracle “Application Continuity” white papers on the Oracle Technology Network (OTN).

9 See JDBC interfaces for Oracle types:
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1364193.1

TABLE 1. PROCESSING PHASES OF APPLICATION CONTINUITY

NORMAL RUNTIME RECONNECT REPLAY

 Identifies database requests

 Decides what is replayable and

what is not

 Builds proxy objects

 Holds original calls with

validation

 Ensures request has replay

enabled

 Handles timeouts

 Creates a new connection

 Validates target database

 Uses Transaction Guard to

enforce last outcome

 Replays held calls

 During replay, ensures that user

visible results match original

 Continues the request if replay is

successful

 Throws the original exception if

replay is unsuccessful

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

14

Table 2 below summarizes restrictions

TABLE 2. WHEN IS APPLICATION CONTINUITY DEACTIVATED (NOT SUPPORTED)

GLOBAL REQUEST TARGET DATABASE

Any calls in same request after –

 successful commit in dynamic

mode (the default)

 a restricted call

 disableReplay API

 Error is not recoverable

 Timeouts

— Replay initiation timeout

— Max connection retries

— Max retries per incident

 Target database is not valid for
replay

 Last call committed in dynamic
mode

 Validation detects different

results

Global Data Services - Connection HA Services

With GDS (described above), UCP has also been enhanced to furnish Fast Connection
Failover across geographies. See the Oracle database 12c Active Data Guard white paper for
more details on Global Data Services.

7 – Manageability, Ease of Use

Oracle database 12c furnishes row count per iteration for array DML, monitoring and tracing
database operations, intelligent client connectivity and faster dead connection detection.

Row Count Per Iteration For Array DML

Java applications using Oracle JDBC drivers can now retrieve the number of rows affected by
each iteration of an array DML statement (i.e., array INSERT, UPDATE, DELETE).

The following statement now prints the update count for each UPDATE.
 …
int rcount[] = stmt.executeBatch();

Monitoring and Tracing Database Operations

For end-to-end tracing Oracle database furnishes a reserved namespace (OCSID) for storing
tags: MODULE, ACTION, CLIENTID, ExecutionContextID (ECID), MODULE,
SEQUENCE_NUMBER and the new DBOP.These tags may be associated with a thread without
requiring an active connection to the database or client/server. When the application makes a
database call, the tags are sent along to the database, piggybacking on the application’s
connection.

Java applications can use DBOP and other OCSID through either JDBC setClientInfo()
method or DMS APIs
For example, you can set the value of the DBOP tag to foo in the following way:
...

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

15

Connection conn = DriverManager.getConnection(myUrl, myUsername,

myPassword);

conn.setClientInfo("E2E_CONTEXT.DBOP", "foo");

Statement stmt = conn.createStatement();

stmt.execute("select 1 from dual"); // DBOP tag is set after this

...

Intelligent Connectivity and Faster Dead Client Detection

Oracle Net Services is now smarter during connection attempts and decrease the priority of
unresponsive nodes in the address string of connect descriptor, for subsequent attempts
thereby increasing connectivity time and availability.

Similarly, the detection of terminated session/connection has been accelerated; the
SQLNET.EXPIRE_TIME parameter in the sqlnet.ora configuration file helps detect
terminated clients, faster. If the system supports TCP keepalive, then Oracle Net Services
automatically uses the enhanced detection model, and tunes the TCP keepalive
parameters.

8 - Security

Advanced Security Option

With Oracle database 12c, JDBC now supports SHA-2 hashing algorithms (including: SHA-
256, SHA-384, and SHA-512) to generate secure message digests. Overall, Java applications
can use the following hashing algorithms: MD5, SHA1, SHA-256, SHA-384 or SHA-512.

Usage
prop.setProperty
(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES,
"(MD5, SHA1, SHA256, SHA384 or SHA512)");
prop.setProperty
(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL, "REQUIRED");

Customizing Default Java Security for Java in the database

The Java VM in Oracle database 12c enhances permission and policy management through a
default policy configuration. In this release, the Java policy may be customized with adding
third-party encryption suites then reloaded by the system administrator, as follows:

a) create $ORACLE_HOME/javavm/lib/security/java.security.alt
b) copy the contents of $ORACLE_HOME/javavm/lib/security/java.security into the newly

created file
c) edit and load $ORACLE_HOME/javavm/lib/security/java.security.alt

cd $ORACLE_HOME/javavm
loadjava -u sys/<sys_pwd> -v -g public lib/security/java.security.alt

 Java Performance, Scalability, Availability & Security with Oracle Database 12c

16

Runtime.exec with Java in the Database

For security reasons, it is advisable to run processes forked by Runtime.exec using OS
identity with lesser rights. The following procedure associates a database user DBUSER with
an OS osuser account:

dbms_java.set_runtime_exec_credentials('DBUSER', 'osuser', 'ospass');

9 - Applications Migration

Problem to solve: migrating Java applications built against foreign RDBMS. Oracle database
12c simplifies and reduces migration cost through new SQL types; however, the harder part is
to support SQL syntax foreign to the Oracle database SQL engine.

Solution: a framework for translating foreign SQL syntax into Oracle SQL syntax before being
submitted to the Oracle RDBMS SQL engine for compilation and execution.

SQL Statement Translation

The translation of foreign SQL statement syntax is performed by the SQL Translation
Framework which consists in:
(i) a general purpose translation engine which runs in the Oracle RDBMS
(ii) a foreign RDBMS specific profile, which is plugged into the translation engine to allow
translating the specific SQL dialect.

Java applications using Oracle JDBC drivers may now use the new SQL Translation
mechanism, using the following new APIs:

 oracle.jdbc.sqlTranslationProfile

 oracle.jdbc.sqlErrorTranslationFile

 oracle.jdbc.OracleTranslatingConnection

And SQLErrorTranslation.xml configuration file.

Conclusion

This paper walked you through new Oracle database12c features for Java performance,

scalability, availability and security; key features include support for the latest Java standards,

embedded JVM support for multiple Java SE, Multitenant DataSource for Java, JDBC support

for DRCP, large network buffers, support for new SQL types, Transaction Guard for Java,

Application Continuity for Java, support for Global Data Service, advanced security features,

finally, deprecated and de-supported features.

Java Performance, Scalability, Availability &

Security with Oracle Database 12c

June 2013

Author: Kuassi Mensah

#kmensah

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and

are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are

trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0612

